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Abstract

Hybrid systems coupling ultracold atoms to different physical systems via light promise
to have many quantum technological applications, including quantum information pro-
cessing. In particular, hybrid systems with a mechanical component could be especially
suitable for precision sensing, to read out the properties of a quantum mechanical sys-
tem, and quantum signal transduction. In such systems the light-atom interface is an
essential ingredient. The powerful and well understood control methods available for
ultracold atoms form a solid foundation that more complex systems combining mech-
anical oscillators, quantum dots, or other quantum systems with these atoms build on.
Theoretical models for advanced hybrid systems have developed and grown sophistic-
ated in the past few years, but experimental implementations are still in earlier stages.
Thoroughly optimising and characterising the light-atom interface component of such
a hybrid system is critical for gaining understanding of and control over the hybrid
system as a whole.

In this thesis I report on such an atom-light interface with 87Rb atoms in a far-
off-resonance dipole trap. The atoms trapped therein can either constitute half of
an atom-membrane hybrid system, or they can be used as a quantum memory to
store single photons emitted by semiconductor quantum dots. The elongated atom
cloud has a full 1/e2 width of 74 µm and length around 26 mm. It consists of over
20 million atoms after 100 ms hold time, at a temperature of 54 µK, reaching a final
value of 34 µK after a few seconds. Its on-axis resonant optical depth is higher than
1000, which translates directly into much higher light-atom coupling strengths than
previously achieved. Further, I detail adapting an existing 1D optical lattice used for
coupling atoms to a mechanical membrane oscillator to be loaded from this dipole trap,
instead of from a MOT, and characterise the atomic ensembles both in the dipole trap
and in the lattice. Finally, I conclude with preliminary atom-membrane interaction
results and offer an outlook to the experiments this light-atom interface may be used
for in the future.
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Introduction

The interaction of light and matter is the broadest branch of optics. It informs our
understanding of the universe on all scales, from the compositions of distant galaxies,
to life on earth, to the behaviour of single atoms. It underlies processes on all energy
scales, from pair production to the generation of the world’s coldest matter, Bose-
Einstein condensates. It is as relevant to technological applications as it is to probing
the fundamentals of quantum mechanics.

Quantum information processing is likely to rely heavily on light-atom quantum
interfaces, regardless of what quantum system or systems eventually triumph over the
others to become the standard qubit. Qubits based on trapped ions [1, 2] or neutral
atoms [3, 4] would require such interfaces directly for computation. Quantum commu-
nication, or more specifically entanglement distribution, based on photonic channels
over long distances requires quantum repeaters and quantum memories. The coher-
ence achievable in atomic states makes them exceptionally suitable for these tasks, so
a quantum network would probably make use of atomic vapours or atomic ensembles,
which were shown in [5] to efficiently implement a quantum repeater. These photonic
channel based quantum network designs are sufficiently unique in their promise and
feasibility that spin or charge based qubits would almost certainly use quantum sig-
nal transducers [6] to encode their quantum information onto light for transmission.
Therefore light-atom quantum interfaces are a crucial building block in the endeavor of
quantum information processing irrespective of the exact future technological advances
in qubit implementations.

The goal of quantum information processing has guided modern experiments in
light-atom interfaces due to its concrete requirements on scalability and control [7].
After it became possible to probe few or even single atoms, placed in cavities to en-
hance the interaction, the focus of light-atom interfaces lay mostly on these cavity ex-
periments. More recently advances in laser technology have let atomic ensembles grow
in favour. There the strong, cavity enhanced interaction of one atom is matched by
the contributions of many atoms interacting less strongly. Varied interfacing mechan-
isms including electromagnetically induced transparancy, Faraday interactions, Raman
interactions, and others have established themselves as viable [8], and methods and pro-
tocols for working with the collective, continuous variables of an atomic ensemble in
terms of information processing have been developed [9].

Meanwhile, and independently of the successes achieved in light-atom interfaces,
the quality of and control over other quantum systems advanced. In this context the
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concept of a hybrid system that attempts to combine different systems emerges nat-
urally. Hybrid systems come in different flavours. They may strive to take advantage
of each subsystem’s superior attributes to achieve an overarching goal, or they may
aim to transfer the advanced control schemes available for one of their constituents to
the other. An example of the former, a best-of-both-worlds type hybrid system, is an
atomic quantum memory for single photons from a GaAs quantum dot [10]. In [11]
bright, robust, and fast quantum dots with close-to-ideal properties were demonstrated
at 780 nm. These excellent light sources are then combined with atomic memories,
which have been shown to provide long storage times and high efficiencies, for example
in [12].

An implementation of the latter is found in the field of atom-optomechanics, where
macroscopic mechanical oscillators are coupled to atoms via light [13]. This hybrid
system can be implemented, for instance, by trapping an atomic ensemble in an optical
lattice retroreflected on a micromechanical membrane, coupling the motion of the atoms
in the lattice to the vibrations of the membrane [14, 15]. Using this scheme it is possible
to sympathetically cool the membrane from room temperature to 650 mK [16]. With
continued progress this type of system can hope to cool lower frequency vibrational
modes of larger membranes than previously demonstrated [17] to their phononic ground
state, where quantum mechanical operations such as state swaps could be performed.

At first glance it is perhaps surprising that the figure of merit for the atom-
membrane coupling strength and for the quantum memory efficiency is the optical
depth of the atom cloud [8, 18, 19]. The connection becomes clear when considering
that in order for atoms to interact with light they must absorb or scatter it. Its im-
portance has lead some authors to recast the methods developed in the 1990s to load
traps efficiently and compress atom clouds to increase phase space density in pursuit of
Bose-Einstein condensation as methods to optimise optical depth [20]. This renewed
focus on loading traps and cooling atom clouds promises to pay off with access to the
strong coupling regime in hybrid systems, where a lot of interesting physics awaits.

Against this background, ultracold atoms in a far-off-resonance optical dipole trap
present themselves as an excellent candidate. Loading this type of trap efficiently has
been studied in detail [21]. Lacking strong confinement along the optical axis for a
not too strongly focused beam, the desired geometry of a highly prolate atom cloud
is automatical realised after a short time, even when loading from a spherical MOT.
In the far detuned case the trap potential can be made independent of the hyperfine
state, and photon scattering events are so rare that the lifetime of the atoms in the
trap is determined by background gas collisions. This means typical lifetimes range
from 1 s to 100 s, depending on the quality of the vaccuum. These features allow both
low-loss manipulation of the atomic state and long, adiabatic ramping without concern
for atoms being heated away [22]. Additionally, consisting of a single beam, these traps
are comparatively simple to set up and maintain.

This thesis discusses the design, setup, and characterisation of a far-off-resonance
optical dipole trap for ultracold 87Rb atoms for use in hybrid systems, with the specific
goal of achieving high optical depth. I present the context of the rest of the experi-
mental setup, and give a brief theoretical overview of dipole traps in chapter 1. I place
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Introduction

most theoretical calculations directly preceding their experimental evaluations to facil-
itate comparison. Chapter 2 contains the full characterisation of the dipole trap and
the trapped atomic ensemble. Then, in chapter 3, I discuss loading a 1D optical lattice
from the dipole trap and I characterise this lattice. I find that I can transfer many
of the advantageous attributes of the atom cloud from the dipole trap to the lattice,
but that some technical details still need to be addressed to ensure that the process is
adiabatic. In chapter 4 I conclude by presenting the results of a first attempt, with the
new setup, at coupling the atoms to a mechanical membrane, and I outline a possible
future path of our hybrid systems experiments.

3





Chapter 1

Dipole Trap Design

The optical dipole trap that is the main topic of this work is an upgrade to a functioning
experimental setup. The pre-existing cold atom apparatus is described in great detail
in [23], and interim improvements, esspecially to our imaging system, are detailed in
[18]. This chapter provides a minimal overview of these systems adapted from these
sources, for the purpose of context, and omitting all details not directly relevant to the
additions. Next, the basic theory of optical dipole trapping of alkali atoms is reviewed,
leading to a realistic model of the trapping potential. Finally, the atom cloud that can
be confined in this trap is studied theoretically, and some geometrical considerations
are discussed.

1.1 Overview of the Pre-existing Setup

1.1.1 The Cold Atom Apparatus

Our cold atom apparatus implements many of the standard techniques for preparing
ultracold atomic ensembles of 87Rb atoms [24]. The heart of the system is a small, oc-
tagonal, glass cell under ultra high vacuum, with a pressure on the order of 10−9 mbar.
This chamber, depicted in figure 1.1, sits in the middle of a raised breadboard above the
optical table. Attached to the cell are a pair of coils near anti-Helmholtz configuration
which create the magnetic field gradients necessary for a three-dimensional magneto-
optical trap (3D-MOT). Further away a cage of three pairs of much larger Helmholtz
coils compensate unwanted external magnetic fields and set the quantisation axis for
imaging and optical pumping.

On the optical table below light is split into six counterpropagating 3D-MOT beams
before they are directed up to the glass cell. Figure 1.21 shows the optical axes in the
plane of the breadboard level. The 3D-MOT is loaded from a two-dimensional MOT
(2D-MOT), which captures atoms from the ambient vapour of a natural rubidium
source, and transfers them to the 3D-MOT via an atom beam. Orthogonal to the

1This figure, and other figures showing optical elements in a schematic style, were all drawn with
the aid of ComponentLibrary by Alexander Franzen [25].

5



1.1. Overview of the Pre-existing Setup

Figure 1.1: An uncluttered rendering of the permanent setup of our cold atom
machine. The main vacuum chamber and its connection to the pumps and the
2D-MOT is shown in turquoise. The 2D-MOT chamber is coloured green. Its light
is prepared on a kind of breadboard annex to allow the atom beam to enter the
main vacuum chamber at a small angle. The coils for producing the field gradients
for the 3D-MOT are shown in pink. The compensation coils are embedded in
the large cage surrounding the setup. The holes in the breadboard, drawn with a
chequerboard pattern for contrast, are for bringing up the light for the 3D-MOT
from the optical table below. See figure 1.2 for an overview of all the optical axes.

main axis light is directed through the atom cloud onto a CDD camera,2 which grants
a side-view of the atom clouds trapped in the dipole trap or the optical lattice.

Details on the operation of this MOT for the purpose of loading the optical dipole
trap may be found in section 2.1.2.

1.1.2 Absorption Imaging

When appropriately calibrated, absorption imaging [26, 27] provides information about
the geometry, atom number, density, and temperature of atom clouds. Circularly
polarised light is sent through the atom cloud, where it scatters on the |F = 2,mF = 2〉
↔ |F ′ = 3,m′F = 3〉 cycling transition of the 87Rb D2 line, which is defined by a small
magnetic field (0.1 mT) along the imaging axis, and an image is taken of the light that
remains. Just before the image is taken, the F = 1 → F = 2 repumping beams are
switched on and a short F = 2 → F = 2, σ+ polarised pumping pulse is applied to

2Manta G-145B MOD RCG by Allied Vision Technologies GmbH
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Chapter 1. Dipole Trap Design

Figure 1.2: In the plane of the breadboard four optical axes cross in the vacuum
cell. The optical dipole trap and the one-dimensional optical lattice run along the
main optical axis, shown in green. Their optics are omitted here as more detailed
drawings are shown in sections 2.1 for the dipole trap and 3.2 for the optical lattice.
The black crosses represent the upper periscope mirrors, directing four of the six
counterpropagating MOT beams, drawn in red, through quarter-wave plates and
into the vacuum cell. The third pair of 3D-MOT beams run vertically through the
chamber, which would be orthogonal to the page here. The blue line represents
the side-view imaging axis. Finally, the pink line represents the atom beam from
the 2D-MOT.

prepare the atoms in the appropriate hyperfine state for imaging.
Additionally, it is necessary to take a reference image without atoms. Usually, the

goal is to see the atoms under ballistic expansion, so, typically, all light beams and fields
are abruptly switched off before imaging. If this is not the case, then they are instead
switched off after taking the image of the atoms. Either way, the atoms are allowed
to fall away and a reference image is taken soon after the atoms have completely left
the field-of-view. For greater accuracy in the presence of stray room light the imaging
beam can be turned off to take a dark image. Our cameras are shielded from most stray
light by the lens tubes that house their imaging lenses. Therefore, our experimental
sequences do not take new dark images for every run by default.

With the intensities in these three images we can now define the measured optical
depth as

OD(x, y) := − ln

(
Iatoms(x, y)− Idark(x, y)

Iref(x, y)− Idark(x, y)

)
. (1.1)

In the limit of low saturation the optical depth can be related to atomic density via
the Beer-Lambert law [27]

OD(x, y) = σ

∫
n(x, y, z) dz =: σñ(x, y), (1.2)
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1.2. Theory of Dipole Trapping

where σ is the scattering cross section,

σ =
σ0

1 +
(

2∆
Γ

)2 . (1.3)

Here σ0 = 3λ2

2π is the resonant scattering cross section for σ+ light driving the cycling
transition [28]. If ∆ = 0, then the optical depth is called the resonant optical depth,
ODres. For an OD measured off-resonantly the equivalent resonant OD is simply
ODres =

(
1 + (2∆/Γ)2

)
OD.

Equation 1.3 warrants some further comments. Absorption imaging is quantitat-
ively reliable for optical depths, in the sense of equation 1.1, up to 3 or 4 [27], as
cameras have a finite dynamic range. For this reason it may be necessary to image
dense clouds off-resonantly. The term 2∆/Γ explains what happens when the imaging
light is detuned from the imaging transition. That is, less scattering occurs and lower
ODs are measured. Technically, there would be a third term in the denominator, I/Isat,
describing a saturation effect. The saturation intensity is an intrinsic property of the
transition. Its value is Isat = 1.67 mW cm−2 for σ+ light driving the cycling transition
[28]. To reduce our sensitivity to uncertainties in the calibration of the imaging system
[18] we use a low imaging intensity (0.2 Isat), so that this term can be neglected. It
would, however, also be possible to image in the regime where the imaging intensity is
much greater than the saturation intensity [27].

1.2 Theory of Dipole Trapping

When light is incident on atoms it shifts the energy of the atomic states via the AC
Stark shift. For this reason it is possible to create a potential well for atoms simply
by focusing a laser beam onto them, and thus to trap them. The approaches to
calculating the dipole potential experienced by atoms in the presence of laser light
vary greatly in scope and depth. It is possible to do so fully classically, as is often done
in textbooks on electrodynamics, as well as in some reviews [22, 29]. Alternatively, or
subsequently, the semi-classical approach of a two-level atom in a classical radiation
field is typically taken [30, 31]. Unfortunately, neither of these approaches correctly
treat spontaneous emission. The classical damping rate given by Larmor’s formula is
only good for approximations, unless corrected by the empirical oscillator strengths
[32], and quantised atoms in a classical field do not decay from their excited states in
the absence of light at all [33]. For this reason, the result of a fully quantised calculation
originally by Wigner and Weisskopf, namely

Γ =
ω3

0

3πε0h̄c3
|〈e|µ|g〉|2, (1.4)

is often introduced in an ad-hoc manner with little context. This result is also subject
to some approximations and can be further improved with higher order terms [34].

