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Chapter 1

Properties of Laser Radiation

LASER: Light Amplification by Stimulated Emission of Radiation
Short definition: Laser = powered macroscopic oscillator for light
Main point: A laser is not just a strong lamp.
Introduction: https://en.wikipedia.org/wiki/Laser

• Excellent directionality of laser beams

– Weak divergence: Beam diameter � À 1 cm at a distance „ 1 km possible; shooting a laser
beam at the moon for range finding

– Good focusing ability: �focus „ λ{2 possible
Example: HeNe-laser (λ “ 632.8 nm), power P “ 1 mW ñ intensity I „ 106 W{cm2 „

107Isun on earth

Figure 1.1: A laser beam can be well collimated and focused to diffraction-limited spot sizes.

This properties makes laser radiation interesting for many applications in science and industry, see
Figure 1.2

• Monochromatic (see Figure 1.3): For a laser operating at ν0 « 5ˆ 1014 Hz (yellow), a single-mode,
‘continuous wave, cw’ laser typically has ∆ν “ 1 MHz (∆ν ă 1 Hz can be reached) ñ ∆ν

ν0
À

10´15 (Cs-atom clocks „ 10´13) Ñ Application of narrow bandwidth: spectroscopy, laser cooling,
metrology.

• High power, cw : Á 50 kW (CO2 laser), pulsed: Á 1015 W (petawatt laser, cf. nuclear power plant
„ 109 W but continuous)

• Coherence: Phase correlation between light waves in longitudinal or transverse directions in the
beam. This is the condition for interference. Speckle patterns are due to transverse coherence. Ñ
Application of coherence: Interferometry, holography, lithography.

• Ultrashort pulses (see Figure 1.7); Example: Ti-sapphire laser, λ “ 800 nm ñ T “ 2.6ˆ 10´15 s;
typically τ À 10´14 s “ 10 fs. With c “ 3ˆ 108 m{s ñ ` “ cτ « 3 µm. Attosecond pulses
are possible. Ñ Application of ultrashort pulses: Short-time dynamics in atoms (electron motion),
molecules (vibrations, rotations), solids (intra-, inter-band relaxation)

• Photon statistics: two-photon correlation function of a laser differs from that of a thermal source
Ñ A laser is not a collimated narrow-band lamp.

1
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Figure 1.2: Typical applications of lasers for materials processing, medicine, data storage, remote sensing
of the atmosphere, which make use of the high directionality of laser light.

Figure 1.3: Compared to a thermal light source, a laser has a very narrow bandwidth.

Figure 1.4: Using high-power laser pulses, even nuclear fusion reactions can be initiated.
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Figure 1.5: A laser beam has large coherence lengths `c,‖ and `c,K.

Figure 1.6: Sketch of the working principle of holography using coherence light.

𝐸𝐸 

𝑡𝑡 

Figure 1.7: Special lasers can emit ultrashort pulses consisting of only a few optical cycles, so called few
cycle pulses





Chapter 2

Emission & Absorption of light

Schematized atom as multi-level quantum system (see Figure 2.1). Absorption/emission transitions can
take place if the resonance condition

∆E “ E2 ´ E1 “ hν (2.1)

is met. There are three elementary processes:

a) Spontaneous emission has a rate (probability per unit time) Wsp “ A21 (Einstein-A-coefficient),
rAs “ s´1

b) Absorption: Wabs “ B12 ¨ ρ, where B12 is the Einstein-B-coefficient and ρpνq is the spectral energy
density. rρs “ J{pm3Hzq

c) Stimulated (=induced) emission: Wstim “ B21 ¨ ρ

Figure 2.1: The possible energy levels of an electron in the Coulomb potential in an atom are determined
by quantum mechanics. In order to understand the process of emission and absorption of light, we focus
on any two energy levels (marked with the blue circle) and the transition between them.

Figure 2.2: The three processes of absorption and emission

5



6 CHAPTER 2. EMISSION & ABSORPTION OF LIGHT

In thermodynamic equilibrium the levels are populated according to the Boltzmann distribution,

Ni “ N ˆ
gie

´
Ei
kBT

Z
(2.2)

where Ni is the number of atoms in level Ei , N “
ř

i Ni is the total number of atoms, Z “
ř

i gie
´

Ei
kBT

is the partition function, and gi is the statistical weight of level Ei due to degeneracy (e.g., a rotational
energy level i that has an angular momentum J has gi “ 2J ` 1).

In a two-level system with levels |1y and |2y, N “ N1ptq`N2ptq is constant and therefore 9N1ptq` 9N2ptq “

0. The transition rates are

9N1

ˇ

ˇ

ˇ

absorption
“ ´B12 ¨ ρ ¨ N1

9N2

ˇ

ˇ

ˇ

absorption
“ `B12 ¨ ρ ¨ N1 (2.3)a

9N1

ˇ

ˇ

ˇ

spont. em.
“ `A21 ¨ N2

9N2

ˇ

ˇ

ˇ

spont. em.
“ ´A21 ¨ N2 (2.3)b

9N1

ˇ

ˇ

ˇ

stim. em.
“ `B21 ¨ ρ ¨ N2

9N2

ˇ

ˇ

ˇ

stim. em.
“ ´B21 ¨ ρ ¨ N2 (2.3)c

The complete rate equations for the populations of the two levels are therefore

9N1

ˇ

ˇ

ˇ

total
“ ´B12 ¨ ρ ¨ N1 ` A21 ¨ N2 ` B21 ¨ ρ ¨ N2 (2.4)a

9N2

ˇ

ˇ

ˇ

total
“ `B12 ¨ ρ ¨ N1 ´ A21 ¨ N2 ´ B21 ¨ ρ ¨ N2 (2.4)b

Thus, if only spontaneous emission is active (ρ “ 0),

N2ptq “ N2p0qe
´A21t , (2.5)

that is after time t “ τ “ 1{A21 the population in the upper level 2 has decreased by a factor of 1{e “ 0.37.

Figure 2.3: Planck’s blackbody spectrum at 5250 ˝C (thick smooth line) in comparison with the spectrum
of the sun.

In thermodynamical equilibrium we have 9N1

ˇ

ˇ

ˇ

total
“ 9N2

ˇ

ˇ

ˇ

total
“ 0:

´ B12 ¨ ρ ¨ N1 ` A21 ¨ N2 ` B21 ¨ ρ ¨ N2 “ 0 ñ ρ “
A21N2

N1B12 ´ N2B21
“

A21

B21

N1

N2

B12

B21
´ 1

. (2.6)

With the Boltzmann distribution of N1 and N2, Equation (2.2),

N1

N2
“
g1

g2
e´pE1´E2q{pkBT q (2.7)
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we get

ñ ρ “
A21

B21
ˆ

1

B12

B21

g1

g2
e
E2´E1
kBT ´ 1

. (2.8)

In addition we can use Planck’s formula for the spectrum of thermal light,

ρpνq “
8πhν3

c3
ˆ

1

e
hν
kBT ´ 1

. (2.9)

By comparing the two formulae and using the resonance condition ∆E “ E2´E1 “ hν we obtain Einstein’s
relations

B12 “
g2

g1
B21 (2.10)

and
A21

B21
“

8πhν3

c3
(2.11)

ñ The Einstein-coefficients and rates for absorption and stimulated emission are equal (up to gi)

ñ Ratio of spontaneous vs. stimulated emission scales as 9ν3 and 9ρ, but no dependence on the
properties of the transition and of the states involved.

Example: on the surface of the sun (ν “ 5ˆ 1014 Hz, T “ 5250 ˝C “ 5523 K),

ñ
9N2,stim

9N2,sp
“

1

e
hν
kBT ´ 1

„ 0.013 (2.12)

Stimulated emission is not important on the sun’s surface: almost all the light emitted by the sun comes
from spontaneous emission.

How intense must the light field be such that stimulated emission dominates?

| 9N2,stimulated| ą | 9N2,spontaneous|

B21 ¨ ρ ¨ N2 ą A21 ¨ N2

ρ ą
A21

B21
“

8πhν3

c3
(2.13)

Since 8πhν3

c3 is the energy-density of electromagnetic modes (number of modes per unit frequency, times
photon energy; see Equation (2.9) and problem set 1), the number of photons per electromagnetic mode
must therefore be

ρ
8πhν3

c3

ą 1 (2.14)

That is, stimulated emission dominates over spontaneous emission if there is more than one photon present
per electromagnetic mode. With this observation, we can interpret spontaneous emission as the emission
stimulated by the zero-point fluctuations of the electromagnetic field. Even with zero photons present,
the electromagnertic field (which is a quantum field) fluctuates with an intensity equivalent to one photon
per mode. Spontaneous emission is nothing more than the emission stimulated by these “virtual” photons
of the electromagnetic field’s quantum noise.





Chapter 3

The Laser Principle

3.1 Laser as self-exciting oscillator

In radio frequency (RF) electronics a self-exciting oscillator consists of an amplifier, where a part of the
signal from the amplifier is coupled out and another part is fed back to the amplifier via an element
causing a phase shift and/or frequency filtering. In optics the analog is a laser with an active medium and
a resonator. For a functional laser the following conditions have to be fulfilled:

• amplification ą losses (diffraction, outcoupling, etc. )

• ∆ϕ « n ¨ 2π with n “ 0, 1, 2, . . . ñ positive feedback.

For amplification by stimulated emission, the first condition requires that there is an inversion of population:
there have to be more atoms in an excited state than in the ground state (per mode): N2{g2 ą N1{g1.

Electronic  
oscillator 

Laser  
oscillator 

Power 
supply 

Amplifier   

Feedback with phase shift 
and frequency filter 

Energy pump 

Optical 
resonator 

Active medium 

Figure 3.1: Comparison of a self-exciting RF-oscillator (top) with an optical self-exciting oscillator (i.e.,
laser, bottom)

Toy model

Damped harmonic oscillator with negative damping. The amplitude xptq satisfies the differential equation

:xptq “ ´kxptq ´ γ 9xptq, (3.1)

where k is the spring constant and γ is the damping. Assuming that xpt “ 0q “ 0 and x 1pt “ 0q “ v0,
the solution is

xptq “
v0

Ω
sinpΩtqe´γt{2 (3.2)

9
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Figure 3.2: Given an atom in the excited state |2y, an incoming photon can cause stimulated emission and
therefore amplify itself (a second coherent photon is emitted)

with the effective angular frequency Ω “
a

k ´ γ2{4 (assuming weak damping: |γ| ă 2
?
k).

With positive damping (γ ą 0), the amplitude of the oscillation decays exponentially. With negative
damping (γ ă 0, anti-damping, amplification), the amplitude of the oscillation grows exponentially.

For laser operation, we need to make sure that the total damping (losses minus amplification) is
negative. See Figure 3.4.

3.2 Main components of a laser

Active medium Amplification by inversion, stimulated emission

Energy pump Lamp, other laser, electrical discharge, electrical current, chemical reaction, combustion

Optical resonator Feedback, reduced photon loss

The dynamics of a laser starting to operate is shown in Figure 3.3.

Figure 3.3: Power build-up dynamics of a self-excited oscillator. The exponential increase in the buildup
phase corresponds to the toy model with negative damping, Equation (3.2). In stationary operation, the
laser mode drains the inversion (losses in Equation (3.6)) until equilibrium between pump power and laser
power is established.
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3.3 Inversion

Let us assume that we have some process that reliably establishes populations N1 and N2. The laser mode
shall have an effective mode volume V , an effective linewidth ∆ν, and contain a time-dependent number
Nphptq of photons; the spectral energy density of the laser mode is therefore ρptq “ Nphptq¨hν

V ¨∆ν . The rate at
which the number of photons in the laser mode changes is given by the absorption rate and the stimulated
emission rate from Equation (2.3), minus a photon loss rate γ:

9Nph

ˇ

ˇ

ˇ

total
“ ´B12 ¨ ρ ¨ N1 ` B21 ¨ ρ ¨ N2 ´ γ ¨ Nph

“ pB21 ¨ N2 ´ B12 ¨ N1q ¨
Nph ¨ hν

V ¨ ∆ν
´ γ ¨ Nph

“

„

pB21 ¨ N2 ´
g2

g1
B21 ¨ N1q ¨

hν

V ¨ ∆ν
´ γ



¨ Nph

“

„ˆ

N2

g2
´
N1

g1

˙

¨
B21 ¨ g2 ¨ hν

V ¨ ∆ν
´ γ



¨ Nph (3.3)

The solution of this differential equation is Nphptq “ Nphp0qe
´Γt with the effective damping rate

Γ “ γ ´

ˆ

N2

g2
´
N1

g1

˙

¨
B21 ¨ g2 ¨ hν

V ¨ ∆ν
. (3.4)

In order for the laser to generate light, this damping rate must be negative: Γ ă 0, which is the case if

N2

g2
ą
N1

g1
`

γ ¨ V ¨ ∆ν

B21 ¨ g2 ¨ hν
. (3.5)

This condition is called inversion:
N2

g2
ą
N1

g1
` losses (3.6)

The inversion condition cannot be fulfilled in thermal equilibrium even in the absence of losses (γ “ 0)
since E2 ą E1 (see Equation (2.2)):

N2{g2

N1{g1
“ e

´
E2´E1
kBt ă 1 ñ

N2

g2
ă
N1

g1
. (3.7)

Conclusion: a two-level laser cannot operate in thermal equilibrium.

Figure 3.4: Amplification vs. damping of light intensity when propagating through the laser medium
(assuming g1 “ g2 for simplicity).
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Figure 3.5: Separation of singlet and triplet state by an inhomogeneous magnetic field

Example: At T “ 300 K we look at the microwave transition of H (Ñ maser). Due to the hyperfine
structure the 12S1{2 electronic groundstate is split in two states: F “ 1 (parallel spins of electron and
proton; g2 “ 3) and F “ 0 (anti-parallel spins; g1 “ 1), where the energy gap E2 ´ E1 between these
states is responsible for the 21 cm-line (ν “ 1.42 GHz). In this system, we find that N2{g2

N1{g1
“ 0.93: the

populations are almost equal, but not inversion. However, a hydrogen maser can be realized as shown in
Figure 3.5 by spatially separating the beam into the two spin components.

The upper state F “ 1 has a lifetime τp|1yq « 1 s ñ δω « 1 Hz. ñ good for frequency calibration with
„ 10´9 precision, H-masers are used as a cheap alternative to Cs atomic clocks as a frequency standard.

3.3.1 Pumping in a two-level system

Can we establish inversion with an optical process that pumps atoms from |1y to |2y until N2{g2 ą N1{g1?
Assuming a constant spectral density ρpump of the pump field, the rate equations for the populations (see
Equation (2.4)) in equilibrium, assuming no laser action (Nph “ 0),

9N1

ˇ

ˇ

ˇ

total
“ ´B12 ¨ ρpump ¨ N1 ` A21 ¨ N2 ` B21 ¨ ρpump ¨ N2 “ 0 (3.8)a

9N2

ˇ

ˇ

ˇ

total
“ `B12 ¨ ρpump ¨ N1 ´ A21 ¨ N2 ´ B21 ¨ ρpump ¨ N2 “ 0 (3.8)b

with the solution (assuming N1 ` N2 “ N)

N1 “ N ¨
1` B21

A21
ρpump

1` B21`B12

A21
ρpump

ρpumpÑ8
ÝÑ

B21

B21 ` B12
“

g1

g1 ` g2
(3.9)a

N2 “ N ´ N1
ρpumpÑ8
ÝÑ

B12

B21 ` B12
“

g2

g1 ` g2
(3.9)b

For any finite pumping rate we have N2

g2
ă N1

g1
; only in the limit of infinite pumping rate ρpump Ñ8 we find

N2

g2
“ N1

g1
. There is no pumping rate for which inversion (N2

g2
ą N1

g1
) is established.

3.4 3-level laser

Idea:

“Trap” population in state |2y by uncoupling the |1y Ø |2y transition from the pump process. In this way,
stimulated transitions out of |2y (Equation (3.8)b) are avoided. This is achieved by populating |2y via an
additional level |3y by means of a fast, irreversible relaxation process.
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Figure 3.6: Working scheme of a 3-level laser

Wanted:

• S32 " S31: Efficient decay into |2y, faster than stimulated emission back into |1y

• S32 " S21: Efficient build-up of inversion in |2y

• W13 " S21: fast pumping such that N1

N2`N3
ă 50%

ñ strong pumping is required, which is a disadvantage.
In free atoms 3-level lasers are hardly possible since if |1y Ñ |3y and |3y Ñ |2y are allowed, then

|2y Ñ |1y is forbidden due to selection rules.
ñ selection rules do not hold strictly in crystals, liquids, . . . , e.g., ruby laser (first laser, Th. Maiman,

1960). The ruby laser is based on Al2O3 doped with ď 0.1% Cr`.

Figure 3.7: Scheme of a ruby laser. The pump level |3y is a broad band of overlapping levels.

3.5 4-level laser

For a 4-level laser as shown in Figure 3.8 we want the following properties:

• S32 " S30 : Fast transition into |2y to avoid stimulated emission from the pump (|3y Ñ |0yq
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Figure 3.8: 4-level laser scheme

• S10 " S21: Fast depletion of |1y to avoid re-absorption of laser photons (|1y Ñ |2y)

• Condition: E1 ´ E0 " kBT to avoid thermal buildup of population in |1y

ñ Inversion even if W03 ă S21

ñ Only a small part of population must be in |2y to fulfill Equation (3.6) For stationary operation the
condition

S10 ą S21 `W21 (3.10)

must be fulfilled.
Almost all lasers are 4-level lasers.

