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Abstract. We propose an analytical method to study the entangled spatial and spin dynamics of interacting
bimodal Bose-Einstein condensates. We show that at particular times during the evolution spatial and spin
dynamics disentangle and the spin squeezing can be predicted by a simple two-mode model. We calculate
the maximum spin squeezing achievable in experimentally relevant situations with Sodium or Rubidium
bimodal condensates, including the effect of the dynamics and of one, two and three-body losses.

PACS. 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates – 42.50.Dv Quantum state
engineering and measurements – 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic
excitations, superfluid flow – 03.75.Mn Multicomponent condensates; spinor condensates

1 Introduction

In atomic systems effective spins are collective variables
that can be defined in terms of orthogonal bosonic modes.
In this paper the two modes we consider are two different
internal states of the atoms in a bimodal Bose-Einstein
condensate. States with a large first order coherence be-
tween the two modes, that is with a large mean value of
the effective spin component in the equatorial plane of the
Bloch sphere, can still differ by their spin fluctuations.
For an uncorrelated ensemble of atoms, the quantum
noise is evenly distributed among the spin components
orthogonal to the mean spin. However quantum corre-
lations can redistribute this noise and reduce the vari-
ance of one spin quadrature with respect to the uncorre-
lated case, achieving spin squeezing [1,2]. Spin-squeezed
states are multi-particle entangled states that have prac-
tical interest in atom interferometry, and high precision
spectroscopy [3]. Quantum entanglement to improve the
precision of spectroscopic measurements has already been
used with trapped ions [4] and it could be used in atomic
clocks where the standard quantum limit has already been
reached [5].

A promising all-atomic route to create spin squeez-
ing in bimodal condensates, proposed in [6], relies on the
Kerr-type non linearity due to elastic interactions between
atoms. Quite analogously to what happens to a coherent
state in a nonlinear Kerr medium in optics [7], an initial
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“phase state” or coherent spin state, where all the effective
spins point at the same direction, dynamically evolves into
a correlated spin-squeezed state. A straightforward way to
produce the initial phase state in a bimodal condensate is
to start with one atomic condensate in a given internal
state a and perform a π/2-pulse coupling coherently the
internal state a to a second internal state b [8]. However, as
the strength of the interactions between two atoms a−a,
b−b and a−b are in general different, the change in the
mean field energy excites the spatial dynamics of the con-
densate wave functions. In the evolution subsequent to the
pulse, the spin dynamics creating squeezing and the spa-
tial dynamics are entangled [6,9–11] and occur on the same
time scale set by an effective interaction parameter χ. This
makes it a priori more difficult to obtain simple analytical
results.

In this paper we develop a simple formalism which al-
lows us to calculate analytically or semi analytically the
effect of the spatial dynamics on spin squeezing. In Sec-
tion 2 we present our dynamic model. Using our treatment
we show that at particular times in the evolution the spa-
tial dynamics and the spin dynamics disentangle and the
dynamical model gives the same results as a simple two-
mode model. We also identify configurations of parameters
in which the simple two mode-model is a good approxi-
mation at all times. Restricting to a two-mode model, in
Section 3 we generalize our analytical results of [12] on op-
timal spin squeezing in presence of particle losses to the
case of overlapping and non-symmetric condensates.
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In Sections 4 and 5, we apply our treatment to cases of
practical interest. We first consider a bimodal 87Rb con-
densate. Rb is one of the most common atoms in BEC
experiments and it is a good candidate for atomic clocks
using trapped atoms on a chip [13]. Restricting to states
which are equally affected by a magnetic field to first or-
der, the most common choices are |F = 1,m = −1〉 and
|F = 2,m = 1〉 which can be magnetically trapped, or
|F = 1,m = 1〉 and |F = 2,m = −1〉 that must be
trapped optically but for which there exists a low-field
Feshbach resonance which can be used to reduce the inter-
species scattering length [14,15]. Indeed a particular fea-
ture of these Rb states is that the three s-wave scattering
lengths characterizing interactions between a−a, b−b and
a−b atoms are very close to each other. A consequence
is that the squeezing dynamics is very slow when the two
condensates overlap. The inter-species Feshbach resonance
can be used to overcome this problem and speed up the
dynamics [15].

In schemes involving the |F = 2, m = ±1〉 of
Rubidium, the main limit to the maximum squeezing
achievable is set by the large two-body losses rate in these
states. As a second case of experimental interest we then
consider Na atoms in the |F = 1,mF = ±1〉 states [6].
Although theses states have opposite shifts in a magnetic
field, they present the advantage of negligible two-body
losses. Using our analytical optimization procedure, we
calculate the maximum squeezing achievable in this sys-
tem including the effect of spatial dynamics and particle
losses.

In Section 5 we examine a different scenario for Rb
condensates in which, instead of changing the scattering
length, one would spatially separate the two condensates
after the mixing π/2 pulse and hold them separately dur-
ing a well chosen squeezing time. An interesting feature
of this scheme is that the squeezing dynamics acts only
when the clouds are spatially separated and it freezes out
when the two clouds are put back together so that one
could prepare a spin squeezed state and then keep it for
a certain time [12]. State-selective potentials for 87Rb in
|F = 1,m = −1〉 and |F = 2,m = 1〉 [13] have recently
been implemented on an atom chip, and such scheme could
be of experimental interest.

2 Dynamical spin squeezing model

In this section we develop and compare dynamical models
for spin squeezing. No losses will be taken into account in
this section.

2.1 State evolution

We consider the model Hamiltonian

H =
∫
d3r

∑
ε=a,b

[
ψ̂†

εhεψ̂ε +
1
2
gεεψ̂

†
εψ̂

†
εψ̂εψ̂ε

]

+gabψ̂
†
b ψ̂

†
aψ̂aψ̂b (1)

where hε is the one-body hamiltonian including kinetic
energy and external trapping potential

hε = −�
2Δ

2m
+ U ext

ε (r ) . (2)

The interactions constants gεε′ are related to the corre-
sponding s-wave scattering lengths gεε′ = 4π�

2aεε′/M
characterizing a cold collision between an atom in state
ε with an atom in state ε′ (ε, ε′ = a, b), and M is the
mass of one atom.

We assume that we start from a condensate with N
atoms in the internal state a; the stationary wave function
of the condensate is φ0(r ). After a π/2 pulse, a phase state
is created, which is our initial state:

|Ψ(0)〉 =
1√
N !

[
Caa

†
|φ0〉 + Cbb

†
|φ0〉
]N

|0〉 (3)

where Ca, Cb are mixing coefficients with |Ca|2+|Cb|2 = 1
and the operator a†|φ0〉 creates a particle in the internal
state a with wave function φ0. To describe the entangled
evolution of the spin dynamics and the external dynamics
of the wave functions, it is convenient to introduce Fock
states with well defined number of particles in |a〉 and
|b〉, these numbers being preserved during time evolution
subsequent to the mixing pulse. Expanded over the Fock
states, the initial state (3) reads:

|Ψ(0)〉 =
N∑

Na=0

(
N !

Na!Nb!

)1/2

CNa
a CNb

b |Na : φ0, Nb : φ0〉,

(4)
where Nb = N −Na, and

|Na : φa, Nb : φb〉 =

[
a†|φa(Na,Nb)〉

]Na

√
Na!

[
b†|φb(Na,Nb)〉

]Nb

√
Nb!

|0〉 .
(5)

Within an Hartee-Fock type ansatz for the N -body state
vector, we calculate the evolution of each Fock state in
(4). We get [9]:

|Na : φ0, Nb : φ0〉 → e−iA(Na,Nb; t)/�

× |Na : φa(Na, Nb; t), Nb : φb(Na, Nb; t)〉 , (6)

where φa(Na, Nb; t) and φb(Na, Nb; t) are solutions of the
coupled Gross-Pitaevskii equations:

i�∂tφε =
[
hε + (Nε − 1)gεε|φε|2 +N ′

εgεε′ |φε′ |2]φε (7)

here with the initial conditions

φa(0) = φb(0) = φ0 , (8)

and the time dependent phase factor A solves:

d

dt
A(Na, Nb; t) = −

∑
ε=a,b

Nε(Nε − 1)
gεε

2

∫
d3r|φε|4

−NaNbgab

∫
d3r|φa|2|φb|2 . (9)
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With this treatment we fully include the quantum dynam-
ics of the two condensate modes a and b, as one does for
the simple two modes model, but also including the spa-
tial dynamics of the two modes and their dependence on
the number of particles. The approximation we make is
to neglect all the other modes orthogonal to the conden-
sates which would be populated thermally. An alternative
method is to use a number conserving Bogoliubov theory
that explicitly includes the operators of the condensates
as in [10]. In that case all the modes are present but the
modes orthogonal to the condensates are treated in a lin-
earized way. In [10], the author compares the number con-
serving Bogoliubov approach to our approach using many
Gross-Piaevskii equations, also used in [6], and he finds
very similar result for the spin squeezing. He also finds
that within the Bogoliuobov approximation the thermally
excited modes strictly do not affect the squeezing in the
scheme we consider here. If the number conserving Bogoli-
ubov has the advantage of being systematic, our approach,
supplemented with a further approximation (the modulus-
phase approximation introduced in Sect. 2.3) allows us to
get some insight and obtain simple analytical results.

2.2 Calculation of spin squeezing

The effective collective spin of a two-components BEC
can be represented on the Bloch sphere as shown in Fig-
ure 1 (top). Formally, we introduce three spin operators
in terms of field operators [6]

Sx =
1
2
∫
d3r[ψ̂†

b(r )ψ̂a(r ) + ψ̂†
a(r )ψ̂b(r )], (10)

Sy =
i

2
∫
d3r[ψ̂†

b(r )ψ̂a(r ) − ψ̂†
a(r )ψ̂b(r )], (11)

Sz =
1
2
∫
d3r[ψ̂†

a(r )ψ̂a(r ) − ψ̂†
b(r)ψ̂b(r)]. (12)

Definitions (10)–(12) explicitly take into account the spa-
tial wave functions of the condensate and depend in par-
ticular on the overlap between the two modes.