Another point where descriptions diverge is in addressing the fact that atoms have
not two but many energy levels. First, the selection rules for these transitions coming
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Chapter 1. Dipole Trap Design

from the conservation of orbital angular momentum can be used to find all allowed
transitions between states [24]. Then the determining factor becomes whether the
frequency of the laser, ω, is near the resonance frequency, ωij , of the transition between
two levels of the atom i and j [22]. (Note that when only a single transition frequency
is involved ωij is called ω0 to continue distinguishing it from the laser frequency ω.)
That is, the most significant transitions are those for which the detuning of the laser
∆ij := ω − ωij is smallest, possibly allowing a reduction of the atom to a two-level
system. For example, if the detuning from the D2 line is much smaller than the
detuning from the D1 line, then the D1 line can be neglected. This is not to imply
that the detuning is necessarily absolutely small with respect to any transitions to
allow approximations, only relatively smaller. Additionally, for a sufficiently large
detuning from a specific transition, the hyperfine structure of the involved levels will
not be resolved and can usually be neglected, in the sense that the many levels are
treated as one. Independently of which transition is considered, should the detuning
additionally be small in comparison to the sum of the laser and transition frequencies,
i.e. ∆ij � ω + ωij , then the rotating wave approximation (RWA) may be made to
further omit the terms proportional to e±(ω+ωij) from the Hamiltonian [29]. On the
other end of the spectrum, every day highly precise calculations using relativistic all-
order methods are used to create extensive theoretical tables of atomic properties (e.g.
in [35]), which are collected and meticulously checked against measurements by the
precision spectroscopy community [36].

Bearing all that in mind, as well as the plethora of sources that cover the optical
dipole interaction, including almost all quantum optics textbooks, this chapter states
the dipole potential relevant for our purposes and motivates its form, without claiming
to give a thorough and comprehensive derivation. Instead some attention is later paid
to the geometric properties of the atom cloud confined in this potential.

1.2.1 The Dipole Potential

The dipole interaction Hamiltonian is H1 = −µ̂E, where the nature of E is determined
by the model. (This is, within the semi-classical model it is a classical field, and within
the quantum model it is the corresponding operator.) We begin with the general result
of second-order perturbation theory for the shift for an energy level i, where j indexes
over all other possible states

∆Ei =
∑
j 6=i

|〈j|H1|i〉|2
Ei − Ej

, (1.5)

where µ̂ = −er̂, −e is the elementary charge, and r̂ is the electron position operator.
To get a first impression we evaluate this equation [22, 30] with the RWA and assuming
a two-level atom with the states |g〉 and |e〉. In the denominator, taking the dressed
state view, we compare the internal energy of a ground state atom (0) plus the energy
of n photons (nh̄ω), with the energy of an excited state atom (h̄ωeg) plus the energy of
n− 1 photons. This yields nh̄ω − (n− 1)h̄ω − h̄ωeg = h̄∆eg. With the aid of equation
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1.2. Theory of Dipole Trapping

1.4 we now find the ground state energy shift to be

∆Eg =
|〈e|µ|g〉|2
h̄∆eg

|E|2 =
�̄h3πc2

�̄h2ω3
eg

Γeg
∆eg

2ε0c|E|2 =
3πc2

2ω3
eg

Γeg
∆eg

I, (1.6)

where I = 2ε0c|E|2 is the intensity of the incident laser light. If the atoms reside in the
ground state most of the time, then this expression describes the potential determining
their motion.

To get more concrete, we consider the case of 87Rb confined in a single beam dipole
trap at 1064 nm. The rubidium D-lines are at 795 nm (D1) and 780 nm (D2). The
laser detuning is so large that both of these transitions need to be considered. As long
as the laser detuning is much larger than the excited state hyperfine structure, the
additional transition can be taken into account with equation 1.5, specifically for the
ground state |F,mF 〉 the potential is [22]

Udip =
πc2

2ω3
eg

(
ΓD2

2 + PgFmF

∆D2

+ ΓD1

1− PgFmF

∆D1

)
I (1.7)

where P = [0, ±1] for [π, σ±] polarised light.
Furthermore, for both of these transitions ω − ωij is a little less than one sixth of

ω + ωij , hardly much smaller. Thus, the RWA also introduces a significant error. the
RWA omits terms proportional to e±(ω+ωij). In a fully quantised model it is difficult
to treat these counter-rotating terms simultaneously with the rest, but semi-classically
it is quite simple to derive that for a single transition [22]

Udip =
3πc2

2ω3
0

(
Γ

ω − ω0
− Γ

ω + ω0

)
I. (1.8)

To bridge the gap between equations 1.7 and 1.8 we can insert the information that
our laser is linearly polarised to find the relative weights of the D1 and D2 lines in
equation 1.7, then apply these to equation 1.8 as it would be written for the D1 and
D2 lines separately, forming a weighted sum:

Udip = πc2

(
ΓD2

ω3
D2

(
1

ω − ωD2

− 1

ω + ωD2

)
+

1

2

ΓD1

ω3
D1

(
1

ω − ωD1

− 1

ω + ωD1

))
I. (1.9)

This is the final and most accurate form of the dipole potential for our far off res-
onance dipole trap, although in the interest of brevity the last step in the dervation
was somewhat sloppy. Usually when this equation is derived [37, 38] a fully classical
calculation is performed, whereupon the correct weighting of of each term is, by defin-
ition, that of the transition’s oscillator strength [32]. To arrive at the above form this
classical oscillator strength is converted into the quantum mechanical quantities Γ and
a Clebsh-Gordon coefficient [28]. Also note that in all these equations the fact that
the potential is attractive and actually confines atoms as opposed to repelling them is
hidden away in the sign of the detuning, which is negative when the laser is to the red
of the transition.
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Chapter 1. Dipole Trap Design

1.2.2 Trap Design Considerations

The question now arises how the potential given in equation 1.9 can be set experi-
mentally to trap atoms. In some experiments the exact wavelength of the trapping
laser is important. For instance, in optical clocks [39] and in precision measurements
[40] the measurement accuracy and stability can be dramatically improved by using
the magic wavelength. At this wavelength the ground and excited states of the optical
transition of interest experience the same light shift from the trapping light. Excluding
those cases, for traps near resonance the atom-laser detuning ∆, or more specifically
the laser frequency ω can be changed on a meaningful scale with acousto-optical mod-
ulators (AOMs). In this scenario the detuning can be used to define the potential,
as well as what physical processes will be significant for the trapped atoms. In our
case the detuning is so large that creating a significant change would require tens, or
better hundreds of nanometres tuning range, so this parameter is out. Instead our
experimental access comes from the beam’s intensity profile. For a focused Gaussian
beam propagating along z that is

I(r, z) =
2P

πw2(z)
e
−2 r2

w2(z) (1.10)

where P is the power and w(z) is the width of the beam given by

w(z) = w0

√
1 +

z2

z2
R

, (1.11)

where w0 is the waist, i.e. the 1/e2 radius at the focus (z = 0), and zR =
πw2

0
λ is the

Rayleigh range. Effectively the adjustable parameters of the trap are therefore just
P and w0, as ∆ is fixed by the choice of the laser and the polarisation is chosen to
be linear so that the trapping potential is independent of the atom’s mF state. The
theoretical details and calculations to that end fill the rest of this chapter, wherein
I have benefitted from the experiences of those who have set up similar dipole traps
before [37].

As I dicussed to motivate this endeavour, the figure of merit for judging the quality
of diverse atom-light quantum interfaces is the optical depth [8]. Depending on the
application, inefficiencies are typically proportional to 1/OD or 1/

√
OD. As we found

in equation 1.2, a higher axially integrated density results in a higher OD. Thus, ideally,
our trap will be narrow, elongated, and as full of atoms as possible. In section 2.3 the
interplay of the OD with atomic and trap parameters is examined further, but the
optimisation problem is difficult to tackle systematically because narrower traps are
less elongated and load fewer atoms.

With that in mind, the considerations for choosing the waist of the dipole trap
beam were mainly qualitative and practical. As we will discuss shortly, the size of
the atom cloud confined in a single beam dipole trap is significantly smaller than the
beam itself. If an experiment or measurement calls for mode matching a beam to the
trapped atomic sample, implying that the beam and the atomic sample have similarly
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1.2. Theory of Dipole Trapping

sized waists, then a narrow waist would necessitate fine alignment and great pointing
stability. In our setup, when performing a measurement series with hundreds of shots
after having newly aligned optics the position of the atom cloud can be seen to drift,
typically on the order of 1 µm h−1, as various screws relax in their mounts. For this
reason atomic samples with waists between 10 µm and 20 µm are already much easier to
work with than ones with waists smaller than 10 µm. Conversely, the beam waist must
not be too broad so that the trap is sufficiently deep to be loaded. With a maximum
available power of 21 W the trapping beam must be at least sufficiently focused to
produce a potential that can confine atoms at the minimum temperature in the MOT
of 200 µK [18].

After a quick test of the available precision lenses we settle on the most strongly
focusing one, which results in w0 ≈ 90 µm. The issue of an exact determination of the
beam waist will come up repeatedly throughout this thesis. It was measured directly
via beam profiling on a mock setup to be 92 µm, but later measurements of the trap
frequency and trap depth require it to be slightly different to be self-consistent. In all
following calculations I’ve decided to use the beam waist determined self-consistently
from the trap frequency measurement described in section 2.4.1, which is w0 = 85 µm.

With this beam waist and the 21 W of available power equation 1.9 yields a maximal
trap depth, Td = Udip(r = 0, z = 0)/kB, of −282 µK. (Note that some authors prefer
to eliminate the minus sign when expressing potentials in units of temperature or
frequency. I have refrained from this despite the somewhat unusual appearance so
that the attractive nature of the potential is not obscured.) We can be optimistic
that at this trap depth loading will take place during the cold MOT stages, and find
no motivation to reduce the trap depth right away. Thus, unless explicitly stated
otherwise, all further numerical calculations concerning the dipole trap use P = 21 W
and w0 = 85 µm. The first of these is shown in figure 1.3, where the spacial profile of
the dipole potential is plotted.

To illustrate the point about mode matching a probe beam to the atomic sample
we now take these dipole trap parameters as given and discuss the optimisation of a
simple experimental situation. Consider the case of a single pass pulsed probe beam
interacting with the atoms. To optimise the signal to noise ratio of whatever the atoms
are to impart onto the light field (presumably a phase, polarisation, or intensity shift)
this probe beam would need to be mode matched to the atomic sample, not to the
trapping beam [41]. A simple picture gives the correct intuition. If the probe beam is
larger than the atom cloud the light that passes the atoms without interacting increases
the noise. On the other hand, a probe beam smaller than the atom cloud will suffer a
reduction in signal from not interacting with all the atoms. A detailed model including
diffraction effects may be found in [41]. In the specific case of the chosen dipole trap
parameters and an atom temperature of 33 µK the atom cloud would have a waist of
29.1 µm and the optimal probe beam would have a waist of 27.7 µm, where both values
refer to the radius at the 1/e2 level. The alignment of beams this size would certainly
be stable enough for experiments although possibly requiring regular adjustments.

This example does not quite represent the current experimental situation. Nev-
ertheless, it is a common case (compare for instance [42]), and allowing for it now
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Figure 1.3: The potential of the dipole trap. Note the scale of the z-axis - the
deepest region of the trap (full width at the 10 % level) extends over almost 15 mm.

potentially goes toward future-proofing our setup. In our atom-membrane coupling
experiment the interaction is mediated by an optical lattice. Primarily, this means
that the size of our atomic sample will be determined by the very light responsible for
the coupling, rendering the mode matching point mute. Furthermore, the appropriate
waist of our lattice is determined by the need for its axial frequency, set to match the
frequency of the membrane via the power, to stay roughly constant over the expanse
of the atom cloud.

1.2.3 Geometry of the Atom Cloud

With equations 1.10 and 1.11 we can write

Udip = U0
1

1 + z2

z2R

exp

−2
r2

w2
0

(
1 + z2

z2R

)
 , (1.12)

separating out the terms that determine the spacial form of the potential. The Taylor
expansion of this expression around r2 � w2

0 and z2 � z2
R gives Udip ≈ U0

(
1− z2

z2R

)
×
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(
1− 2r2

w2
0

(
1− z2

z2R

))
, which, to second order in r and z, reduces to

Udip ≈ U0

(
1− 2r2

w2
0

− z2

z2
R

)
. (1.13)

As always r2 = x2 + y2, so in the centre of the trap the dipole potential is well ap-
proximated by a 3D-harmonic potential with cylindrical symmetry. To define trap
frequencies ωr and ωz we can equate this expression to the standard form of the har-
monic oscillator,

− U0

(
2r2

w2
0

+
z2

z2
R

)
=:

1

2
mω2

rr
2 +

1

2
mω2

zz
2. (1.14)

Now, a comparison of coefficients yields,

ωr =

√
−4U0

mw2
0

, ωz =

√
−2U0

mz2
R

. (1.15)

The thermal spacial density distribution of atoms in a harmonic trap is Gaussian
in all directions [22]. Using cylindrical coordinates and exploiting the symmetry in the
transverse direction we can write,

n(r, z) = Nat

√
1

8π3σ4
rσ

2
z

exp

(
− r2

2σ2
r

)
exp

(
− z2

2σ2
z

)
, (1.16)

where σi = ω−1
i

√
kBT/m. Assuming isotropic temperature we find that almost all

parameters drop out of the aspect ratio,

A :=
σz
σr

=
ωr
ωz

=
√

2
zR
w0

=
√

2
21.3 mm

85 µm
= 355. (1.17)

While this expression for the aspect ratio is probably most intuitively useful as it relates
common atomic size parameters to the common size parameters of the laser beam it
can be simplified to

A =

√
2π

λ
w0, (1.18)

as the Rayleigh range is also a function of the beam waist. This reveals that a larger
beam waist elongates the atom cloud, further justifying our moderation in the choice of
its value. Figure 1.4 shows the size of the atom cloud as a function of its temperature,
anticipating the relevant scale.

An issue raised by the diffraction-considering model in [41], again for the case of
a simple probe beam, is that when atom clouds become too elongated the coupling
strength depends only on the 3D peak atomic density. They determine that the length
of the atomic sample must be compared to a quantity they call the modified atomic
Rayleigh range and define by

z̃R =
πw2

0σ
2
r

λprobe(w
2
0 + σ2

r )
=

zR
1 + w2

0/σ
2
r

. (1.19)
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Figure 1.4: The predicted rms-size parameters of the atom cloud, assuming a
thermal ensemble in a harmonic trap, plotted against temperature.
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Figure 1.5: On the left, z̃R/σz is plotted for a probe beam of the same size as
the atomic sample (mode matched to first order). On the right the probe beam
has a waist of w0 = 115 µm, like our 1D optical lattice.

The scaling transitions in the limit σz � z̃R. Fortunately, as shown in figure 1.5, our
case is not so extreme, and diffraction effects can be corrected for with geometrical
factors.
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Chapter 2

Characterisation of the Dipole Trap

This chapter collects all the information and data pertaining to the dipole trap itself.
Section 2.1 describes building and loading the dipole trap; sections 2.2-2.4 detail all
the characterising measurements conducted, including atom temperature, trap lifetime,
trap frequency, trap depth, and the OD of the atom cloud. For quick reference, the
values of all these parameters are collected in appendix A.

2.1 Experimental Setup

Our light source is a Mephisto MOPA laser made by InnoLight.1 Its power output
is 42 W at 1064 nm. At this high power it is necessary to work with components
specifically designed to withstand it without damage.

As described in section 1.1.1, the vacuum cell where atoms are trapped is on a
raised breadboard. For clarity, the setup on each level is shown separately: the level
of the optical table in figure 2.1, and the level of the breadboard in figure 2.2.

The beam is focused to an initial waist of 225 µm by the laser’s internal optics a few
millimetres inside its enclosure. The beam is first directed through a Faraday isolator
to prevent possible back reflections from reaching and damaging the laser. About
30 cm of space are required before the isolator to let the beam expand and reduce its
intensity to avoid exceeding the isolator’s damage threshold. Next, a combination of a
half-wave plate and polarising beam splitter cube (PBS) is used to reduce the power
in the beam manually for alignment purposes. An aperture is placed after the PBS
to block light scattered by the small cube. A telescope focuses the beam through an
acousto-optical modulator2 (AOM), which directs the zeroth-order into a beam dump.
Finally, the first order beam is directed to a periscope to raise it to the breadboard
level. On the level of the breadboard the beam is focused onto the position of the
atoms with a f = 200 mm lens. Dichroic mirrors,3 placed on either side of the vacuum
cell, overlap the beams of the dipole trap and the optical lattice described in chapter 3.