3.6 Rate equations

Ñ Simplified, but quantitative description of laser activity:

Assumptions:

• Only one mode contributes to the laser activity (all photons have hν). Only average energy density
ρ̄ is considered. The total photon density (photons per unit volume) is

p “
1

hν

ż

ρpν1qdν1 “
ρ̄ ¨ ∆ν

hν
(3.11)

with ∆ν the laser line width.

• Only one polarization

• Neglect spatial mode structure (see chapter 7)

• The active medium is represented by the population densities ni (atoms per unit volume)

3.6.1 3-level system

see Figure 3.6. General rate equations for the three levels:

9n1 “ ´W12 ¨ n1 ´W13 ¨ n1 `W21 ¨ n2 `W31 ¨ n3 ` S21 ¨ n2 ` S31 ¨ n3 (3.12)a

9n2 “ ´W21 ¨ n2 ´W23 ¨ n2 `W12 ¨ n1 `W32 ¨ n3 ` S32 ¨ n3 ´ S21 ¨ n2 (3.12)b

9n3 “ ´W31 ¨ n3 ´W32 ¨ n3 `W13 ¨ n1 `W23 ¨ n2 ´ S31 ¨ n3 ´ S32 ¨ n3 (3.12)c
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with n1 ` n2 ` n3 “ n. Absorption and stimulated emission rates are related to the corresponding photon
density: Wi j “ Bi jhνpi j “ σi j ¨ c ¨ pi j where σi j is the cross section for the process. We assume that
p13 “ p31 “ ppump, p23 “ p32 “ 0 (non-radiative decay), and p12 “ p21 “ plaser.

Optical spontaneous emission rates are Si j “ Ai j ; but S32 is non-radiative.
With these substitutions, the rate equations for the levels are

9n1 “ ´pσ12plaser ` σ13ppumpq ¨ c ¨ n1 ` σ21plaser ¨ c ¨ n2 ` σ31ppump ¨ c ¨ n3 ` S21 ¨ n2 ` S31 ¨ n3 (3.13)a

9n2 “ ´σ21plaser ¨ c ¨ n2 ` σ12plaser ¨ c ¨ n1 ` S32 ¨ n3 ´ S21 ¨ n2 (3.13)b

9n3 “ ´σ31ppump ¨ c ¨ n3 ` σ13ppump ¨ c ¨ n1 ´ S31 ¨ n3 ´ S32 ¨ n3 (3.13)c

To solve these coupled differential equations, we make two simplifying assumptions:

1. We assume that the level dynamics are very fast compared to the photon dynamics (see below),
so that the level populations are always in equilibrium: 9n1 “ 9n2 “ 9n3 “ 0. This allows us to solve
Equation (3.13) for n1, n2, and n3 as functions of ppump and plaser; the level populations follow the
slower photon populations adiabatically. These functions are rather complicated.

2. We assume that S32 Ñ 8, that is, a very fast non-radiative decay of the excited state. This
assumption simplifies the steady-state populations to

n1 “ n ¨
cplaserσ21 ` S21

cplaserpσ12 ` σ21q ` cppumpσ13 ` S21
(3.14)a

n2 “ n ¨
cplaserσ12 ` cppumpσ13

cplaserpσ12 ` σ21q ` cppumpσ13 ` S21
(3.14)b

n3 “ 0 (3.14)c

See below for a brief discussion of the branching ratio in the case of a finite S32.

We define the inversion as I “ n2 ´ n1, in terms of which we have n1 “ pn ´ Iq{2 and n2 “ pn ` Iq{2. At
equilibrium,

I “ n ¨
cplaserpσ12 ´ σ21q ` cppumpσ13 ´ S21

cplaserpσ12 ` σ21q ` cppumpσ13 ` S21
(3.15)

The rate equation for the laser photon number is, from Equation (3.13)b,

9plaser “ pσ21n2 ´ σ12n1qcplaser ´ γplaser “ ´Γplaser (3.16)

similar to Equation (3.3), with the effective damping

Γ “ γ ´ pσ21 ´ σ12q
nc

2
´ pσ21 ` σ12q

Ic

2
. (3.17)

γ summarizes the total photon losses (see section 3.7); we call τph “ 1{γ the photon lifetime in the cavity.
There are two steady-state solutions ( 9plaser “ 0) for Equation (3.16):

1. plaserptq “ 0 is always a solution, independently of the pump intensity ppump;

2. I “ Ith: if the inversion is equal to the threshold inversion

Ith “ n ¨
σ12 ´ σ21

σ12 ` σ21
`

2γ

cpσ12 ` σ21q
(3.18)

then the system is in a steady state and the effective damping vanishes (Γ “ 0). Solving I “ Ith
with Equation (3.15) for the equilibrium laser photon density, we find

plaser “ ppump ˆ
σ13pcnσ21 ´ γq

γpσ12 ` σ21q
´
S21pcnσ12 ` γq

cγpσ12 ` σ21q
(3.19)

Physically this situation can only occur when plaser ą 0, which means that a pump power larger than
the threshold pump power

ppump ą pth “
S21pcnσ12 ` γq

cσ13pcnσ21 ´ γq
(3.20)

is required.
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We can therefore distinguish the following regimes of the laser:

below threshold: For ppump ă pth, only the solution plaserptq “ 0 is stable. The inversion is

I “ n ¨
cppumpσ13 ´ S21

cppumpσ13 ` S21
(3.21)

and grows with the pump power.

above threshold: For ppump ą pth, the physically relevant (stable) solution is Equation (3.19), which we
can write as

plaser “ n ¨
S21

γ
¨
ppump ´ pth

psat
(3.22)

with the saturation photon density

psat “
nS21pσ12 ` σ21q

σ13pncσ21 ´ γq
. (3.23)

The inversion is pegged at I “ Ith.

Figure 3.9: Inversion I and photon density p in a cw laser as functions of Wpulse

Figure 3.9 shows these steady-state regimes schematically.

instantaneous gain

For a time-dependent study of the differential Equation (3.13), assume that the laser power plaser differs
from the steady-state solution Equation (3.22). The instantaneous inversion is given by Equation (3.15),
which allows us to evaluate the instantaneous effective damping of Equation (3.17):

Γ “ γ ´ pσ21 ´ σ12q
nc

2
´ pσ21 ` σ12q

c

2

„

n ¨
cplaserpσ12 ´ σ21q ` cppumpσ13 ´ S21

cplaserpσ12 ` σ21q ` cppumpσ13 ` S21



“ γ ´ n ¨ c ¨
cσ13σ21ppump ´ S21σ12

cplaserpσ12 ` σ21q ` cppumpσ13 ` S21
(3.24)

We see that the instantaneous gain g “ ´Γ is largest for plaser “ 0 and decreases to zero as plaser reaches
the equilibrium value given in Equation (3.22). The resulting non-linear dynamics for plaserptq is quite
complex.

For very large pump intensities ppump Ñ8, the instantaneous damping rate is

Γ8 “ lim
ppumpÑ8

Γ “ γ ´ cnσ21 “ γ ´ g0 (3.25)
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independent of the laser photon density plaser; we have defined g0 “ cnσ21 as the asymptotic gain of the
laser (the maximum possible rate of laser photon gain in the active medium, assuming full inversion). As
a result, for very large pump intensities the laser build-up proceeds exponentially, plaserptq “ plaserp0qe´Γ8t

with Γ8 ă 0.
For finite pump intensities ppump ą pth, the small-signal damping rate for plaser « 0 is

Γ0 “ γ ´ n ¨ c ¨
cσ13σ21ppump ´ S21σ12

cppumpσ13 ` S21
“ Γ8 ¨

˜

1´
1

1`
ppump´pth

psat

¸

(3.26)

Equation (3.26) still leads to exponential amplification e´Γ0t of small light fields, for example in the
beginning of the laser build-up process.

ppump “ pth ñ Γ0 “ 0

ppump “ pth ` psat ñ Γ0 “
1

2
Γ8

ppump “ pth ` 2psat ñ Γ0 “
2

3
Γ8

ppump Ñ8 ñ Γ0 “ Γ8 (3.27)

branching ratio

More generally, S32 is finite (but large) and the above limits apply only approximately. In particular, we
call the branching ratio the probability that atoms excited into |3y decay non-radiatively into |2y,

η “
S32

S31 ` S32 `W31 `W32
“

S32

S31 ` S32 ` σ31cppump
. (3.28)

For S32 ÞÑ 8 this branching ratio becomes 1, i.e., all atoms decay non-radiatively from |3y to |2y. The
assumption η « 1 can be relaxed in a more detailed discussion.

3.6.2 4-level system

For the 4-level system, an additional level |0y drains the population from |1y non-radiatively, such that
n1 « 0 at all times, and σ12 can be neglected (no re-absorption of laser light).

See Figure 3.8: the general rate equations for the level populations are, similiar to Equation (3.12),

9ni “ ´
ÿ

j‰i

Wi jni `
ÿ

j‰i

Wj inj ´
ÿ

jăi

Si jni `
ÿ

jąi

Sj inj (3.29)a

ÿ

i

ni “ n (3.29)b

with i , j P t1, 2, 3, 4u. Within the adiabatic approximation 9n1 “ 9n2 “ 9n3 “ 9n4 “ 0 and assuming again
S32 Ñ8 and S10 Ñ8, the equilibrium populations are

n0 “ n ¨
cplaserσ21 ` S21

cplaserσ21 ` cppumpσ03 ` S21
(3.30)a

n1 “ 0 (3.30)b

n2 “ n ¨
cppumpσ03

cplaserσ21 ` cppumpσ03 ` S21
(3.30)c

n3 “ 0 (3.30)d

Comparing this solution to Equation (3.14), we see that the expressions for the three-level laser (subsec-
tion 3.6.1) remain valid for four-level lasers if we make the following substitutions:

3-level laser 4-level laser
reservoir population n1 n0

pump cross section σ13 σ03

effective laser re-absorption cross section σ12 0
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The inversion in the four-level laser is always positive,

I “ n2 ´ n1 “ n2 (3.31)

The pump threshold of Equation (3.20) becomes

ppump ą pth “
S21γ

cσ03pcnσ21 ´ γq
, (3.32)

which tends to be much lower that the threshold in three-level lasers. Notably it goes to zero in the
absence of losses (γ Ñ 0), which is not the case for the three-level laser. This behavior is what makes
four-level laser an attractive option for building real lasers.

3.7 Output power of a laser

ppump, plaser, and I are not directly accessible in experiments Ñ connection with output power and pump
power.

The laser-mode energy inside the resonator is given by

Elaser “ plaser ¨ hν21 ¨ V (3.33)

where V is the resonator volume.
The photon losses in the laser photon rate Equation (3.16) are γ “ γout ` γloss, where

• γout “ T {τrt is the rate of power loss through the output coupling mirror; T is the transmittance
of the output coupler and τrt is the round-trip time of the laser resonator, often τrt “ 2d{c for a
resonator length d

• γloss are unwanted ‘bad’ losses: scattering, absorption (other that W12), diffraction at optical ele-
ments, spontaneous emission, etc.

We want to minimize γloss and optimize γout.

Figure 3.10: A laser with one highly reflecting mirror (HR) and one output coupling mirror (OC) with
T ą 0.

Since Equation (3.16) describes a total laser photon loss rate 9ploss “ γ ¨ plaser, the total laser power
energy rate loss is 9Eloss “ γ ¨ plaser ¨ hν21 ¨ V (see Equation (3.33)). The fraction of this energy loss that
goes into laser output power is γout{pγout ` γlossq “ γout{γ, and hence the output power of the laser is

Pout “
γout
γ

9Eloss “ γout ¨ plaser ¨ hν21 ¨ V. (3.34)
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Inserting the steady-state solution of Equation (3.22) gives

Pout “
γout
γ
¨ n ¨ S21 ¨

ppump ´ pth
psat

¨ hν21 ¨ V. (3.35)

The pump power Ppump is assumed to traverse the entire gain medium. We assume that the gain
medium has an area A and a length ` (and thus a volume V “ A ¨ `). The number of photons entering the
gain medium per unit time is dNpump{dt “ Ppump{phνpumpq. These phonons remain within the gain medium
for a time ∆tpump “ `{c , so that at any given moment there are Npump “ ∆tpump ¨dNpump{dt “ Ppump ¨

`
chνpump

pump-beam photons within the gain medium. The density of pump photons is therefore

ppump “
Npump

V
“ Ppump ¨

1

chνpumpA
. (3.36)

The narrower we focus the pump beam, the smaller A (the effective pump beam area) becomes and the
larger the density of pump photons.

With the analogous definitions

pth “ Pth ¨
1

chνpumpA
psat “ Psat ¨

1

chνpumpA

ñ Pth “ A ¨ hνpump ¨
S21

σ13
¨
σ12 `

γ
nc

σ21 ´
γ
nc

ñ Psat “ A ¨ hνpump ¨
S21

σ13
¨
σ12 ` σ21

σ21 ´
γ
nc

(3.37)

Equation (3.35) becomes

Pout “
γout
γ
¨ n ¨ S21 ¨

Ppump ´ Pth
Psat

¨ hν21 ¨ V

“ σs ¨ pPpump ´ Pthq. (3.38)

σs is called the slope efficiency (Figure 3.11):

σs “
γout
γ
¨ n ¨ S21 ¨

hν21 ¨ V

A ¨ hνpump ¨
S21

σ13
¨ σ12`σ21

σ21´
γ
nc

“ n`σ13
loomoon

pump absorption probability

¨
hνlaser
hνpump
loomoon

quantum efficiency

¨
σ21

σ21 ` σ12
loooomoooon

laser re-absorption loss

¨
γout

γout ` γloss
looooomooooon

branching ratio

¨

ˆ

1´
γout ` γloss

g0

˙

loooooooooomoooooooooon

effective amplification
loooooooooooooooooooomoooooooooooooooooooon

outcoupling efficiency ηK

(3.39)

where we have substituted γ “ γout ` γloss and ν21 “ νlaser, and recall the definition of the asymptotic
gain g0 “ cnσ21 (see Equation (3.25)).

• the pump absorption probability n`σ13 specifies the probability that a pump photon is absorbed in
the gain medium instead of passing through unabsorbed

• the quantum efficiency νlaser{νpump specifies what fraction of the energy of a pump photon ends up
in a laser photon (the rest is dissipated non-radiatively through S32)

• the re-absorption factor σ21{pσ21 ` σ12q describes the importance of laser-light re-absorption (via
σ12) in equilibrium; in the four-level laser, this factor is 1 since there is no re-absorption

• the branching ratio γout
γout`γloss

specifies the fraction of the lost laser-mode photons that end up in the
laser beam instead of being absorbed or scattered into other directions

How should we choose the transmittivity T of the output coupler? We know that there is no laser
output for both T “ 0 (the output coupler lets no light pass through) and T “ 1 (too much loss Ñ
sub-threshold); the maximum laser output power must be somewhere in-between.

We first express the γout-dependent part ηK of the slope efficiency (i.e., the outcoupling efficiency) in
terms of the output coupler transmissivity T ,

ηK “
γout

γout ` γloss
¨

ˆ

1´
γout ` γloss

g0

˙

“
T {τrt

T {τrt ` γloss
¨

ˆ

1´
T {τrt ` γloss

g0

˙

“
T

T ` L
¨

ˆ

1´
T ` L

G0

˙

(3.40)
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where L “ γlossτrt is the round-trip loss and G0 “ g0τrt is the round-trip gain of the laser resonator. We
maximize this ηK with respect to T :

dηK
dT

“ 0 ñ Topt “
a

G0L´ L (3.41)

(This is only valid if 0 ă L ă G0 so that the system operates as a laser: more gain than losses). The
maximized slope efficiency is (setting T “ Topt in Equation (3.39))

ηK,opt “ 1`
L

G0
´ 2

c

L

G0
“ 1`

γloss
g0

´ 2

c

γloss
g0

(3.42)

In the limit of small losses L ! G0, the maximized slope efficiency transmission factor is

ηK,opt « 1´ 2

c

L

G0
(3.43)

reached for an output coupler with transmissivity

Topt «
a

G0L (3.44)

Figure 3.11: Graphical illustration of the meaning of the slope efficiency σs.

So we find the result that the outcoupling efficiency is maximum at one value of the output coupler
transmission Topt, for given round-trip gain G0 and round-trip losses L. Interestingly, in the ideal case that
LÑ 0 we find that the situation where ηK is maximum shifts to Topt Ñ 0, which seems paradoxical. But
this just means that the intra-resonator light intensity grows to infinity, which is unrealistic: in a more
realistic treatment, ηK and σs drop off due to non-linear effects at high intra-resonator powers.

The non-linear decrease of ηK with increasing bad losses L highlights the importance to keep L low in
order to obtain high laser output powers. In practice this means that all surfaces of optical elements have
to be extremely clean to avoid light scattering and absorption.
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Figure 3.12: ηK and Topt as functions of the mirror transmission T and the “bad” losses L.





