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Abstract: We introduce a class of conformal versions of the previously
introduced quasi-conformal carpet cloak, and show how to construct such
conformal cloaks for different cloak shapes. Our method provides exact
refractive-index profiles in closed mathematical form for the usual carpet
cloak as well as for other shapes. By analyzing their asymptotic behavior,
we find that the performance of finite-size cloaks becomes much better for
metal shapes with zero average value, e.g., for gratings.
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1. Introduction

Soon after the introduction of the so-called carpet cloak by Li and Pendry in 2008 [1], broad-
band invisibility cloaking has become experimental reality in two [2–5] and three [6,7] dimen-
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sions from microwaves [2, 7] to the optical regime [3–6]. The latter complement other broad-
band optical approaches [8]. In essence, the carpet or ground-plane cloak makes a bump (more
generally a corrugation) in a metallic carpet appear flat and hence undetectable. Objects may
be hidden in the space underneath the bump. However, Ref. [9] has highlighted lateral beam
displacements as an inherent limitation originating from approximating the locally anisotropic
optical properties, which arise from the quasi-conformal mappings employed in the construc-
tion of these finite-size cloaks, by locally isotropic ones. This artifact contributes to the Ostrich
effect [10]: one cannot see the cloaked bump, but one can see that something is there. These
limitations can be traced back to the finite size of the cloak, since for an infinite carpet cloak
the quasi-conformal map becomes strictly conformal, in which case cloaking becomes perfect
in both wave and ray optics (for reviews on transformation optics see Refs. [11, 12]).

Recently, a specific example for a strictly conformal map has been given and discussed [13].
Here we introduce an entire class of strictly conformal maps and discuss how the performance
of finite-size carpet cloaks can be systematically improved with respect to Refs. [9] and [13].

2. Conformal mapping

Let us start by emphasizing that our approach follows a somewhat different spirit than the one
by Li and Pendry [1]. They start with a predefined shape of the bump. In principle, its shape
as well as its aspect ratio can be chosen arbitrarily. Furthermore, they fix the boundaries of the
finite-size cloaking structure (with slipping boundary conditions). Numerically minimizing the
modified-Liao functional [1], they arrive at a quasi-conformal map – the closest one can get to
a conformal map under the given constraints. We rather introduce a class of strictly conformal
transformations. For each transformation of this class, the shape of the bump results automati-
cally, i.e., it can generally not be chosen arbitrarily. However, in the special and rather impor-
tant limit of shallow bumps (which all of the aforementioned experiments have used [2–7]),
the connection between bump shape and conformal transformation is mathematically simple
and intuitive. In this case, the bump shape can again be chosen arbitrarily. Furthermore, in our
approach the ideal cloaking structure is infinitely extended; it has no intrinsic boundaries. One
can, however, just truncate the refractive-index profile to obtain a finite-size cloak. In this paper
we show that under certain constraints the effect of this truncation can be minimized.

Mathematically, we start from the conformal map z 7→ f (z) given by

f (z) = z+
∫

∞

0
ckeikzdk, (1)

where z = x + iy; x ∈ R and y ∈ R+ are the coordinates of points in the Cartesian two-
dimensional half-space above the horizontal axis, assuming translational invariance in the third
dimension. They are mapped onto the transformed coordinates (u(x,y),v(x,y)) ∈R2 given by
f (x + iy) = u+ iv. The right-hand side of Eq. (1) contains a truncated (lower integral bound is
zero) Fourier transform of the coefficients ck ∈ C. This truncation reflects the fact that we con-
sider only light propagating in the half-space above the metallic bump. The refractive indices of
the virtual space n0(x,y) (= 1 in our work) and of the physical space n(u,v) are related by [14]

n( f (z)) =
n0(z)
|d f /dz|

. (2)

This form has a known [14] and intuitive physical interpretation: The conformal map z 7→ f (z)
locally stretches (or compresses) space while preserving angles and the shapes of infinitesimally
small figures. The factor by which space is stretched by the map is given by the modulus of the
spatial derivative of the map, C = | f ′(z)|. But if physical space is stretched by a linear scale
factor C with respect to virtual space, the refractive index in physical space has to be multiplied
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by 1/C such that the optical path lengths are identical in the virtual and physical spaces (by
Fermat’s principle).
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Fig. 1. Left: illustration of the original coordinates (x,y) (gray) and the transformed coor-
dinates (u,v) (red) resulting from the cloak of Eq. (4) for w = 1.66 and h = 0.77 (matching
the width and height of the cloak in Ref. [13], see Fig. 4). All coordinates are in normal-
ized units. Right: refractive-index profile and selected rays. The green rays correspond to
vacuum and the mirror plane at y = 0, the red ones to the finite cloaking structure and the
ground-plane shape shown in black. The cloak has a size of 9×4.5 normalized units. Out-
side of it, we assume vacuum (white). The color scale is logarithmic, ranging from 0.86 to
2.10.