Referring to the Figure 1 (top) we introduce the po-
lar angles ϑ and ϕ giving the direction z′ of the mean
spin; ϑ determines the relative mean atom number in the
two internal states, cosϑ = |Ca|2 − |Cb|2, while the az-
imuthal angle ϕ corresponds to the relative phase between
the components, ϕ = arg(C∗

aCb).
The minimal variance of the spin in the plane (x′, y′)

orthogonal to the mean spin ΔS2
⊥,min, represented in Fig-

ure 1 (bottom), is given by

ΔS2
⊥,min =

1
2
(ΔS2

x′ +ΔS2
y′ − |ΔS2

−|) (13)

where we introduced

S− = Sx′ − iSy′ . (14)

The degree of squeezing is then quantified by the param-
eter [3,6]

ξ2 =
NΔS2

⊥,min

〈S〉2 , (15)

where 〈S〉 is the length of the average spin.

x'

y

x

z

y'

z'

ϑ  

ϕ

〈S〉

x'

y'

Fig. 1. (Top) average spin. (Bottom) variance of the the spin
components in the plane orthogonal to the mean spin.

When expressed in the original frame of reference, the
minimal variance in the orthogonal plane is:

ΔS2
⊥,min =

1
2
(cos2 ϑ cos2 ϕ+ sin2 ϕ)ΔS2

x

+
1
2
(cos2 ϑ sin2 ϕ+ cos2 ϕ)ΔS2

y

+
1
2

sin2 ϑΔS2
z − 1

4
sin2 ϑ sin 2ϕΔxy

−1
4

sin 2ϑ cosϕΔzx − 1
4

sin 2ϑ sinϕΔyz

−1
2

√
Ã2 + B̃2 (16)

where

Ã = (sin2 ϕ− cos2 ϑ cos2 ϕ)ΔS2
x

+(cos2 ϕ− cos2 ϑ sin2 ϕ)ΔS2
y − sin2 ϑΔS2

z

−1
2
(1 + cos2 ϑ) sin 2ϕΔxy +

1
2

sin 2ϑ cosϕΔzx

+
1
2

sin 2ϑ sinϕΔyz, (17)

B̃ = cosϑ sin 2ϕ(ΔS2
x −ΔS2

y) − cosϑ cos 2ϕΔxy

− sinϑ sinϕΔzx + sinϑ cosϕΔyz, (18)

and where we introduced the correlations

Δij = 〈SiSj + SjSi〉 − 2〈Si〉〈Sj〉, i �= j = x, y, z . (19)

The spin squeezing is then calculated in terms of aver-
ages of field operators products, with the state of the
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system at time t, obtained by evolving equation (4) with
equation (6). To calculate the averages one needs to com-
pute the action of the field operators ψ̂a ψ̂b on the Fock
states (5) [16],

ψ̂a(r)|Na : φa(Na, Nb), Nb : φb(Na, Nb)〉 = φa(Na, Nb, r)

×
√
Na|Na − 1 : φa(Na, Nb), Nb : φb(Na, Nb)〉, (20)

ψ̂b(r)|Na : φa(Na, Nb), Nb : φb(Na, Nb)〉 = φb(Na, Nb, r)

×
√
Nb|Na : φa(Na, Nb), Nb − 1 : φb(Na, Nb)〉. (21)

The explicit expressions of the averages needed to cal-
culate the spin squeezing parameter are given in Ap-
pendix A. These quantum averages correspond to an ini-
tial state with a well-defined number of particles N . In
case of fluctuations in the total number of particles where
the density matrix of the system is a statistical mixture
of states with a different number of particles, a further
averaging of N over a probability distribution P (N) is
needed [9,17].

2.3 Dynamical modulus-phase approach

In principle, equations (7)–(9) can be solved numerically
for each Fock state in the sum equation (4), and the
squeezing can be computed as explained in the previous
section. However, for a large number of atoms and espe-
cially in three dimensions and in the absence of particular
symmetries (e.g. spherical symmetry) this can be a very
heavy numerical task. To overcome this difficulty, in or-
der to develop an analytical approach, we can exploit the
fact that for large N in the initial state (4) the distribu-
tions of the number of atoms Na and Nb are very peaked
around their average values with a typical width of order√
N . Moreover, assuming that possible fluctuations in the

total number of particles are described by a distribution
P (N) having a width much smaller than the average of
the total number of particles N̄ , we can limit to Na and
Nb close to N̄a = |Ca|2N̄ and N̄b = |Cb|2N̄ . We then split
the condensate wave function into modulus and phase

φε = |φε| exp(iθε) ε = a, b, (22)

and we assume that the variation of the modulus over the
distribution of Nε can be neglected while we approximate
the variation of the phase by a linear expansion around
N̄ε [9]. The approximate condensate wave functions read

φε(Na, Nb) � φ̄ε exp

⎡
⎣i ∑

ε′=a,b

(Nε′ − N̄ε′)(∂Nε′ θε)N̄a,N̄b

⎤
⎦

(23)
where φ̄ε ≡ φε(Na = N̄a, Nb = N̄b).

The modulus phase approximation takes into account,
in an approximate way, the dependence of the condensate
wave functions on the number of particles. It is precisely

this effect that is responsible of entanglement between spa-
tial dynamics and spin dynamics.

As explained in Appendix B, all the relevant averages
needed to calculate spin squeezing can then be expressed
in terms of φ̄ε and of three time and position dependent
quantities:

χd(r) =
1
2

[(∂Na − ∂Nb
)(θa − θb)]N̄a,N̄b

, (24)

χs(r) =
1
2

[(∂Na + ∂Nb
)(θa − θb)]N̄a,N̄b

, (25)

χ0(r) =
1
2

[(∂Na − ∂Nb
)(θa + θb)]N̄a,N̄b

. (26)

In some cases (see Sect. 2.4) these quantities can be ex-
plicitly calculated analytically. To calculate the squeezing
in the general case, it is sufficient to evolve a few coupled
Gross-Pitaevskii equations (7) for different values of Na,
Nb, to calculate numerically the derivatives of the phases
appearing in (24)–(26). Although we do not expect a per-
fect quantitative agreement with the full numerical model
for all values of parameters, we will see that the analytical
model catches the main features and allows us to interpret
simply the results.

In the particular case of stationary wave functions of
the condensates, the parameters χd, χs and χ0 become
space-independent:

χst
d = − [(∂Na − ∂Nb

)(μa − μb)]N̄a,N̄b

2�
t (27)

χst
s = − [(∂Na + ∂Nb

)(μa − μb)]N̄a,N̄b

2�
t (28)

χst
0 = χst

s . (29)

In this case we recover a simple two-mode model. Equa-
tions (27)–(28) will be used in Section 3. In that contest
we will rename χst

d /t = −χ and χst
s /t = −χ̃ to shorten the

notations.
To test our modulus-phase dynamical model, in Fig-

ure 2, we consider a situation in which the external dy-
namics is significantly excited after the π/2 pulse which
populates the state b. Parameters correspond to a bimodal
Rb condensate in |F = 1,mF = 1〉 and |F = 2,mF = −1〉
with N̄a = N̄b = 5 × 104 and where a Feshbach reso-
nance is used to reduce aab by about 10% with respect
to its bare value [14,15]. The considered harmonic trap is
very steep ω = 2π × 2 kHz. In the figure we compare our
modulus-phase approach (dashed line) with the full nu-
merical solution (solid line) and with a stationary calcula-
tion using (27)–(28) (dash-dotted line) which is equivalent
to a two-mode model. The oscillation of the squeezing pa-
rameter in the two dynamical calculations (dashed line
and solid line) are due to the fact that the sudden change
in the mean-field causes oscillations in the wave functions
whose amplitude and the frequency are different for each
Fock state. From the figure, we find that our modulus-
phase approach obtained integrating 5 Gross-Pitaevskii
equations (dashed line) reproduces the main characteris-
tics of the full numerical simulation using 3000 Fock states
(solid line). The stationary two mode model on the other
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Modulus−phase 5 GPE
Full numerical simulation

Fig. 2. Spin squeezing as a function of time. Comparison of the
modulus-phase model (red dashed line) with a full numerical
calculation with 3000 Fock states (blue solid line) and with a
stationary two-mode model (violet dash-dotted line). Spatial
dynamics is strongly excited after the π/2-pulse populating a
second internal state. ω = 2π×2 kHz, N̄a = N̄b = 5×104 , m =
87 a.m.u., aaa = 100.44 rB, abb = 95.47 rB, aab = 88.28 rB. No
particle losses. rB is the Bohr radius.

hand is not a good approximation in this case. Only for
some particular times the three curves almost touch. At
these times the wave functions of all the Fock states almost
overlap and, as we will show in our analytical treatment,
spatial dynamics and spin dynamics disentangle.

In Figure 3 we move to a shallow trap and less atoms.
We note that in this case both the modulus-phase curve
and the numerical simulation are very close to the station-
ary two-mode model which is then a good approximation
at all times.

2.4 Squeezing in the breathe-together solution

In this section we restrict to a spherically symmetric har-
monic potential Uext = mω2r2/2 identical for the two
internal sates. For values of the inter particle scattering
lengths such that

aab < aaa, abb (30)

and for a particular choice of the mixing angle such that
the mean field seen by the two condensates with N̄a and
N̄b particles is the same:

N̄agaa + N̄bgab = N̄bgbb + N̄agab ≡ N̄g , (31)

the wave functions φ̄a and φ̄b solve the same
Gross-Pitaevskii equation. In the Thomas-Fermi limit, the
wave functions φ̄a and φ̄b share the same scaling solution
φ̄ [18,19] and “breathe-together” [9].