Chapter 4

Line widths

4.1 Homogeneous line broadening

Homogeneous line broadening can be observed if all particles of an ensemble feature the same line width
and position, e. g. due to spontaneous emission (excited-state lifetime broadening due to the time-energy
uncertainty principle).

Figure 4.1: Homogeneous broadening is the intrinsic width of absorption/emission lines common to all
particles of the same species. It is observed only if all particles are unperturbed by other mechanisms that
shift or broaden their absorption/emission on a particle-by-particle (inhomogeneous) basis.

4.1.1 Natural line broadening

For an optical transition between two energy states with a photon of frequency ν0 in an atom the condition

E2 ´ E1 “ hν0 (4.1)

has to be met. Due to Heisenberg’s Uncertainty Relation (HUR, ∆E ¨∆t Á ~{2) the energy levels are not
completely sharp, but diffuse, which leads to broadening of the spectral line. Given that

A21 “
1

τ
, (4.2)

where τ is the average (1{e-) lifetime of an excited state, we can apply the HUR to find the line width,

∆ν “
1

τ
. (4.3)

Here, ∆ν is the full width at half maximum value (FWHM).
In a simple classical model the valence electron bound to an atom is described by a damped harmonic

oscillator,
:x ` γ 9x ` ω2

0x “ 0. (4.4)

For xp0q “ 0 and 9xp0q “ v0 we find the solution

xptq “
v0

Ω
exp

´

´
γ

2
t
¯

¨ sinpΩtq (4.5)

23
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with

Ω “

c

ω2
0 ´

´γ

2

¯2

. (4.6)

The amplitude of |xptq|2 decays to x0{e after a lifetime τ “ 1{γ.
Fourier-transform:

x̃pωq “

ż 8

0

xptqe iωtdt “
v0

ω2
0 ´ ω

2 ´ iγω
(4.7)

The spectral intensity Ipωq “ |x̃pωq|2 describes two Lorentzian curves centered at ˘
a

ω2
0 ´ γ

2{2 and with
FWHM ∆ω “ γ`Opγ3{ω2

0q. Thus, for γ ! ω0, ∆ω ¨τ “ 1. The FWHM natural linewidth is the reciprocal
of the natural lifetime: ∆ω “ 1{τ “ A21.

Figure 4.2: From Demtröder “Laser spectroscopy”.

Figure 4.3: Na D1 and D2-lines which are lifetime broadened.
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Examples

• Na transition from 3P3{2 (2nd excited state) to 3S1{2 (ground state) has λ “ 589 nm and ν0 “

5ˆ 1014 Hz with an average life time τ « 16 ns, which lead to

∆ν « 10 MHz,

∆ν

ν
« 2.0ˆ 10´8. (4.8)

• H transition from 2S1{2 Ñ 1S1{2 has λ “ 121 nm, ν0 “ 2ˆ 1015 Hz, and τ “ 1 s (forbidden transition).
For this transition one finds

∆ν “ 0.16 Hz,

∆ν

ν
“ 6ˆ 10´17. (4.9)

• CO2: vibrational transitions of molecules with λ “ 10.6 µm, ν0 “ 3ˆ 1013 Hz, and τ « 1 ms:

∆ν “ 159 Hz,

∆ν

ν
“ 6ˆ 10´12. (4.10)

4.1.2 Saturation broadening

Artificial shortening of the lifetime by stimulated emission due to the presence of electromagnetic waves
leads to a broadening of the linewidth (cf. HUR). The spectral line profile stays Lorentzian.

ñ ∆ωS “ ∆ω
a

1` S0 (4.11)

with the saturation parameter

S0 “
I

Isat
“
B21ρ

A21
, (4.12)

where I is the light intensity.

Figure 4.4: Spectral line broadened by saturation broadening.

4.1.3 Collisional broadening (pressure broadening)

A collision (scattering event) between a de-excited atom and an excited atom can have two effects. If the
collision is inelastic, the excited atom changes its internal state, for instance it can be de-excited into its
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ground state. This process only occurs in ‘hard collisions’ which are quite rare. More frequently, the atoms
scatter elastically, which leads to ‘scrambling’ of the atomic oscillation phase, see Figure 4.5 (random
collisional phase shifts). If we assume that these phase shifts occur completely randomly, this leads to
an exponentially damped oscillation amplitude when summing over many contributing atoms. Equivalently
we could consider one atom which scatters many times during the spectroscopic measurement. Since this
process is the same for all atoms, collisional broadening is homogeneous. We already know that the Fourier
transform of an exponentially damped sinusoidal oscillation is a Lorentzian function (see Equation (4.7)).
The width of this function can be estimated by the collision rate

γs “ xn ¨ σpvrelq ¨ vrely « nσxvrely, (4.13)

Here, n denotes the density of particles, which usually can be obtained from the ideal gas law, n “
N{V “ p{pkBT q, where p is the gas pressure. σ is the (velocity-independent) scattering cross section,
which can be calculated, e.g., using the simple ‘hard spheres’ model, σ “ πpR1 ` R2q

2 where R1 and R2

denote the radii of the active atom and of the collision partner, respectively. The mean relative velocity

xvrely “

c

8kBT
π

´

1
m1
` 1

m2

¯

is obtained from kinetic gas theory.

Figure 4.5: a) Phenomenological model for the collision of an optically active atom A with another particle
B. Due to the interaction between particles during the collision, the oscillation frequency transiently changes
b), which results in a collisional phase shift c). From Demtröder “Laser spectroscopy”.

Figure 4.6: Spectral line broadened by collisional broadening.

4.2 Inhomogeneous line broadening – Doppler effect

Due to thermal motion, every particle has a different velocity relatively to the observer and therefore
absorbs/emits at a slightly different frequency/wavelength due to the Doppler effect. This is called Doppler
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broadening, which is an inhomogeneous effect since it affects every atom differently.

Figure 4.7: Inhomogeneous line broadening due to Doppler shifts

Given a particle moving with velocity ~v , the wavelength of a wave emitted by the particle in its di-
rection of motion has a shorter wavelength than a wave emitted in the opposite direction. For }v} ! c

(non-relativistic) one finds
ω “ ω0 ` ~k ¨ ~v (4.14)

with the wave vector ~k parallel to the Poynting vector (photon emission direction) and

}~k} “
2π

λ
“
ω0

c
(4.15)

In the rest frame we get

ω “ ω0 ` ~k ¨ ~v “ ω0

´

1`
v‖

c

¯

(4.16)

where v‖ is the component of the velocity parallel to the wave direction ~k .
In a thermal gas the velocities along a single coordinate (here, along the wave propagation direction)

are distributed according to a Maxwell–Boltzmann distribution,

npv‖q “ n0

c

m

2πkBT
exp

«

´
mv2
‖

2kBT

ff

(4.17)

such that

•
ş8

´8
npv‖qdv‖ “ n0 (normalization)

• xv‖y “ 1
n0

ş8

´8
v‖ ¨ npv‖qdv‖ “ 0 (inversion symmetry)

• xv2
‖ y “

1
n0

ş8

´8
v2
‖ ¨ npv‖qdv‖ “

kBT
m (equipartition theorem: x 1

2mv
2
‖ y “

1
2kBT for every particle)

This distributioncan be converted into the intensity distribution of emitted (or absorbed) light as a function
of angular frequency Ipωq9nrcpω ´ ω0q{ω0s using Equation (4.16),

Ipωq “ I0 exp

«

´
mc2

2kBT

ˆ

ω ´ ω0

ω0

˙2
ff

(4.18)

which is a Gaussian function centered at ω “ ω0 with FWHM

∆ω “
ω0

c

c

8 lnp2q
kBT

m
. (4.19)

Example: Na at T “ 500 K (see Equation (4.8)): The mass of Na is mNa “ 23 u, which leads to

∆νDoppler “
∆ωDoppler

2π
“

1

λ

c

8 lnp2q
kBT

m
“ 1.7 GHz. (4.20)
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4.3 Combination of homogeneous and inhomogeneous broadening: Voigt profile

Line broadening is a mixture of homogeneous and inhomogeneous broadenings Ñ convolution of Gaussian
Gpωq and Lorentzian Lpωq distributions:

Ipωq “

ż 8

0

Gpω1qLpω ´ ω1qdω1 (4.21)

ñ Voigt-profile, see Figure 4.8.

Figure 4.8: From Demtröder “Laser spectroscopy”.
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Figure 4.9: Comparison of a Gaussian Gpxq “
b

4 lnp2q
π e´4 lnp2qx2

and a Lorentzian Lpxq “ 2{π
1`4x2 distri-

bution, both with unit areas and unit FWHMs (thin horizontal lines). The Lorentzian has much broader
wings; the Gaussian is more peaked.

4.4 Line broadening in liquids and solids

In condensed systems (liquids and solids), the environment of every particle is different. Since the spectrum
of a particle is very sensitive to the particle’s environment (Stark and Zeeman shifts; Pauli exclusion), this
leads to inhomogeneous broadening.
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Figure 4.10: Experimentally recorded Doppler-free spectra of Li atoms in dilute Li vapor. The broad
minimum shows the Doppler-broadened absorption peak. The narrow maxima are the Doppler-free atomic
lines. The trick is to use two counter-propagating laser beams.

Figure 4.11: Generalized level scheme for vibronic transitions in atoms or molecules coupled to an envi-
ronment. Upon laser excitation, the system first relaxes down into the well of the excited state potential,
which is associated with a changing of the local environment of the excited atom and simultaneous emission
of phonons.

In general, condensed systems support elastic waves (phonons), which are coupled to the electronic,
vibrational, and rotational degrees of freedom of dissolved molecules. During every excitation and emission
event, both in the upper and lower levels, rapid thermalization takes place by restructuring the immediate
solvent environment of the particle and by emitting phonons (Figure 4.11), similar to the scheme of a
4-level laser (Figure 3.8).

4.4.1 Liquids

In a liquid, there is an infinite number of ways a particle’s environment could be structured, due to the
continuous nature of the configuration space. As a result, spectra of molecules dissolved in liquids have
extremely broad features and usually do not show any fine structure. See Figure 4.12 for an example.
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Figure 4.12: Absorption and emission lines of the dye molecule Rhodamine 6G dissolved in ethanol. The
absorption takes place at shorter wavelengths (higher energies) than the emission, corresponding to the
scheme of Figure 4.11.

4.4.2 Solids

Figure 4.13: Absorption lines of Nd3` ions in an Yttrium Aluminum Garnet (YAG, Y3Al5O12) crystal. A
4-level laser based on this system (a Nd:YAG laser) is usually pumped with monochromatic light at the
most intense absorption line around 808 nm, and emits laser light around 1064 nm.

Particles “dissolved” in solids (crystals) also experience a variety of different environments; however,
not a continuum as in liquids. The environment (crystal field) of a particle depends on its position and
orientation within the unit cell, as well as on neighboring lattice defects and impurities. In general, the
spectra of such particles still feature rather sharp lines and structures (Figure 4.13), albeit much broader
than gas-phase (individual) particles.

4.5 Spectral hole burning

Spectral hole burning appears in inhomogeneously broadened gain media. For every frequency there is an
independent level of inversion Ipνq and an independent effective gain Gpνq. When the laser puts out light,
the effective gain is depressed to match the effective losses (G “ L and thus Γ “ 0 in steady state); for
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an inhomogeneously broadened medium, this leads to a structured gain profile as in Figure 4.14 (3). The
gain profile develops “spectral holes”.

Compare this to the homogeneously broadened case, Figure 4.14 (2), where laser operation depresses
the entire gain profile homogeneously.

Figure 4.14: Laser spectrum for three cases: (1) pump on, but laser off; (2) laser on with homogeneous
broadening of Gpνq; (3) laser on with inhomogeneous broadening of Gpνq. The regions of gain ą losses in
case 3 are due to the fact that the resonator only supports specific frequency modes; not all frequencies
can lase.

More generally, spectral hole burning refers to the situation where a strong light field (in the above
case, the laser field) saturates the absorption of a medium at a certain wavelength, so that a weaker
probe-light field cannot be absorbed as well at the same wavelength.

4.6 Spatial hole burning

See Figure 4.15: In a linear resonator, interference of counter-propagating waves leads to a standing-wave
pattern which excludes some spatial regions of the active medium from participating in the laser amplifi-
cation process. Solution: Ring resonators ñ traveling wave.

More generally, spatial hole burning refers to the situation where a strong light field (in the above
case, the laser field) saturates the absorption of a medium at a certain point in space, so that a weaker
probe-light field cannot be absorbed as well at the same point in space.

4.7 Laser output line width

The Schawlow–Townes limit gives the ultimate lower limit on the linewidth of a cw laser:

∆νlaser
νlaser

ě
πhp∆ν0q

2

Plaser
, (4.22)

where ∆ν0 “ τ´1
ph is the FWHM resonator linewidth (see section 6.1) and ∆νlaser is the smallest possible

linewidth (FWHM) of the laser output.
The derivation of this formula is quite involved (even Schawlow and Townes got it wrong by a factor

of two in the original publication) and is usually done in terms of a random walk of the phase of the
electromagnetic field in the resonator. See any good book on lasers for more details.

The reason for the Schawlow–Townes limit is the influence of spontaneous emission into the laser
mode: every spontaneously emitted photon has a random phase with respect to the laser light, and adding
it to the light in the resonator gives rise to a slight random phase shift (Ñ random walk). The more
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Figure 4.15: blue: Gain profile without the effect of spatial hole burning, red: Gain profile with spatial hole
burning. Due to the boundary conditions for the electro-magnetic field inside the resonator, a standing-wave
pattern develops, which has peaks (laser gain through stimulated emission) and nodes (no stimulated
emission, zero electric-field amplitude). See chapter 6.

light there is in the resonator (the larger Pout), the smaller this influence becomes. On the other hand, a
larger resonator linewidth ∆ν0 gives a larger laser linewidth because a larger photon loss rate ∆ν0 yields
a larger ratio of Pout{Eresonator, thus amplifying the influence of resonator phase fluctuations on output
phase fluctuations.

Examples

• HeNe laser: λ “ 632.8 nm, Pout “ 1 mW, L “ 0.5 m, R “ 1´ T “ 98%
ñ ∆ν0 “

1´R

π
?
R
¨ c

2L “ 1.9 MHz (photon lifetime τph “ 1{∆ν0 “ 0.52 µsq and ∆νlaser ě
πhνp∆ν0q

2

Plaser
“

hc3p1´Rq2

4πλL2PlaserR
“ 3.7 mHz (coherence time Tcoh “ 1{∆νlaser ď 273 s, coherence length `coh “ c ¨ Tcoh ď

0.55 au [astronomical units]).
In practical systems, unless extreme care is taken, this Schawlow–Townes limit is overwhelmed by
technical noise, e.g., thermal drifts.

• Diode laser: λ “ 632.8 nm, Pout “ 1 mW, L “ 0.5 mm, R “ 30%
ñ ∆ν0 “ 122 GHz (photon lifetime τph “ 8.2 psq and ∆νlaser ě 15 MHz (coherence time Tcoh ď
68 ns, coherence length `coh ď 20 m).
This is a significant limit.

So the Schawlow–Townes limit can actually become relevant, but only for lasers with high gain (small
output coupler reflectivity R) and short resonators, such as diode lasers.
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Coherence and Interference

5.1 Interference

Given two one-dimensional plane waves along the x-axis, with equal frequencies and wavelengths but
different phases:

E1px, tq “ A1e
ipkx´ωt`ϕ1q

E2px, tq “ A2e
ipkx´ωt`ϕ2q, (5.1)

assuming A1, A2 P R. These waves interfere according to the superposition principle. The total amplitude
is

Esum “ E1 ` E2. (5.2)

For electro-magnetic waves one usually cannot observe the electric field due to the high frequency. A more
easily measurable quantity is the square of the absolute value of the wave amplitude, the intensity I:

I “ |Esum|
2 “ Esum ¨ E

˚
sum “ pE1 ` E2qpE1 ` E2q

˚

“ |E1|
2 ` |E2|

2 ` E1E
˚
2 ` E2E

˚
1

“ |E1|
2 ` |E2|

2 ` 2<pE1E
˚
2 q

“ A2
1 ` A

2
2 ` 2<rA1e

ipkx´ωt`ϕ1qA2e
´ipkx´ωt`ϕ2qs

“ A2
1 ` A

2
2 ` 2A1A2<re ipϕ1´ϕ2qs

“ A2
1 ` A

2
2 ` 2A1A2 cospϕ1 ´ ϕ2q, (5.3)

where < is the real part. We obtain an interference maximum (intensity maximum) if

∆ϕ “ ϕ1 ´ ϕ2 “ n ¨ 2π (5.4)

with n P Z.
For two waves propagating in opposite directions,

E1px, tq “ A1e
ipkx´ωt`ϕ1q

E2px, tq “ A2e
ip´kx´ωt`ϕ2q, (5.5)

the intensity is given by

I “ A2
1 ` A

2
2 ` 2<rA1e

ipkx´ωt`ϕ1qA2e
´ip´kx´ωt`ϕ2qs

“ A2
1 ` A

2
2 ` 2A1A2<re ip2kx`ϕ1´ϕ2qs

“ A2
1 ` A

2
2 ` 2A1A2 cosp2kx ` ϕ1 ´ ϕ2q, (5.6)

Therefore we obtain a maximum of intensity for

2kx “ n ¨ 2π ´ pϕ1 ´ ϕ2q (5.7)

33
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Figure 5.1: Intensity of two waves with amplitudes A1 and A2 propagating in the same direction as a
function of their phase difference ∆ϕ. Zero intensity at a destructive interference minimum can only be
achieved if ∆ϕ “ p2n ` 1qπ and A1 “ A2

with n P Z. Considering that k “ 2π
λ we can see that the distance between two consecutive interference

maxima is

∆x “
λ

2
. (5.8)

The resulting wave has a constant amplitude for a fixed coordinate in space. Such a wave is called a
standing wave.