The shape of the bump giving rise to the refractive-index profile following from Eq. (2)
is defined by the implicit form (u(x,0),v(x,0)). In general, it is difficult to obtain a closed
expression for the parametric dependence of v(x,0) on u(x,0). However, for shallow bumps an
explicit expression can be obtained. To see this, let us consider the example of a Gaussian for
the coefficients ck in Eq. (1),

ck =
ihw√

π
e−(kw/2)2

. (3)

The conformal map is then

f (z) = z+ ihe−(z/w)2
[1+ erf(iz/w)] , (4)

where erf is the error function (see the left panel of Fig. 1). For shallow bumps (h� w in this
example) we obtain u(x,0)≈ x, and derive the explicit form for the bump shape

v(u)≈ he−(u/w)2
. (5)

The parameter h is therefore the height of the Gaussian bump, and w is its width. In general,
in this limit of shallow bumps, the ck = ak + ibk are the Fourier coefficients of the bump shape
since

v(x,0) =
∫

∞

0
[ak sin(kx)+bk cos(kx)]dk (6)

and hence, since u(x,0)≈ x,

v(u)≈
∫

∞

0
[ak sin(ku)+bk cos(ku)]dk . (7)

Thus, in this limit the coefficients ck for any desired conformal map (and refractive-index pro-
file) can be obtained by Fourier transformation of the real-space bump shape v(u).
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Outside of the shallow-bump approximation, the same coefficients can still be used for per-
fect cloaking, but these coefficients and the corresponding conformal map z 7→ f (z) refer to
a different bump shape v(u) than in the shallow-bump limit. In the above example (4), at the
critical ratio h/w =

√
π/2 the maximum of the bump in the metal carpet develops into a sharp

tip and the refractive index becomes singular.
We have extensively tested the above analytical results by numerical ray-tracing calculations

in two dimensions. For the artificial and experimentally irrelevant case of an infinitely extended
structure, cloaking is perfect – as can be expected from the fact that the underlying transfor-
mation is strictly conformal. Experimentally relevant finite-size refractive-index profiles can
be obtained by simply truncating the exact refractive-index profile, i.e., by setting n = 1 out-
side of the finite-size cloak. This procedure delivers cloaking results which are similar to those
obtained for the quasi-conformal carpet cloak [9]. In particular, as can be seen on the right-
hand side of Fig. 1, we obtain the same lateral beam shifts as discussed in Ref. [9]. While the
performances of quasi-conformal and conformal cloaks are qualitatively similar, we empha-
size that our refractive-index profiles are given in closed mathematical form, whereas those
of quasi-conformal carpet cloaks are derived from a nontrivial numerical minimization of the
modified-Liao functional [1].

To further investigate the cloaking imperfections arising from the spatial truncation, it is
interesting to study the asymptotic decay of the refractive-index profile towards its vacuum
value n = 1 far away from the bump. At large distances the refractive index due to Eq. (4)
behaves like

n(u+ iv = ρeiϕ) = 1− hwcos(2ϕ)√
πρ2 +O(ρ−4) . (8)

This decay is polynomial, which means that n(u,v) approaches the vacuum limit n = 1 rather
slowly – necessitating undesirably large cloaking structures. This slow decay, which cor-
responds to small spatial-frequency components in f (z), is connected to the small spatial-
frequency components of the bump shape v(u) itself.
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Fig. 2. Left: illustration of the original coordinates (x,y) (gray) and the transformed coor-
dinates (u,v) (red) resulting from Eq. (9) with c = i/12 and k = 2π . All coordinates are in
normalized units. Right: refractive-index profile and selected rays. The green rays corre-
spond to vacuum and the mirror plane indicated in gray, the red ones to the finite cloaking
structure and the ground-plane shape shown in black. The cloak has a height of one nor-
malized unit. Above it, we assume vacuum (white). The color scale is logarithmic, ranging
from 0.66 to 2.10.
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To exemplify this observation, we consider a mathematically much simpler case which uses
only a single non-zero spatial-frequency component k in Eq. (1),

f (z) = z+ ceikz (9)

with c = a + ib. The resulting transformation is illustrated in the left panel of Fig. 2. Its
refractive-index profile is shown in the right panel,

n(ζ = u+ iv) =
∣∣∣1+W0

(
ickeikζ

)∣∣∣−1
= 1+[asin(ku)+bcos(ku)]ke−kv +O(e−2kv), (10)

where W0 is the Lambert function (the principal solution for w in z = wew). The refractive index
approaches the vacuum limit n = 1 exponentially fast with increasing vertical coordinate v. The
absence of zero and small spatial-frequency components means that the average value of the
“carpet” shape v(u) is zero. This implies that the shape v(u) no longer only exhibits values
above the fictitious ground plane (maxima), but also values below that ground plane (minima)
– in sharp contrast to the usual carpet [1] with a single maximum. We have rather found a cloak
for a corrugated metal surface, i.e., for a one-dimensional metal grating.