φ̄a = φ̄b = φ̄(r, t) ≡ e−iη(t)

L3/2(t)
eimr2L̇(t)/2�L(t)φ̄0(r/L(t) )

(32)

0 0.1 0.2 0.3 0.4 0.5
10

−3

10
−2

10
−1

10
0

t [s]

ξ2

Two−mode stationary
Modulus−phase 5 GPE
Full numerical simulation

0 0.1 0.2 0.3 0.4 0.5
-1

0

1

t [s]

�

×π 

Fig. 3. (Top) spin squeezing as a function of time in a case in
which the spatial dynamics is weakly excited. Blue solid line:
full numerical calculation with 1000 Fock states, red dashed
line: modulus-phase model, violet dash-dotted line: station-
ary two-mode model. (Bottom) angle giving the direction of
the mean spin projection in the equatorial plane of the Bloch
sphere. Parameters: ω = 2π×42.6 Hz, N̄a = N̄b = 1×104, m =
87 a.m.u., aaa = 100.44 rB, abb = 95.47 rB , aab = 88.28 rB . No
particle losses. rB is the Bohr radius.

with

η̇ =
g

gaa

μ̄

L3�
, (33)

d2L
dt2

=
g

gaa

ω2

L4
− ω2L, (34)

φ̄0(r ) =
(

15
8πR3

0

)1/2 [
1 − r2

R2
0

]1/2

, (35)

μ̄ is the chemical potential of the stationary condensate
before the π/2 pulse, when all the N atoms are in state a,
and R0 =

√
2μ̄/mω2 is the corresponding Thomas-Fermi

radius. The initial conditions for (34) are L(0) = 1 and
L̇(0) = 0.

Note that the scaling solution identical for the two
modes a and b is valid only for Na = N̄a, Nb = N̄b and
does not apply to all the wave functions φa(Na, Nb) and
φb(Na, Nb) in the expansion equation (4). Nevertheless,
an advantage of choosing the mixing angle in order to sat-
isfy the breathe-together condition equation (31), is that
the mean spin has no drift velocity. In Figure 4 we cal-
culate the spin squeezing (top) and the angle ϕ giving
the direction of the mean spin projection on the equa-
torial plane of the Bloch sphere (bottom), for the same
parameters as in Figure 3 except for the mixing angle
that we now choose satisfying equation (31) while in Fig-
ure 3 we had N̄a = N̄b. Note that ϕ practically does not
evolve. The maximum amount of squeezing is lower in the
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t [s]
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Fig. 4. (Top) spin squeezing in breathe-together conditions
as a function of time. Blue solid line: full numerical calcu-
lation. Red dashed line: modulus-phase model. Violet dash-
dotted line: stationary two-mode model. (Bottom) angle giv-
ing the direction of the mean spin projection on the equatorial
plane of the Bloch sphere. Parameters: ω = 2π × 42.6 Hz,
N̄a = 7432, N̄b = 12 568, m = 87 a.m.u., aaa = 100.44 rB ,
abb = 95.47 rB, aab = 88.28 rB. No particle losses. rB is the
Bohr radius.

breathe-together configuration than in the even-mixing
case (see also [11]). However, as we will see in the next
section, this conclusion does not hold when particle losses
are taken into account.

By linearization of φa(Na, Nb) and φb(Na, Nb) around
the breathe-together solution φ̄ and using classical hydro-
dynamics, it is even possible to calculate analytically the
parameters χd and χs relevant for the squeezing dynam-
ics [9]. One obtains:

χd(r, t) = − 1
2�

(
2
5
μ̄

N

)
gaa + gbb − 2gab

gaa

×
{∫ t

0

dt′

L3(t′)
+

5
2

ImB(t)
Ω5

[(
r

L(t)R0

)2

− 3
5

]}
(36)

χs(r, t) =
(|Cb|2 − |Ca|2

)
χd = χ0(r, t), (37)

with

Ω5 =
(
N̄aN̄b

N2

gaa + gbb − 2gab

gaa

)1/2

51/2ω (38)

and where ImB(t) is solution of the differential equations

iȦ =
Ω5

L(t)2
B (39)

iḂ =
Ω5

L(t)3
A (40)
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Im

Fig. 5. (Top) test of the analytical formula equation (36) in
the deep Thomas-Fermi regime. Spin squeezing as a function
of time. Blue solid line: full numerical calculation. Red dashed
line: modulus-phase model. Black dotted line: analytical curve
using equation (36). Violet dash-dotted line: stationary two-
mode model using (27)–(28). (Bottom) function ImB(t). Spa-
tial and spin dynamics disentangle when ImB(t) = 0. Param-
eters: N̄a = N̄b = 5 × 105, ω = 2π × 2 kHz, m = 87 a.m.u.,
aaa = abb = 0.3 aho, aab = 0.24 aho. aho is the harmonic oscil-
lator length: aho =

√
�/Mω. No particle losses.

to be solved together with equation (34), with initial con-
ditions A(0) = B(0) = 1. In practice, when we expand the
condensate wave functions around the breathe-together
solution equation (32) as in [9], we encounter the hydro-
dynamics operator S [20]

S[α] ≡ −Ngaa

M
div[φ̄2

0 gradα] . (41)

The deviation of the relative phase and the relative den-
sity from the breathe-together solution expand over two
eigenmodes of S: a zero-energy mode which grows linearly
in time and gives the dominant features of phase dynam-
ics and squeezing (integral term in the curly brackets in
Eq. (36)), and a breathing mode of frequency Ω5 which is
responsible for the oscillations of the squeezing parameter.
The fact that in breathe-together conditions and within
the modulus-phase approximation χs = χ0 is shown in
Appendix C.

We give an example corresponding to strongly oscil-
lating wave functions in Figure 5 where we compare the
spin squeezing from the analytical theory with a numeri-
cal simulation. In the analytical formula, the entanglement
between spatial degrees of freedom and spin dynamics is
apparent as χd equation (36) is position dependent. The
points in which the dynamical curve (dotted line) touches
the stationary two mode curve (dash-dotted line) corre-
spond to ImB = 0 (see the bottom curve) where space
and spin dynamics are disentangled. We note however
that the validity conditions of classical hydrodynamics are
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more stringent for a mixture of condensates with rather
close scattering lengths than for a single condensate [9].
We checked numerically that in order for equation (36)
to correctly predict the frequency of the oscillations in
the squeezing parameter, we have to enter deeply in the
Thomas-Fermi regime.

2.5 “Extracted” spin squeezing

As we pointed out, the definitions equations (10)–(12) ex-
plicitly include the spatial overlap between the two modes.
Here we give an alternative definition that can be used al-
ways, whether or not the modes overlap. To this aim, we
introduce the time-dependent operators

ã =
∫
d3r φ̄∗a(r, t)ψ̂a(r), (42)

b̃ =
∫
d3r φ̄∗b (r, t)ψ̂b(r), (43)

where φ̄ε(r, t) is the solution of Gross-Pitaevskii equation
(7) for mode ε with N̄a, N̄b particles. We then introduce
the spin operators:

S̃x =
1
2
(b̃†ã+ ã†b̃), (44)

S̃y =
i

2
(b̃†ã− ã†b̃), (45)

S̃z =
1
2
(ã†ã− b̃†b̃). (46)

In the new definition of spin squeezing calculated by the
spin operators defined in equations (44)–(46), which we
call the “extracted” spin squeezing, we still take into ac-
count entanglement between external motion and spin dy-
namics, but we give up the information about the over-
lap between the two modes. In Appendix D, we give the
quantum averages useful to calculate the extracted spin
squeezing within the modulus-phase approach described
in Section 2.3. We will use this extracted spin squeezing
in Section 5.

Comparing the expressions given in Appendix D with
those of Appendix F (in the absence of losses), one real-
izes that in the stationary case, where χd, χs and χ0 are
space independent, the extracted spin squeezing dynami-
cal model reduces to a two-mode model that we study in
detail in the next section.

3 Two-mode model with particle losses

In this section we generalize our results of [12] to pos-
sibly overlapping and non-symmetric condensates. In
Section 3.1 we address the general case, while in Sec-
tion 3.2 we restrict to symmetric condensates and perform
analytically an optimization of the squeezing with respect
to the trap frequency and number of atoms. In the whole
section, as in [12], we will limit to a two-mode stationary
model and we do not address dynamical issues.

3.1 Spin squeezing in presence of losses

We consider a two-component Bose-Einstein condensate
initially prepared in a phase state, that is with well defined
relative phase between the two components,

|Ψ(0)〉 = |ϕ〉 ≡
(|Ca|e−iϕ/2a† + |Cb|eiϕ/2b†

)N
√
N !

|0〉 . (47)

When expanded over Fock states, the state (47) shows bi-
nomial coefficients which, for large N , are peaked around
the average number of particles in a and b, N̄a and N̄b.
In the same spirit as the “modulus-phase” approxima-
tion of Section 2.3, we can use this fact to expand the
Hamiltonian of the system to the second order around N̄a

and N̄b

H0 � E(N̄a, N̄b) +
∑

ε=a,b

με(N̂ε − N̄ε) +
1
2
∂Nεμε(N̂ε − N̄ε)2

+
1
2

(∂Nb
μa + ∂Naμb) (N̂a − N̄a)(N̂b − N̄b) (48)

where the chemical potentials με and all the derivatives
of με should be evaluated in N̄a and N̄b. We can write

H0 = fN̂ + �vN̂ (N̂a − N̂b) +
�χ

4
(N̂a − N̂b)2 (49)

with

vN̂ =
1
2�

[
(μa − μb) − �χ(N̄a − N̄b)+�χ̃(N̂ − N̄)

]
(50)

χ =
1
2�

(∂Naμa + ∂Nb
μb − ∂Nb

μa − ∂Naμb)N̄a,N̄b
(51)

χ̃ =
1
2�

(∂Naμa − ∂Nb
μb)N̄a,N̄b

. (52)

The function f of the total number of particles, N̂ =
N̂a + N̂b, commutes with the density operator of the sys-
tem and can be omitted. The second term in equation (49)
proportional to Sz describes a rotation of the average spin
vector around the z axis with velocity vN̂ . The third term
proportional to S2

z provides the nonlinearity responsible
for spin squeezing. It also provides a second contribution
to the drift of the relative phase between the two conden-
sates in the case N̄a �= N̄b.