Now we consider the case of two waves with different frequencies,

B1 “ A1e
ipk1x´ω1t`ϕ1q

B2 “ A2e
ipk2x´ω2t`ϕ2q (5.9)

The intensity is then given by

I “ A2
1 ` A

2
2 ` 2A1A2 cosrpk1 ´ k2qx ´ pω1 ´ ω2qt ` ϕ1 ´ ϕ2s (5.10)

At a fixed point x in space, the intensity oscillates in time, with a time

∆t “
2π

|ω1 ´ ω2|
(5.11)

between intensity maxima. The associated angular frequency ∆ω “ ω1 ´ ω2 is called a beat note. For a
polychromatic light field, which consists of many frequency components, there are many beat notes with
random phases, which in total cause the interference trace to be damped exponentially.

5.2 Coherence

There are two types of coherence: temporal and spatial coherence.

5.2.1 Temporal Coherence

Consider a Michelson–Morley interferometer with variable distances x1 and x2 between the mirrors and the
beam splitter (see Figure 5.4). The length difference ∆x between the two light paths to the screen is

∆x “ 2px2 ´ x1q, (5.12)

corresponding to a runtime difference ∆t “ ∆x{c in the two arms of the interferometer.
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Figure 5.2: Temporal variation of the intensity of two interfering waves with different frequencies

Figure 5.3: Exponentially damped interferogram measured for partially coherent, chaotic light.

Figure 5.4: Schematic representation of a Michelson–Morley interferometer.

We assume that the laser beam consists not just of a single frequency, but of a superposition of many
frequencies (that are usually all very close together, see section 4.7). We call ∆ω “ 2π ¨∆ν the frequency
spread.

Over the runtime difference ∆t of the interferometer, the different frequencies of the laser beam
accumulate phase differences ∆ϕ “ ∆ω ¨ ∆t. The interferometer only operates with good contrast if
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|∆ϕ| ă π; otherwise, the interference fringes are washed out due to the many beat nodes (see section 5.1):

|∆ϕ| ă π ñ |∆x | ă
c

2∆ν
“ π ¨ `C (5.13)

in terms of the coherence length
`C “

c

2π∆ν
“

c

∆ω
(5.14)

and the coherence time

TC “
`C
c
“

1

∆ω
. (5.15)

We see that the frequency spread ∆ω of a laser gives a maximum on the temporal and spatial extents over
which interference can take place.

examples

spectrally filtered lamp:

λ “ 546 nm

∆ν “ 640 MHz

`C “ 7.5 cm (5.16)

laser:

λ “ 632 nm

∆ν “ 1 MHz

`C “ 48 m (5.17)

5.2.2 Spatial Coherence

d

s

Q1 Q2

P
x

E1 E2

Figure 5.5: Two light sources Q1 and Q2 separated by a distance d , shedding coherent light onto a screen
at distance s.

Consider two light sources of the same color, separated by a distance d , illuminating a screen that is
placed at a distance s (see Figure 5.5). A point P on the screen sees two interfering light fields, as in
section 5.1:

E1pP, tq “ A1e
ipk¨Q1P´ωt`ϕ1q

E2pP, tq “ A2e
ipk¨Q2P´ωt`ϕ2q (5.18)

with the distances Q1P “
a

s2 ` px ` d{2q2 and Q2P “
a

s2 ` px ´ d{2q2. The intensity of the total
field is therefore

Ipx, tq “ |E1 ` E2|
2 “ A2

1 ` A
2
2 ` 2A1A2 cos

”

k
´

a

s2 ` px ` d{2q2 ´
a

s2 ` px ´ d{2q2
¯

` ∆ϕ
ı

« A2
1 ` A

2
2 ` 2A1A2 cos

«

2kx
a

1` p2s{dq2
` ∆ϕ

ff

for small |x |. (5.19)
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Around the center of the interference pattern (small |x |), the interference maxima are spaced by 2k¨∆x?
1`p2s{dq2

“

2π, or

∆x “
π

k

a

1` p2s{dq2 «
2πs

kd
“
λs

d
(5.20)

assuming s " d .
The position of the central interference maxima depend on the relative phase of the two sources,

xn « n ¨ ∆x ´
s

kd
¨ ∆ϕ “

λs

d
¨

ˆ

n ´
∆ϕ

2π

˙

(5.21)

under the same assumptions as above. If the relative phases of the two sources fluctuate in time, that
is, if ∆ϕ is not fixed, then the entire interference pattern fluctuates in space (shifts around at random);
integrating over time, the interference pattern is thus washed out.

The two sources at Q1 and Q2 are usually derived from the same oscillator (i.e., laser), prototypically
in Young’s double-slit experiment. The question of the stability of their relative phase ∆ϕ, that is, their
phase coherence, is thus a question of how to split a laser beam into two spatially separated beams without
destroying their coherence. We will return to this point in more detail in chapter 7.

5.2.3 Washing out interference fringes

Assume we are observing a function f px, ϕq “ cospkx`ϕq, similar to Equation (5.10) and Equation (5.19).
Now assume that the phase ϕ is not sharply defined but fluctuates around a mean value ϕ̄ with a standard
deviation σ, so that the probability of having a given value ϕ is

ppϕq “
e´

pϕ´ϕ̄q2

2σ2

σ
?

2π
. (5.22)

The expectation value of the function f is therefore

xf pxqy “

ż 8

´8

f px, ϕqppϕqdϕ “
ż 8

´8

cospkx ` ϕq
e´

pϕ´ϕ̄q2

2σ2

σ
?

2π
dϕ “ e´

1
2
σ2

¨ cospkx ` ϕ̄q

“ e´
1
2
σ2

¨ f px, ϕ̄q. (5.23)

This means that the contrast of the interference fringe f is damped by the factor e´
1
2
σ2

in the presence
of phase fluctuations.





Chapter 6

Optical resonators

6.1 Simplest type: Fabry-Pérot interferometer

Figure 6.1: scheme of a Fabry-Pérot inferferometer.

The Fabry-Pérot interferometer consists of two planar mirrors of finite reflectivity R1 and R2. We
assume that their transmission is given by

Ti “ 1´ Ri (6.1)

where T and R refer to the intensity; this assumes that Ti ` Ri “ 1, i.e., that there are no other losses.
For the electric field, the transmission and reflection coefficients are

ti “
a

Ti ri “
a

Ri (6.2)

respectively. More generally, ti and ri can be complex (to describe phase shifts during the reflection), and
we define Ti “ |ti |2 and Ri “ |ri |2.

We use a one-dimensional approximation: the light waves are assumed to be perfect plane waves,
extending infinitely in the plane parallel to the propagation direction (the z axis); and the mirrors are
infinitely large and planar. The electric field of the wave coming from the left in Figure 6.1 is then given
by

Ein “ E ¨ e
ipkz´ωtq, (6.3)

the field entering the resonator through the left mirror is

E0 “ t1 ¨ Ein, (6.4)

the field after one round trip through the resonator is

E1 “ E0 ¨ e
ikL ¨ r2 ¨ e

ikL ¨ r1 “ E0 ¨ r1r2e
2ikL (6.5)

39
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where L is the effective distance between the mirrors. After n double reflections on the mirrors (n round
trips) the electric field is

En “ E0 ¨
`

r1r2e
2ikL˘n (6.6)

The total electrical field in the resonator is sum of all of these contributions,

Eint “

8
ÿ

n“0

En “ t1Ein
1

1´ r1r2e2ikL (6.7)

The wave going out of the right mirror, leaving the resonator, is

Eout “ Eint ¨ e
ikL ¨ t2 “ Ein

t1t2e
ikL

1´ r1r2e2ikL . (6.8)

The total transmission through the two-mirror setup is

TFP “

ˇ

ˇ

ˇ

ˇ

Eout

Ein

ˇ

ˇ

ˇ

ˇ

2

“
T1T2

1` R1R2 ´ 2<pr1r2e2ikLq
(6.9)

and, assuming ri P R,

TFP “
T1T2

1` R1R2 ´ 2
?
R1R2 cosp2kLq

“
p1´ R1qp1´ R2q

1` R1R2 ´ 2
?
R1R2 cosp2kLq

. (6.10)

For R1 “ R2 “ R:

TFP “
p1´ Rq2

1` R2 ´ 2R cosp2kLq

“
p1´ Rq2

1` R2 ´ 2R
“

1´ 2 sin2
pkLq

‰

“
1

1` 4R
p1´Rq2 sin2

pkLq
Airy function (6.11)
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Figure 6.2: The transmission TFP of the Fabry-Pérot interferometer as a function of the scaled frequency
kL for various values of the reflectivity R of the mirrors.

We find that there is total transmission on resonance (only for R1 “ R2 “ R) due to destructive
interference of the light going back out of the resonator and the part of the incoming wave that is
immediately reflected without entering the resonator. On resonance, kL “ nπ (n P Z) and therefore
sinpkLq “ 0 and TFP “ 1:

ñ λn “
2L

n
νn “

c

2L
¨ n n „ 106 (typically) (6.12)
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Figure 6.3: The reflection RFP “ 1 ´ TFP of the Fabry-Pérot interferometer as a function of the scaled
frequency kL for various values of the reflectivity R of the mirrors.

The distance between the resonances is

∆ν “ νn`1 ´ νn “
c

2L
free spectral range (FSR) (6.13)

Resonance shape:

(i) Ri ! 1, e.g., a glass plate (‘étalon’)

TFP « 1´ 4R sin2
pkLq (6.14)

The transmission is only lightly modulated in frequency.

(ii) Ri « 1: With

sinpkLq “ sin

ˆ

2πν

c
¨ L

˙

“ sin
´

π
ν

∆ν

¯

“ sin

ˆ

π
ν ´ νn

∆ν
` nπ

˙

“ p´1qn sin

ˆ

π
ν ´ νn

∆ν

˙

(6.15)

since sinpα` nπq “ sinpαq cospnπq ` cospαq sinpnπq “ p´1qn sinpαq.

For |ν ´ νn| ! ∆ν we can apply the small-angle approximation:

sinpkLq « π
ν ´ νn

∆ν
(6.16)

ñ TFP «
1

1` 4Rπ2

p1´Rq2

`

ν´νn
∆ν

˘2 “
1

1`
´

ν´νn
∆νres{2

¯2 Lorentzian curve (6.17)

∆νres “
1´ R

π
?
R
¨ ∆ν “

1´ R

π
?
R
¨
c

2L
“ FWHM of resonance (6.18)

We define the finesse

F “
∆ν

∆νres
“
π
?
R

T
“
π
?
R

1´ R
(6.19)
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the quality factor

Q “
ν

∆νres
“ n ¨ F (6.20)

and the resonance enhancement

U “
Iint
Iin
“

1

T
“

1

1´ R
“
F

π
?
R

(6.21)

The photon life time inside the resonator is given by

τph “
1

∆νres
“

2π
?
R

1´ R
¨
L

c
“
π
?
R

1´ R
¨ τR “ F ¨ τR (6.22)

where τR “ 2L{c is the-round trip time of a photon in the resonator.

Example: L “ 5 cm, R “ 98%, λ “ 632.8 nm ñ ν “ 4.7ˆ 1014 Hz, ∆ν “ 3 GHz, ∆νres “ 19 MHz,
F “ 156, n “ 1.6ˆ 105, Q “ 2.5ˆ 107, τR “ 0.33 ns, τph “ 52 ns, U “ 50.
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Figure 6.4: Finesse F of a lossless Fabry-Pérot interferometer, Equation (6.19), as a function of the mirror
transmission T “ 1´ R.

6.2 Resonator stability

Is the Fabry-Pérot resonator stable? See Figure 6.5.

6.2.1 Ray optics with ABCD matrices

In this section we find a simple method for describing the propagation of classical light rays (no diffraction,
no interference) in the paraxial approximation.

Definition: Light ray

See Figure 6.6: we define a light ray by its distance rpzq from the resonator axis and by the slope, assuming
that it always remains in a single plane containing the z-axis. At any given z coordinate, the ray is thus
described by the tuple

~rpzq “

ˆ

rpzq

r 1pzq “
drpzq
dz

˙

(6.23)

If we know the description at one z-coordinate, how do we calculate the resulting description at some
other z-coordinate?
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Figure 6.5: A real wave is not stable in a FP-resonator. Solution: one mirror has to be curved

Figure 6.6: Definition of a classical light ray.

(i) Propagation in homogeneous medium (vacuum, air, etc.) from z1 to z2:

r 12 “ r
1
1

r2 “ r1 ` r
1
1pz2 ´ z1q “ r1 ` r

1
1L

ñ ~r2 “

ˆ

1 L

0 1

˙

¨ ~r1 (6.24)

Thus we can describe a propagation by a distance L by multiplication with a 2ˆ 2 matrix M̂ “
ˆ

1 L

0 1

˙

.

(ii) Planar interface (air/glass) perpendicular to the z-axis:
With the paraxial approximation for small angles sinpθq « tanpθq we obtain with Snell’s law

n1 tanpθ1q « n2 tanpθ2q (6.25)
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At the interface:

r1 “ r2 (the ray does not move laterally during the transition through the interface)

n1r
1
1 « n2r

1
2 (Snell’s law)

ñ ~r2 “

ˆ

1 0

0 n1{n2

˙

¨ ~r1 (6.26)

Thus we can describe the transition from a medium with refractive index n1 into a medium with

refractive index n2 by multiplication with a 2ˆ 2 matrix M̂ “

ˆ

1 0

0 n1{n2

˙

.

(iii) Thin lens with focal length f perpendicular to the z-axis:
We have r1 “ r2. Using 1{f “ 1{g ` 1{b we obtain

Figure 6.7: A thin lens

r1 “ r2 “ r0 (the ray does not move laterally during the passage through the thin lens)

1

f
“

1

r1{r
1
1

`
1

´r2{r
1
2

“
r 11
r1
´
r 12
r2

(imaging)

ñ ~r2 “

ˆ

1 0

´1{f 1

˙

¨ ~r1 (6.27)

Thus we can describe the transition through a thin lens with focal length f by multiplication with a

2ˆ 2 matrix M̂ “

ˆ

1 0

´1{f 1

˙

.

(iv) Spherical mirror of radius R: equivalent to a lens of focal length f “ R{2
planar mirror: R “ 8; convex mirror: R ă 0; concave mirror: R ą 0

M̂ “

ˆ

1 0

´2{R 1

˙

(6.28)

In this way, each optical element can be assigned a ray matrix (“ABCD matrix”) M̂ “
`

A B
C D

˘

. The
combination of n optical elements M̂1, M̂2, . . . , M̂n can then be described by

M̂total “ M̂n ¨ ¨ ¨ M̂2 ¨ M̂1, (6.29)

assuming that the light ray traverses them in increasing order (first element 1 corresponding to M̂1, etc.).
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Figure 6.8: A resonator can be represented by lenses separated by the resonator length L.

6.2.2 Resonator stability

In order to investigate the stability of a simple resonator constructed from two curved mirrors (radii R1

and R2) spaced by L, we define the round-trip ABCD matrix through the following sequence: start after
the first mirror, go to the second mirror, then reflect off of the second mirror, then go to back to the first
mirror, and finally reflect off of the first mirror:

M̂RT “

ˆ

1 0

´ 2
R1

1

˙

¨

ˆ

1 L

0 1

˙

¨

ˆ

1 0

´ 2
R2

1

˙

¨

ˆ

1 L

0 1

˙

“

˜

1´ 2L
R2

2L
´

1´ L
R2

¯

2p2L´R1´R2q

R1R2

4L2´2pR1`2R2qL`R1R2

R1R2

¸

“

ˆ

2g2 ´ 1 2g2L
g1p4g2´2q´2g2

L p4g1 ´ 2qg2 ´ 1

˙

(6.30)

with the dimensionless quantities gi “ 1´ L
Ri
.

For stability we need to ask: Does the ray stay in the resonator after n Ñ8 round-trips? That is,

~r8 “ lim
nÑ8

M̂n
RT ¨ ~r0 (6.31)

must not diverge for a stable resonator. For this we look for stable eigenvectors and eigenvalues (Ñ
resonator modes):

M̂RT ¨ ~re “ λ~re with |λ| ď 1 for stability (6.32)

The eigenvalues of M̂RT are
λ˘ “ 2g1g2 ´ 1˘ 2

a

g1g2pg1g2 ´ 1q (6.33)

The condition that simultaneously |λ`| ď 1 and |λ´| ď 1 is only satisfied if

0 ď g1g2 ď 1 (6.34)

in which case the eigenvalues are complex-valued, λ˘ “ 2g1g2 ´ 1 ˘ 2i
a

g1g2p1´ g1g2q, with |λ˘| “ 1.
Figure 6.9 shows the different regimes for pg1, g2q in which the resonator is stable.
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Figure 6.9: Stability diagram: A resonator is stable if it is in the blue-shaded region; it is only marginally
stable on the edges of this region. For g1 “ g2 “ 0 the resonator is confocal (R1 “ R2 “ L), for
g1 “ g2 “ 1 it is a Fabry-Pérot resonator (plane mirrors, R1 “ R2 “ 8), and for g1 “ g2 “ ´1 the
resonator is concentric (R1 “ R2 “ L{2).