1InnoLight have since been acquired by Coherent, but these same lasers are still produced.
2AOMO 3110-197 by Gooch & Housego
3DMLP950 by Thorlabs, Inc.
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2.1. Experimental Setup

Figure 2.1: The setup of the dipole
trap on the level of the optical table.

Symbol Meaning

Half-wave plate
Faraday isolator
Beam dump
Open aperture
AOM
Periscope
Dichroic mirror
Vacuum cell

Table 2.1: A legend list-
ing uncommon symbols.

Figure 2.2: The setup of the dipole trap on the level of the breadboard.

These mirrors reflect light at 780 nm and transmit light at 1064 nm with up to 99.5%
efficiency when the light is appropriately polarised. In particular, p-polarised light is
favourable in transmission and s-polarised light is favourable in reflectance.

2.1.1 Beam Shaping and Profiling

The theory of dipole trapping as discussed in section 1.2.1 is valid for a Gaussian beam
in the spacial TEM00 mode. Specifically, our design considerations relied heavily on the
assumption that the beam’s intensity profile is given by equation 1.10. To ensure that
this is reasonably accurate, to measure the beam waist, and to discover possible drifts
in the beam’s position we image a cross-section of the beam with a beam profiler.4

The beam quality and its spacial mode are of special concern, as the setup is entirely
in free space without mode cleaning.

When a beam passes through a correctly aligned AOM what happens to it depends
on the beam waist. A well known trade off is between the rise time and the diffraction
efficiency. When a beam’s waist is small it takes less time for the phonons in the
AOM crystal to stop interacting with the light, and thus the rise time is shorter than
it would be for a larger beam. In turn this smaller interaction region leads to lower
diffraction efficiency. While some manufacturers comment on it [43], it is rarely a
concern and therefore seldom mentioned that passing through an AOM with a small

4WinCamD-UCD12 by DataRay Inc.
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Figure 2.3: In this image, the first order beam after the AOM is shown. Colour
maps to normalised intensity. The size of the image is 400× 400 pixels, where one
pixel is 4.65 µm× 4.65 µm. Through iterative optimisation the beam is made as
circular after the AOM as when first emitted by the laser, and measured to be in
the desired Gaussian mode to 98%. During the optimisation process attention was
paid to the beam’s mode shape and ellipticity, exclusively varying the beam waist
at the AOM. The first order beam after the AOM showed an ellipticity, defined as
the ratio of the diameters of the minor and major axes, of up to 0.7. Additionally,
sometimes a mode that most resembled TEM10 was observed, as would be expected
for the zeroth order.

beam waist can degrade the beam quality, increasing ellipticity, or even producing
strange mode shapes. On the other hand, beams that are too large will partially
miss the acoustic beam, lowering diffraction efficiency again, or even clip on the finite-
sized device aperture, lowering beam quality. Specifically, the aperture of the AOM
is circular with a 3 mm diameter, but it performs to specification (i.e. the laser beam
fully overlaps the acoustic beam) when the laser is incident within the “active aperture”,
which is a rectangle of size 2.5 mm× 1.25 mm. The only way to be sure all is working
as intended is to look at the beam directly.

For these reasons the lenses of the telescope and AOM positions had to be iteratively
tested and optimised. Eventually, it turned out that the best results were achieved for
a beam with a 1/e2 diameter close to the size of the smallest side of the AOM’s active
aperture. Thus our telescope, consisting of a plano-convex lens with f = 250 mm
and a plano-concave lens with f = −200 mm, focuses the beam to w0 = 550 µm at
the position of the AOM. In the optimisation procedure beam waists down to about
w0 = 300 µm were tested. The final shape of the beam after the AOM is shown in
figure 2.3. The diffraction efficiency is 73%.

To gain further insight into the beam shape at the position of the atoms, where
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direct access is no longer possible, a mock setup with equivalent propagating distance
and a thick piece of glass to mimic the vacuum cell was constructed. With this setup
it was first determined that, for a f(λ = 1064 nm) = 229 mm focusing lens, the beam
waist of the dipole trap at the position of the atoms is about 92 µm. The value output
by the camera is the geometric mean value, meaning it is the radius of a circle with the
same area as the beam. This measurement comes with an uncertainty that is unrelated
to the setup merely imitating the real experiment. The waist determined by the camera
is a function of the exposure time, giving results differing by 5 µm to 10 µm in the
worst case depending on whether the automatically determined safe exposure time is
approached from above or below. Measurements were always taken after approaching
the safe exposure time from below to ensure some internal consistency, but this strange
effect reduces the overall trustworthiness of the measured values.

Indirect measurements of the beam waist via the trap depth and frequency in the
actual setup are presented in section 2.4. Those measurements have the advantage
of being performed on the real setup and are in close agreement with each other.
The value obtained from measuring the trap frequency, w0 = 85 µm, is used in the
calculations because it stems from the more sensitive measurement. The measured
trap depth suggests w0 = 82 µm.

For investigating the possibility of thermal lensing, the power in the laser beam is
reduced manually (i.e. with a half-wave plate and a polarising beam splitter) directly
before the dichroic mirror. The beam position varies on the order of 10 µm between
low and high powers at the position of the atoms. In the even more realistic case
of setting the power with the AOM this effect may worsen, as thermal effects in the
AOM’s crystal also come to bare. Fortunately, no obvious drifts take place when the
power is kept constant. Therefore, while it may be necessary to realign optics when
changing the power in the dipole trap, drifts due to thermal effects should not be an
everyday issue, and in particular they are unlikely to cause a problem within the course
of a single experimental run.

2.1.2 Loading the Dipole Trap

For traps near resonance, scattering photons from the trapping light on the trapped
atoms is an important source of heating and often the dominant atom loss mechanism.
The photon scattering rate for a two level atom in the RWA [22] is given by,

Γscat =
ΓUdip

h̄∆
. (2.1)

This yields a rate around 1 Hz, which is far too low to contribute significantly to the
loss of atoms from the trap. Despite previously noting the inaccuracy of the RWA for
very large detuning we need not seek a more accurate expression for such a small effect.
The relative error introduced is a few tens of percent, but even if our estimate were
off by an order of magnitude the effect would still be negligable. Over 103 scattering
events are required to heat an atom out of the trap, but as we will see in section 2.2.3,
the background gas collisions already limit the trap lifetime to 10 s.
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In principle, scattering photons is not the only way the dipole potential could
adversely affect the temperature of the atoms. Its light shift could deteriorate the laser
cooling performance. In turn, it may be possible to compensate this effect through
optimisation of the laser frequencies in the relevant stages of the MOT. Fortunately,
an initial comparison of the MOT cooling with and without the dipole trap turned on
during all the early stages found little difference. We decided to keep the dipole trap
laser on during all the MOT phases to maximise its loading time and avoid all potential
issues with pointing and switching on time. Subsequently, the laser frequencies during
the MOT phases were also optimised.

Loading efficiently means that it is necessary to cool atoms from the initial tem-
peratures in our MOT to below the trap depth of the dipole trap. As the MOT is
initially large and spherical, and the dipole trap is narrow and highly prolate, the
overlap between the two traps is small, and the MOT must be compressed as much
as possible just to bring atoms into the correct spacial region to be captured by the
dipole trap. Further, as atoms begin to be captured by the dipole trap, it is critical
to avoid scattering them back out of it. The details of optimising loading have been
studied, for instance in [21], yielding, essentially, a check list of loading steps and the
most important parameters to look out for in each of them.

In our experimental sequence there are four phases designed to load the dipole
trap. In order these are MOT loading, dark MOT, weak MOT, and molasses. All of
them were reoptimised to yield the greatest number of atoms transfered. Prior versions
of these phases are fully characterised in [18]. During MOT loading the 3D-MOT is
continuously loaded by an atom beam from the 2D-MOT. The process takes 3 s and
the resulting cloud contains around 5× 109 atoms at a mild 5 mK. In the dark MOT
phase the 2D-MOT is switched off, the detuning of the 3D-MOT light is increased,
and the intensity of the repumper is reduced over 100 ms. This reduces the scattering
rate of the cooling light, which results in a compression of the atom cloud. In the weak
MOT phase the MOT light is detuned ever further to the red and the magnetic field
gradients are turned down reducing the confinement. Over another 100 ms the atom
cloud cools from 2 mK at the end of the dark MOT phase to just 200 µK. Finally, for
13 ms in the molasses phase the magnetic field gradients are switched off completely.
Measurements show that the atoms do not get colder in this phase, so at first glance
it is strange that it has a positive effect on the number of atoms loaded into the dipole
trap. While some further investigation may be warranted, it is plausible that this phase
simply moves more atoms into the dipole trap for geometric reasons.

The modifications made from the sequences decribed and characterised in [18] are
very minor. Some of the most important parameters of each phase, i.e. the laser-atom
detuning, the magnetic field gradients, and the intensities were quickly scanned and
tweaked to optimise the number of atoms loaded into the dipole trap after turning
everything else off for 100 ms to let all the free atoms fall away. Few changes were
necessary, as the existing sequence was designed for a similar task. Through this
tweaking the number of atoms in the dipole trap after 100 ms could be improved from
just under 107 to 3 × 107 in the best case. In addition to the MOT parameters,
once many atoms are loaded into it, holding the dipole trap for a few seconds and
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locating the centre of the atom cloud allows an accurate determination of the position
of the focus of the beam. This enables optimal positioning, and reliably detects when
decreased performance is due to optics needing realignment.

2.2 Temperature, Atom Number, and Lifetime

Absorption imaging is a highly suitable and powerful technique to interrogate an atom
cloud for its properties. This method, described in section 1.1.2, gives qualitative in-
formation about the imaged atomic ensemble, and when it is appropriately calibrated
quantitative information about the cloud’s temperature, the number of atoms it con-
tains, and its density distribution. For this reason, this section must begin by briefly
discussing imaging. Our imaging system sends a beam through and around the atom
cloud, whose shadow is imaged onto a CCD with a single lens. The dipole trap is
long and narrow and it would be quite a coincidence for a system designed to image
the large MOT to just happen to image the correct plane for the dipole trap to be
in focus. Further, its position determines the position of the optical lattice, so it is
doubly important for the imaging system to image this plane. When the imaging lens
is slightly off from the proper position the atom cloud appears blurred. This is a subtle
effect to catch with the naked eye. We noticed the problem due to another effect at
the edges of the atom cloud at short times-of-flight, around (100 µs), when imaging
with detuned light. The atom cloud appears to split in two at the edges. The effect
is asymmetric in detuning indicating that its nature is dispersive, and that the atoms
are acting as a lens.

The side-view imaging system is still set up generally as described in [18], however
the position of the lens imaging the atoms onto the camera’s CCD had to be adjusted.
As the imaging system uses only a single lens, this modification necessarily changed
the magnification. The imaging lens is held in a lens tube with extended threading,
which makes it possible to move the lens by screwing and unscrewing its mount. Ac-
cording to specification, the distance between threads is 0.635 mm. Thus, a positioning
accuracy of almost 1/10 mm can be achieved simply by marking off quarter turns on
the lens tube, which is sufficient for accurate focusing. While it may seem a little im-
provised, this method actually has numerous advantages over the “high-tech” solution
of mounting the lens on a translation stage. Firstly, a translation stage would need to
be clamped down separately from the camera, which happened to be an issue in our
case because of limited space and a hole in the breadboard for bringing up MOT light
from the optical table below. Secondly, a translation stage introduces another degree
of freedom in proper alignment. Thirdly, a translation stage is inferior to a lens tube
in protecting both the lens from dust, and the camera from stray light.

To focus the imaging system, we exploited the same effect that first let us notice
something was amiss. When the image is properly focused, the splitting of the atom
cloud at the edges disappears. With persistence, a little bit of fine tuning can be
achieved by additionally minimising the waist of the atom cloud, but the real changes
are small and the shot-to-shot variations are at least as large. When the focus is

22



Chapter 2. Characterisation of the Dipole Trap

finally satisfactory, gravity serves as a scale bar for determining the new magnifica-
tion, as the cloud falls at a known rate. After our adjustments each of the camera’s
6.45 µm× 6.45 µm pixels corresponds to 14.46 µm× 14.46 µm in the image plane, a
magnification of 0.446.

2.2.1 Theory: Time-of-Flight and Loss Mechanisms

To determine the temperature of an atom cloud through absorption or fluorescence
imaging, a method called time-of-flight or TOF was developed. The trapping light is
switched off abruptly and the cloud is allowed to expand freely for a time tTOF . For
an initially Gaussian distribution under ballistic expansion the final distribution of the
cloud can be found through convolution with the velocity distribution [44]. The final
form along a direction x is a new Gaussian distribution,

n(x, tTOF) =
N√
2π

1√
σ2
x + σ2

t

exp

(
− x2

2
(
σ2
x + σ2

t

)) , (2.2)

where σt = tTOFvrms and everything else is as in equation 1.16. A series of meas-
urements of the total width along r, σ =

√
σ2
r + σ2

t , where r means any direction
orthogonal to z, for varying values of tTOF, yields a data set linear in t2TOF. Con-
cretely,

σ2(t2TOF) = σ2
r + v2

rmst
2
TOF. (2.3)

Then the temperature can be extracted from the velocity with the defining equation
for temperature from kinetic gas theory, T := mv2rms

kB
.

The final temperature of atoms in a dipole trap is determined by a balancing of
evaporation and heating processes, wherein heating is a small effect and evaporation
becomes small as the atoms get colder. Evaporation was studied theoretically and
experimentally in great detail in the nineties because of its importance in achieving
Bose-Einstein condensation [45, 46]. Although it is now an established and well known
technique, it continues to be a source of interesting optimisation problems today [47].
Kinetic theory gives a picture of a Maxwell-Boltzmann distribution of atoms truncated
at the trap depth repeatedly, until the temperature is so much lower than the trap
depth that the effect becomes negligible. To reach the temperatures required for Bose-
Einstein condensation, this process is encouraged by lowering the trap depth as atoms
cool, so that the potential they experience is always shallow. This is called forced
evaporation. The parameter that describes how deep or shallow a trap appears to
atoms is the ratio of the trap depth to the temperature of the atoms, η = |Td|/Tat.
The choice of η when using evaporation to cool is critical, but as runaway evaporation
depends on the collision rate remaining constant or increasing as atoms evaporate their
confinement is just as crucial. This can mean that the optimisation to achieve high
efficiency when the trapping potential is ramped down must deliberately consider the
changing trap frequencies as well [47]. Alternatively, there are methods that decouple
trap depth and confinement, and achieve fast and efficient evaporation in that way [48].
As we are not changing the trap depth for now, we will reach a steady state temperature
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somewhere in the “deep trap regime”, which typically means 10 ≥ η ≥ 6 [49, 50]. The
scaling laws in [49] can be used to estimate the time constant of evaporation, incorrectly
assuming a constant η, to be on the order of seconds. Finally, evaporation also means
losing atoms. Evaporation is the dominant loss mechanism initially, but only a fraction
of the trapped atoms will actually evaporate. Once the deep trap regime is reached
the lifetime of the atoms is instead limited by collisions with the background gas.

Collisions with the background gas are the ultimate end of all sufficiently long-lived
dipole traps. The lifetime is inversely proportional to the pressure of the background
gas, but also depends on the species composition of the gas. While the exact cause
is unknown the pressure measurements made during the initial setup of the vacuum
chamber were not entirely conclusive [23]. We can however take the measured MOT
lifetime around 10 s as a prediction and lower bound for the background gas limited
lifetime.