In presence of losses, the evolution is ruled by a master
equation for the density operator ρ of the system. In the
interaction picture with respect to H0, with one, two, and
three-body losses, we have:

dρ̃

dt
=

3∑
m=1

∑
ε=a,b

γ(m)
ε

[
cmε ρ̃c

†m
ε − 1

2
{c†mε cmε , ρ̃}

]

+γab

[
cacbρ̃c

†
ac

†
b −

1
2
{c†ac†bcacb, ρ̃}

]
(53)

where ρ̃ = eiH0t/�ρe−iH0t/�, ca = eiH0t/�ae−iH0t/�, and
similarly for b,

γ(m)
ε =

K
(ε)
m

m

∫
d3r|φ̄ε(r)|2m , (54)

γab =
Kab

2

∫
d3r|φ̄a(r)|2|φ̄b(r)|2 . (55)
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K
(ε)
m is the m-body rate constant (m = 1, 2, 3) and φ̄ε(r)

is the condensate wave function for the ε component with
Na = N̄a and Nb = N̄b particles. Kab is the rate constant
for a two-body loss event in which two particles coming
from different components are lost at once.

In the Monte Carlo wave function approach [21] we de-
fine an effective Hamiltonian Heff and the jump operators
J

(m)
ε (J (2)

ab )

Heff = − i�
2

3∑
m=1

∑
ε=a,b

γ(m)
ε c†mε cmε − i�

2
γabc

†
ac

†
bcacb,(56)

J (m)
ε =

√
γ

(m)
ε cmε , J

(2)
ab =

√
γabcacb. (57)

We assume that a small fraction of particles will be lost
during the evolution so that we can consider χ, γ(m)

ε

and γab as constant parameters of the model. The state
evolution in a single quantum trajectory is a sequence
of random quantum jumps at times tj and non-unitary
Hamiltonian evolutions of duration τj :

|Ψ(t)〉 = e−iHeff(t−tk)/�J (mk)
εk

(tk)e−iHeffτk/�J (mk−1)
εk−1

(tk−1)

. . . J (m1)
ε1

(t1)e−iHeffτ1/�|Ψ(0)〉 , (58)

where now εj = a, b or ab. Application of a jump J (mj)
εj (tj)

to the N -particle phase state at tj yields

J (mj)
εj

(tj)|φ〉N ∝ |φ+Δjtj〉N−mj , (59)

Δj = 2χ̃δεj ,ab + (χ̃+ χ)mjδεj ,a + (χ̃− χ)mjδεj ,b.

(60)

After a quantum jump, the phase state is changed into a
new phase state, with m particle less and with the relative
phase between the two modes showing a random shiftΔjtj
with respect to the phase before the jump. Note that in
the symmetrical case χ̃ = 0 and no random phase shift
occurs in the case of a jump of ab. Indeed we will find
that at short times in the symmetrical case theses kind of
crossed ab losses are harmless to the the squeezing.

In presence of one-body losses only, also the effective
Hamiltonian changes a phase state into another phase
state and we can calculate exactly the evolution of the
state vector analytically, as we did in [12] for symmetrical
condensates. When two and three-body losses enter into
play, we introduce a constant loss rate approximation [22]

Heff � − i�
2

3∑
m=1

∑
ε=a,b

γ(m)
ε N̄m

ε − i�

2
γabN̄aN̄b ≡ − i�

2
λ

(61)
valid when a small fraction of particles is lost at the time
at which the best squeezing is achieved. In this approxi-
mation, the mean number of particles at time t is

〈N̂〉 = N

⎡
⎣1 −

⎛
⎝∑

ε=a,b

∑
m

Γ (m)
ε + Γab

⎞
⎠ t

⎤
⎦ (62)

Γ (m)
ε ≡ N̄m−1

ε mγ(m)
ε ; Γab = γab

√
N̄aN̄b (63)

where for example Γ (m)
ε t is the fraction of lost particles

due to m-body losses in the ε condensate. Let us present
the evolution of a single quantum trajectory: within the
constant loss rate approximation, we can move all the
jump operators in (58) to the right. We obtain:

|Ψ(t)〉 = e−λt/2
k∏

j=1

J (mj)
εj

(tj)|Ψ(0)〉

= e−λt/2e−iTk |αk||ϕ+ βk〉N−N(k) (64)

where

|αk|2 =
k∏

j=1

⎧⎨
⎩

∑
m′=1,2,3

∑
ε′=a,b

δmj ,m′δεj ,ε′N̄m′ |Cε′ |2m′
γ

(m′)
ε′

+ N̄2|Ca|2|Cb|2γabδεj ,ab

}
(65)

βk =
k∑

j=1

tj

⎧⎨
⎩2χ̃δεj ,ab +

∑
m′=1,2,3

m′δmj,m′

× [(χ+ χ̃)δεj ,a − (χ− χ̃)δεj ,b]
}

(66)

N(k) =
k∑

j=1

∑
m′=1,2,3

m′δmj,m′(δεj ,a + δεj ,b) + 2δεj ,ab. (67)

And Tk is a phase which cancels out when taking the av-
erages of the observables [23].

The expectation value of any observable Ô is obtained
by averaging over all possible stochastic realizations, that
is all kinds, times and number of quantum jumps, each
trajectory being weighted by its probability

〈Ô〉 =
∑

k

∫
0<t1<t2<···tk<t

dt1dt2 · · ·dtk
∑

{εj ,mj}
〈Ψ(t)|Ô|Ψ(t)〉 . (68)

Note that the single trajectory (64) is not normalized. The
prefactor will provide its correct “weight” in the average.

We report in Appendix E and F the averages needed
to calculate the spin squeezing for one-body losses only
(exact solution) and for one, two and three-body losses
(constant loss rate approximation) respectively. The ana-
lytical results are expressed in terms of the parameters χ
and χ̃ defined in equations (51) and (52) respectively and
of the drift velocity

v =
1
2�

[
(μa − μb) − �χ(N̄a − N̄b) + �χ̃(N − N̄)

]
, (69)

where N is the total initial number of atoms.

3.2 Symmetrical case: optimization of spin squeezing

If we restrict to symmetrical condensates which may or
may not overlap, we can carry out analytically the opti-
mization of squeezing in presence of losses. In the symmet-
ric case and constant loss rate approximation it turns out
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that ΔS2
z = 〈N̂〉/4. This allows to express ξ2 in a simple

way:

ξ2 =
〈a†a〉
〈b†a〉2

(
〈a†a〉 + Ã−

√
Ã2 + B̃2

)
, (70)

with

Ã =
1
2

Re
(〈b†a†ab− b†b†aa〉) , (71)

B̃ = 2 Im
(〈b†b†ba〉). (72)

An analytical expression for spin squeezing is calculated
from (70) with

〈b†a〉 =
e−λt

2
cosN−1(χt)ÑF1 (73)

Ã =
e−λt

8
Ñ(Ñ − 1)

[
F0 − F2 cosN−2(2χt)

]
(74)

B̃ =
e−λt

2
cosN−2(χt) sin(χt)Ñ (Ñ − 1)F1 (75)

where the operator Ñ = (N − ∂σ) acts on the functions

Fβ(σ) = exp

[
3∑

m=1

2γ(m)teσm sin(mβχt)
mβχt cosm(βχt)

+
γabte

2σ

cos2(βχt)

]
, (76)

with β = 0, 1, 2 and all expressions should be evaluated in
σ = ln N̄ .

We want now to find simple results for the best squeez-
ing and the best squeezing time in the large N limit. In
the absence of losses [1] the best squeezing and the best
squeezing time in units of 1/χ scale as N−2/3. We then
set N = ε−3 and rescale the time as χt = τε2. We expand
(70) for ε
 1 up to order 2 included, keeping Γ (m)/χ con-
stant. The key point is that in this expansion, for large N
and short times, the crossed losses ab do not contribute.
As in [12], introducing the squeezing ξ20(t) in the no-loss
case, we obtain:

ξ2(t) = ξ20(t)
[
1 +

1
3
Γsqt

ξ20(t)

]
, (77)

with:
Γsq =

∑
m

Γ (m)
sq and Γ (m)

sq = mΓ (m) . (78)

The result (77) very simply accesses the impact of losses
on spin squeezing. First it shows that losses cannot be ne-
glected as soon as the lost fraction of particles is of the
order of ξ20 . Second it shows that in the limit N → ∞
and ξ20(tbest) → 0, the squeezing in presence of losses is of
the order of the lost fraction of particles at the best time:
ξ2(tbest) ∼ Γsqtbest/3. This also sets the limits of validity
of our constant loss rate approximation. For our approx-
imation to be valid, the lost fraction of particle, hence
squeezing parameter at the best squeezing time, should
be small.