Chapter 7

Laser modes

7.1 Diffraction losses

Diffraction at finite-size mirrors is a cavity loss process: the photons in the resonator are scattered
(diffracted) at the mirror edges and leave the resonator.

Figure 7.1: A resonator with finite-size mirrors can be treated like a system of apertures, separated by the
resonator length L. Diffraction occurs at every aperture.

Fresnel number:

The Fresnel number is defined as

N “
r2

λL
(7.1)

where r is the radius of the apertures/mirrors (assumed both equal) and L the distance between them.
For N " 1 diffraction losses are small (see Figure 7.2 and subsection 7.2.1).

47
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Figure 7.2: Losses of the fundamental mode per round trip as a function of the Fresnel number N for a
confocal and a planar resonator

7.2 Paraxial wave equation

Maxwell (vacuum):

~∇ˆ ~E “ ´
B ~B

Bt
(7.2)a

~∇ ¨ ~E “ 0 (no charges) (7.2)b

~∇ˆ ~B “ µ0ε0
B ~E

Bt
“

1

c2

B ~E

Bt
(no currents) (7.2)c

~∇ ¨ ~B “ 0 (7.2)d

(remember that c “ 1{
?
µ0ε0), from which follows using Equation (7.2)a and Equation (7.2)c,

~∇ˆ p~∇ˆ ~Eq “ ´~∇ˆ
B ~B

Bt
“ ´

B

Bt
~∇ˆ ~B “ ´

1

c2

B

Bt

BE

Bt
“ ´

1

c2

B2 ~E

Bt2
(7.3)

Remember that ~∇ ˆ p~∇ ˆ ~Eq “ ~∇p~∇ ¨ ~Eq ´ ∆~E “ ´∆~E using Equation (7.2)b, with the Laplacian
∆ “ B

Bx2 `
B
By2 `

B
Bz2 . From this we find

∆~E ´
1

c2

B2

Bt2
~E “ 0 wave equation (7.4)

In what follows we discuss monochromatic waves: ~Ep~r , tq “ ~Ep~rqe´iωt

ñ ∆~Ep~rq ` k2~Ep~rq “ 0, k “
ω

c
“

2π

λ
Helmholtz equation (7.5)

This equation is to be interpreted for each component of the vector ~E separately. Some well-known
solutions are

~Ep~rq “ ~E0 ¨ e
i~k¨~r plane wave

~Ep~rq “ ~A ¨
e ikr

r
spherical wave (7.6)

with }~k} “ k and }~r} “ r .
For a wave passing an aperture that lies in a plane orthogonal to the z-axis, and propagating approxi-

mately along the z-axis, we adopt the following Ansatz:

Ep~rq “ ψp~rqe´ikz . (7.7)
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Here, E stands for any of the three components of the field, which all satisfy Equation (7.5). We assume
that ψp~rq depends only weakly on z on the wavelength scale λ: this is the paraxial approximation:

λ

ˇ

ˇ

ˇ

ˇ

Bψ

Bz

ˇ

ˇ

ˇ

ˇ

! |ψ| ô

ˇ

ˇ

ˇ

ˇ

Bψ

Bz

ˇ

ˇ

ˇ

ˇ

! k |ψ| (7.8)a

λ2

ˇ

ˇ

ˇ

ˇ

B2ψ

Bz2

ˇ

ˇ

ˇ

ˇ

! |ψ| ô

ˇ

ˇ

ˇ

ˇ

B2ψ

Bz2

ˇ

ˇ

ˇ

ˇ

! k2|ψ| (7.8)b

Starting from the Helmholtz Equation (7.5)

∆E ` k2E “ 0
ˆ

B

Bx2
`

B

By2
`

B

Bz2

˙

ψe´ikz ` k2ψe´ikz “ 0

ˆ

B2ψ

Bx2
`
B2ψ

By2
`
B2ψ

Bz2
´ 2ik

Bψ

Bz

˙

e´ikz “ 0 (7.9)

and neglecting the third term in the parenthesis because
ˇ

ˇ

ˇ

B2ψ
Bz2

ˇ

ˇ

ˇ
!

ˇ

ˇ

ˇ

B2ψ
Bx2 `

B2ψ
By2

ˇ

ˇ

ˇ
gives the

∆Tψ “ 2ik
Bψ

Bz
paraxial wave equation (7.10)

in terms of the transverse Laplacian ∆T “
B2

Bx2 `
B2

By2 (Cartesian coordinates) or ∆T “
B2

Br2 `
1
r
B
Br `

1
r2
B2

Bφ2

(cylindrical coordinates).

7.2.1 Fresnel diffraction

If the Fresnel number, Equation (7.1), is large (N " 1), the paraxial wave Equation (7.10) is a very good
approximation. In general, knowing any component of the electric field Epx, y , z0q in a plane z “ z0 then
allows us to propagate this component to another plane z with the Fresnel diffraction integral

Epx, y , zq “
e ikpz´z0q

iλpz ´ z0q

8x

´8

dx 1dy 1Epx 1, y 1, z0qe
ik

2pz´z0q
rpx´x 1q2`py´y 1q2s (7.11)

which is an exact solution of the paraxial wave equation.
For example, if we insert a square aperture into a beam path, what does the beam look like a certain

distance after the aperture?

7.3 Gaussian beam

The general solution of the paraxial wave equation, Equation (7.11), is cumbersome in practice and
maladapted to the description of optical resonators.

A more specialized solution of the paraxial wave Equation (7.10) is the Gaussian beam

~Epr, zq “ E0x̂
w0

wpzq
e
´ r2

w2pzq e
´i

´

kz` kr2

2Rpzq
´ϕpzq

¯

(7.12)

assuming that the beam is polarized along the x-axis (using the unit vector x̂).

• r “
a

x2 ` y2 and z are the radial and axial coordinates

• wpzq is the beam waist at which the beam intensity has dropped to 1{e2 of the value on-axis (r “ 0)

• Rpzq is the radius of curvature of the wave fronts, see Figure 7.4

• ϕpzq is the Gouy phase that slightly modifies the plane-wave propagation phase kz
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• The magnetic field is
~Bpr, zq “ ´

i
ω
~∇ˆ ~E (7.13)

satisfying Equation (7.2)a: ~∇ˆp~Ee´iωtq “ ´ B
Bt p
~Be´iωtq. It has components in the y and z direction

(mostly along y); but zero component in the x direction.

• The Poynting vector, describing the direction of propagation of the light energy, is

~Spr, zq “
1

µ0

~E˚ ˆ ~B “
1

µ0

~E˚ ˆ ~B. (7.14)

It has components in the y and z direction (mostly along z); but zero component in the x direction.

Inserting Equation (7.12) into Equation (7.10) (not forgetting Equation (7.7)) gives the differential equa-
tions for wpzq, Rpzq, and ϕpzq, with the solutions

wpzq “ w0

d

1`

ˆ

z

z0

˙2

(7.15)a

Rpzq “ z

„

1`
´z0

z

¯2


(7.15)b

ϕpzq “ arctan

ˆ

z

z0

˙

(7.15)c

where z0 “
kw2

0

2 “
πw2

0

λ is the Rayleigh range, and z “ 0 is the point where the beam has minimal waist
(i.e., the beam focus).

Figure 7.3: The beam waist wpzq, Equation (7.15)a, as a function of z

• The paraxial approximation requires that z0 " w0 " λ

• Gaussian profile gives the minimum beam divergence in the far field.

• Only parameters are λ,w0

7.3.1 Far-field limit

In the far field, when |z | " z0, the beam parameters of Equation (7.15) are approximately

wpzq « w0
|z |

z0
(7.16)a

Rpzq « z (7.16)b

ϕpzq «
π

2
signpzq (7.16)c
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Figure 7.4: Wavefronts of a Gaussian beam. At the waist of the beam (z “ 0) the radius of curvature
Rpzq, Equation (7.15)b, diverges.

From Equation (7.16)a the far-field divergence half-angle is

tanpαq “ lim
zÑ8

dwpzq
dz

“
w0

z0
“

w0

πw2
0

λ

“
λ

πw0
. (7.17)

We can therefore relate the beam parameters to the far-field divergence half-angle α:

w0 “
λ

π tanpαq
(7.18)a

z0 “
λ

π tan2pαq
(7.18)b

The Gaussian beam deviates from a classical ray description in a volume around the focus that is described
by the longitudinal size z0 and the transverse size w0. In the classical ray limit λÑ 0 this volume shrinks
to zero.

We note that the numerical aperture of the Gaussian beam is

NA “ sinpαq “
tanpαq

a

1` tan2pαq
“

λ
a

λ2 ` π2w2
0

. (7.19)

7.4 Propagation of Gaussian beams

We define the complex beam parameter qpzq with

1

qpzq
“

1

Rpzq
´ i

λ

πw2pzq
(7.20)

remembering that both Rpzq and wpzq are real-valued. Given a beam parameter q, we calculate the beam
waist and the wavefront curvature with

w “

d

´
λ

π ¨ =p1{qq (7.21)a

R “
1

<p1{qq (7.21)b

Naturally, a parameter q is only physically meaningful if both R P R and w P R, which means that we
must have =p1{qq ď 0 for physically meaningful Gaussian beams.
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7.4.1 Free-space propagation

Using Equation (7.15),

qpzq “

»

—

—

–

1

z
”

1`
`

z0

z

˘2
ı ´ i

λ

πw2
0

„

1`
´

z
z0

¯2


fi

ffi

ffi

fl

´1

“ z ` iz0. (7.22)

The free-space propagation of a Gaussian beam from a position z1 to a position z2 can therefore be done
through the complex beam parameter: noticing that qpz1q “ z1 ` iz0 and qpz2q “ z2 ` iz0, we find that
qpz1q ´ z1 “ qpz2q ´ z2 “ iz0 and therefore

qpz2q “ qpz1q ` z2 ´ z1. (7.23)

Propagation in free space over a distance L is therefore done with

q2 “ q1 ` L “
1 ¨ q1 ` L

0 ¨ q1 ` 1
(7.24)

where qi “ qpzi q.

7.4.2 Thin lens

Figure 7.5: Wavefronts of a spherical wave passing through a thin lens

A thin lens affects only the radius of curvature of the beam, not its waist (Figure 7.5):

1

R1
´

1

R2
“

1

f
w1 “ w2

<p1{q1q ´ <p1{q2q “
1

f
=p1{q1q “ =p1{q2q

<p
1

q1
´

1

q2
q “

1

f
=p

1

q1
´

1

q2
q “ 0 (7.25)

These are all satisfied if 1
q1
´ 1

q2
“ 1

f , and hence

q2 “
f q1

f ´ q1
“

1 ¨ q1 ` 0

´ 1
f ¨ q1 ` 1

(7.26)
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Figure 7.6: In general the position of the waist of a Gaussian beam is not at the same position as the
focus in ray optics!

7.4.3 ABCD matrices

Comparing Equation (7.24) and Equation (7.26) with Equation (6.24) and Equation (6.27), we notice
that the classical ray propagation with an

`

A B
C D

˘

matrix corresponds to a Gaussian beam propagation

q2 “
A ¨ q1 ` B

C ¨ q1 `D
(7.27)

This transformation equation defines the connection between ray optics and Gaussian beam optics. Every-
thing in subsection 6.2.1 thus remains valid. In particular, two optical elements can still be described by
the product of their ABCD matrices. Consider a first optical element described by M̂1 “

`

A1 B1

C1 D1

˘

followed
by a second optical element M̂2 “

`

A2 B2

C2 D2

˘

. In ray optics, combination of these two elements is described
by the matrix

M̂ “

ˆ

A B

C D

˙

“

ˆ

A2 B2

C2 D2

˙

¨

ˆ

A1 B1

C1 D1

˙

“

ˆ

A1A2 ` C1B2 B1A2 `D1B2

A1C2 ` C1D2 B1C2 `D1D2

˙

(7.28)

In Gaussian beam optics, the propagation through these elements proceeds as

q2 “
A1q1 ` B1

C1q1 `D1

q3 “
A2q2 ` B2

C2q2 `D2
“
A2 ¨

A1q1`B1

C1q1`D1
` B2

C2 ¨
A1q1`B1

C1q1`D1
`D2

“
A2pA1q1 ` B1q ` B2pC1q1 `D1q

C2pA1q1 ` B1q `D2pC1q1 `D1q

“
pA1A2 ` C1B2qq1 ` pB1A2 `D1B2q

pA1C2 ` C1D2qq1 ` pB1C2 `D1D2q
, (7.29)

which is precisely the expression expected from Equation (7.28).

7.5 Resonator modes for Gaussian beams

As in subsection 6.2.2 we construct a resonator from two curved mirrors with radii R1 and R2, spaced by
a distance L, and define gi “ 1 ´ L

Ri
. The cavity ABCD matrix of Equation (6.30) must now satisfy the

eigenvalue equation

q “
A ¨ q ` B

C ¨ q `D
(7.30)

so that q is the resonator eigen-mode. This quadratic equation has two solutions (two modes),

q˘ “
A´D ˘

a

pA´Dq2 ` 4BC

2C
“ L ¨

p1´ g1qg2 ˘
a

g1g2pg1g2 ´ 1q

2g1g2 ´ g1 ´ g2
(7.31)
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These solutions are physically relevant only if =p1{qq ă 0 according to Equation (7.21)a. Since 1{q˘ “
pg1´1qg2˘

?
g1g2pg1g2´1q

g2L
, this can have a negative imaginary part only if g1g2pg1g2 ´ 1q ď 0, i.e., if 0 ď

g1g2 ď 1. We see that the stability criterion of Equation (6.34) is unchanged: it is valid for both ray optics
and Gaussian optics. The relevant cavity mode is thus

q̂ “

$

&

%

L ¨
p1´g1qg2`i

?
g1g2p1´g1g2q

2g1g2´g1´g2
if g1, g2 ă 0

L ¨
p1´g1qg2´i

?
g1g2p1´g1g2q

2g1g2´g1´g2
if g1, g2 ą 0

(7.32)

Remember how we had defined the cavity ABCD matrix in subsection 6.2.2: the resonator mode q̂ first
propagates from mirror 1 to mirror 2. This allows us to find the position of the beam focus in the cavity:
propagating a distance z away from mirror 1, the beam parameter is, according to Equation (7.24),

q̂pzq “ q̂ ` z (7.33)

The focus is the place zfocus where q̂pzfocusq is purely imaginary, so that the beam waist is minimized and
the wavefront curvature radius diverges (Equation (7.21)). Using Equation (7.32) we find that the focus
is at a distance

zfocus “ ´L ¨
p1´ g1qg2

2g1g2 ´ g1 ´ g2
(7.34)

from the first mirror. At the focus, the beam parameter is

q̂focus “ i
L
a

g1g2p1´ g1g2q

|2g1g2 ´ g1 ´ g2|
“ i
πw2

0

λ
, (7.35)

from which we determine the focal waist and the Rayleigh range

w0 “

d

λL
a

g1g2p1´ g1g2q

π|2g1g2 ´ g1 ´ g2|
(7.36)a

z0 “
πw2

0

λ
“ L ¨

a

g1g2p1´ g1g2q

|2g1g2 ´ g1 ´ g2|
(7.36)b

Relative to this focus, the first mirror is located at position z1 “ ´zfocus “ ´L ¨
pg1´1qg2

2g1g2´g1´g2
, and the second

mirror at z2 “ z1 ` L “ L ¨
pg2´1qg1

2g1g2´g1´g2
.

See Equation (7.12): the total phase of a propagating Gaussian beam on the axis (r “ 0) is given by

ϑpzq “ kz ´ ϕpzq “ kz ´ arctan

ˆ

z

z0

˙

(7.37)

where kz is the phase of a plane wave and arctan z
z0
the Gouy phase. In a resonator, the phase accumulated

between the left mirror (at z “ z1) and the right mirror (at z “ z2) must be an integer multiple of π:

ϑpz2q ´ ϑpz1q “ ` ¨ π with ` P Z (7.38)

With the above expressions for z1 and z2 this condition becomes, after some trigonometric magic,

kpz2 ´ z1q ´ arctan

ˆ

z2

z0

˙

` arctan

ˆ

z1

z0

˙

“ ` ¨ π

ñ kL´ arctan

¨

˚

˝

L ¨
pg2´1qg1

2g1g2´g1´g2

L ¨

?
g1g2p1´g1g2q

|2g1g2´g1´g2|

˛

‹

‚
` arctan

¨

˚

˝

´L ¨
pg1´1qg2

2g1g2´g1´g2

L ¨

?
g1g2p1´g1g2q

|2g1g2´g1´g2|

˛

‹

‚
“ ` ¨ π

ñ kL´
´π

2
¯ arcsin

?
g1g2

¯

“ ` ¨ π

ñ kL “ p``
1

2
q ¨ π ¯ arcsin

?
g1g2

ñ ν` “
c

2L

„

``
1

π

´π

2
¯ arcsin

?
g1g2

¯



(7.39)

where the upper sign stands for g1, g2 ą 0 and the lower sign for g1, g2 ă 0. These are the frequencies of
the modes of the resonator. Note that the frequency spacing ∆ν “ c

2L is the same as for the Fabry-Pérot
resonator.