2.2.2 Temperature Measurements

To evaluate the temperature a series of absorption images is taken and processed with a
program called MatCam, written by Caspar Ockeloen [51]. MatCam can automatically
fit Gaussian distributions to the atom cloud and saves the widths and positions in x
and y. When the distribution of the atoms is approximately Gaussian, the inclusion
region around the atom cloud is selected properly, and the signal to noise ratio is
not too small, then this program accurately guesses initial values to produce fits of
high goodness. A devil’s advocate might conversely argue, that when MatCam fails to
produce a nice fit of a regular atom cloud, then the data is too poor to be fit without
giving an unreasonable amount of influence to the person producing the fit. As an
additional check, the atom number can be determined through this fit and compared
to the number independently obtained from the OD. As the latter is a fairly direct
measurement discrepancies speak against the quality of the fit.

An atom cloud’s density decreases as it expands freely. That the OD must not be
too large for absorption imaging to be quantitative was briefly discussed in section 1.1.2,
but the opposite is also true, as the difference between the image and the reference
becomes comparable to the noise level for sufficiently low OD. For this reason the
most reliable, reproducible TOF results are achieved when tTOF is kept short and the
number of data points is made reasonable by using a small step size. Our data are
taken at tTOF ≤ 4 ms, with ∆t = 100 µs. Some representative examples are shown in
figure 2.4.

Combining many TOF measurements for different hold times of the dipole trap
reveals the time evolution of the temperature in the cloud. These data are shown in
figure 2.5. As is expected for cooling due to evaporation, the data are explained well
by the function

T (t) = Tevap exp

(
− t

τevap

)
+ Tf . (2.4)

The fit yields an initial temperature of Ti = Tevap + Tf = 54 µK, a final temperature
of Tf = 34 µK, and a characteristic time of evaporation τevap = 1.9 s.
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Figure 2.4: TOF data for the dipole trap. The extremes of the hold times were
chosen as examples. On the left, the dipole trap is held for 100 ms before being
released; on the right the hold time is 10.1 s. The fitted temperatures are 54 µK
and 34 µK respectively. The significant decrease in atom number increases the
spread in the data for the longer hold times, slightly lowering the SNR for the
longest values of tTOF.
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Figure 2.5: The temperature in the dipole trap is fit with a single exponential
decay modelling the effect of evaporation. The first data point is taken after 100 ms
to let all the free atoms that are present initially fall away. The step size is half a
second initially and increased to one second after tDipolehold > 3 s.
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In principle, it is also possible to extract a value for σr from time-of-flight data to
compare to the calculations shown in figure 1.4. Unfortunately, the spread of these
values is quite large. This is to be expected due to the similarity of the effective pixel
size, 14.46 µm, and σr, which also makes estimating σr from a single picture taken after
a short TOF difficult. These TOFs yield a mean value of σr = 21 µm but the data
range from 10 µm to 30 µm, and the scatter is such that the expected dependence of
σr on Tat is lost.

2.2.3 Atom Number and Lifetime Measurements

As discussed in section 2.2.1, the number of trapped atoms decreases over time due
to two main loss mechanisms, evaporation and collisions with the room temperature
background gas. As shown in figure 2.6, these separate effects can be distinguished
from the data, which are fit better when allowing for two independent loss processes.
The model that best explains the data thus has the form

Nat(t) = Nevap exp

(
− t

τevap

)
+Nbg exp

(
− t

τbg

)
. (2.5)

From the fit the total number of trapped atoms is Nat(0) = Nevap +Nbg = 4.4 · 106 +
1.7 · 107 = 2.2 · 107 and the lifetimes of the processes are τevap = 1.1 s and τbg = 12.4 s.
The evaporation caused lifetime is comparable to, but shorter than the characteristic
time of evaporation from the previous section. This makes sense qualitatively, as more
atoms are lost to evaporation while the atom cloud is warmer.

As η changes over time, the rate of evaporation is initially much faster than what
is suggested by extrapolating the data in figure 2.6 to times shorter than 100 ms, and
it is safe to say that the number of atoms lost to evaporation is underestimated. If the
atom number in the dipole trap could reliably be determined in the first 100 ms, then
the additional data points would make the curve in figure 2.6 much steeper for hold
times between 0 ms and 100 ms. This is evident from the fact that the first, highest
temperature measurement of the atoms in the dipole trap is 54 µK, which means the
atoms are already fairly deep in the trap with η = 5. In contrast, the last, coldest
temperature measurement of the atoms in the MOT is 200 µK, which, if they were all
trapped in the dipole trap, would yield η = 1.4. Many of these MOT atoms are just
in the wrong place to be trapped, but some unknown amount are definitely trapped at
that temperature and lost to evaporation while it still occurs quickly. While slightly
shorter times can be probed, there is no good substitute for gravity that would remove
atoms free at tDipolehold = 0 s from the picture more quickly and allow accurately
determining the number of atoms that evaporate from the dipole trap.

The rates of these loss processes do not depend explicitly on the number of trapped
atoms. It is therefore not so important how quantitatively accurate the measurement
of Nat is in order to state the lifetime. However, a quantitatively accurate measurement
of the number of trapped atoms is important in terms of its relation to the density and
the OD, and unfortunately many factors influence the quality of that measurement.
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Figure 2.6: The lifetime measurement in the dipole trap requires a fit of two
exponential decays to accurately capture the initial steepness of the curve. This
approach is justified by the two known loss processes limiting the lifetime of the
trap, namely evaporation and background gas collisions.

An issue that can affect Nat are drifts in the optics of the dipole trap that alter the
position and alignment of the beam and reduce how many atoms are loaded into the
trap over time. Further, as can be seen in the spread of the data in figure 2.6, there are
shot to shot variations in Nat of a few percent. Aside from periodic realignment, we
are also looking into a fibre solution for the dipole trap to improve the beam’s pointing
stability, but of course at P ≥ 21 W this requires special equipment. There are also
apparent effects. A slightly out-of-focus imaging system, as discussed in section 2.2,
can cause an inconsistency between the measured value of Nat and the value of Nat

from the best fit Gaussian density distribution. There may be slight imperfections in
the polarisation of the imaging light, or in the alignment of the small B-field required
to define the quantisation axis for imaging, or the number of scattered photons may
be too small, all of which can worsen the accuracy of the measurement of Nat. The
imaging system is calibrated to account for these issues with an effective reduction in
scattering cross section σeff = σ0/α. From this calibration a systematic error of 10 %
remains on measurements of the atom number [18].

2.3 Optical Depth

High optical depth was a key motivating factor in building this dipole trap. To gain
some insight into this, consider the expression that is derived in [52] for n̄f , the min-
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imum phonon occupation number of a membrane in a cavity coupled to an atomic
ensemble. This is the number that determines whether interesting quantum mechan-
ics, such as state swaps, can be done with the membrane or not. In [18] it is shown,
that the terms of n̄f are inversely proportional to the quantum cooperativity between
the membrane and the atoms, and that, in the absence of optical losses, this reduces
to

n̄f ∝
1

Cqu
=

1

CmCa
=

1

CmODres
. (2.6)

Here Cm is the light-membrane cooperativity and Ca is the light-atom cooperativity
corresponding to the resonant OD of the atoms. Similarly, in our quantum memory
experiment, the efficiency improves with optical depth. For instance, it was calculated
in [10] that for an OD of 500 a storage efficiency of 82% can be achieved on the D1

line for single photons from a quantum dot source.

2.3.1 Theoretical On-axis OD

To begin, we combine equations 1.2 and 1.16 and perform the integration over z to get

ODres(r) =
σ0Nat

2πσ2
r

exp

(
− r2

2σ2
r

)
(2.7)

We also define the peak resonant optical depth as ODp,r = ODres(r = 0). In the case of
our 1D optical lattice the polarisation is linear, so the expression for σ0 is not the same
as for the circularly polarised imaging light. Instead we use σ0 = λ2

π ≈ 1.94× 10−13 m2

[28] which is valid for linearly polarised light in the rest of this section. This spacial
profile of the optical depth is plotted in figure 2.7.

Considering the peak OD and reducing the expression to terms we have some
direct experimental control over we have ODp,r ∝ PNat/Tatw

4
0 (or ODp,r ∝ Nat/w

2
0

after the temperature reaches its steady state value). This expression lies at the heart
of the tricky optimisation problem of increasing the optical depth. At first glance,
this equation suggests much is to be gained in minimizing the beam waist, but this is
somewhat misleading because the atom number is also some function of w0, and because
smaller waists increase the technical difficulty of using the high OD. Further, as the
beam waist decreases so does zR, reducing the homogeneity of the sample and thus how
much of it is useful. Leaving the beam waist and power fixed we return to the issues
of efficient loading and precooling to minimise evaporative losses. Using the empirical
expressions for the time dependencies of the temperature and atom number, given in
equations 2.4 and 2.5 respectively, we can plot the theoretical temporal evolution of
the peak optical depth in our experiment as is. This is shown in figure 2.8.

2.3.2 On-axis Absorption Imaging

In addition to the side-view imaging system, two further imaging systems described
in [18] are available. The first was originally designed to image the atoms in a 1D
optical lattice, along its axis, onto a photo diode. The imaging beam had originally
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Figure 2.7: The spacial profile of the OD plotted for Nat = 2× 107 and the the-
oretical value of σr at Tat = 54 µK, which approximates the experimental situation
at tDipolehold = 100 ms.

been mode matched to the lattice beam, resulting in a waist of 305 µm. As the PD
effectively integrates the intensity over the area of the imaging beam, to measure the
OD of the atom cloud the imaging beam would have had to be modified to match its
mode, which is a daunting task without spacial resolution. The second imaging system
originally imaged along an axis at a 22◦ angle to the main axis, onto a second CCD
camera5 (imaging 2a in [18]). This camera was repositioned to image along the axis in
an attempt to measure the on-axis OD of the atom cloud.

The camera pixel size is 5.6 µm× 5.6 µm. An f = 200 mm lens and an f = 400 mm
lens are used to achieve a magnification of 2. With an AOM, the detuning of the
imaging light can be varied up to a maximum detuning around −11Γ. Because of the
limits of absorption imaging discussed in section 1.1.2, this means that the maximum
resonant OD that can reliably be measured is around

ODres,max =

(
1 +

4∆2
max

Γ2

)
×ODmax ≈

(
1 + 4× 112

)
× 3 = 1455. (2.8)

An image taken at these settings is shown in figure 2.9. While the OD may well be too
high to determine accurately, clearly more is happening in this image. At tDipolehold =
100 ms the full length of the cloud at the 1/e2 level is 4σz ≈ 27 mm, which is a large
object to focus on simply considering the required depth-of-field. Conversely, as can
be seen, the cloud is sufficiently small radially to cause diffraction. This combination
of effects gives rise to a blurry image, full of interference patterns, that probably
misrepresents the contrast too.

5Guppy Pro F-031B by Allied Vision Technologies GmbH
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Figure 2.8: The evolution of the peak OD of our atomic sample over time,
extrapolated from temperature and atom number data.
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Figure 2.9: This absorption image is taken after 100 ms hold time with the
highest available imaging detuning, around 11 times the natural linewidth. The
colour maps to normalised intensity. The size of the image is 300× 300 pixels, the
real size of one pixel is 5.6 µm× 5.6 µm, and the magnification is 2. The imaging
light is still blocked so strongly that the measured OD when this image is compared
to a reference image is up to 5, and higher than 4 for many pixels, resulting in a
mostly saturated central region.
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Chapter 2. Characterisation of the Dipole Trap

These problems lead us to consider a number of possible alternatives. The simplest
solution, requiring almost no change to the setup, is to use a laser that can be detuned
further from the imaging transition as the source of the imaging light. However, this
may require a careful investigation into how strongly the transitions from and to other
states in the hyperfine manifolds are and can be suppressed, with preparatory optical
pumping, even more careful alignment of the imaging magnetic field, and cleaning
the polarisation of the imaging beam, to get accurate data. Baring that, polarisation
contrast or Faraday imaging has been demonstrated as a method for cancelling diffrac-
tion while imaging dense clouds [53]. Alternatively, it would be possible to image the
atom cloud from above and construct an on-axis image by combining a top-view and
a side-view image taken with the main imaging system. These options remain open
should a precise and independent determination of the OD turn out to be important,
but both require some effort in implementing new imaging systems on the optical table
and in our imaging software. A more pragmatic and imminently relevant approach is
to conduct the coupling experiments that are our main interest anyway, and then to
infer an effective OD from their results. Either way, the qualitative meaning of these
results is clear even in the absence of reliable numbers; the peak on-axis resonant OD
is definitely high.

2.4 Trap Frequencies and Trap Depth

There are two further independent characterising measurements that help paint a more
complete picture of the system and reduce the reliance on calculated values. Firstly,
measuring the trap frequency yields a way of determining the dipole trap’s true beam
waist consistently, without relying on beam profiling in a mock setup as was detailed
in section 2.1.1. Secondly, measuring the light shift yields an empirical value for the
trap depth and simultaneously reveals how well the imaging system is calibrated.

2.4.1 Transverse Trap Frequency Measurement

How trap frequencies can be measured depends on their magnitudes. To estimate
them we can use equation 1.15, with the beam waist measured via beam profiling,
w0 = 92 µm. These values yield ωr = 2π × 525 Hz and ωz = 2π × 1.36 Hz. These
values reveal that the motion of the atoms in r is on a time scale easily resolved by our
cameras, which can image in time steps of 25 µs. However, ωz is so low that finding
a way to excite an oscillation that is not too strongly damped to be observed may be
difficult. Additionally, the axial extent of the atom cloud is still too large for imaging
its size or motion in z accurately, so we forgo a measurement of ωz and focus exclusively
on ωr.

In a given dimension a displaced Gaussian in a harmonic trap displays a centre
of mass oscillation at the trap frequency and a breathing oscillation at twice the trap
frequency. One way to excite such an oscillation is to turn the trap off and on again
after a short time. Some experimentation showed that ramping the trap down by
linearly reducing the power over 1 ms also excited an oscillation while losing fewer
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Figure 2.10: The excited breathing mode of the atoms in the dipole trap. The
oscillation occurs at twice the trap frequency. The fit of this particular data set
yields ωr = 2π × 615 Hz.

atoms leading to a better signal overall. The displacement the atoms have time to
undergo is quite small, so the centre of mass oscillation cannot be seen. The breathing
mode manifests itself in the width of the atom cloud, as shown in figure 2.10. With the
average measured trap frequency of ωr = 2π×611(5) Hz equation 1.15 can be rewritten
as

w0 =

√
−4U0

mω2
r

, (2.9)

to yield an alternative value for the beam waist. The result is w0 = 85 µm as we have
been using.

2.4.2 Light Shift Measurement

To measure the light shift, the frequency of the imaging beam is varied. We initially
consider the typical case, where all trapping light is switched off before imaging. During
regular operation, off resonant imaging results are automatically converted to resonant
imaging results, as described in section 1.1.2, but here this step is omitted from the
experimental sequence. Thus, while the true atom number is the same in each image,
it will appear to be lower when the imaging beam is detuned from its transition. For
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low saturation, the signal of absorption imaging is given by the Lorentzian [26, 54]

L(∆) =
1

1 +
(

2∆
Γ

)2 , Nmeasured(∆) = NcL(∆). (2.10)

Here Nc is the true number of atoms in the centre of the cloud and ∆ is the detun-
ing of the imaging laser from the frequency of the bare imaging transition. Should a
measurement reveal that Nc is actually measured for some non-zero value of ∆, the
presence of a light shift is indicated. It is possible for a sub-optimal calibration to leave
some remaining apparent light shift in the absence of trapping light, ∆0, and in fact
∆0 = −0.217Γ was found in the course of the following measurements. However, as
it is a physically meaningless artefact of the calibration and mentioned only for com-
pleteness, this offset has been subtracted from all data for simplicity of presentation.