From now on, the optimization of the squeezing in the
large N limit proceeds much as in the case of spatially
separated condensates [12]. The only difference is in the
stationary wave functions in the Thomas-Fermi limit. For
overlapping condensates we consider a stable mixture with

aab < aaa = abb, (79)

and we introduce the sum and difference of the intra and
inter-species s-wave scattering lengths:

as = aaa + aab (80)
ad = aaa − aab. (81)

In the symmetric case considered here we have

μa = μb =
1
2

�ω̄

[
15
2
Nas

aho

]2/5

(82)

χ =
23/532/5

53/5

(
�

M

)−1/5

ω̄6/5N−3/5 ad

a
3/5
s

(83)

Γ (1) = K1 (84)

Γ (2) =
152/5

27/57π

(
�

M

)−6/5

ω̄6/5N2/5a−3/5
s K2 (85)

Γ (3) =
54/5

219/531/57π2

(
�

M

)−12/5

ω̄12/5N4/5

a−6/5
s K3, (86)

where aho =
√

�/Mω̄ is the harmonic oscillator length, ω̄
is the geometric mean of the trap frequencies. We recover
the case of spatially separated condensates [12] setting
aab = 0 in (80)–(81).

The squeezing parameter for the best squeezing time
ξ2(tbest, ω̄) is minimized for an optimized trap frequency

ω̄opt =
219/1275/12π5/6

151/3

�

M

a
1/2
s

N1/3

(
K1

K3

)5/12

. (87)

Note however that this optimization concerns one- and
three-body losses only. The effect of decoherence due two
two-body losses quantified by the ratio Γ (2)/χ is indepen-
dent of the trap frequency.

Once the trap frequency is optimized, ξ2(tbest, ω̄
opt)

is a decreasing function of N . The lower bound for ξ2,
reached for N → ∞ is then

inf
t,ω̄,N

ξ2 =

[
5
√

3M
28π�

]2/3 [√
7
2
K1K3

a2
d

+
K2

ad

]2/3

. (88)

A simple outcome of this analytic study is that, for pos-
itive scattering lengths aaa, aab, the maximum squeezing
is obtained when aab = 0 that is for example for spatially
separated condensates. Another possibility is to use a Fes-
chbach resonance to decrease the inter-species scattering
length aab [14,15], knowing that the crossed a−b losses do
not harm the squeezing at short times.
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Fig. 6. Spin squeezing with and without losses in a bimodal Rb
condensate from the stationary two-mode model. A Feshbach
resonance is used to reduce the inter-species scattering length.
Violet dash-dotted line: without losses. Blue dashed line: with
one and three-body losses. Red solid line: with one, two and
three-body losses. (Top) with a 50−50 mixing of the two states:
N̄a = N̄b = 104, χ = 5.367 × 10−3 s−1, χ̃ = 5.412 × 10−4 s−1.
(Bottom) in breathe-together conditions: N̄a = 7432, N̄b =
12568, χ = 5.392 × 10−3 s−1, χ̃ = 1.386 × 10−3 s−1. Other
parameters: ω = 2π×42.6 Hz, m = 87 a.m.u., aaa = 100.44 rB ,
abb = 95.47 rB , aab = 88.28 rB , rB is the Bohr radius. Particle

losses: K
(a)
1 = K

(b)
1 = 0.01 s−1, K

(a)
2 = 0, K

(b)
2 = 119 ×

10−21 m3 s−1 [24], K
(ab)
2 = 78 × 10−21 m3 s−1 [25], K

(a)
3 =

6 × 10−42 m6 s−1 [26].

4 Results for overlapping condensates

In this and the next section we give practical examples of
application of the analysis led in the two previous sections.

4.1 Feshbach resonance-tuned bimodal Rb BEC

We consider a bimodal Rb condensate in |F = 1,mF = 1〉
and |F = 2,mF = −1〉 states where the scattering length
aab is lowered by about 10% with respect to its bare value
using a Feshbach resonance [14,15].

In Figure 6 (top) and (bottom) we compare a situation
in which the initial condensate is split evenly in the a and
b components to a situation in which the mixing is chosen
in order to satisfy the “breathe-together” conditions (31).

0 0.04 0.08 0.12 0.16
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−4

10
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−2

10
−1

10
0

t [s]

ξ2

Spin squeezing without losses
Spin squeezing with 1,3−body losses

Fig. 7. Spin squeezing with and without losses in a bimodal Na
condensate from the stationary two-mode model. Violet dash-
dotted line: without losses. Blue dashed line: with one and
three-body losses. Optimized parameters: N̄a = N̄b = 4 × 104

ω = 2π × 183 Hz, m=23 a.m.u., aaa = abb = 51.89 rB , aab =
48.25 rB , rB is the Bohr radius. χ = 5.517 × 10−3s−1, χ̃ = 0.

Particle losses: K
(a)
1 = K

(b)
1 = 0.01s−1, K

(a)
2 = K

(b)
2 = 0,

K
(a)
3 = K

(b)
3 = 2 × 10−42 m6 s−1 [27].

For the considered parameters, which are the same as Fig-
ures 3 and 4, the spatial dynamics is not important and
the two-mode model is a good approximation at all times.

The squeezing in presence of losses is calculated using
our general results of Section 3.1 for asymmetric conden-
sates. Although without losses the even splitting is more
favorable, with one, two, three-body losses results are com-
parable ξ2 � 6× 10−2. We also show a curve obtained for
one and three-body losses only (dashed-line). It is clear
that for the considered Rb states the dominant contribu-
tion for decoherence comes from the two-body losses in
the F = 2 state severely limiting the maximum amount
of obtainable squeezing.

In the cases considered in Figure 6 asymmetric two-
body losses are very high, we therefore check the validity of
the constant loss rate approximation with an exact Monte
Carlo wave function simulation. The main result is that
the constant loss rate approximation is accurate up to
the best squeezing time. A more complete discussion is
presented in Appendix G.

4.2 Bimodal BEC of Na atoms

By using two states in the lower hyperfine manifold, one
can greatly reduce two body losses. A possible example is
of using Na atoms in the |F = 1,mF = ±1〉 states [6]. In
Figure 7 we calculate the best obtainable squeezing with
these two states. Parameters are chosen according to our
optimization procedure of Section 3.2. A large amount of
squeezing ξ2 = 1.9 × 10−3 can be reached at the best
squeezing time.

Using our full numerical and our approximated dynam-
ical approaches, (not shown) we checked that the two-
mode model is an excellent approximation for these pa-
rameters.
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Fig. 8. (Top) |φa(z, t)|2 and |φb(z, t)|2 in arbitrary units as
the clouds are separated and put back together after an inter-
action time of about 15 ms. The harmonic potential for the
a-component does not move, while that for the b-component
is shifted vertically with a speed δ̇z. The distance between the
two trap centers when they are separated is δz = 4

√
�/Mωz.

(Bottom) variation in time of δ̇z. Parameters: N̄a = N̄b =
5× 104, ωx,y = 2π× 2.31 Hz, ωz = 2π× 1 kHz, m = 87 a.m.u.,
aaa = 100.44 rB, abb = 95.47 rB, aab = 98.09 rB, rB is the Bohr
radius. No particle losses.

5 Dynamically separated Rb BEC

In this section we consider a bimodal Rb condensate in
|F = 1,mF = −1〉 and |F = 2,mF = 1〉 states. Rather
than using a Feshbach resonance to change gab, we con-
sider the possibility of suddenly separating the two clouds
right after the mixing π/2 pulse using state-selective po-
tentials [28], and recombining them after a well chosen
interaction time. A related scheme using Bragg pulses in
the frame of atom interferometry was proposed in [29]. We
consider disc shaped identical traps for the two states a
and b with ωz > ωx,y ≡ ω⊥, that can be displaced inde-
pendently along the z axes. In order to minimize center-of-
mass excitation of the cloud, we use a triangular ramp for
the displacement velocity, as shown in Figure 8 (bottom),
with total move-out time 2τ = 4π/ωz [30]. In Figure 8
(top) we show the z-dependence of densities of the clouds,
integrated in the perpendicular xy plane, as the clouds are
separated and put back together after a given interaction
time.

We use our dynamical modulus-phase model in 3 di-
mensions to calculate the spin squeezing in this scheme.
As the spatial overlap between the two clouds reduces
a lot as they are separated, in Figure 9 we calcu-
late both the spin squeezing obtained from the defini-
tions (10)–(12) of spin operators (dashed line), and the
“extracted spin squeezing” introduced in Section 2.5 based
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Fig. 9. Spin squeezing as the two Rb condensates are sepa-
rated and put back together after an interaction time of about
15 ms. Red dashed line: spin squeezing obtained from the def-
initions (10)–(12) of the spin operators explicitly including
the overlap between the clouds. Blue solid line: extracted spin
squeezing based of the “instantaneous modes” (42)–(43). Pa-
rameters as in Figure 8.

on the “instantaneous modes” (42)–(43) (solid line). The
oscillations in the dashed line are due to tiny residual cen-
ter of mass oscillations of the clouds that change periodi-
cally the small overlap between the two modes. They are
absent in the extracted spin squeezing curve (solid line)
as they do not affect the spin dynamics. When the clouds
are put back together and the overlap between the modes
is large again, the spin squeezing and the extracted spin
squeezing curves give close results (not identical as the
overlap of the two clouds is not precisely one).