7.6. TRANSVERSE MODES 55

7.6 Transverse modes

A complete set of solutions for the paraxial wave equation for a stable resonator is given by the Her-
mite–Gauss modes for pm, nq P N2

0:

ψmnpx, y , zq “ ψ0
w0

wpzq
Hm

ˆ

x
?

2

wpzq

˙

Hn

ˆ

y
?

2

wpzq

˙

¨ e
´ r2

w2pzq e
´i

´

kr2

2Rpzq
`ϕpzq

¯

(7.40)

with r “
a

x2 ` y2. Here, wpzq and Rpzq are the same as before, but the Gouy phase is now

ϕpzq “ pm ` n ` 1q arctan

ˆ

z

z0

˙

. (7.41)

The first Hermite polynomials are

H0pxq “ 1

H1pxq “ 2x

H2pxq “ 4x2 ´ 2

H3pxq “ 8x3 ´ 12x. (7.42)

• Same wave front curvature as for Gaussian beams Ñ the stability condition of resonators is indepen-
dent of m, n.

• The transverse dimension increases withm, nÑ higher diffraction losses. Specifically, the root-mean-square
beam diameters scale as

a

xx2y9
?

1` 2m and
a

xy2y9
?

1` 2n.

• m, n indicate the number of node lines in x and y direction.

Figure 7.7: A few low-order transverse modes: Hermite–Gauss (left, Equation (7.40)) and Laguerre–Gauss
(right, Equation (7.47)) modes. Red and blue regions have opposite sign. The scaled coordinates are
x{wpzq and y{wpzq. Degenerate Hermite–Gauss modes (with equal m`n) can be combined into degener-
ate Laguerre–Gauss modes (with equal 2p ` |q|) and vice-versa, since they have the same frequency (see
Equation (7.43) and Equation (7.50)). Note that for the Laguerre–Gauss modes with q ‰ 0 there are two
degenerate solutions; we have only plotted their real-valued symmetric combination ψp,´qpr, φq`ψp,qpr, φq,
whereas the other solution is found by a rotation around the center.
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• Resonance frequencies:

ν`mn “
c

2L

„

``
m ` n ` 1

π

´π

2
¯ arcsin

?
g1g2

¯



“ ` ¨
c

2L
loomoon

∆νFSR

`pm ` n ` 1q ¨
c

2πL

´π

2
¯ arcsin

?
g1g2

¯

looooooooooooooomooooooooooooooon

∆νGouy

(7.43)

Examples:

• Planar FP resonator (g1 “ g2 “ 1):

ν`mn “
c

2L
¨ ` (degeneracy!) (7.44)

• confocal (g1 “ g2 “ 0)

ν`mn “
c

2L

„

``
m ` n ` 1

2



for a beam exactly on the axis

ν`mn “
c

4L

„

``
m ` n ` 1

2



for a beam with transverse displacement, requiring

two round-trips until overlapping the initial position (7.45)

• concentric (g1 “ g2 “ ´1)

ν`mn “
c

2L
p``m ` n ` 1q (7.46)

Figure 7.8: Transmission spectrum of a concentric resonator for transverse Hermite–Gauss modes, see
Equation (7.43). For Laguerre–Gauss modes, replace m ` n with 2p ` |q|, see Equation (7.50).

For a completely cylindrically symmetric resonator the Laguerre–Gauss modes are more useful. Exam-
ple: doughnut mode (see Figure 7.7). For this, degenerate modes of Equation (7.40) are added to form
the cylindrically symmetric modes for p P N0 and q P Z:

ψpqpr, φ, zq “ ψ0
w0

wpzq

ˆ

r
?

2

wpzq

˙|q|

L
|q|
p

ˆ

2r2

w2pzq

˙

¨ e
´ r2

w2pzq e
´i

´

qφ` kr2

2Rpzq
`ϕpzq

¯

. (7.47)

where Lap are generalized Laguerre polynomials:

La0pxq “ 1

La1pxq “ 1` a ´ x

La2pxq “
a2 ` 3a ` 2´ 2pa ` 2qx ` x2

2

La3pxq “
a3 ` 6a2 ` 11a ` 6´ 3pa2 ` 5a ` 6qx ` 3pa ` 3qx2 ´ x3

6
(7.48)
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• The Gouy phase is now

ϕpzq “ p2p ` |q| ` 1q arctan

ˆ

z

z0

˙

(7.49)

• The transverse dimension increases with p and q Ñ higher diffraction losses. Specifically, the
root-mean-square beam diameter scales as

a

xr2y9
a

1` 2p ` |q|.

• p indicates the number of radial node lines

• q indicates the azimuthal dependence e´iqφ: |q| azimuthal node lines in the real-valued combinations
pψp,q ` ψp,´qq{

?
2 and pψp,q ´ ψp,´qq{pi

?
2q.

• Resonance frequencies: comparing Equation (7.41) with Equation (7.49),

ν`pq “
c

2L

„

``
2p ` |q| ` 1

π

´π

2
¯ arcsin

?
g1g2

¯



(7.50)

7.7 Mode selection

Figure 7.9: Without mode selection a laser can operate on several longitudinal ` and transverse pm, nq
modes at the same time.

A laser resonator can operate (lase) on many modes, with frequencies given in Equation (7.43) or
Equation (7.50). How can we ensure that the laser puts out a monochromatic light beam, originating
from only a single optical mode?

An optical mode can only generate laser light if its gain is larger than its losses (chapter 3). In order to
select one particular optical mode, we therefore need to (i) maximize its gain and (ii) minimize its losses,
while for all other modes we (i) minimize the gain and (ii) maximize the losses. A combination of gain and
loss modulations is usually sufficient to limit lasing operation to a single optical mode.

The gain profile of most laser media has a strong wavelength dependence. For example, Nd:YAG
crystals only provide significant gain around wavelengths of 1064 nm; helium-neon gas only has gain around
632.8 nm. Usually, no further gain modulation is added to the laser.

The remaining mode selection tries to minimize the loss of the desired mode while maximizing the
losses of all other modes, with the goal of having only one single mode whose loss is smaller than its gain.

Specific loss-modulation techniques are:

1. Get rid of higher transverse modes by introducing losses for these modes. The easiest way to do so
is to place an aperture into the beam, since higher-order transverse modes have a larger radius than
the pm, nq “ p0, 0q mode (see above).
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2. Selection of one polarization out of two per mode. This can for example be achieved by the shape of
the active medium: inclined facets can allow one polarization to pass without attenuation (Brewster’s
angle), while the other polarization is (partly) reflected out of the resonator. Due to mode-competi-
tion, the wrong polarization mode dies out. Any birefringent effect can be used to this end.

3. Longitudinal mode selection: Rough (laser line): Gratings (e.g., CO2 laser, semiconductor laser),
prisms (Ar` laser).

Figure 7.10: Methods of longitudinal mode selection: With a prism (top) and a grating (bottom), only a
narrow frequency range is back-reflected into the resonator; “wrong” frequencies refracted out of the beam
path and thus experience higher loss.

Another possibility for a rough selection is a birefringent (Lyot) filter (= adjustable λ-phase plate +
polarizer). This gives transmission:

T pλq “ T0 cos2

ˆ

π∆nL

λ

˙

. (7.51)

With these methods we can limit the spectral width down to „ 1 nm

4. Longitudinal mode selection: Fine selection
Introduce an intra-cavity étalon (low-finesse Fabry-Pérot interferometer = glass plate, see sec-
tion 6.1), which has 100% transmission for resonant frequencies and higher loss for all other fre-
quencies. This allows to reduce the spectral width of the laser to „ 1 MHz.
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Figure 7.11: Combination of all longitudinal mode selective elements. The losses of all modes except one
are increased above their respective gain.





Chapter 8

Short laser pulses

Recall: for a 4-level laser, the differential equations for the inversion density I “ n2 and the laser-mode
photon density plaser are (from Equation (3.13)b and Equation (3.16), using the translation table on
page 17)

9n2ptq “ ´rcσ21plaserptq ` S21sn2ptq `Wpumprn ´ n2ptqs (8.1)a

9plaserptq “ ´rγ ´ cσ21n2ptqsplaserptq (8.1)b

where we have again made the adiabatic assumptions n1 “ n3 “ 0. Also, remember that the loss rate
γ “ τ´1

photon is the inverse of the photon lifetime in the resonator.
To simplify the solution of these coupled differential equations, we introduce the following dimensionless

quantities:

τ “ γt dimensionless time

s21 “
S21

γ
dimensionless spontaneous emission rate

wpump “
Wpump

γ
dimensionless pump rate

wth “
Wth

γ
dimensionless threshold pump rate

ν2ptq “
n2ptq

n
fractional inversion

πlaserptq “
plaserptq

n
scaled laser photon number

νth “
γ

cnσ21
fractional threshold inversion (8.2)

With these, the differential equations of Equation (8.1) depend only on three independent dimensionless
parameters pνth, s21, wpumpq:

9ν2pτq “ ´rπlaserpτq{νth ` s21sν2pτq ` wpumpr1´ ν2pτqs (8.3)a

9πlaserpτq “ ´r1´ ν2pτq{νthsπlaserpτq (8.3)b

In section 3.6 we studied the stationary (equilibrium) solutions 9ν2 “ 9πlaser “ 0 of these differential equa-
tions:

• Below threshold:

πlaser “ 0 (8.4)a

ν2 “
wpump

wpump ` s21
(8.4)b

• Above threshold:

πlaser “ wpump ¨ p1´ νthq ´ νths21 “ pwpump ´ wthq ¨ p1´ νthq (8.5)a

ν2 “ νth (8.5)b

• Threshold: wth “
s21

1{νth´1

61
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8.1 Dynamics: switching a laser on

Outside of equilibrium, the differential equations in Equation (8.1) or Equation (8.3) cannot be solved
analytically. We look at a few special cases numerically.

For all simulations, we set

• Wpump “ 2Wth: we pump at twice the threshold pump power. Implying wpump “ 2 ¨ s21

1{νth´1 .

• limtÑ8 n2ptq “ 0.1n: at equilibrium there is a small population inversion. Implying νth “ 0.1.

• n2p0q “ 0: no population inversion at the beginning of the simulation. Implying ν2p0q “ 0.

• plaserp0q “ 10´6 ¨ limtÑ8 plaserptq: very small photon population at the beginning of the simulation.
Implying πp0q “ 10´6 ¨ pwpump ´ wthq ¨ p1´ νthq “ 10´6 ¨ rwpump ´ pwpump ` s21qνths.

8.1.1 Switching on a low-efficiency laser
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Figure 8.1: Dynamics of switching on a low-efficiency laser, by numerical solution of Equation (8.3). The
parameters are s21 “ 1, νth “ 0.1, wpump “ 2{9; the initial conditions are ν2p0q “ 0, πp0q “ 10´7. The
inversion builds up on a time scale ∆τinversion « 0.8 to a quasi-stationary level ν2 « wpump{pwpump ` s21q;
the photon population builds up exponentially on the time scale ∆τlaser « 1.2 (starting from a very small
level) and depletes the inversion to its equilibrium value νth. This is the regime in which continuous-wave
(cw) lasers usually operate.

See Figure 8.1: for large s21 the inversion builds up very fast while the photon population builds up much
more slowly. To describe the build-up of the inversion at small times, we approximate Equation (8.3)a as

9ν2pτq « ´s21ν2pτq ` wpumpr1´ ν2pτqs (8.6)

with the solution
ν2pτq «

wpump

wpump ` s21
¨

´

1´ e´pwpump`s21qτ
¯

(8.7)

We see that within a time ∆τinversion „ pwpump ` s21q
´1 the inversion builds up to a stationary value

of ν2 « wpump{pwpump ` s21q, which is larger than the equilibrium value of νth, Equation (8.5)b. This
excess inversion then allows the photon population to build up: Equation (8.3)b is, assuming constant
ν2 “ wpump{pwpump ` s21q,

9πlaserpτq «

ˆ

wpump

wpump ` s21
{νth ´ 1

˙

πlaserpτq (8.8)

with the exponential solution

πlaserpτq « πlaserp0q ¨ e

´

wpump
wpump`s21

{νth´1
¯

τ (8.9)

The time scale for building up the laser power is therefore ∆τlaser „
´

wpump
wpump`s21

{νth ´ 1
¯´1

, starting (usually)
from a very small initial population.



8.2. Q-SWITCHING 63

� �� ��� ��� ��� ��� ���

����

����

����

����

τ

ν
�
(τ
)

� �� ��� ��� ��� ��� ���

�����

�����

�����

�����

τ

π
(τ
)
��
��
��

� �� ��� ��� ��� ��� ���

��-��

��-�

��-�

τ

π
(τ
)
��
��
��
��
�
��

Figure 8.2: Dynamics of switching on a high-efficiency laser, by numerical solution of Equation (8.3). The
parameters are s21 “ 0.03, νth “ 0.1, wpump “ 1{150; the initial conditions are ν2p0q “ 0, πlaserp0q “
3ˆ 10´9. The inversion builds up on a slow time scale ∆τinversion « 27; the photon population builds up
on the much faster time scale ∆τlaser « 1.2 and periodically over-depletes the inversion, leading to a pulsed
laser output.

8.1.2 Switching on a high-efficiency laser

See Figure 8.2: for small s21 the inversion builds up more slowly than the photon population; transient
laser pulsing (“ringing”) results from the periodic over-depletion of the inversion. The duration of the first

pulse is on the order of ∆τpulse „ ∆τlaser „
´

wpump
wpump`s21

{νth ´ 1
¯´1

given above.

8.2 Q-Switching

Switching an entire laser on and off, particularly its pump wpump, is difficult to do within a short amount
of time. To generate short laser pulses, an alternative to subsection 8.1.2 is usually used.

Assume that the laser resonator contains a special element, called a Q-switch, which can modify the
losses: it can be either in a low-loss state, γ “ γ0, or in a high-loss state, γ Ñ8 (or at least such a large
value that the laser is below threshold). This switch can usually change its state within very short amounts
of time: nanoseconds or even shorter.

8.2.1 Q-switch in the high-loss state

For sufficiently large γ (when the Q-switch is in the high-loss state) the laser is below threshold and is
described approximately by the differential equation

9ν2pτq « ´s21ν2pτq ` wpumpr1´ ν2pτqs

ñ ν2pτq « ν2p0q ¨ e
´ps21`wpumpqτ `

wpump

s21 ` wpump

”

1´ e´ps21`wpumpqτ
ı

(8.10)a

πlaserpτq « 0 (8.10)b

leading to a stationary state of ν2 «
wpump

s21`wpump
and p « 0 after a buildup time of ∆tinversion „ pWpump `

S21q
´1. This stationary state is independent of the exact value of γ and even persists in the limit γ Ñ8.

Keep in mind that πlaser is never exactly zero because of spontaneous emission.

8.2.2 Q-switch in the low-loss state

Once the above equilibrium has been reached, we abruptly switch the Q-switch to its low-loss state γ “ γ0

and bring the laser above its threshold. Assuming a high-efficiency situation, we solve the differential
Equation (8.3) in the same was as in subsection 8.1.2, but this time using as initial conditions the stationary
state of subsection 8.2.1: ν2pτ “ 0q “

wpump
s21`wpump

.
There is no need for the switching process to be fast; it may be significantly longer than both the

buildup timescale ∆τlaser and the resonator round-trip time.
See Figure 8.3: after “closing the Q-switch” (i.e., switching it to low-loss mode), the laser light builds

up exponentially and generates a series of light pulses. The timing of the first light pulse depends on the
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Figure 8.3: Dynamics of Q-switching a high-efficiency laser, by numerical solution of Equation (8.1).
The parameters are s21 “ 0.03, νth “ 0.1, wpump “ 1{150 as in Figure 8.2; the initial conditions are
ν2p0q “

wpump
s21`wpump

“ 0.18, πp0q “ 3ˆ 10´9. The same pulses as in Figure 8.2 are observed, but with larger
intensity and more controlled timing.

exact amount of light present in the resonator mode at the time of closing the Q-switch, which can come
from spontaneous emission (fluctuates!) or from injection-seeding a weak but stable external laser beam.

If the Q-switch is re-opened after the first pulse (around τ “ 40 in this example), then only a single
pulse is generated and exits through the output coupler. Again, the duration of the first pulse is on the

order of ∆τpulse „ ∆τlaser „
´

wpump
wpump`s21

{νth ´ 1
¯´1

. Pulses of few nanoseconds duration can be generated
in this way.

Example: Q-switched Nd:YAG laser

The laser medium is ‘charged’ with energy within „ 100 µs, while the ‘discharge’ takes only „ 10 ns by
laser pulse ñ peak power " pump power.