If the trapping light is now left on during imaging, then the light shift caused by
the trap can be measured. As in the regular imaging procedure described in section
1.1.2, the atoms are briefly pumped into the |F = 2,mF = 2〉 state before an image is
taken. Over a series of images the frequency of the imaging beam is detuned to scan
for a strong signal in the atom number. To first order, the light shift caused by the
trap is simply the detuning that maximises the centred version of equation 2.10.

L′(∆) =
1

1 +
(

2(∆+∆0+∆LS)
Γ

)2 . (2.11)

The result of this measurement is ∆meas = −1.70Γ, as is shown in figure 2.11. In units
of temperature this equals −495 µK, which is far more than the value extrapolated
for the trap depth from the trap frequency measurement in the previous section of
−280 µK.

Fortunately, there is a simple explanation for the discrepancy. What we measure
here is not just the light shift experienced by the ground state, which is equal to the
trap depth, but the sum of the light shifts of the ground and excited states. The dipole
trap is so far detuned from the rubidium D2 line that there are transitions available to
the excited state from which the laser detuning is of a similar size, which can therefore
produce a light shift of similar magnitude. The most significant of these are the D2 line
itself, i.e. 5P3/2−5S1/2, but also 5P3/2−6S1/2, 5P3/2−4D5/2, and 5P3/2−4D3/2. These
transitions have been characterised with easy-to-use oscillator strengths, for instance
in [35]. For a transition 5P3/2− nIJ an associated oscillator strength fnIJ can be used
to determine the light shift with

∆5P3/2
= −3πc2

2
I
∑
nIJ

fnIJ
ΓnIJ
ωnIJ

(
1

ωnIJ − ωL
+

1

ωnIJ + ωL

)
. (2.12)

Here ΓnIJ is the classical decay rate given by Larmor’s formula

ΓnIJ =
e2ω2

nIJ

6πε0mec3
. (2.13)
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Figure 2.11: The light shift measurement for free atoms, and for atoms confined
in the dipole trap. For convenience the imaging detuning is given in units of
the natural linewidth, Γ = 2π × 6.065 MHz. The long asymmetric tail of the
data with light is probably due to imperfect polarisation of the probe beam or
imperfect alignment of the imaging magnetic field. Such imperfections would lead
to some probing of the π transition, i.e. |F = 2,mF = 0〉 → |F ′ = 3,m′F = 0〉,
which experiences a strong light shift around 2π×64 MHz [55]. The data points in
this tail were excluded from the fit. The measured light shift is ∆meas = −1.70Γ.

This equation is completely analogous to equation 1.9, except that instead of a Clebsch-
Gordan coefficient and a measured linewidth, an oscillator strength and a calculated
linewidth are used. The relevant values of the transitions considered here are collected
in table 2.2. This calculation can be combined with the ground state light shift to yield
an expected total light shift in dependence of the trap depth of

κ̃ = κ
∆5S1/2

+ ∆5P3/2

∆5S1/2

×MHz µK−1 ≈ 36.9 kHz µK−1 (2.14)

where we have used equation 1.9 for ∆5S1/2
. A calculation considering 15 allowed

transitions can be done to improve the accuracy of this value to 38.6 kHz µK−1, which
has also been measured successfully in circumstances similar to ours [55]. We can
use this value to convert our measured light shift of 1.70Γ into a trap depth and find
Td = 267 µK.

Even though this measurement agrees well with the other results, we have so far
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Transition fnIJ λ

5P3/2 − 5S1/2 0.7015 780.24 nm

5P3/2 − 6S1/2 0.2032 1366.88 nm

5P3/2 − 4D5/2 0.5888 1529.37 nm

5P3/2 − 4D3/2 0.0654 1529.26 nm

Table 2.2: Recommended values from [35] for describing the most important
transitions available to the 5P3/2 state.

neglected interesting physical effects that could change the value of the light shift. For
instance, as the light shift is position dependent, the thermal motion of the atoms al-
lows them to explore a region of the trap wherein the light shift is not constant. Thus,
the measured signal is actually a convolution of the ideal signal and the distribution of
the potential energy of the atoms. As the temperature is low in comparison to the trap
depth, the region of the potential the atoms experience can be approximated harmon-
ically. The distribution fE of the total energy of a harmonic oscillator at a temperature
T can be derived from statistical physics in the canonical, or microcanonical, ensemble.
To this end, for the n dimensional harmonic oscillator with Hamiltonian

H(q,p) =

n∑
i=1

(
p2
i

2m
+

1

2
mω2q2

i

)
, (2.15)

after the appropriate variable substitutions, the integral

fE ∝ c
∫
H(q,p)≤E

dnq dnp exp (H(q,p)/kBT ) (2.16)

can be made to yield the famous scaling of fE ∝ En−1 exp (−E/kBT ) [56]. For the
potential energy on its own the same ansatz can be made. In that case the integration
over p can be absorbed into the leading constant c. Its distribution is found to scale as
fEpot ∝ E

n/2−1
pot exp (−Epot/kBT ), which is the same scaling as for a free particle with

just kinetic energy. (Indeed for that case the integration over q can be carried out and
absorbed into the leading constant.) As we are always interested in the distribution of
the potential energy, we shall henceforth write fEpot as f and Epot as U . Specifically,
in 3D, the distribution of the potential energy is

f(U, T ) =
2

kBT

√
U − U0

πkBT
exp

(
−U − U0

kBT

)
, (2.17)

or in terms of frequency in units of MHz, temperature in units of µK, and using
κ = 10−12kB/hK s ≈ 1/48 as a dimensionless conversion factor,

f(ν, T ) =
2

κ(T/µK)

√
((ν − ν0)/MHz)

πκ(T/µK)
exp

(
−((ν − ν0)/MHz)

κ(T/µK)

)
. (2.18)
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Figure 2.12: The normalised potential energy distribution in the dipole trap in
2 and 3 dimensions for Tat = 41 µK, which is the temperature after 2 s hold time.

Note that these functions are defined to be zero for energies lower than the potential
depth, U0 and ν0 respectively, where they would become imaginary.

It is intuitive that the more directions the atoms can move in, the greater the
effect is on the light shift, and just that is the result of the statistical treatment of the
dimensionality. This is why equation 2.10 was given in terms of a number of atoms
in the center of the cloud. In reality it is not possible to restrict the imaging to the
centre of the cloud in the transverse direction because the cloud is too small. It is
however possible to restrict the imaging in z to reduce the effect to that of the 2D case.
A Monte-Carlo simulation was run to verify that this strategy succeeds for a central
region chosen to be narrow in comparison to zR; the additional error was found to be
negligibly small. The distributions for 2 and 3 dimensions are plotted in figure 2.12
for T = 41 µK and a trap depth of −280 µK, which corresponds to −5.83 MHz, and is
expressed this way to match the units of ∆.

To find the effect f has on the light shift and to determine the signal function of
absorption A, we perform the convolution

A(∆) =

∫ ∞
−∞
L′(−∆− ν)f(ν, T ) dν . (2.19)

Here the sign of ∆ is flipped explicitly to enforce the conventions of trapping poten-
tials causing negative light shifts which are then measured at a positive detuning of
the imaging beam. To go beyond a symbolic representation, a specific temperature
must again be chosen. The measurement here is conducted after a 2 s hold time, when
the temperature is approximately 41 µK. The calculated signal for atoms at this tem-
perature moving in 2 and 3 dimensions is compared with the calculated signal at zero
temperature in figure 2.13. The result of the 2D case is ∆f = −0.121Γ. The 3D
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Figure 2.13: The expected signal from absorption imaging for atom clouds in
2D and 3D harmonic potentials at T = 41 µK during imaging, compared to the
model without thermal effect. In the 2D case the peak response is shifted by
∆f = −0.121Γ. Only the ground state is considered here.

calculation is shown in addition to the 2D calculation because we will not be able to
reduce our susceptibility to this thermal effect when we measure the light shift caused
by the optical lattice in section 3.4.2. The effect of varying temperature is also fur-
ther discussed there. Furthermore, the light shift of the excited state is also position
dependent which modifies ∆f . The final value of the correction due to thermal effects
is

∆̃f =
38.6 kHz µK−1

κ
∆f = −0.214Γ. (2.20)

Before we finalise our discussion of thermal effects on the light shift measurement
with some numbers and comparisons, let us briefly discuss the effect of the atoms’
velocity. Through the Doppler effect the light shift of the atoms is also influenced. If
the velocities in the direction the imaging light is incident in are distributed with zero
mean, as they should be, then they only cause a broadening of the signal rather than
an offset. To further ease our minds, we check whether the shift would be significant
if there were a preferred direction to the velocity. The frequency shift experienced by
an atom with a velocity v due to the Doppler effect is just [24]

∆Doppler = −kv. (2.21)

Choosing the velocity and wave vector parallel and the velocity’s magnitude to be the
RMS value we can write,

∆Doppler = −2π

λ

√
kBT

m
. (2.22)
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For T = 41 µK this works out to −2π × 80 kHz, which is a full order of magnitude
smaller than ∆f = −2π × 732 kHz, even in this worst case scenario.

We can now adjust the measured value of the light shift to account for these thermal
effects, ∆LS = ∆meas +∆̃f = −1.92(11)Γ. The error margin is the combined statistical
error of the two Lorentzian fits. Converting this light shift into a trap depth with
the conversion factor κ̃ results in Td = −300(30) µK, just a little higher than and still
in agreement with the trap depth calculated from the trap frequency measurement
of Td = −280 µK, although further away than the uncorrected value of 267 µK. The
self-consistent beam waist required for this trap depth is w0 = 82 µm. Although the
agreement is good, the trap frequency measurement is simpler physically and more
sensitive. Specifically, to improve on the statistical error of the trap frequency meas-
urement of ±2π × 5 Hz the trap depth would need to be measured to ±2 µK. For this
reason values used in calculations are extrapolated from the trap frequency measure-
ment.
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Chapter 3

Characterisation of the Optical
Lattice

This chapter describes the 1D optical lattice designed to couple the motion of a mech-
anical membrane oscillator to the motion of cold atoms [14]. It is the latest iteration
of the coupling scheme used to study sympathetic cooling [16, 23] and self-oscillations
[18] in this hybrid system. Theoretical details of the optical lattice are described in
section 3.1. The experimental setup and loading procedure of the lattice from the
dipole trap are the topic of section 3.2. Characterising measurements including atom
temperature, lattice lifetime, trap depth, and frequencies are detailed in sections 3.3
and 3.4. As before, the values of all of these parameters are collected in appendix A
for quick reference.

To implement loading this lattice from the dipole trap, instead of from the MOT,
initially only foresaw the relatively minor change of reducing the beam waist in order
to better match the dipole trap, and to preserve the qualities of the atomic ensemble
generated therein. However, in the course of recharacterising the system, it became
apparent that the tapered amplifier laser used initially had the unexpected and un-
desirable effect of heating the atoms, and had to be replaced by a titanium-sapphire
laser. Further, we were hampered by successive, unforeseen technical issues. While
these were all eventually overcome well enough to gain a thorough understanding of
the system, and while characterising measurements show a quantifiable improvement
over the previous setup, the results of a sympathetic cooling experiment with the mem-
brane presented in chapter 4 still show signs of being limited in their quality by the
implementation of the lattice. A discussion of what is still to be done is placed at the
end of section 4.1.2.

3.1 Theory of 1D Optical Lattices

From the point of view of light-atom interaction, optical lattices and single-beam optical
dipole traps are quite similar. Both use the dipole force to trap atoms via a position
dependent light shift, and although the position dependence looks rather different in
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the two cases, the mechanism is the same. Indeed both of these traps could accurately
be called “(optical) dipole traps”. To avoid confusion in this chapter and in the rest
of this thesis the far off resonance single-beam dipole trap described in chapter 2 is
consistently and uniquely called “the dipole trap”, while the optical lattice is always
referred to as the lattice. The most significant difference between our dipole trap and
our optical lattice is the much smaller detuning from resonance with the atoms. The
necessity of this is set by the membrane side of the experiment, which does not take
kindly to the high powers required to achieve confining potentials far off resonance,
and its needs determine many of the design choices concerning the lattice.

An important relation in that regard is the requirement ωz = ωm, i.e. that the axial
frequency of the lattice matches the fundamental frequency of the membrane. In our
case, ωm = 2π× 276.3 kHz [18]. Another is that by the very nature of the lattice being
generated via reflection in the membrane cavity the atom-membrane interaction begins
immediately. Once the lattice’s frequency is high enough for sympathetic cooling the
rate is on the order of kHz. This means that the behaviour of the optical lattice on
time scales of 100 ms is interesting and important for understanding the system, and
for eliminating the technical problems already alluded to, the relevant time scale for
atom-membrane coupling is much shorter.

3.1.1 Derivation of Lattice Potential

To find the functional form of the intensity of the 1D optical lattice we describe its field
as a superposition of incoming and reflected light fields Elat = Ei +Er. Using classical
light fields, setting Er =

√
RE∗i where R is the intensity reflectivity coefficient, and

showing some intermediate steps for clarity we can write the intensity as

I(r, z) = 2ε0c
2
∣∣∣Ei +

√
RE∗i

∣∣∣2
= 2ε0c

2
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)(
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R exp (ikz)
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 . (3.1)

The argument initially presented in section 1.2.1 to derive the ground state light
shift caused by the dipole interaction of a single beam (equation 1.7) also applies for
an optical lattice. In fact, because the lattice is linearly polarised and near resonance
with the D2 line, the situation is significantly simplified, allowing us to use the RWA
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Figure 3.1: The lattice potential plotted for P = 11 mW, ∆ = −2π×40 GHz, R =
0.25, and w0 = 115 µm. At r = 0 the trap depth is modulated between −264 µK
in the deepest troughs and −29 µK on the flattest peaks, effectively forming an
array of 400 nm scale traps. As before, we define the convenient measure of the
trap depth as Td = Ulat(r = 0, z = 0)/kB. On a scale where z becomes comparable
to zR a dipole-trap-like envelope becomes visible.

and neglect other transitions. This yields

Ulat(r, z) =
πc2

ω3

Γ

∆
I(r, z), (3.2)

where ω, Γ, and ∆ all refer to the D2 line here and throughout this chapter when no
subscript is given.

As we did for the dipole potential in equation 1.12, we can use equations 1.11 and
3.1 to separate the terms of the lattice potential with spacial dependence from those
without (collected in V0), arriving at

Ulat = V0
1

1 + z2

z2R

exp

−2
r2

w2
0

(
1 + z2

z2R

)

1− 4

√
R(

1 +
√
R
)2 sin2 (kz)

 . (3.3)

Here V0 is related to U0 from equation 1.12 by V0 =
(

1 +
√
R
)2
U0. The Taylor
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expansion of the lattice potential around r � w0 and sin2(kz)� 1 to second order in
r and z is given by

Ulat ≈ V0

1− 2r2

w2
0
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 1
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4k2
√
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 . (3.4)

For not too strongly focused beams 1/z2
R � k2, so the z2/z2

R term is much smaller
than the k2z2 term and can also be neglected. Dropping the constant offset, using
k = 2π/λ, and equating this expression to the standard form of a harmonic oscillator
we find
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A comparison of coefficients then yields the trap frequencies,

ωr =

√
−4V0

mw2
0

, ωz =

√√√√√ −32π2V0

√
R

mλ2
(

1 +
√
R
)2 . (3.6)

3.1.2 Scattering and Heating Rates

Neither the lattice potential nor the trap frequencies depend on power and detuning
individually; instead both depend on the ratio P/∆. In contrast, the photon scattering
rate, given in equation 2.1, is proportional to P/∆2. As the spontaneous scattering
of photons leads to heating, this is one of the most important arguments in favour of
far detuned traps [22]. Unique to the case of optical lattices, fluctuations in the dipole
force lead to a redistribution of photons between the travelling wave components. This
effect can lead to strong heating in the resonant and near resonant cases and cannot
be avoided by using blue detuned light [57, 58]. Fortunately, the strength of this
effect falls off quickly with detuning and is negligable for ∆ ≥ 2π × 1 GHz. Technical
heating, specifically accidental parametric heating through laser noise [59, 60, 61], is
another notorious source of heating. Following the insights gained in our efforts to
heat parametrically to measure the axial trap frequencies, detailed in section 3.4.3, it
does not appear to be a significant problem here. Instead, heating is dominated by the
scattering of the trapping light on the atoms.