In Figure 10 (top) we compare the extracted spin
squeezing curve of Figure 9 (solid line) with a two-mode
stationary calculation (dash-dotted line) assuming sta-
tionary condensates in separated wells. We notice that the
squeezing progresses much more slowly in the dynamical
case. Indeed when we separate the clouds, the mean field
changes suddenly for each component exciting a breathing
mode whose amplitude and frequency is different for each
of the Fock states involved. In the quasi 2D configuration
considered here, the breathing of the wave functions is well
described by a scaling solution in 2D for each condensate
separately [18,19] adapted to the case in which the trap
frequency is not changed, but the mean-field is changed
suddenly after separating the two internal states:

φε(r⊥, t) =
e−iηε(t)

Lε(t)
eimr2

⊥L̇ε(t)/2�Lε(t)φ0

(
r⊥

Lε(t)

)
(89)

with

η̇ε =
g̃εε

g̃aa

μ̄

L2
ε�
, (90)

d2Lε

dt2
=
Nε

N

g̃εε

g̃aa

ω2
⊥

L3
ε

− ω2
⊥Lε, (91)

φ0(r⊥) =
(

2
πR2

0

)1/2 [
1 − r2⊥

R2
0

]1/2

, (92)
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Fig. 10. Spin squeezing as a function of time. (Top) compari-
son between a dynamical calculation and a stationary calcula-
tion. Blue solid line: extracted spin squeezing in 3D; Black
doted line: 2D scaling solution based on (91). Violet dash-
dotted line: stationary calculation in 3D without losses. Red
solid line: stationary calculation in 3D with losses. Spin squeez-
ing progresses more slowly in the dynamical calculation than
in the stationary calculation. (Bottom) long time behavior.
Black doted line: scaling solution. Violet dash-dotted line: sta-
tionary calculation without losses. Red solid line: stationary
calculation with losses. Parameters: χ = 5.003 × 10−3 s−1,

χ̃ = 1.342 × 10−4 s−1, K
(a)
1 = K

(b)
1 = 0.01 s−1, K

(a)
2 = 0,

K
(b)
2 = 119 × 10−21 m3 s−1[24], K

(a)
3 = 6× 10−42 m6 s−1 [26].

The other parameters are as in Figure 8.

μ̄ is the chemical potential of the stationary condensate
before the π/2 pulse, when all the N atoms are in state
a, R0 =

√
2μ̄/mω2

⊥ is the corresponding Thomas-Fermi
radius, and g̃εε is a reduced coupling constant to describe
the interaction between two atoms in the ε condensate in
quasi 2D system, where we assume that the condensate
wave functions in the confined direction are Gaussians:

g̃εε =
4π�

2aεε

M

√
Mωz

2π�
(93)

with aεε the 3D scattering length. The initial conditions
for (91) are Lε(0) = 1 and L̇ε(0) = 0.

We can use (89) to calculate the squeezing (dotted
curve) and we note that it reproduces well the spin
squeezing curve obtained integrating 5 Gross-Pitaevskii
equations in 3D (full line). As we studied in detail
in Section 2.4, oscillations of the wave functions cause
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t [s]
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Scaling solution
Stationary solution
Stationary solution with
1,2,3−body losses       

Fig. 11. Spin squeezing as a function of time in two small
Rb condensates. Black doted line: scaling solution based on
(91). Violet dash-dotted line: stationary calculation without
losses. Red solid line: stationary calculation with losses. Pa-

rameters: K
(a)
1 = K

(b)
1 = 0.01s−1, K

(a)
2 = 0, K

(b)
2 = 119 ×

10−21 m3 s−1 [24], K
(a)
3 = 6 × 10−42 m6 s−1 [26]. The

other parameters: N̄a = N̄b = 103, ωx,y = 2π × 11.82 Hz,
ωz = 2π × 2 kHz, m = 87 a.m.u., aaa = 100.44 rB , abb =
95.47 rB , aab = 98.09 rB , rB is the Bohr radius. χ = 0.213 s−1,
χ̃ = 2.763 × 10−3 s−1.

oscillations of the squeezing parameter due to entangle-
ment between spatial and spin dynamics. Indeed what we
see in the extracted spin squeezing curve of Figure 10 (top)
is the beginning of a slow oscillation for the squeezing pa-
rameter. In Figure 10 (bottom) we show the long time
behavior. There are indeed times at which the spatial and
spin dynamics disentangle, and the dynamical curve and
the steady state curve touch (see Sect. 2.4). Unfortunately
these times are not accessible here in presence of losses (in
particular the high two-body losses in the higher hyperfine
state). Notice that in the first 15 ms of evolution consid-
ered in Figures 9 and 10 (top) the effect of losses is small
and the main limitation at short times is provided by the
spatial dynamics.

For a lower number of atoms, the sudden change in the
mean field and the consequent oscillations of the squeez-
ing parameter are reduced. In Figure 11 we show the spin
squeezing obtained by suddenly separating two BEC of Rb
atoms in |F = 1,mF = −1〉 and |F = 2,mF = 1〉 states
with 1000 atoms in each component. The dotted line is
a dynamical calculation using the quasi 2D scaling solu-
tion (91) (and no losses), while the dash-dotted line and
the solid line are stationary calculations without and with
losses respectively. Note that around t = 0.02 s, where the
dynamical curve and the stationary curve touch, a squeez-
ing of about ξ2 ∼ 2 × 10−2 could be reached despite the
high losses in the F = 2 state [31].

6 Conclusions

In conclusion we developed a method to study the en-
tangled spatial and spin dynamics in binary mixtures of
Bose-Einstein condensates. The method, which is the nat-
ural extension of our work [9] to the case of spin squeezing,
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allows a full analytical treatment in some cases and can
be used in the general case to study a priori complicated
situations in 3D without the need of heavy numerics. In-
cluding the effect of particle losses and spatial dynamics,
we have calculated the maximum squeezing obtainable in
a bimodal condensate of Na atoms in |F = 1,mF = ±1〉
states when the two condensates overlap in space, and we
have calculated the squeezing in a bimodal Rb conden-
sate in which a Feshbach resonance is used to reduce the
inter-species scattering length as recently realized experi-
mentally [15]. For Rb we also propose an original scheme
in which the two components are spatially separated us-
ing state-dependent potentials, recently realized for the
|F = 1,mF = −1〉 and |F = 2,mF = 1〉 states, and then
recombined after a well chosen squeezing time. With this
method we show that ξ2 ∼ 2 × 10−2 could be reached
in condensates of 1000 atoms, despite the high two-body
losses in the higher hyperfine state.

Yun Li acknowledges support from the ENS-ECNU pro-
gram, and A.S. acknowledges stimulating discussions with M.
Oberthaler, J. Estève and K. Mølmer. Our group is a member
of IFRAF.

Appendix A: Quantum averages of the field
operators

Using equations (20)–(21), the averages needed to calcu-
late squeezing parameter can be written in terms of the
wave functions φa, φb and the phase factor A solution of
equation (9):

〈ψ̂†
b(r)ψ̂a(r)〉 =

N∑
Na=1

N !
(Na − 1)!Nb!

|Ca|2(Na−1)

× |Cb|2NbC∗
bCaφ

∗
b (Na − 1, Nb + 1, r)φa(Na, Nb, r)

× exp{i[A(Na − 1, Nb + 1) −A(Na, Nb)]/�}
× [〈φa(Na − 1, Nb + 1)|φa(Na, Nb)〉]Na−1

× [〈φb(Na − 1, Nb + 1)|φb(Na, Nb)〉]Nb , (94)

〈ψ̂†
b(r)ψ̂†

a(r′)ψ̂a(r)ψ̂b(r′)〉 =
N−1∑
Na=1

N !
(Na − 1)!(Nb − 1)!

× |Ca|2Na |Cb|2Nbφ∗b (Na, Nb, r)φ∗a(Na, Nb, r
′)

× φa(Na, Nb, r)φb(Na, Nb, r
′), (95)

〈ψ̂†
b(r)ψ̂†

b(r
′)ψ̂a(r)ψ̂a(r′)〉=

N∑
Na=2

N !
(Na − 2)!Nb!

|Ca|2(Na−2)

×|Cb|2NbC∗2
b C2

aφ
∗
b (Na−2, Nb +2, r)φ∗b (Na−2, Nb +2, r′)

× φa(Na, Nb, r)φa(Na, Nb, r
′) exp{i[A(Na − 2, Nb + 2)

−A(Na, Nb)]/�}[〈φa(Na − 2, Nb + 2)|φa(Na, Nb)〉]Na−2

× [〈φb(Na − 2, Nb + 2)|φb(Na, Nb)〉]Nb , (96)

〈ψ̂†
b(r)ψ̂†

b(r
′)ψ̂b(r)ψ̂a(r′)〉 =

N−1∑
Na=1

N !
(Na − 1)!(Nb − 1)!

× |Ca|2(Na−1)|Cb|2NbC∗
bCaφ

∗
b (Na − 1, Nb + 1, r)

× φ∗b (Na − 1, Nb + 1, r′)φb(Na, Nb, r)φa(Na, Nb, r
′)

× exp{i[A(Na − 1, Nb + 1) −A(Na, Nb)]/�}
× [〈φa(Na − 1, Nb + 1)|φa(Na, Nb)〉]Na−1

× [〈φb(Na − 1, Nb + 1)|φb(Na, Nb)〉]Nb−1 (97)

〈ψ̂†
a(r)ψ̂†

a(r′)ψ̂a(r)ψ̂b(r′)〉 =
N∑

Na=1

N !
(Na − 1)!(Nb − 1)!

× |Ca|2Na |Cb|2(Nb−1)C∗
aCbφ

∗
a(Na + 1, Nb − 1, r)

× φ∗a(Na + 1, Nb − 1, r′)φa(Na, Nb, r)φb(Na, Nb, r
′)

× exp{i[A(Na + 1, Nb − 1) −A(Na, Nb)]/�}
× [〈φa(Na + 1, Nb − 1)|φa(Na, Nb)〉]Na−1

× [〈φb(Na + 1, Nb − 1)|φb(Na, Nb)〉]Nb−1 . (98)

We use these averages to calculate the squeezing in our
full dynamical model. In practice we do not sum over all
the Fock states but over a “large enough width” (typi-
cally >6

√
N) around the average number of atoms N̄a,

N̄b. The spin squeezing is obtained by equation (15) using
the definitions (10)–(12) for the spin operators.