Typical laser pumped by flash lamps has a peak power of

P̂ „ 1 J{10 ns “ 100 MW (8.11)

Figure 8.4: Typical experimental realizations of a Q-switched laser. S stands for the saturable absorber
in the case of passive Q-switching or for the modulator in the case of active Q-switching. The bottom
scheme shows an instable resonator built with one plane and one convex highly reflecting mirrors.
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8.2.3 Passive Q-switching with a saturable absorber

A saturable absorber is a material, placed inside the optical resonator, with an absorption that depends
on the light intensity in the resonator. As long as there is very little light in the resonator, the absorber
introduces a large loss (“the Q-switch is off”, subsection 8.2.1) and the laser is below threshold.

When the inversion in the active medium reaches large values, spontaneous emission starts to become
so intense that the absorber becomes saturated. This can most easily be visualized (and realized) by
an effective 2-level system: by pumping population from the ground into the excited state, the rate of
stimulated emission starts to reach the rate of absorption and the absorber becomes transparent. As a
result, the loss is reduced dramatically and the Q-switch is closed (subsection 8.2.2).

Specifically, the intensity-dependent absorption coefficient of the saturable absorber is

αpIq “
α0

1` I{IS
(8.12)

where IS is the saturation intensity. Mostly dye solutions are used:

+ broad absorption bands

+ high α0, giving good lasing suppression

˝ pS „ 5ˆ 1011 W{m2

– photochemically instable

Passive Q-switching leads to automatic pulsed operation of the laser, emitting short laser pulses in a
more-or-less regular pattern. A big disadvantage of this technique is that the pulses cannot be externally
triggered, since they occur spontaneously.

There are applications, however, where pulse regularity is not required, for example in laser cutting.

8.2.4 Active Q-switching

Active Q-switches have the great advantage that they allow for a precise control over the time at which
pulses occur. Specific techniques include

• Acousto-optic modulation: An ultrasonic acoustic wave inside a crystal Bragg-deflects the intra-cavity
mode. By rapidly switching this acoustic wave on or off, the Q-switch is operated. Sub-microsecond
switching time.

• Electro-optic modulation (Pockels effect): A strong electric field rotates the polarization of the intra-
cavity mode. By using other polatization-dependent elements (section 7.7) this allows Q-switching.
Few-nanosecond switching time.

Most active Q-switches do not absorb in the high-loss state, but rather deviate the beam out of the
resonator. This property is often used to out-couple the useable laser beam (instead of through an output
coupling end-mirror). Upon re-opening the Q-switch (when the buildup of the first pulse is complete, see
Figure 8.3), the entire light energy present in the resonator is deflected and becomes the output beam
within a single cavity round-trip. In this way, even shorter laser pulses of ∆t „ 2L{c are generated (as
long as the Q-switching time is smaller than 2L{c).

8.3 Mode locking

Mode locking is a method for producing femtosecond (1 fs “ 10´15 s) laser pulses. The laser pulse is much
shorter than the cavity: ∆t ! 2L{c (see subsection 8.2.4 for comparison with a Q-switched laser).
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Figure 8.5: For a broad gain profile gpνq several modes that are supported by the resonator can participate
in lasing.

8.3.1 Principle

Since c ¨ ∆t ! 2L we must have ∆ν " ∆νFSR “
c

2L (see subsection 4.1.1): the laser must operate
simultaneously on many longitudinal modes. In order to generate short pulses, we need simultaneous
lasing of many longitudinal modes with fixed phase relations.

For this we need a broad gain profile gpνq with a width ∆νg " ∆νFSR; see Figure 8.5.
For many resonators, ∆νFSR “

c
2L (see section 7.6). In general, we assume that the `th mode has a

frequency ν` “ ν0 ` ` ¨ ∆νFSR, that is, we assume that the spectrum of the resonator is linear and that
there are no transverse excitations (m “ n “ 0; spatial mode filtering as in section 7.7). The electric-field
amplitude (in a given polarization direction) in the resonator can be written as a sum over longitudinal
modes,

Ep~r , tq “
8
ÿ

`“0

c`E`p~rqe2πiν`t (8.13)

where the E`p~rq are the mode functions (for example, Equation (7.12) with specific beam parameters) and
the c` are the amplitudes (every mode can have a different amplitude). Naturally, only those modes where
significant gain is available can have a nonzero c`. (The mathematical form of this decomposition must
look familiar to you from quantum mechanics.)

Inserting ν` “ ν0 ` ` ¨ ∆νFSR into Equation (8.13), we notice that

Ep~r , t ` ∆ν´1
FSRq “

8
ÿ

`“0

c`E`p~rqe2πipν0``¨∆νFSRqpt`∆ν´1
FSRq

“

8
ÿ

`“0

c`E`p~rqe2πipν0``¨∆νFSRqt ¨ e2πiν0{∆νFSR ¨ e2πi`

“ e2πiν0{∆νFSR ¨ Ep~r , tq (8.14)

since e2πi` “ 1 when ` P Z. This means that the magnitude of the electric field is periodic, with period
TR “ ∆ν´1

FSR “ 2L{c equal to the resonator round-trip time:

}~Ep~r , t ` TRq} “ }~Ep~r , tq} (8.15)

Intuitively, the shape of the electric-field intensity bounces back and forth between the two mirrors and
repeats periodically; see Figure 8.6.

Let’s make a concrete example: assuming constant coefficients over a finite range of `-values,

c` “

#

c if `min ď ` ď `max

0 otherwise
(8.16)
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Figure 8.6: Scaled intensity Iptq from Equation (8.18) for M “ 10 (left) and 100 (right). Sharp pulses
separated by the round-trip time TR “ ∆ν´1

FSR are apparent, with FWHM ∆tpulse « 0.89TR{M. The peak
intensity scales as M2; the average intensity scales as M.

as well as (for simplicity) equal mode functions E`p~rq « Ep~rq, we find the electric field component from
Equation (8.13):

Ep~r , tq “ c ¨ Ep~rq ¨
`max
ÿ

`“`min

e2πipν0``¨∆νFSRqt “ c ¨ Ep~rq ¨ e2πi
´

ν0`∆νFSR¨
`min``max

2

¯

t
¨

sinpM ¨ π∆νFSRtq

sinpπ∆νFSRtq
(8.17)

where M “ `max´ `min` 1 is the number of active modes in the sum. Assuming only one polarization, the
light-field intensity in the resonator (as well as the laser intensity through the output coupler mirror) is

Iptq9}~Eptq}29
sin2

pMπ∆νFSRtq

sin2
pπ∆νFSRtq

(8.18)

which represents a series of pulses, separated by the round-trip time TR, each with a full width at half
maximum (FWHM) of ∆tpulse « 0.89TR{M, see Figure 8.6. The more laser modes are involved and
phase-locked in the resonator (larger M), the shorter and more intense the pulses become. The peak
intensity is Imax9M

2; but the mean intensity (averaged over one round-trip time) scales only linearly with
the number of involved modes xIy9M.

We see that in order to generate very short laser pulses, we need a coherent superposition of many
laser modes (large M). A more careful calculation shows that the simple form of Equation (8.16) is not
required for short pulses; almost any coherent sum of a broad range of modes will generate short pulses.
For example, a Gaussian profile

c` “ c0 ¨ e
´
p`´`cq2

2∆`2 (8.19)

will also generate short pulses, with approximate Gaussian shape of FWHM ∆tpulse « 0.27TR{∆`.

Examples:

1) HeNe at λ “ 632 nm, ∆νgain “ 1.5 GHz, L “ 0.5 m ñ ∆νFSR “
c

2L “ 300 MHz, M « 6:

∆tpulse «
0.89TR
M

« 0.5 ns (8.20)

2) Ti:Al2O3 over a range λ P r650 nm, 950 nms, L “ 0.5 m ñ ∆νFSR “
c

2L “ 300 MHz, ∆νgain “
c
λmin

´ c
λmax

« 1.5ˆ 1014 Hz, M « 5ˆ 105:

∆tpulse «
0.89TR
M

« 6 fs (8.21)
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8.3.2 The role of coherence

What is the role of coherence in Equation (8.13)? Let’s modify the example of Equation (8.16) into an
incoherent sum,

c` “

#

c ¨ e iϕ` if `min ď ` ď `max

0 otherwise
(8.22)

with the complex phases ϕ` fluctuating randomly in the sense that over long measurement times, we have
xe iϕ`y “ 0 and xe´iϕ` ¨ e iϕ`1 y “ δ`,`1 . In this way, the phase relationship between any two modes becomes
indeterminate (incoherent).

The resulting intensity is no longer pulsed in the way of Figure 8.6. On average (averaging over many
periods), the intensity become time-independent,

x|Ep~r , tq|2y “ x

«

8
ÿ

`“0

c˚` E˚` p~rqe´2πiν`t

ff«

8
ÿ

`1“0

c`1E`1p~rqe2πiν`1 t

ff

y

“

8
ÿ

`,`1“0

xc˚` c`1yE˚` p~rqE`1p~rqe2πipν`1´ν`qt “ c2
`max
ÿ

`,`1“`min

xe´iϕ` ¨e iϕ`1 yE˚` p~rqE`1p~rqe2πipν`1´ν`qt “ c2
`max
ÿ

`“`min

|E`p~rq|2.

(8.23)

We conclude that a well-determined phase relationship between the modes (a “mode lock”) is required in
order to generate fast pulses.

8.3.3 Experimental realizations

How can such a “mode lock” be achieved? There are several common techniques, all based on mode
competition set up such that the lowest loss is achieved if the laser mode has the highest intensity (i.e.,
the shortest duration). Initial random phase fluctuations will be amplified selectively; eventually, the short
pulse will win the mode competition.

Active mode coupling: similar to active Q-switching (subsection 8.2.4). The resonator quality is mod-
ulated periodically with a period exactly equal to the cavity round-trip time TR. A short wavepacket will
develop that traverses the Q-switch exactly at the moment of minimum loss; all other resonator-mode
combinations experience more loss.

In practice, it is difficult to synchronize the Q-switch exactly with the round-trip time.

Passive mode coupling: similar to passive Q-switching (subsection 8.2.3). A saturable absorber can be
used to transmit light only (by bleaching the medium) if it comes with high intensity, i.e., as a mode-coupled
pulse. As with active mode coupling, the pulse with highest intensity wins the mode competition. There
is no need for active synchronization; however, the absorber must have a switching time (recovery time)
much faster than TR.

Typical absorber materials are dye solutions for mode-coupled dye lasers. An important setup used in
the 1980-90s is the “colliding pulse” arrangement, where two ultrashort pulses counterpropagate inside a
ring resonator, passing simultaneously through the absorber (a dye jet) from two sides. Disadvantage:
difficult to set up.

Passively mode-locked solid-state lasers can be constructed with a SESAM (semiconductor saturable
absorber mirror), which is a complex thin-film reflector whose parameters (saturation intensity, recovery
time) can be controlled very precisely through the growth of its nanostructured layers.

Kerr lens mode locking (KLM): This dominant technique in use today works by self-focusing in a
non-linear optical medium via the Kerr effect (see Figure 8.7). At high light intensities I Á 1020 W{m2,
the index of refraction of any medium changes with the intensity as npIq “ n0 ` n2I, and a light beam
with inhomogeneous transverse intensity profile such as a Gaussian beam transforms the medium into a
“gradient-index lens,” thus self-focusing the beam. When adding an aperture to the arrangement, higher
intensities I (mode-locked operation) will be favored and cw operation will be suppressed.

The advantage of the Kerr effect over passive mode-locking (above) is that the switching/recovery
time of a Kerr lens is very small (electronic response time of the crystal).
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Figure 8.7: An experimental realization of a passive mode coupling mechanism: inserting a Kerr medium
into the resonator in combination with an aperture. Only a high-intensity pulse experiences low loss. In
the case of a Ti:Al2O3 laser the active medium itself shows a sufficient Kerr nonlinearity that can be used
for mode coupling (mode locking).

8.4 Short-pulse amplification: CPA

For many experiments, we want to generate laser pulses that are so intense their electric field reaches the
atomic field scale

Eatom “
e

4πε0a
2
0

« 5ˆ 1011 V{m. (8.24)

As an example, a laser pulse of duration ∆tpulse „ 10 fs with pulse energy Wpulse „ 1 mJ and a focal waist
radius of w0 „ 10 µm has an intensity of Ipulse “ Wpulse{pπw

2
0 ¨ ∆tpulseq „ 3ˆ 1020 W{m2, corresponding

to a peak electric field strength of E “
a

2 ¨ Ipulse ¨ Z0 „ 5ˆ 1011 V{m, with Z0 “
a

µ0{ε0 “ 377 Ω the

impedance of free space (remember that Irms “
U2
peak
2Z for an oscillating field).

When we generate such intense laser pulses, hitting any surface is thus very likely to cause ionization,
material degradation, and strong non-linear effects. The problem with generating such pulses is therefore
that their high intensity damages the laser itself.

The solution is to generate short pulses with low intensity in an “oscillator” (see section 8.3) and
amplifying them after the resonator, making sure that the amplified pulses never touch a solid surface
(mirror, gain crystal, etc.). This is done by first stretching the weak pulse in time, so that it becomes
many orders of magnitude longer and thus less intense; then amplifying the stretched pulse; and finally
re-compressing the amplified pulse into a short intense pulse.

In such a Chirped Pulse Amplifier (CPA) the stretching and compressing is done by making the
path-length wavelength-dependent without making the beam path wavelength-dependent, using a clever
combination of lenses and gratings (see Figure 8.8). In the stretched pulse, the different colors composing
the pulse arrive at different times (the pulse is “chirped”) but still maintain a fixed phase relationship (as
in, e.g., Equation (8.16)).

Typical example of what can be achieved with a CPA: tpulse „ 100 fs, Wpulse „ 10 mJ, repetition rate
f „ 1 kHz (meaning that not every pulse from the oscillator is amplified, but only one every millisecond)ñ
average power xP y “ Wpulse ¨ f “ 10 W, peak power P̂ “ Wpulse{tpulse “ 100 GW, which is approximately
the output power of 100 nuclear power plants (but only for 100 fs).

8.4.1 Pulse stretching with a frequency-dependent phase shift

To show the effect of pulse stretching quantitatively, we look at a Gaussian laser pulse of central frequency
ω0 around time t “ 0 with time-dependent electric field

Eptq “ E0 ¨ e
´iω0t ¨ e´p

t
2τ q

2

(8.25)
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Figure 8.8: Schematic of a chirped pulse amplifier. Each combination of two lenses and two gratings
introduces a wavelength-dependent path length without displacing the beam. In the stretched pulse, the
different colors composing the beam arrive at different times. Source: https://en.wikipedia.org/
wiki/Chirped_pulse_amplification.

This pulse has a time-dependent intensity Iptq9|Eptq|29e´
t2

2τ2 and thus a temporal FWHM of ∆t “

τ ¨ 2
a

2 lnp2q « 2.35τ . The Fourier transform of this electric field is

Ẽpωq “
1
?

2π

ż 8

´8

Eptq ¨ e iωtdt “ E0 ¨ τ
?

2e´pω´ω0q
2τ2

(8.26)

with a frequency-dependent intensity Ĩpωq9|Ẽpωq|29e´2pω´ω0q
2τ2

and thus a frequency FWHM of ∆ω “
a

2 lnp2q{τ « 1.18{τ . Notice that ∆ω ¨ ∆t “ 4 lnp2q saturates the Heisenberg uncertainty relation.
Now we introduce a frequency-dependent phase factor e iϕpωq in Equation (8.26), generated for example

with the chromatic elements of Figure 8.8. By series-expanding ϕpωq « ϕpω0q ` pω´ω0qϕ
1pω0q `

1
2 pω´

ω0q
2ϕ2pω0q to second order around the central pulse frequency ω0 and assuming that ∆ω is sufficiently

small, the frequency-dependent electric field of Equation (8.26) becomes

Ẽ 1pωq “ e irϕpω0q`pω´ω0qϕ1pω0q`
1
2
pω´ω0q

2ϕ2pω0qs ¨ E0 ¨ τ
?

2e´pω´ω0q
2τ2

(8.27)

and the corresponding real-time pulse is

E 1ptq “
1
?

2π

ż 8

´8

Ẽ 1pωq ¨ e´iωtdt

“ E0 ¨
τ

b

τ2 ´ i
2ϕ2

¨ e
´
t2`p2ω0ϕ2´2ϕ1`4iω0τ

2qt`ϕ2
1
´2ϕ0ϕ2´4iϕ0τ

2

4τ2´2iϕ2 (8.28)

where we have abbreviated ϕ0 “ ϕpω0q, ϕ1 “ ϕ
1pω0q, ϕ2 “ ϕ

2pω0q. The intensity profile of this pulse is

I 1ptq9|E 1ptq|2 “
|E0|

2

b

1`
`

ϕ2

2τ2

˘2
¨ e

´
pt´ϕ1q

2

2τ2`
ϕ2

2
2τ2 (8.29)

https://en.wikipedia.org/wiki/Chirped_pulse_amplification
https://en.wikipedia.org/wiki/Chirped_pulse_amplification
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which is still Gaussian but centered at ϕ1 (instead of zero) and with a FWHM of

∆t 1 “ τ ¨ 2
a

2 lnp2q ¨

c

1`
´ ϕ2

2τ2

¯2

“ ∆t ¨

d

1`

ˆ

4 lnp2q ¨ ϕ2

∆t2

˙2

(8.30)

We conclude that the series coefficients of the phase factor ϕpωq have the following effects:

• ϕ0 “ ϕpω0q is a global phase factor and has no effect on the pulse profile.