In a 3D harmonic trap, which we showed to be a good approximation for atoms at
the bottom of each of the lattice’s troughs, and neglecting possible anisotropy in the
heating, the heating rate from scattering the trapping light is [22],

Ṫ =
TrecΓscat

3
. (3.7)

Here Γscat is the photon scattering rate defined as in equation 2.1, but with the lattice
potential in place of the dipole potential, Trec = h̄2k2

mkB
is the recoil temperature, and
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Figure 3.2: On the left, the heating rate due to scattering photons of the trapping
light is shown, for a constant ratio P/∆ chosen so that ωz = ωm. On the right,
two estimates of the lattice lifetime based on this heating rate are plotted. Note
that both of these estimates are high upper bounds. Further, both calculations
assume w0 = 115 µm and R = 0.25.

the factor 1/3 comes from the 3D harmonic nature of the trap. For rubidium at the
lattice wavelength, Trec ≈ 360 nK.

This heating rate considers only one temperature changing process, so it surely is
an incomplete model of the thermal evolution of atoms in the lattice over time, but
it does describe what we expect to be the most important heating mechanism. As
such, it can be used to roughly estimate how quickly an atom can be heated out of the
bottom of a lattice trough through scattering photons with

τṪ = −Td/Ṫ , (3.8)

where Td = V0/kB. This time gives a first estimate of the lattice lifetime. We can
attempt to improve it by assuming that the atoms are thermally distributed in a
harmonic trap, as in equation 2.18, with a time-dependent temperature. That is,

fE(ν, t) =
2

κ
(
Ti + Ṫ t

)√ ν

πκ
(
Ti + Ṫ t

) exp

− ν

κ
(
Ti + Ṫ t

)
 . (3.9)

We can further assume that the atoms begin deep in the lattice troughs by setting η = 8,
which is where it ends up when the temperature reaches its final value in the dipole
trap, and thus Ti = Td/8 = 33 µK. Modelling the loss process with N(t) = N0e

−t/τ ,
and defining “lost” as having a total energy ν + κTd > 0, we can estimate the lifetime,
τfE , by finding how long it takes for the number of trapped atoms to be reduced to 1/e
times the initial value. As is shown in figure 3.2, the relation between these lifetime
estimates and detuning is linear when the ratio of P/∆ is kept constant. Unfortunately,
this second estimate gives an even higher upper bound. The many other loss processes,
some depending on detuning, some depending on temperature as hotter atoms are
more easily lost to evaporation, and some, like background gas collisions, independent
of both, will surely lead to much shorter actual lifetimes.
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Laser

Membrane

Figure 3.3: The setup of the lattice
on the level of the breadboard extend-
ing figure 2.2. The lattice is drawn in
red and the dipole trap is drawn in
pastel pink.

Symbol Meaning

Fibre port
Faraday isolator
Half-wave plate
Beam dump
Beam Sampler
Stabilisation
Shutter
Periscope
Dichroic mirror
Vacuum cell

Table 3.1: A legend for
uncommon symbols used in
figure 3.3.

3.2 Setup and Loading the Lattice from the Dipole Trap

The optical lattice is set up in three fibre linked parts. The beam is generated by a
titanium sapphire laser1 and passed through an AOM on the optical table, next to the
setup for the dipole trap. After the AOM, the beam is coupled into an optical fibre
and brought to the raised breadboard with the vacuum cell. After passing through the
vacuum cell, another fibre brings the lattice light to a second optical table where the
cavity containing the membrane is set up. There the light is reflected and brought back,
forming a standing wave until it is stopped by the Faraday isolator placed immediately
after the first fibre port on the breadboard. The level of the breadboard is shown in
figure 3.3. For the contents of this chapter it is sufficient to imagine the fibre leading
to the membrane as a mirror, that reflects about 25% of the incident light.

On the breadboard, some of the light is diverted to a photo diode to generate
feedback for the AOM and stabilise the intensity. The intensity stabilisation box is
homemade; more details on its design may be found in [62]. It prevents fluctuations
in the lattice’s trap frequency and thus in the optomechanical coupling. Placed imme-
diately after this intensity stabilisation, a mechanical shutter can interrupt the beam
within a few milliseconds via computer control. This shutter is important because the
lattice needs to be completely off while the dipole trap is loaded, lest its light heats
away most of the atoms. Using the AOM for this purpose, as was attempted initially,
is a terrible idea. The time the AOM is off lets it cool, and upon switching the beam
back on it takes several seconds for the set power to be reached. Additionally, because
it is not possible to stabilise on zero intensity, the switching on behaviour caused by
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Chapter 3. Characterisation of the Optical Lattice

the intensity stabilisation is abrupt in this scenario, ruining all attempts at an adia-
batic transfer of atoms from the dipole trap into the lattice. This configuration lets
the AOM stay on with the shutter closed while the lattice is not needed. To turn the
lattice on, the AOM is switched to a small power for the time it takes the shutter to
open, about 1 ms, then when the shutter is fully open the AOM is ramped up to full
power.

The setup of this lattice and the functionality surrounding it has been described
in the previous experiments that relied on it [18, 23]. The most significant change
to previous setups is that the former laser2 was replaced and that all the optics were
moved from one optical table to another. Care was taken to replicate each functional
part of the existing setup. In particular, the homodyne detection system that reads
out the membrane’s oscillation amplitude [18] and also relied on light from the old
laser was resupplied with light from the new laser. The breadboard level required
some rearranging, the lenses for the lattice were replaced, a shutter was installed, and
the first mirrors on either side of the vacuum cell were exchanged for their dichroic
counterparts so that the lattice beam could be overlapped with the dipole trap beam.
The final part, i.e. the cavity-membrane setup, remained effectively untouched.

3.2.1 Lattice Geometry, Design Choices, and Overlapping the Beams

The beam waist of the lattice is chosen to produce a reasonably homogeneous axial
trap frequency. To limit the initial variation of the frequency to 10 %, the lattice’s
waist should be w0 = 2σr/

√
− ln (0.9). Taking σr = 18 µm this yields a target waist

of 110 µm. A second consideration is that in order to ensure that the atomic ensemble
confined in the dipole trap is transferred to the lattice while maintaining favourable
properties like the atom number and OD the lattice beam waist could be chosen to
match ωr,lat and ωr,dip. This would require a lattice beam waist of w0 = 98 µm. An
f = 200 mm lens was chosen to focus the beam. An attempt at beam profiling was
made, but because of the confined space on the breadboard sampling the beam and
aligning the beam profiler perpendicular to the beam was tricky. The camera we use
for beam profiling is quite sensitive to the angle of incidence, and a slight tilt can
easily cause an error of a few microns in the beam waist measurement. The waist was
measured this way to be around 100 µm.

One condition for the onset of sympathetic cooling of the membrane is that ωz =
ωm. This fixes the ratio of P/∆ for the lattice without fundamentally fixing P or ∆.
However, there is an optimal range for P for three important reasons. Firstly, more
power is good because it increases the optomechanical damping rate, Γopt ∝ P . How-
ever, at too high powers laser noise and optical absorption begin to limit optomechan-
ical cooling. The effect can be modelled with a term increasing the bath temperature,
TL, with TL ∝ P 2 [16]. Thirdly, measurements of the membrane displacement spec-
trum show a number of noise peaks at frequencies just below the membrane frequency.
Their source appears to be in the voltage supplies of the piezoelectric stages used
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to position the components of the membrane cavity [18]. This effect currently limits
the optomechanical performance of the cavity system. While the next generation of
membrane setup may implement electrical filtering to combat this noise, for now it is
important not to move the membrane frequency onto one of these noise peaks via the
optical spring effect, where the frequency shift δωm ∝ P . In effect, this limits the usable
powers to P ≤ 20 mW. At P = 11 mW, which gives us a reasonable range to vary P ,
the detuning satisfying ωz = ωm, i.e. the maximum detuning for sympathetic cooling,
is ∆ = −2π × 40 GHz. Nevertheless, for characterisation and troubleshooting where
longer lifetimes are important, we often used P = 44 mW and ∆ = −2π × 160 GHz.

Overlapping two beams with waists on the order of 100 µm is an iterative process.
The beams can be overlapped by eye using an IR viewer card on either side of the
vacuum cell. The distance available here is small as the beams are separated on the
dichoric mirrors almost immediately on either side of the cell. Once some atoms are
transferred, optimisation can be performed with reference to absorption images. In
addition to the pointing degrees of freedom accessed by two mirrors there is also the
issue of positioning the lens. For this purpose, the lens is mounted in a cage, with
which its position in z can be adjusted. Unfortunately, it is not possible to align
the beam sufficiently accurately without the lens to be fully independent of the lens
position, as no atoms are trapped in the lattice unless the beam is focused. In other
words, adjusting the lens significantly undoes other alignment work. While shot-to-shot
fluctuations make it difficult to measure, it seems as though after thorough alignment,
optimising on atoms transferred, no more than 5 % to 10 % of the atoms are lost in
transfer. After alignment the overlap degrades slowly over time.

3.2.2 Lattice Loading Sequence

When to begin transferring atoms from the dipole trap to the lattice is the first question
that must be answered. A transfer immediately after the MOT has fallen away would
involve many atoms at a higher temperature, which may mean fewer atoms loaded
deep in the lattice troughs. After around 3 s the atoms in the dipole trap have almost
reached their final temperature but millions have been lost. A short hold time has the
additional advantage of reducing the cycle time of the experimental sequence. Some
different hold times for the dipole trap were tested, but no obvious advantage could be
found in waiting longer than 100 ms. As we will see in the next section, the atoms are
initially as cold as the final temperature in the dipole trap even so, which explains the
lack of noticeable difference. Nevertheless, the hold time is a variable to keep in mind
when this transfer process is tinkered with in future.

To load the lattice adiabatically, the potential must be increased slowly. This
means, the steps in which the potential is turned on should be small in comparison
to the temperature of the atoms, i.e. δTd � Tat, and that the process should be slow
in comparison to the trap frequencies confining the atoms. The latter condition is
almost impossible to achieve axially because the dipole trap barely confines atoms in
that direction. Indeed, slow in comparison to ωz,dip would mean an initial timescale
of many seconds. The situation is further complicated by the fact that the interaction
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with the membrane cannot be switched on and off independently of the lattice. In
an atom-membrane coupling experiment whatever happens as the lattice intensity is
ramped up will act on the membrane.

Additionally, while timescales are a concern, the condition of small changes relative
to the temperature of the atoms is also an issue. In order to investigate the turning on
behaviour of the AOM, a photo diode was placed just after the intensity stabilisation.
Its output, viewed on an oscilloscope, let us observe the thermal effects of starting an
AOM cold, first prompting us to install a shutter and make the default state of the
AOM on. Once that technical issue was solved another notable effect appeared. If
the light incident on the intensity stabilisation is too low to be measured accurately it
generates an error signal and automatically increases the intensity. This manifests itself
when ramping up from zero power as a short, fast initial increase in power, proportional
to the set final value, but not exceeding about half that maximum. This occurs only
when the initial power is low, but of course it is there that the effect is most significant.

For all these reasons the transfer process is implemented in three steps. The lattice
ramp is primed by ramping from 0 mW to 1 mW while the shutter is opening, which
takes about 850 µs. While Ulat is almost 24 µK at 1 mW the undesired response of
the intensity stabilisation was found to behave best at this value. Adjustments to the
stabilisation box itself were not yet made to attempt improving its behaviour, as such
a change would also require monitoring the effect on the membrane. From 1 mW the
lattice power is ramped again to its final value over 2 ms, after which the dipole power
is ramped down to zero in another 2 ms.

The most significant possible improvements here lie in the first step of priming the
lattice. A discussion of time scales could be interesting, but with the initial power of
1 mW the axial trap frequency is suddenly switched from ωz,dip ≈ 2π× 1 Hz to around
2π×80 kHz. Millisecond timescales for the rest of the transfer are slow with respect to
that, but that hardly matters if many atoms are excited in the initial steps. From the
perspective of the minimum outputs of our control system, we could ramp in steps two
orders of magnitude smaller, which would satisfy δTd � Tat and thus could be called
adiabatic. However, any attempts at optimisation here must be done in the context
of a atom-membrane coupling experiment. If a changed setting on the stabilisation
increases the noise on the membrane, or if a slow ramp obscures the coupling beyond
analysis, then nothing is gained from improving the lattice loading process.

3.3 Temperature, Atom Number, and Lifetime

As briefly mentioned previously, this optical lattice is mainly tested for two sets of
parameters. For those characterising purposes where a long lifetime is important P =
44 mW and ∆ = −2π × 160 GHz are used, and to probe the lattice’s properties more
closely to the regime where it is used in atom-membrane coupling P = 11 mW and
∆ = −2π×40 GHz are used. Ideally the distinction is only important in this section, as
trap depth and trap frequencies are determined only by the ratio P/∆. Nevertheless,
I identify for which parameters each data set was taken by stating the lattice power
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or detuning, and unless directly specified otherwise this should be taken to mean that
the other value was adjusted accordingly.

3.3.1 Temperatures and Heating Rates

Measurements of the temperature of the atoms in the lattice over time are shown in
figure 3.4. For the case of the P = 11 mW (P = 44 mW) lattice the measured heating
rate is 0.083 µK ms−1 (0.055 µK ms−1), low in comparison to the value calculated in
section 3.1.2 of 0.65 µK ms−1 (0.16 µK ms−1). This can be explained quite plausibly by
evaporative cooling, i.e. the increased likelihood of hotter atoms being lost from the
trap entirely. The scaling is not as predicted either, as the rates are almost the same
for the two detunings despite the reasonable theoretical arguments for Ṫ ∝ /∆. This
too is likely a result of atom loss depending on temperature.

For either detuning, the first temperature measurement at 10 ms yields a number
just under 35 µK, which is almost 20 µK colder than the last measured temperature
in the dipole trap before transfer. To assess whether this temperature change occurs
because of evaporation it is appropriate to compare these data to the data from section
2.2. The initial atom cloud after 100 ms of holding the dipole trap is the same in
the two cases. Additionally, as we will show in section 3.4, the trap depths of the
dipole trap and the lattice after the completion of the transfer are highly similar,
each around 280 µK. We find that in the case of the dipole trap this temperature
decrease from regular evaporation takes a few seconds and involves the loss of about 5
million atoms, which is three orders of magnitude longer than the transfer takes and
more than twice the number of atoms lost. Therefore, lacking viable alternatives, this
cooling must occur due to some non-trivial mechanism during the transfer process.
Studies of the entropy-temperature curves for bosons in optical lattices revealed that
even fully adiabatic loading of a lattice can heat or, counterintuitively, cool atoms just
through the compression of the system [63]. Thus, this lower initial temperature is not
necessarily a sign for or against the loading process being adiabatic.