Appendix B: Quantum averages
in the modulus-phase approach

Within the modulus-phase approximation, the scalar
product of the wave vectors can be written as

〈φa(Na − β,Nb + β)|φa(Na, Nb)〉 = exp{iβ ∫ d3r|φ̄a(r)|2
× [χ0(r) + χd(r)]} (99)

〈φb(Na − β,Nb + β)|φb(Na, Nb)〉 = exp
{
iβ
∫
d3r|φ̄b(r)|2

× [χ0(r) − χd(r)]} (100)

〈φb(Na − β,Nb + β)|φa(Na, Nb)〉 =
∫
d3rφ̄∗b (r)φ̄a(r)

× exp [i(Na − β)χd(r) − iNbχd(r)] exp
[
i(N − N̄)χs(r)

− iN(|Ca|2 − |Cb|2)χd(r)] exp[iβχ0(r)] (101)

〈φa(Na + β,Nb − β)|φb(Na, Nb)〉 =
∫
d3rφ̄∗a(r)φ̄b(r)

× exp [−iNaχd(r) + i(Nb − β)χd(r)] exp
[−i(N − N̄)

× χs(r) − iN(|Ca|2 − |Cb|2)χd(r)
]

× exp[−iβχ0(r)] (102)
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where β ∈ Z, and we have used the relation
∫
d3r|φ̄ε|2 exp[i(∂Na − ∂Nb

)θε(N̄a, N̄b)] �
exp[ i

∫
d3r|φ̄ε|2(∂Na − ∂Nb

)θε(N̄a, N̄b)] . (103)

By using the Gross-Pitaevskii equations (7) for φε(Na, Nb)
and for φε(N̄a, N̄b), one obtains

i�∂t

[
(Na − N̄a)

∂θε

∂Na
+ (Nb − N̄b)

∂θε

∂Nb

]
N̄a,N̄b

=

(Nε − N̄ε)gεε|φε|2 + (Nε′ − N̄ε′)gεε′ |φε′ |2 , (104)

where ε �= ε′ = a, b. Using (104) together with the initial
condition (8), we obtain for the phase factor A in Eq. (9)

[A(Na−1, Nb+1)−A(Na, Nb)]/� = −(Na−1)
∫
d3r|φ̄a(r)|2

× [χ0(r) + χd(r)] −Nb

∫
d3r|φ̄b(r)|2[χ0(r) − χd(r)]

(105)

[A(Na−2, Nb+2)−A(Na, Nb)]/� =−2(Na−2)
∫
d3r|φ̄a(r)|2

× [χ0(r) + χd(r)] − 2Nb

∫
d3r|φ̄b(r)|2[χ0(r) − χd(r)]

− ∫ d3r{|φ̄a(r)|2[χ0(r) + χd(r)] + |φ̄b(r)|2
× [χ0(r) − χd(r)]}. (106)

The averages and variances of the spin operators equa-
tions (10)–(12) are obtained by equations (94)–(98) after
spatial integration. We get:

∫
d3r〈ψ̂†

b (r)ψ̂a(r)〉 = NC∗
bCa

∫
d3rφ̄∗b (r)φ̄a(r)[|Ca|2eiχd(r)

+ |Cb|2e−iχd(r)]N−1 exp[i(N − N̄)χs(r)]

× exp[−iN̄(|Ca|2 − |Cb|2)χd(r)] exp[iχ0(r)], (107)

∫
d3rd3r′〈ψ̂†

b(r)ψ̂†
a(r′)ψ̂a(r)ψ̂b(r′)〉 = N(N−1)|Ca|2|Cb|2

×
∫
d3rd3r′φ̄∗b (r)φ̄a(r)φ̄∗a(r′)φ̄b(r′), (108)

∫
d3rd3r′〈ψ̂†

b(r)ψ̂†
b(r

′)ψ̂a(r)ψ̂a(r′)〉 = N(N − 1)C∗2
b C2

a

×
∫
d3rd3r′φ̄∗b (r)φ̄a(r)φ̄∗b (r

′)φ̄a(r′)[|Ca|2eiχd(r)+iχd(r′)

+ |Cb|2e−iχd(r)−iχd(r′)]N−2 exp{−iN̄(|Ca|2 − |Cb|2)[χd(r)

+ χd(r′)]} exp{2i[χ0(r) + χ0(r′)]} exp
{
i(N − N̄)

× [χs(r) + χs(r′)]} exp
{−i ∫ d3r′′(|φ̄a|2[χ0(r′′)

+χd(r′′)] + |φ̄b|2[χ0(r′′) − χd(r′′)])
}
, (109)

∫
d3rd3r′〈ψ̂†

b(r)ψ̂†
b(r

′)ψ̂b(r)ψ̂a(r′)〉 = N(N−1)C∗
bCa|Cb|2

×
∫
d3r′φ̄∗b (r

′)φ̄a(r′)[|Ca|2eiχd(r′) + |Cb|2e−iχd(r′)]N−2

× exp[−iN̄(|Ca|2 − |Cb|2)χd(r′)] exp[iχ0(r′) − iχd(r′)]

× exp[i(N − N̄)χs(r′)], (110)

∫
d3rd3r′〈ψ̂†

a(r)ψ̂†
a(r′)ψ̂a(r)ψ̂b(r′)〉 = N(N−1)C∗

aCb|Ca|2

×
∫
d3r′φ̄∗a(r′)φ̄b(r′)[|Ca|2e−iχd(r′) + |Cb|2eiχd(r′)]N−2

× exp[iN̄(|Ca|2 − |Cb|2)χd(r′)] exp[−iχ0(r′) − iχd(r′)]

× exp[−i(N − N̄)χs(r′)] . (111)

In the above expressions χd, χs and χ0 are the space and
time dependent functions defined in equations (24)–(26).
In practice it is sufficient to evolve five wave functions
φa(r, t), φb(r, t) for (N̄a, N̄b ± δNb) and (N̄a ± δNa, N̄b)
with δNa,b �= 0 (to calculate numerically χd χs χ0), and
with δNa,b = 0 (to calculate the central wave functions
φ̄a,b). The spin squeezing is obtained by equation (15) us-
ing the definitions (10)–(12) for the spin operators.

Appendix C: Equality of χs and χ0

in the breathe-together configuration

Evaluating (104) for ε = a, Na = N̄a; ε = b, Nb = N̄b and
subtracting the two relations, on obtains

∂t

( ¯∂θa

∂Nb
−

¯∂θb

∂Na

)
= 0 (112)

where we used the fact that in breathe-together conditions
|φ̄a| = |φ̄b|. Equation (112) implies that the time deriva-
tive of χs − χ0 is zero. As for t = 0 χs = χ0 = 0, we
conclude that χs = χ0 at all times.

Appendix D: Extracted spin squeezing
quantum averages

By using the instantaneous modes (42)–(43) and within
the modulus-phase approach, the quantum averages useful
to calculate spin squeezing are expressed in terms of the
functions:

χex
d (r, r′) =

1
2
(∂Na − ∂Nb

)[θa(r) − θb(r′)](N̄a, N̄b) (113)

χex
s (r, r′) =

1
2
(∂Na + ∂Nb

)[θa(r) − θb(r′)](N̄a, N̄b) (114)

χex
0 (r, r′) =

1
2
(∂Na − ∂Nb

)[θa(r) + θb(r′)](N̄a, N̄b) .(115)

We obtain:

〈b̃†ã〉 = NC∗
bCa

∫
d3r1d

3r2|φ̄b(r1)|2|φ̄a(r2)|2
×[|Ca|2eiχex

d (r2,r1) + |Cb|2e−iχex
d (r2,r1)]N−1

× exp[i(N − N̄)χex
s (r2, r1) + iχex

0 (r2, r1)]
× exp[−iN̄(|Ca|2 − |Cb|2)χex

d (r2, r1)] (116)

〈b̃†ã†ãb̃〉 = N(N − 1)|Ca|2|Cb|2 (117)
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〈b̃†b̃†ãã〉 = N(N − 1)C∗2
b C2

a

∫
d3r1d

3r2d
3r3d

3r4

×|φ̄b(r1)|2|φ̄b(r2)|2|φ̄a(r3)|2|φ̄a(r4)|2
×{|Ca|2ei[χex

d (r4,r2)+χex
d (r3,r1)]

+|Cb|2e−i[χex
d (r4,r2)+χex

d (r3,r1)]}N−2

× exp{2i[χex
0 (r4, r2) + χex

0 (r3, r1)]}
× exp

{−iN̄(|Ca|2 − |Cb|2)
×[χex

d (r4, r2) + χex
d (r3, r1)]}

× exp
{
i(N − N̄)[χex

s (r4, r2)

+χex
s (r3, r1)]} exp{−i ∫ d3r5(|φ̄a(r5)|2

×[χex
0 (r5, r5) + χex

d (r5, r5)]
+|φ̄b(r5)|2[χex

0 (r5, r5) − χex
d (r5, r5)])}

(118)

〈b̃†b̃†b̃ã〉 = N(N − 1)C∗
bCa|Cb|2

∫
d3r1d

3r2|φ̄b(r1)|2
×|φ̄a(r2)|2[|Ca|2eiχex

d (r2,r1)

+|Cb|2e−iχex
d (r2,r1)]N−2

× exp[iχex
0 (r2, r1) − iχex

d (r2, r1)]
× exp[−iN̄(|Ca|2 − |Cb|2)χex

d (r2, r1)]
× exp[i(N − N̄)χex

s (r2, r1)] (119)

〈ã†ã†ãb̃〉 = N(N − 1)C∗
aCb|Ca|2

∫
d3r1d

3r2|φ̄a(r1)|2
×|φ̄b(r2)|2[|Cb|2eiχex

d (r1,r2) + |Ca|2
×e−iχex

d (r1,r2)]N−2 exp[−iχex
0 (r1, r2)

−iχex
d (r1, r2)] × exp

[
iN̄(|Ca|2

− |Cb|2)χex
d (r1, r2)

]
× exp[−i(N − N̄)χex

s (r1, r2)]. (120)

In case the wave functions φ̄a, φ̄b are stationary we re-
cover the stationary two-mode model averages given in
the next appendix in the particular case of no losses. The
spin squeezing is obtained by equation (15) using the def-
initions (44)–(46) for the spin operators.