• ϕ1 “ ϕ
1pω0q shifts the Gaussian pulse in time.

• ϕ2 “ ϕ
2pω0q increases the pulse duration according to Equation (8.30).

• Higher-order terms in the series-expansion of ϕpωq around ω0 have effects that distort the pulse
shape away from a Gaussian (“non-linear chirp”).

8.5 Generation of ultrashort pulses

The fundamental limit for the pulse length is the Fourier limit (analogous to the Heisenberg uncertainty
relation; see subsection 8.4.1)

∆ν ¨ ∆t ě
4 lnp2q

π
« 0.88 (8.31)

expressed here in terms of the full widths at half-maximum. For example for a Ti:Al2O3 laser with
λ “ 650´ 950 nm Ñ ∆ν “ 1.5ˆ 1014 Hz ñ ∆t „ 1

∆ν „ 7 fs.
The main technical problem for reaching this limit is the control of the group velocity dispersion (GVD,

chromatic dispersion) of optical elements. When the index of refraction npνq is frequency-dependent, the
resonator round-trip time becomes frequency-dependent since the propagation time through an element
of length L is

tpνq “ L ¨
npνq

c
. (8.32)

Inside the resonator the light pulses pass through the optical elements (e.g., the active medium itself)
many times, and even small dispersion effects add up to significant distortions. Therefore, GVD has to be
compensated using elements with opposite dispersion (prisms, gratings, chirped mirrors).

8.5.1 Group velocity dispersion (GVD)

Figure 8.9: A pulse entering a medium with refractive index npω, Iq

Consider a pulse as shown in Figure 8.9, passing through a medium of length L and with a dispersion
relation kpωq. As a result, light of frequency ω will experience a phase factor of e ikpωq¨L during the
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passage through this medium, corresponding to the situation of subsection 8.4.1 with ϕpωq “ kpωq ¨ L.
Series-expansion of ϕpωq to second order:

ϕpωq “ kpωq ¨ L « kpω0q ¨ L
looomooon

ϕ0

`pω ´ ω0q ¨ k
1pω0q ¨ L

loooomoooon

ϕ1

`
1

2
pω ´ ω0q

2 ¨ k2pω0q ¨ L
loooomoooon

ϕ2

. (8.33)

We conclude that a fast laser pulse will be stretched/compressed if ϕ2 “ k2pω0q ¨ L ‰ 0, that is, if the
second derivative k2pω0q is nonzero. The quantity ϕ2 “ k2pω0q ¨ L is called the group delay dispersion
(GDD) of an optical element, usually given in units of fs2.

The group velocity is defined in the usual way as

vgpωq “
1

k 1pωq
«

1

k 1pω0q
´ pω ´ ω0q ¨

k2pω0q

rk 1pω0qs
2
. (8.34)

We see that when k2pω0q ‰ 0 the group velocity is frequency-dependent: group velocity dispersion (GVD).
A simple formula for the quantification of the GVD is

k2pωq “
d
dω
k 1pωq “

d
dω

1

vgpωq
. (8.35)

Figure 8.10: Temporal broadening of an ultrashort laser pulse due to group-velocity dispersion of the optical
medium as a function of the pulse length of the initial pulse. The absolute values of input pulse length
(horizontal axis) and output pulse length (vertical axis) are given for a quartz plate of length L “ 1 cm.
See Equation (8.30).

Example

Quarz plate, L “ 1 cm, d2n
dλ2 p800 nmq “ 0.04 µm´2

k2 “
d2k

dω2
“

d2

dω2

ω ¨ np 2πc
ω q

c
“
λ3n2pλq

2πc2
“ 3.6ˆ 10´26 s2{m

k2 ¨ L “ 360 fs2 (8.36)

A typical setup for a dispersion compensation is shown in Figure 8.11

8.5.2 Self phase modulation (SPM)

At high intensities, the Kerr effect makes the index of refraction depend not only on the frequency, but
also on the intensity I:

npω, Iq “ n0pωq ` n2pωq ¨ Iptq (8.37)
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Figure 8.11: Example for a compensation of GVD. The combination of all optical elements gives a total
of ϕ2 « 0.

Figure 8.12: Right panel: temporal behaviour of the frequency ω in a pulse that has a Gaussian intensity
distribution. Assuming n2 ą 0 (left panel).

Usually, the ω-dependence of n2 can be neglected.
As a result, the phase of the electric field of a short laser pulse depends on the intensity Iptq:

ϕ “ kz ´ ω0t “
ω0

c
n ¨ z ´ ω0t “ ω0

ˆ

n0pω0q

c
¨ z ´ t

˙

` n2
ω0

c
¨ z ¨ Iptq (8.38)

Assuming n2 ą 0 (usually correct): since ω “ ´ Bϕ
Bt “ ω0´n2

ω0

c z
BI
Bt , at the rising edge of the pulse (

BI
Bt ą 0)

the frequency ω is reduced (“red-shifted”), while at the falling edge ( BI
Bt ă 0) the frequency is increased

(“blue-shifted”). This effect gives rise to spectral broadening and a chirped pulse (see Figure 8.12):

Spectral broadening: As the output pulse has a broader spectrum than the input pulse (as opposed to
GVD, which does not influence the spectral width), while still being fully phase-coherent between
the different spectral components and having a similar temporal profile, SPM can be used to access
broader wavelength ranges without sacrificing pulse quality. Shortening a laser pulse can be done in
this way.

Pulse chirping: The chirp of an SPM pulse can be compensated with GVD elements (subsection 8.5.1)
and must be taken into account when designing a GVD-free resonator.
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Typical setups:

Intra-cavity: In addition to the setup shown in Figure 8.11 a glass plate (for example) is placed in the
cavity for SPM. This broadens the spectrum of the light within the cavity, giving rise to shorter laser
pulses when properly corrected with GVD elements.

Extra-cavity: Elements with a strong Kerr nonlinearity can be used to convert narrow-band pulses into
very wide-band pulses spanning more than an octave of frequencies (Ñ optical frequency comb). In
order to achieve strong nonlinear interaction with the medium, the medium has to be very long, for
example a specially crafted optical fiber. The negative dispersion after the fiber for pulse compression
is obtained by a pair of gratings ñ ∆tpulse À 10 fs; “single-pulse” lasers where the electric field only
performs one full oscillation.
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Chapter 9

Nonlinear Optical
Susceptibility

9.1 Polarization

Fundamental processes for light interaction with matter:
1) Absorption of radiation (if incident wave excites a resonance/transition in
the medium)
2) Polarization of the medium.
In both cases, the interaction can involve electrons or the core ions.
In linear interaction, the response of the medium is proportional to the light
intensity. If the light field is strong enough (i.e., comparable to the internal
fields), the response of the medium show a nonlinear dependnece on the incident
light field. Induced dipole moments in the material → dipole moment per unit
volume, i.e. polarization P (t). In the linear case

P̃ (t) = εoχ
(1)Ẽ(t). (9.1)

with εo the permittivity of free space and χ(1) the susceptibility of the material.
The˜over any variable indicates a rapidly changing quantity as it is the case for
the high-freuqnecy light fields.

In the nonlinear case, the dependence of the polarization on the (light) elec-
tric field is expressed as a power series in Ẽ(t)

P̃ (t) = εo(χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + ...). (9.2)

In general, P̃ (t) and Ẽ(t) will be vectors, χ(1)a second-rank tensor, χ(2) a third-
rank tensor and so on. For the time being, the derivations will be limited to the
scalar case. In addition, P̃ (t) is assumed to depend only on the instantaneous
field strength, i.e. the material is considered to be loss-less and dispersion-less
(and χ will be considered a frequency-independent constant). The latter two
assumptions will be dropped at a later stage.
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Equation 9.2 can be rewritten as the sum of linear, second-order and third-
order polarizations

P̃ (t) = P̃1(t) + P̃2(t) + P̃3(t) + .... (9.3)

We will see later, that there is a fundamental difference between second-order
χ(2) and third-order χ(3) nonlinearities.

The polarization approach used here is of value for two reasons: (I) at fre-
quencies well below all resonances in the medium, the polarization properly
describes the response of the medium to the applied (light) field. (II) A time-
varying polarization is connected with moving/accelerated charges which will
serve as sources for new components of the field (i.e., frequency conversion pro-
cesses).

9.2 Symmetry consideration for the nonlinear
effects

The third-order term χ(3) can be considered as an ”ubiquitous” term present in
all materials, only the magnitude depending on the considered material and the
frequencies. In order for the second-order term χ(2) to be diffeernt from zero,
the crystal must possess a non-centro-symmetric structure. That measn, that
anlong at least direction in the crystal, the crystal must look ”different” upon
inversing that axis. As a consequence, the potential (e.g. for the electronic
polarization) will be asymmetric along that direction.

(a) Potential (b) Polarization

Figure 9.1: Types of potentials and resulting polarizations

Figure 9.1(a) showsas comparison a simple harmonic potential (harm - which
is necessarily symmetric with respect to inversion), an anharmonic, but sym-
metric potential (anharm) and an asymmetric potential. If charges are moved
in these potentials, this gives rise to the induced polarizations as a function of
the incident electric field as plotted in fig. 9.1(b).
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(a) Symmetric nonlinear polarization (b) Asymmetric nonlinear polarization

Figure 9.2: Time dependence of the polarization

If now a simple sinusoidal wave is driving the polarization, this will lead to
a time dependence of the polarization as sketched schematically in fig. 9.2 (a)
and (b) for the symmetric and asymmetric case, respectively.

How ist this related to crystal symmetry? Let’s assume a crystal possessing
a centro-symmetric structure and consider the most simple case of second-order
polarization and an excitation by a sinusoidal wave, i.e.

P̃ (2)(t) = ε0χ
(2)Ẽ2(t) with....Ẽ(t) = cos(ω · t). (9.4)

Changing the sign of E is now simply equivalent to inverting the respective
direction in the crystal. Because of the symmetric potential, this should result
in a chnage of sign of P (see figure 9.1(b)). Using the above equations, one finds
for the second-order polarization

−P̃ (t) = ε0χ
(2)

[
−̃E(t)

]2
= ε0χ

(2)Ẽ(t)2 (9.5)

Comparison with eq. 9.4 yields P̃ (t) = −P̃ (t) = 0 and hence χ2 = 0 for any
centrosymmetric crystal.

9.3 Description of nonlinear optical processes

At this stage, a basic overview of different processes is given. Some of them
will be discussed later in more detail. In the following, we will consider the
nonlinear optical materials exposed to plane monochromatic waves propagating
in z direction which are described as

Ẽ(t) = E(z) · e−iωt + c.c. with E(z) =
1

2
Aeikz (9.6)

9.3.1 Second harmonic generation

For the second-order nonlinearity on gets
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P̃ (2)(t) = ε0χ
(2)Ẽ2(t) = ε0χ

(2)(E(z) · e−iωt + E∗(z) · eiωt)2

= 2ε0χ
(2)EE∗ + (ε0χ

(2)E2e−2i·ω·t + c.c.)
(9.7)

Figure 9.3: Basic scheme of second-harmonic generation

As a results, one has a polarization at twice the initial frequency and a term
with zero time dependence, i.e. a constant electric field across the material.
The polarization at the doubled frequency will give rise to the second-harmonic
generation (SHG) from the medium. The most prominent exmaple for such
a source is the green laser pointer. Here, the radiation of a Nd:YAG laser at
1064 nm is frequency-doubled to yield green light at 532 nm. In a photon-
framework, it can be understood as the annihilation of two 1064-nm photons
and the creation of a 532-nm photon.

9.3.2 Sum and difference frequency generation

Now let’s assume that wto waves with frequencies ω1 and ω2 are acting on the
medium, i.e.

Ẽ(t) = E1(z) · e−iω1t + E2(z) · e−iω2t + c.c. (9.8)

Considering again the second-order nonlinear polarization P̃ (2)(t) = ε0χ
(2)Ẽ2(t)

one gets

P̃ (2)(t) = ε0χ
(2)[E2

1 · e−i·2ω1t + E2
2 · e−i·2ω2t + 2E1E2e

−i(ω1+ω2)t+

2E1E
∗
2e

−i(ω1−ω2)t + c.c.] + 2ε0χ
(2)[E1E

∗
1 + E2E

∗
2 ]

(9.9)

As a result, one has in total four different conversion processes (sum and dif-
ference frequency generation and the SHG of waves one and two). It shall
already be mentioned here, that in real situations one of the four processes will
dominate, controlled by the phase-matching condition which is relevant for all
materials due to dispersion.

Sum frequency generation (SFG) is pretty similar to SHG, except that two
photons at different frequencies are annihilated to generate the SFG photon.

In difference frequency generation (DFG) with the input of ω3 ands ω2 one
takes a photon at the highest frequency (denoted ω3) to generate one photon at
frequency ω1 As we will see later in more detail, energy conservation requires
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Figure 9.4: Basic scheme of sum-frequency generation

Figure 9.5: Basic scheme of difference-frequency generation

that this is connected with the generation of a photon ω2 , i.e. DFG also results
in an amplification of ω2.

The latter process is called ”optical parametric amplification” (OPA). ”Para-
metric” indicates, that the amplification process is not associated with any net
deposition of energy in the material. Only virtual levels are involved. Before
and after the process, the medium is in the same state. This is in contrast to
the amplification of a light wave in a LASER (”Light amplification by stimu-
lated emission of radiation”) where energy is deposited in the medium after the
absorption-emission process.

9.3.3 Optical parametric oscillation

If only wave ω3 is provided, one may still observe the emission of photons with ω2

and ω1, albeit with extremely low probability. Without any ”seed” wave ω2, the
choice of frequencies seems arbitrary, as long as energy conservation is observed.
It will be shown later, that the actual frequencies of the two photons will be de-
termined by the phase-matching conditions. The process is called optical para-
metric generation (OPG) or spontaneous parametric down conversion (SPDC).
Despite the low photon yield, it is an essential concept for the generation of
”entangled” photons for quantum communication, quantum cryptography, and
the like. In the Laser, amplification can be turned into an self-sustaining os-
cillation (what we know as the actual ”laser”) by providing feedback through
mirrors. Something similar is possible here: Using feedback via mirrors, OPA
can be turned into optical parametric oscillation (OPO). This can start, as in
the laser, without providing any external ”seed” photons of frequency ω2.
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Figure 9.6: difference-frequency generation as optical parametric amplification

9.3.4 Third-order nonlinearities

Let’s start again with the general expression

P̃ (3)(t) = ε0χ
(3)Ẽ3(t) (9.10)

In analogy to the second-order case one can deduce, that with three incident
waves with different frequencies E1(ω1), E2(ω2) and E3(ω3) one may observe
waves containing frequencies ω1, ω2, ω3, third harmonics 3ω1, 3ω2, 3ω3 as well
as various linear (sum- and difference) combinations of the three frequencies.

For the sake of simplicity we will consider in more detail only the case of
a single incident wave with frequency ω. Inserting the wave function 9.6 into
equation 9.10, one gets, in addition to the generation of the wave at 3ω, a
nonlinear contribution at the fundamental frequency

P (3)(ω) = 3 · ε0 · χ(3)(ω) |E(ω)|2 · E(ω) (9.11)

The nonlinear refractive index

The resulting total (linear plus nonlinear) polarization at frequency ω is hence
given as

P tot(ω) = ε0 · χ(1) · E(ω) + 3 · ε0 · χ(3)(ω) |E(ω)|2 · E(ω)

= ε0 · χeff · E(ω)
(9.12)

with
χeff = χ(1) + 3χ(3)(ω) |E(ω)|2 (9.13)

The susceptibility χ is related to the order quantities describing the material
properties. In general, one would find (n+ i cotκ)2 = 1 + χ. Since we assumed
the loss-less case (i.e. the imaginary part κ of the complex refractive index to
be zero), one gets

n2 = 1 + χ =
ε

ε0
. (9.14)

The nonlinear refractive index n2 is introduced through

ntot = n0 + n2 · I (9.15)
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with the linear (low-intensity) refractive index n0 and the time-averaged field
intensity I of the optical field. in a medium with (linear) refractive index n0 it
is related to the electric field of the light wave through

I = 2n0ε0c |E(ω)|2 (9.16)

Inserting eq.(9.16) into eq. (9.15), squaring it and comparing it with eq.(9.14)
yields

[n0 + n2 · I]
2

= 1 + χ(1) + 3χ(3)(ω)
1

2n0ε0 · c
· I (9.17)

When comparing both sides of the equation, only the terms linear in I are kept,
since the nonlinear contribution to n is considered to be a small one. Hence one
gets

n20 + 2n0n2I = (1 + χ(1)) + 3χ(3)(ω)
1

2n0ε0 · c
· I (9.18)

and with n20 = (1 + χ(1)) one gets

2n0n2I = 3χ(3)(ω)
1

2n0ε0 · c
· I (9.19)

or finally

n2 =
3

4

1

n20ε0 · c
χ(3)(ω) (9.20)

For electronic excitation, the nonlinear refractive index n2 is at the order of

10−16 to 10−14 cm2

W . As a result, it requires laser field intensities well above

1GW
cm2 to cause noticeable chnages in the refactive index. Such (and higher)

intensities are achieved, first of all, with pulsed lasers.
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