3.3.2 Lifetime Measurements

Before the laser was exchanged, a lot of strange data were produced in attempting to
characterise this lattice. In addition to the temperature of the trapped atoms decreas-
ing over time, lifetime measurements at various detunings all yielded the same value.
The latter was the smoking gun evidence for the laser not behaving as we expected.
The suspected cause is the amplified spontaneous emission (ASE) background of the
laser. (The TA Pro is specified to a typical ASE background of −40 dB, which appears
to be consistent with our measurements.) Of course, all the data shown in this chapter
are taken using the new laser, as the goal is to characterise the system as it is to be
used in atom-membrane coupling, but this noteworthy effect occupied sufficient time
to be afforded a brief mention. The issue is not so much the level of ASE, but its
broad spectrum, often spanning several nanometres. When attempting to work with
a far detuned source, an ASE background, even at a level of −40 dB, means that a
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Figure 3.4: The temperature of the atoms in the lattice over time at ∆ =
−2π × 40 GHz (left) and ∆ = −2π × 160 GHz (right). Note the differences in
the scales. The heating rates are 0.083 µK ms−1 and 0.055 µK ms−1 respectively.
In both cases the first measurement is after 10 ms. As the atom cloud is radially
much smaller than the MOT was, free atoms fall far enough to be separated from
it quickly, and measurements can be made soon after transfer without concern for
counting any free atoms. The final temperature of the atoms in the dipole trap
before transfer is 54 µK.

significant amount of light, in terms of P/∆, is emitted near resonance.
Figure 3.5 shows the lattice lifetime measurements. As we expect there to be one

dominant loss process, the data are fit with the model

N(t) = N0 exp

(−t
τ

)
. (3.10)

This yields τ = 76 ms and τ = 270 ms for ∆ = −2π× 40 GHz and ∆ = −2π× 160 GHz
respectively, approximately replicating the linear scaling with detuning predicted in
section 3.1.2. Note that the initial number of atoms here is on the same order as the
number of atoms in the dipole trap at 100 ms, with no obvious drop due to transferring
between the traps.

3.4 Trap Frequencies and Trap Depth in Partially Modu-
lated Lattices

Partially modulated lattices, i.e. lattices with R < 1, behave a little differently from
fully modulated lattices. For one, as can be seen in figure 3.1, when R = 0.25, at
r = 0, there are about another −29 µK of potential depth giving radial confinement
to the atoms even after they have escaped the lattice-like confinement in z. The
exact value of R depends on two fibre couplings and the alignment of the end mirror.
R = 0.25 is the typical value we strive for when reflecting off the cavity end mirror,
but when coupling into the cavity properly we usually get closer to R = 0.27. Further,
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Figure 3.5: The lifetime of the lattice measured for ∆ = −2π×40 GHz, shown on
the left, and ∆ = −2π × 160 GHz, shown on the right. The ∆ = −2π × 160 GHz
data are of somewhat poorer quality as they are from an early characterising
measurement, but the fitted lifetime could be confirmed by measurements after
the system had been optimised.

the potential structure is such, that for r 6= 0 the confinement in z is also reduced.
Moreover, because the incoming intensity is four times the reflected intensity there
is a preferred direction for photon scattering, which is reflected in a movement of
the atoms when they are able to overcome their confinement in z. These issues have
proven to make some of these measurements more difficult than for the single-beam
dipole trap. Therefore, some measurements are done in a single-beam configuration,
meaning that the beam is blocked after passing through the vacuum cell instead of
being back reflected. The resulting trap is just a single-beam dipole trap as described
in chapter 2, but to distinguish this setup from the far off resonance dipole trap at
1064 nm I refer to it in this chapter as a lattice with R = 0, and use R = 0 and
R = 0.25 as subscripts to distinguish the measurements made in these configurations.

3.4.1 Transverse Trap Frequency

To measure the transverse trap frequency of the lattice we proceed as in section 2.4.1.
The expected value at P = 44 mW, for a beam profiling measured waist of w0 =
100 µm, is ωr,R=0.25 = 2π × 590 Hz. The result of the measurement is shown in figure
3.6, with a measurement at R = 0 for comparison. We interpret the nearly identical
results of the two measurements as a sign of exciting the atoms out of the lattice’s
troughs by the very nature of the measurement in switching the lattice off and on
suddenly. While the signal to noise ratio of these measurements looks quite good,
attempts to reduce the strength of the excitation, for instance by ramping the lattice
to half the full power instead of zero before snapping back on its normal power, failed
to produce any viable or even identifiable signal. Other fractions of total power that
were tried all either produced no signal, or a signal highly similar to that of the R = 0
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Figure 3.6: The excited breathing mode of the atoms in the R = 0.25 lattice is
plotted on the left. The oscillation should occur at twice the trap frequency. The
fit yields ωr,R=0.25 = 2π × 288 Hz, which is nowhere near the calculated value of
ωr,R=0.25 = 2π × 590 Hz. For comparison the same measurement for the R = 0
lattice is shown on the right. The result is nearly identical, this particular data
set yielding ωr,R=0 = 2π × 296 Hz.

case. To ensure that we actually do load atoms deep into the troughs we measure the
light shift directly in the next section.

More so than for the dipole trap measurements in section 2.4.1, these oscillations
are very noticeably damped. For the underdamped case of the harmonic oscillator,

x(t) = A exp (−γt) sin(ωt+ φ) + xi, (3.11)

which is our model, the measured frequency, ω, is related to the frequency of the
undamped oscillator, ω0, by

ω =
√
ω2

0 − γ2. (3.12)

It turns out that this correction is minor, on the order of 1 Hz to 2 Hz.
While it was not the plan initially, a transverse trap frequency measurement in

the R = 0 configuration can also be used to check the accuracy of our value for w0,
through the relation w0 =

√
−4U0/mω2

r . As a consistency check, we perform multiple
measurements varying the power. This is shown in figure 3.7. The average result scaled
to our standard P/∆ is ωr,R=0 = 2π× 298(7) Hz. The self-consistent beam waist from
the trap frequency measurement of the R = 0 lattice is w0 = 115 µm. The extrapolated
transverse trap frequency of the R = 0.25 lattice is ωr,R=0.25 = 2π× 447 Hz. Concerns
that our inability to get these results in the lattice itself may indicate poor overlap of
the incoming and retroreflected beams resulting in a strange transverse potential were
investigated and ruled out to the accuracy of absorption imaging. We conclude that,
unless there exists a perfect intermediate excitation strength that produces a significant
oscillation of the atoms without obscuring the nature of the potential they reside in,
and assuming that it does the significant effort required to find it is no deterrence,
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Figure 3.7: For a harmonic trap ωr ∝
√
U0 ∝

√
P . Keeping the detuning constant

at 2π×160 GHz and varying the power this scaling is verified for the R = 0 lattice,
increasing confidence in the measurement and the extracted value of w0.

this type of measurement is not a viable way to directly measure the transverse trap
frequency of a partially modulated lattice.

3.4.2 Light Shifts and Thermal Effects

To measure the light shift of the lattice, we proceed as in section 2.4.2. The comparison
between the R = 0 and R = 0.25 lattices is complicated by two issues. Firstly, even
at ∆ = −2π × 160 GHz, for the R = 0 lattice, the force enacted upon the atoms by
the scattering photons pushes them out of the field of view quite rapidly. This means
that it is not possible to select from a range of temperatures to measure the light shift
at; the temperature of the atoms is simply 26 µK. This is colder than the atoms ever
are in the R = 0.25 lattice, which means we need to correct for the light shift due to
the potential energy distribution of the atoms at two different temperatures. Secondly,
because in the R = 0.25 case each lattice trough is only some 400 nm wide (see figure
3.1) we must use the 3D version of f for it. For R = 0 we restrict the imaging to the
centre of the z axis to work with the 2D version like for the dipole trap. Figure 3.8
shows ∆f in 2 and 3 dimensions as a function of the temperature of the atoms.

There are two conditions we hope to see the lattice fulfill with these measurements.
One is, of course, that the measured light shift is approximately the calculated value.
The other is the relation between a lattice and a single-beam potential depth found in

section 3.1.1, V0 =
(

1 +
√
R
)2
U0. That is, we expect ∆meas,R=0.25 = 2.25∆meas,R=0.

The data are shown in figure 3.9. As in section 2.4.2 we measure a calibration er-
ror in the position of the resonance without light of ∆0 = 0.280Γ which we sub-
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Figure 3.8: This plot is generated by numerically finding the maximum of equa-
tion 2.19 for the 2D and 3D versions of fE and various values of T . The values
most of interest are ∆fE,2D(26 µK) = −0.082Γ and ∆fE,3D(48 µK) = −0.209Γ.

tract from the presented data for simplicity. The total light shifts are ∆LS,R=0.25 =
∆meas,R=0.25+∆f3D(48 µK) = −0.708(37)Γ and ∆LS,R=0 = ∆meas,R=0+∆f2D(26 µK) =
−0.332(22)Γ. The error margins are the combined statistical errors of the Lorentzian
fits. In terms of trap depth these values correspond to Td,R=0.25 = −206(11) µK and
Td,R=0 = −96.6(64) µK. These values are much lower than those the trap frequency
measurements predicted, −274 µK and −122 µK respectively. The self consistent beam
waist for the R = 0.25 lattice is w0 = 132 µm. Although these measurements are
in poor agreement with others, they do give a consistent answer to the question of
whether the lattice troughs are being loaded with atoms. The ratio of the two values is
2.13, which is within 5 % of the expected 2.25. Regardless of whether the exact results
are quantitatively reliable on their own, they were determined in the same manner
and thus their ratio lays claim to significance beyond that of the numerical values of
its constituents. Atoms are being loaded into the bottoms of the lattice troughs, and
appearances to the contrary are explained by their temperature.

3.4.3 Axial Trap Frequency, Parametric Heating

The optical lattice’s axial frequency is designed to be around 276 kHz to match the
membrane’s frequency. This is too fast for an oscillation to be seen with the time
resolution of our experimental control, even if we did overcome the spacial problems of
seeing small changes in the axial direction of an atomic ensemble longer than the field-
of-view. This means, we cannot use the method with which we have been measuring
transverse trap frequencies. An alternative is parametric heating. The principle of
this technique is to modulate the lattice, either in its intensity or in its position, at
various frequencies in an effort to heat atoms out of it. An unusually high number of
lost atoms indicates a resonance has been hit, where the strongest signal is expected
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Figure 3.9: The light shift measurement for free atoms, and for atoms confined in
either lattice configuration. For convenience the imaging detuning is given in units
of the natural linewidth, Γ = 2π×6.065 MHz. In the R = 0.25 lattice the light shift
is ∆meas,R=0.25 = −0.779Γ and in the R = 0 lattice it is ∆meas,R=0 = −0.530Γ.

for ωmod = 2ωz.
The parametric harmonic oscillator is a problem known and studied in the frame-

work of classical mechanics. The resonance at ωmod = 2ωz can be found by considering
an equation of motion of the form

ẍ+ ω2
z (1 + h cos ((2ωz + ε) t))x = 0, (3.13)

where both h and ε are small. It is found, that sufficiently close to resonance the
amplitude of oscillations grows exponentially. Further resonances occur at freqencies
ωmod = 2ωz/n, with n integral, but their width decreases with hn, requiring more and
more exact driving to be observed [64].

A quantum mechanical description of parametric heating in a harmonic oscillator
qualitatively agrees with the classical case, including the scaling of the widths of the
resonances [65]. The problem has been extended to fully modulated 1D optical lattices.
The main modification is a redshift in the resonances in comparison to the harmonic
case. Additionally, a resonance is found to occur at ωmod = 4ωz [66].

To implement parametric excitation in our lattice, we add a sinusoidal modulation
from a function generator3 onto the feedback signal of our intensity stabilisation con-
trolling the AOM. The intensity stabilisation is fully compatible with this use because

3DS345 by SRS
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the modulation is much faster than its response time. Our electronic setup is such,
that this modulation is attenuated by an amount depending on its frequency. This
must be compensated, for as the width of the resonances scale with the modulation
amplitude, so it is desirable for it to be constant. For this reason, the modulation is
calibrated over the full range of frequencies scanned by measuring the lattice intensity
variation with a photo diode and oscilloscope. The amplitude of the modulation on
the function generator can then be adjusted so that the modulation on the light is a
constant fraction of the total amplitude. In this manner the real modulation amplitude
on the light can be set to a constant 10 %.

Hoping to see resonances at ωz, 2ωz, and 4ωz, images where the lattice was modu-
lated were taken alternately with images where the lattice was just held for the same
amount of time, and the modulation frequency was scanned from 0.1 MHz to 1 MHz
in 20 kHz steps. No significant signals could be detected in comparative atom loss for
any modulation frequency. As an alternative, we measured transverse temperature,
anticipating that the lattice would mix the motional degrees of freedom sufficiently
fast that a temperature change could be observed. This too was unsuccessful. The
data for different modulation frequencies were scattered randomly about the expected
temperature of 42 µK without any apparent patterns.

There was however a highly noticeable signal in another quantity. When modulated,
the centre of the atom cloud would be significantly displaced from the unmodulated
case. Displacements up to 3 mm were seen, corresponding to over 200 pixels on the
camera. The strength of the signal alone called for taking a closer look at this effect.

As was briefly discussed in section 3.1, partially modulated lattices have a region in
their potential with some radial confinement but without significant axial confinement.
This region, the faster decline of axial confinement with the energy of an atom, and the
stronger anharmonicity in comparison to fully modulated lattices leads to the failure
of parametric heating to fully expel atoms from the lattice. Parametric heating does
however heat the atoms out of their strong axial confinement. Then, the imbalance
in the intensity of incident and reflected beams leads to a preferred direction for the
average force on the atoms, and thus to a displacement of the atom cloud. This
behaviour could be confirmed qualitatively with a classical Monte Carlo simulation.

The data for four different sets of lattice parameters are collected in figure 3.10.
The shift of the atom cloud centre, δxc, is normalised to 1 in each data set, after which
they are offset for visibility. Each scan shows each of the expected resonances around
ωz, 2ωz, and 4ωz respectively, with a significant but not unreasonable red shift from
the values calculated in the harmonic case. Further, the scaling of these frequencies
with P/∆ is verified with one set of data taken at half the usual value, resulting in a
reduction in trap frequencies of about a factor

√
2. The average value extracted from

just the resonances at 2ωz, which have the best visibility, is ωz = 2π × 264 kHz, which
is near the predicted value of 2π × 277 kHz. Averaging instead over all peaks yields
ωz = 2π×245 kHz, revealing a stronger measured red shift in the ω and 4ω resonances.

The peaks of the resonances become flatter as less power is used. At least in part
this is an artefact of how well we can modulate the lattice. The model shows that
stronger, sharper resonances are produced for smaller modulation amplitudes, as long

55



3.4. Trap Frequencies and Trap Depth in Partially Modulated Lattices

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0

0.5

1

1.5

2

2.5

3

ωmod/2π (MHz)

δx
c

(a
rb

.
un

it
)

∆ = −2π × 160 GHz and P = 22 mW
∆ = −2π × 160 GHz and P = 44 mW
∆ = −2π × 80 GHz and P = 22 mW
∆ = −2π × 40 GHz and P = 11 mW

Figure 3.10: The parametric heating resonances produce a signal in the centre
position of the atom cloud. The resonances are fit quite nicely with Gaussian
peaks, although some asymmetries are present in the data. The widths of the
peaks scale well with the modulation frequency but do not reproduce the derived
scaling laws (i.e. a power series in h).

as a small threshold is exceeded. Here we are limited by the minimum output and
step size of the function generator for the lower modulation frequencies, and when
in doubt opted for a constant modulation amplitude rather than a small modulation
amplitude. For this reason, the amplitude in the data set for a lattice power of 11 mW
is modulated at around 18 %.

The other reason for the lower quality of the resonance at lower lattice power is
the lattice lifetime, τ(P = 11 mW) = 76 ms. This means, that there is less time to
modulate the lattice before a measurement must be made to still see enough atoms.
The signal is further reduced by the exact mechanism of the atoms moving along the
lattice. If an atom is heated sufficiently far out of its lattice site to move along the
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lattice, then it is likely to travel quite far axially. This leads to a large spread of the
moved atoms, and diffuse clouds give a weaker signal.