Appendix E: Quantum averages with one-body
losses: Exact solution in the non symmetric
case

In this appendix we give the exact result for quantum
averages needed to calculate spin squeezing in the case
of a two-mode model with one-body losses only, in the
general non-symmetric case.

〈a†a〉 = |Ca|2N exp(−γat) (121)

〈a†a†aa〉 = |Ca|4N(N − 1) exp(−2γat) (122)

〈b†b†bb〉 = |Cb|4N(N − 1) exp(−2γbt) (123)

〈b†a†ab〉 = |Cb|2|Ca|2N(N − 1) exp[−(γa + γb)t]

(124)

〈b†a〉 = C∗
bCbe

−2ivtN exp
[
−1

2
(γa+γb)t

]
LN−1

1 (125)

〈b†b†ba〉 = |Cb|2C∗
bCae

−2ivtN(N − 1)eiχt

× exp
[
−1

2
(γa + 3γb)t

]
LN−2

1 (126)

〈a†a†ab〉 = |Ca|2C∗
aCbe

2ivtN(N − 1)eiχt

× exp
[
−1

2
(3γa + γb)t

]
LN−2
−1 (127)

〈b†b†aa〉 = C∗2
b C2

ae
−4ivtN(N − 1)

× exp [−(γa + γb)t]LN−2
2 (128)

where we introduced the function Lβ with β = −1, 1, 2

Lβ =
|Ca|2

γa + iβ(χ+ χ̃)

[
γae

iβχ̃t + iβ(χ+ χ̃)e−(γa+iβχ)t
]

+
|Cb|2

γb − iβ(χ− χ̃)

[
γbe

iβχ̃t − iβ(χ− χ̃)e−(γb−iβχ)t
]

(129)

and v given by (69).

Appendix F: Quantum averages with one, two,
three-body losses in the non-symmetric case

In this appendix we give the quantum averages useful to
calculate spin squeezing for the two-mode model in the
general non-symmetric case, in presence of one, two and
three-body losses.

〈a†a〉 = |Ca|2e−λt [N − (∂σ1 + ∂σ2)]F0(σ1, σ2) (130)

〈a†a†aa〉 = |Ca|4e−λt [N − (∂σ1 + ∂σ2 − 1)]
× [N − (∂σ1 + ∂σ2)]F0(σ1, σ2) (131)

〈b†b†bb〉 = |Cb|4e−λt [N − (∂σ1 + ∂σ2 − 1)]
× [N − (∂σ1 + ∂σ2)]F0(σ1, σ2) (132)

〈b†a†ab〉 = |Cb|2|Ca|2e−λt [N − (∂σ1 + ∂σ2 − 1)]
× [N − (∂σ1 + ∂σ2)]F0(σ1, σ2) (133)

〈b†a〉 = C∗
bCbe

−(2iv+λ)t
(|Ca|2e−iχt+|Cb|2eiχt

)N−1

× [N − (∂σ1 + ∂σ2)]F1(σ1, σ2) (134)

〈b†b†ba〉 = |Cb|2C∗
bCae

−(2iv+λ)t
(|Ca|2e−iχt + |Cb|2eiχt

)N−2

×eiχt [N − (∂σ1 + ∂σ2 − 1)] [N − (∂σ1 + ∂σ2)]

×F1(σ1, σ2) (135)
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〈a†a†ab〉 = |Ca|2C∗
aCbe

(2iv−λ)t
(|Cb|2e−iχt + |Ca|2eiχt

)N−2

×eiχt [N − (∂σ1 + ∂σ2 − 1)] [N − (∂σ1 + ∂σ2)]

×G1(σ1, σ2) (136)

〈b†b†aa〉 = C∗2
b C2

ae
−(4iv+λ)t

(|Ca|2e−2iχt + |Cb|2e2iχt
)N−2

× [N − (∂σ1 + ∂σ2 − 1)] [N − (∂σ1 + ∂σ2)]

×F2(σ1, σ2) (137)

where we introduced the functions Fβ(σ1, σ2) and
Gβ(σ1, σ2)

Fβ(σ1, σ2) =

exp

{
3∑

m=1

emσ1γ
(m)
a [1 − e−imβ(χ+χ̃)t]

imβ(χ+ χ̃)[|Ca|2e−iβ(χ+χ̃)t + |Cb|2eiβ(χ−χ̃)t]m

+
emσ2γ

(m)
b [eimβ(χ−χ̃)t − 1]

imβ(χ− χ̃)[|Ca|2e−iβ(χ+χ̃)t + |Cb|2eiβ(χ−χ̃)t]m

+
eσ1+σ2γab[1 − e−i2βχ̃t]

i2βχ̃[|Ca|2e−iβ(χ+χ̃)t + |Cb|2eiβ(χ−χ̃)t]2

}
(138)

Gβ(σ1, σ2) =

exp

{
3∑

m=1

emσ2γ
(m)
b [1 − e−imβ(χ−χ̃)t]

imβ(χ− χ̃)[|Cb|2e−iβ(χ−χ̃)t + |Ca|2eiβ(χ+χ̃)t]m

+
emσ1γ

(m)
a [eimβ(χ+χ̃)t − 1]

imβ(χ+ χ̃)[|Cb|2e−iβ(χ−χ̃)t + |Ca|2eiβ(χ+χ̃)t]m

− eσ1+σ2γab[1 − ei2βχ̃t]
i2βχ̃[|Cb|2e−iβ(χ−χ̃)t + |Ca|2eiβ(χ+χ̃)t]2

}
(139)

with β = 0, 1, 2, and all the expressions should be evalu-
ated in σ1 = ln N̄a, σ2 = ln N̄b. The expression of v is given
in (69). The spin squeezing is obtained by equation (15)
using the definitions (44)–(46) for the spin operators (with
ã = a and b̃ = b).

Appendix G: Test of the constant loss rate
approximation for high asymmetric losses

The constant loss rate approximation (61) is in general
valid when a small fraction of particles is lost. In the case
of symmetric condensates, from equation (77) one sees
that the best squeezing in presence of losses is of the or-
der of the lost fraction. So that ξ(tbest) 
 1 guarantees
that the lost fraction is small and the constant loss rate
approximation is accurate. In the case of asymmetric con-
densates and asymmetric losses there might be other ef-
fects to consider as the population ratio between the two
spin components might change in reality while it remains
constant in the constant loss rate approximation. Indeed
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Fig. 12. (Top) spin squeezing with two-body losses in a bi-
modal Rb condensate as a function of time for symmetrically
split condensates. Blue solid line: exact numerical simulation
with 4000 realizations. Red dash-dotted line: analytical so-
lution with constant loss rate approximation. (Bottom) cor-
responding total number of particles and 〈Sz〉 as a function
of time. Parameters: N̄a = N̄b = 104, ω = 2π × 42.6 Hz,
m = 87 a.m.u., aaa = 100.44 rB, abb = 95.47 rB, aab =
88.28 rB , rB is the Bohr radius, χ = 5.367 × 10−3 s−1, χ̃ =

5.412 × 10−4 s−1, v = 13.758 s−1. Particle losses: K
(a)
2 = 0,

K
(b)
2 = 119 × 10−21 m3 s−1.

with the approximation (61), the initial phase state re-
mains a phase state through out the whole evolution. As
a consequence, when a quantum jump occurs, only the
relative phase and the total number of particle changes
(see Eq. (59)). In Figures 12 and 13 we compare the con-
stant loss rate approximation to the exact numerical re-
sult in the case of overlapping Rb condensates with large
asymmetric two body losses considered in Section 4. In
Figure 12 we address the case of evenly split condensates
N̄a = N̄b = N/2 while in Figure 13 we address the case of
breathe-together parameters.

The constant loss rate approximation neglects two ef-
fects: the decrease of the loss rate in time as less and
less particles are in the system, and the change of the
ratio 〈Na〉/〈Nb〉 as particles from the b component are
lost. In the case of Figure 12 where we consider initially
〈Na〉=〈Nb〉, which is the most favorable for squeezing,
these two effects partially compensates: one tending to de-
grade and the other to improve the squeezing with respect
to reality. In the case of Figure 13 instead, the two effects
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Fig. 13. (Top) spin squeezing with two-body losses in a bi-
modal Rb condensate as a function of time in breathe-together
configuration. Blue solid line: exact numerical simulation with
4000 realizations. Red dash-dotted line: analytical solution
with constant loss rate approximation. (Bottom) correspond-
ing total number of particles and 〈Sz〉 as a function of time.
Parameters: N̄a = 7432, N̄b = 12568, χ = 5.392 × 10−3 s−1,
χ̃ = 1.386 × 10−3 s−1, v = 13.850 s−1. The other parameters
are the same as in Figure 12.

sum-up, both of them tending to degrade the squeezing
with respect to reality. Note however that even for such
large and completely non-symmetric losses, the constant
loss rate approximation proves to be rather accurate up
to the best squeezing time.
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