In conclusion, figure 3.10 shows a cleaner spectrum with sharper peaks than ever
recorded for this lattice in previous iterations of the setup. It thus lends us confidence
in the calibration of our atomic frequency when tuning it to perform experiments with
the membrane. The wrinkle represented by the unexpected cooling without obvious
evaporation during loading is interesting, and if studied more closely the involved ther-
modynamics may guide the implementation of the transfer process between traps in
future. Nevertheless, the converging lines of evidence represented by these measure-
ments, the temperature measurements, and the ratio of the single-beam and lattice
light shift measurements, as well as the reasonable explanation we can provide for the
strange result of the transverse frequency measurement lead us to believe that the
lattice behaves as we expect.
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Chapter 4

Outlook: Coupling Experiments

The ultimate goal of the work presented in this thesis was improving and characterising
the setup of our atom-light interface to be used in coupling experiments. For this
reason, this closing chapter takes a step back from the slew of technical details presented
so far, to give a brief and broad overview of what comes next. Section 4.1 discusses the
atom-membrane experiment, and contains the results of a first experiment coupling the
new atomic ensemble to the membrane. Then, section 4.2 sketches the current state
of plans to store single photons from a semiconductor quantum dot with this atomic
ensemble.

4.1 Atom-Membrane Coupling

The membrane side of the atom-membrane coupling experiment consists of a stoi-
chiometric silicon nitride membrane.1 This membrane is mounted in a cavity in a
membrane-in-the-middle configuration. The assembly process of this system is de-
tailed in [67]. We currently use a copy of the original. There are some minor differences
between the two that are pointed out in [18]. The membrane is square in shape with
side length l and can oscillate out of plane like a square drum, i.e. with the frequency
of a mode i, j given by [68]

ωi,j =
π

l

√
S

ρ
(i2 + j2). (4.1)

The definitions and values of the parameters of this equation are listed along with
other interesting properties of the membrane and the cavity in table 4.1. The cavity
is evacuated to a pressure of about 10−7 mbar. This is sufficiently low not to limit the
Q-factor of the membrane, which saturates at 1.8× 106.

The motion of the membrane is read out with a detection beam. The cavity res-
onance frequency is modified through the membrane’s motion, which induces a phase
shift in the reflected detection beam. This phase shift is measured with a balanced
homodyne detection system, described in [18], with the small difference that the laser

1These are made by and purchased from Norcada
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4.1. Atom-Membrane Coupling

Symbol Meaning Value

l Side length 1.5 mm
S Tensile stress 930 MPa
ρ Mass density 2700 kg m−3

d Thickness 39.1 nm
M Effective mass 117 ng
rm Amplitude reflectivity 0.404
ωm Frequency 2π × 276.3 kHz
Γm Damping rate 0.96 Hz
Q Quality factor 1.8× 106

F Cavity finesse 700

Table 4.1: This table listing membrane properties is adapted from [18]. The
frequency, mass, damping rate, and quality factor all refer to the fundamental
membrane mode.

Figure 4.1: This drawing shows the membrane in the middle of an optical cavity,
oscillating at a frequency ωm, coupled to far away ultracold atoms via an optical
lattice. The atoms in turn oscillate at a frequency ωa in the lattice.

source has also been changed to the titanium sapphire laser that generates the lattice.
The voltage signal from the photo diode is sent to a spectrum analyser. The spectrum
analyser outputs the power spectral density of this voltage, which is proportional to the
power spectral density of the membrane displacement. Measuring the power spectrum
over time allows us to determine the damping rate of the membrane directly, without
needing to calibrate the data against a known temperature.

4.1.1 Theoretical Overview

The basic setup of a membrane coupled to atoms in an optical lattice is shown in figure
4.1. The interaction Hamiltonian for this system is [52]

Ĥ = h̄g
(
b̂m + b̂†m

)(
b̂a + b̂†a

)
. (4.2)
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Here b̂m and b̂a are bosonic annihilation operators for the membrane and atomic modes
respectively and gN is a coupling constant given by

g = |rm|ωa
√
Nmωa
Mωm

2F
π
, (4.3)

where ωa is the oscillation frequency of the atoms in the lattice previously called ωlat,z,
and other parameters are defined in table 4.1. This Hamiltonian is one way to derive a
set of coupled equations of motion for the atom and membrane displacements. These
equations are easily decoupled in frequency space, after which the sympathetic damping
rate can in turn be derived [18]. In this model the result is

Γsym =
η2t2g2Γa

(ωa − ωm)2 + Γ2
a/4

, (4.4)

where η is the cavity incoupling efficiency, t is the single pass amplitude transmission
between atoms and membrane, and Γa is the atomic damping rate. The relation
between η, t, and R as used in chapter 3 is R = η2t4 ≈ t4 ≈ 0.25. The atomic
damping rate, Γa, is the sum of any forced damping as through laser cooling, which
is off for the upcoming results, and the intrinsic damping rate from light-induced
momentum diffusion. The latter is related to the photon scattering rate by the Lamb-
Dicke parameter [31]

Γa,D = η2Γscat =
ωrecoil
ωa

Γscat = k2x2
zpf

ΓV0

h̄∆
, (4.5)

where x2
zpf = h̄/2mωa is the zero point amplitude of a single atom.

An important result of [18] is that this picture is too simple to accurately predict
or explain observed self-oscillations in the atom-membrane hybrid system. In a more
complete picture the coupling between atoms and the membrane is delayed by τ . This
is found to be partially explained by the time taken for light to propagate between the
atoms and the membrane. Additionally, when the lattice is nearly resonant with the
atomic transition, the back-action of the atoms onto the light gives rise to an effective
delay. The model outlined above can be modified to account for a delay in the coupling
analytically, but the resulting expressions are a little unwieldy.

4.1.2 First Results

A sympathetic cooling experiment was performed with the atomic ensemble loaded
into the lattice from the dipole trap. The data are shown in figure 4.2. The measured
damping rate is the sum of all the damping rates, Γtot = Γsym + Γopt + Γm. The
sum of the optomechanical damping rate Γopt and the intrinsic damping rate Γm is
found by performing a measurement with identical laser parameters but without atoms.
The sympathetic cooling rate is then found by subtracting the result of this second
measurement, from the total measured damping rate.

The full, delay-coupled theory predicts a much sharper, stronger onset of cooling
once ωz,lat ≥ ωm, quite a narrow resonance, and a small region just to the red of
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Figure 4.2: Data from the spectrum analyser in the first sympathetic cooling
experiment wherein the lattice is loaded from the dipole trap. The lattice detuning
is ∆ = −2π × 5 GHz. The optomechanical and intrinsic damping rate, Γopt and
Γm, are subtracted from the total damping rate, Γtot, to yield the sympathetic
cooling rate, Γsym. The peak of the resonance is around 600 kHz.

the resonance where Γsym turns negative. The displacement and broadening both
indicate that the atoms are not loaded into the lattice deeply and adiabatically for
the experiment parameters. As was discussed in section 3.2.1, the usable powers are
limited by noise peaks. In this experiment this maximum was just under 20 mW.
No significant change in the damping rate was seen by scanning through the possible
powers for ∆ = −2π × 40 GHz. Thus, the detuning was reduced to ∆ = −2π ×
5 GHz. Due to the minimum power we can set to get a spike free ramp, this means the
lattice is effectively switched on suddenly and in its entirety for low set values of the
lattice power. Absorption imaging confirms that the shallower lattices generated by
low powers at this detuning are hardly loaded with atoms. Temperature measurements
show that the atom temperature after the transfer procedure rises linearly with lattice
power; at the parameters where the resonance in Γsym is seen the atoms are easily over
100 µK warm.

These problems need to be addressed in order to reap the benefits of the dipole
trap. Improvements to the transfer process will be easier to work towards and imple-
ment now that the boundary conditions of the lattice to be optimised are understood.
The fact that the usable power is not limited by the fundamental optimum but by
another technical problem is unfortunate, and probably could be addressed with elec-
trical filtering in the current setup. This would also allow working at a higher lattice
detuning, which suppresses the effective atomic back-action delay that can limit sym-
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pathetic cooling [18]. This issue will likely be resolved in the new membrane-cavity
setup currently being built as we are aware of the problem ahead of time.

4.1.3 Cryogenics, Phononic Crystal Membranes, and Internal State
Coupling

In the classical limit, the final temperature of the sympathetically cooled membrane is
proportional to the temperature of its environment,

Tsym = Tbath
Γm

Γm + Γopt + Γsym
. (4.6)

For this reason, pre-cooling the membrane with a cryostat brings us that much closer
to the quantum regime. As the temperature is a stand in for the phonon occupation
number of the membrane’s vibrational mode, at time of writing we are investigating
and comparing the vibrational isolation achievable for the membrane in closed-cycle
cryostats and in helium flow cryostats, with the goal of starting the sympathetic cooling
process on a 4 K cold membrane in future.

To isolate membranes from their support structure they can be embedded in a
phononic crystal [69]. In our lab, we have such phononic crystal membranes, which
were developed in collaboration with the group of C. Regal. While the Q-factor appears
unchanged from the membranes without phononic crystals we have observed a lower
noise floor on the spectrum of such an embedded membrane. We intend our next
membrane setup to combine a phononic crystal membrane cavity with cryogenics.

We are also testing novel membrane structures called tether membranes [70]. Unlike
our current square membranes that are attached to their frames all about the perimeter,
tether membranes are only connected to their frames via four narrow strips of material
connecting the corners of the frame and the resonator. These “trampolines” have a
much smaller mass than their drum-like counterparts, a mere 2 ng being typical. Their
tethers also serve to minimise interaction with the environment, reaching Q-factors
of the fundamental mode around 1.5× 107. Further, it is possible to combine these
membranes with photonic crystal structures to achieve a very high reflectivity. As
promising as all these properties are, cavities built with current tether membranes have
optical modes far from TEM00, which would drastically reduce the coupling efficiency
and negate the advantages in our hybrid system, and indicates that another round of
fine-tuning the membrane parameters is required before we can use them.

Finally, we are looking into a coupling scheme between the internal states of the
atomic ensemble and the membrane’s motion as described in [71]. The advantages
are plentiful. The level of control over the electronic atomic states is excellent. The
frequency on the atomic side would no longer be limited to the possible frequencies of
the optical lattice, allowing resonant coupling to more types of resonators and more
modes. Further, the internal states of atoms can be used to implement proposals for
entanglement or even quantum noise free trajectories that require effective negative
mass oscillators [72, 73].
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4.2 Quantum Memory

Semiconductor quantum dots generally are excellent sources of single photons, due
to their high brightness and narrow linewidths [74]. The most commonly studied
structures, self-assembled InGaAs quantum dots, emit around 950 nm. It was not until
a few years ago that tuning the frequency of a quantum dot to match the D1 or D2

lines of a rubidium vapour was demonstrated [75]. The same group that originally
studied “artificial rubidum” then slowed single photons emitted by this quantum dot
with a rubidium vapour cell, using the double absorption resonance technique to store
the spectrally broad light [76].

The single photon source of our experiments is described in [11]. An experiment
to store these single photons with a hot rubidium vapour cell is currently being set
up. First trials have successfully delayed classical light via electromagnetically induced
transparency. The high optical depth of the atom cloud confined in the dipole trap
could combine the efficiency advantage of high OD commonly found only in vapour cells
with the coherent control advantages of cold atoms. Specifically, a direct comparison
of storing photons with a vapour cell and with a cold atomic ensemble will be possible
with the setup developed in this thesis.
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Appendix A

Tables of Trap Parameters

Parameter Symbol Conditions Value

Wavelength λdip or λ Spec. 1064 nm
Output power Pout Meas. and spec. 42 W

Power at atoms P Meas. (after chamber) 21 W

Beam waist w0

-at AOM Meas. (beam profiling) 550 µm
-at atoms Meas. (beam profiling) 92 µm

ωr meas. 85 µm
Td meas. 82 µm

Rayleigh range zR ωr meas. 213 mm

Atom number Nat Meas. (abs. img. 100 ms) ≥ 2.4× 107

Meas. (abs. img. 2 s) ≥ 1.6× 107

Meas. (abs. img. 4 s) ≥ 1.3× 107

Lifetime τ
-Evaporative τevap Meas. (abs. img. fit) 1.1 s
-Collisional τbg Meas. (abs. img. fit) 12.4 s

Final temperature Tf Meas. (TOF fit) 34 µK
Temperature Tat Meas. (TOF 100 ms) 54 µK

Meas. (TOF 2 s) 42 µK

Trap frequency
-Axial ωz,dip ωr meas. 2π × 1.7 Hz

-Transverse ωr,dip Meas. (breathing mode) 2π × 611 Hz
or ωr Td meas. 2π × 657 Hz

w0 meas. 2π × 525 Hz

continued on next page
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Parameter Symbol Conditions Value

Trap depth Td or Meas. (light shift) −300 µK
U0 = kBTd ωr meas. −280 µK

w0 meas. −240 µK

RMS (1/e) width
-Axial σz ωr meas. and Tat = 54 µK 6.6 mm

ωr meas. and Tat = 34 µK 5.2 mm
-Transverse σr ωr meas. and Tat = 54 µK 18.6 µm

ωr meas. and Tat = 34 µK 14.8 µm
Meas. (TOF fit) 21(10) µm

Aspect ratio A ωr meas. 355

Optical depth OD or Meas. (abs. img. 100 ms) ≥ 1400
ODp,r ωr meas., Tat = 54 µK, and

Nat = 2.4× 107 2136

Table A.1: Collected measurements of the dipole trap. In the condition column
“spec.” means the value is specified by the laser manufacturer, whereas “meas.
(method)” means a value was measured with the specified method. In particular,
times in the brackets are hold times of the dipole trap. Finally, a note in the
form “x meas. and y” means the value is calculated from the measured value of x
assuming y.
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Parameter Symbol Conditions Value

Detuning from D2 ∆ Meas. (wave meter) −2π×40 GHz
Incident power P Meas. (before chamber) 11 mW
Int. ref. coeff. R Meas. (after isolator) 0.25 to 0.27

Beam waist w0 Meas. (beam profiling) 100 µm
ωr,R=0 meas. 115 µm
Td,R=0.25 meas. 132 µm

Trap frequency
-Axial ωz,lat Meas. (parametic heating) 2π × 262 kHz

or ωz ωr,R=0 meas. 2π × 277 kHz
w0 meas. 2π × 317 kHz

-Transverse ωr,R=0.25 ωr,R=0 meas. 2π × 447 Hz
or ωr w0 meas. 2π × 591 Hz

Trap depth Td or Meas. (light shift) −206 µK
V0 = kBTd ωr meas. −274 µK

w0 meas. −360 µK

Atom number Nat Meas. (abs. img. 10 ms) ≥ 2.4× 107

Meas. (abs. img. 70 ms) ≥ 1× 107

Lifetime τ Meas. (abs. img. fit) 76 ms

Temperature Tat Meas. (TOF 10 ms) 35 µK
Meas. (TOF 70 ms) 41 µK

Heating rate Ṫ Meas. (TOF fit) 0.083 µK ms−1

Table A.2: Collected measurements of the optical lattice at ∆ = −2π×40 GHz.
The meanings of the terms in the conditions column are explained in table A.1.

Parameter Symbol Conditions Value

Detuning from D2 ∆ Meas. (wave meter) −2π×160 GHz
Incident power P Meas. (before chamber) 44 mW

Lifetime τ Meas. (abs. img. fit) 270 ms

Temperature Tat Meas. (TOF 10 ms) 33 µK
Meas. (TOF 200 ms) 50 µK

Heating rate Ṫ Meas. (TOF fit) 0.055 µK ms−1

Table A.3: Additional measurements of the optical lattice at ∆ = −2π×160 GHz.
Measurements conducted for both sets of detuning and power that yield the same
values are not listed again here. The meaning of the terms in the conditions column
is explained above.
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