More generally, we can introduce a spatial cutoff frequency κ > 0 such that ck = 0 for all
k < κ . In this case, the refractive index will approach the vacuum limit n = 1 according to e−κv

for v→ ∞. Hence, the metal surface v(u) can be almost perfectly cloaked using a finite-size
refractive-index profile with an extent comparable to only 2π/κ .
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Fig. 3. Left: illustration of the original coordinates (x,y) (gray) and the transformed coor-
dinates (u,v) (red) resulting from Eq. (11) with w = 2, h = 0.5, and κ = 0.5. All coordi-
nates are in normalized units. Right: refractive-index profile and selected rays. The green
rays correspond to vacuum and the mirror plane indicated in gray, the red ones to the fi-
nite cloaking structure and the ground-plane shape shown in black. The cloak has a size
of 9× 4.5 normalized units. Outside of it, we assume vacuum (white). The color scale is
logarithmic, ranging from 0.78 to 2.14.

As an example we apply this cutoff to the Gaussian map resulting from Eq. (3), with which
we had started our discussion. Interpreting the cutoff as a shift on the spatial modes, this leads
to

f (z) = z+
∫

∞

0
ckei(k+κ)zdk = z+ ihe−(z/w)2

[1+ erf(iz/w)]eiκz . (11)

Far from the bump, the refractive-index profile derived from this transformation decays accord-
ing to

n(u+ iv = ρeiϕ) = 1+
hwκ sin(ϕ−κρ cosϕ)√

π
× e−κρ sinϕ

ρ
+O

(
e−κρ sinϕ

ρ2

)
. (12)
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The behavior of this modified Gaussian bump is illustrated in Fig. 3. In particular we note in the
left panel that the transformed coordinates (u,v) converge rapidly towards the Cartesian ones
(x,y) when moving away from the mirror plane. In the right panel this finding translates into
much smaller beam displacements than those discussed in Ref. [9] (and in our Fig. 1) between
the green rays (vacuum, reflected off of a planar mirror) and the red rays (reflected off of the
curved mirror shown in black) when using such a finite-size cloak. With a further increase in
cloak size these shifts disappear exponentially, as opposed to the polynomial decrease observed
for κ = 0. We have found the same behavior for rays impinging under different angles (not
depicted).
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Fig. 4. Left: illustration of the original coordinates (x,y) (gray) and the transformed co-
ordinates (u,v) (red) resulting from the cloak of Ref. [13], i.e., for the conformal map
z 7→ f (z) = z− 1/(z + iδy) with δy = 1.3. All coordinates are in normalized units. Right:
refractive-index profile and selected rays. The green rays correspond to vacuum and the
mirror plane at y = 0, the red ones to the finite cloaking structure and the ground-plane
shape shown in black. The cloak has a size of 9× 4.5 normalized units. Outside of it, we
assume vacuum (white). The color scale is logarithmic, ranging from 0.92 to 2.45.

It is instructive to compare our results with those of Ref. [13], which has used the conformal
map z 7→ f (z) = z−1/(z+ iδy) and a mirror plane at fixed height δy = 1.3; in our notation this
cloak results from ck = i exp(−kδy). Corresponding results for a finite-size cloaking structure
with a height of 4.5 normalized units are shown in Fig. 4 – allowing for direct comparison with
Figs. 1 and 3. The lateral beam displacement highlighted in Ref. [9] is very pronounced for
this cloak, which, as in Fig. 1, is due to the presence of strong components ck at small spatial
frequencies k and thus a slowly decaying refractive-index profile:

n(u+ iv = ρeiϕ) = 1− cos(2ϕ)
ρ2 +O(ρ−3). (13)

All of our above refractive-index profiles contain some spatial regions where the refractive
index is 0 < n < 1. Following Ref. [1], to avoid values below unity and to allow for broadband
performance, the entire refractive-index profile and the vacuum index n = 1 can simply be
multiplied with the so-called reference index such that the global minimum refractive index
becomes n = 1. This multiplication leaves all of our results completely unaffected. Indeed, all
carpet-cloak experiments [2–7] have also used this approach.

Finally, we note that refractive-index profiles for cloaking further ground-plane shapes v(u)
can easily be obtained with our analytical approach. Textbook examples of conformal maps
representing circular, rectangular, and triangular bumps, however, lead to infinities in the re-
quired refractive-index profiles. In contrast, as long as the shapes v(u) are smooth and do not
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exhibit any kinks, the resulting conformal maps and refractive-index profiles are smooth as well
and represent realistic proposals for experimental cloaks.

3. Conclusion

To summarize, we have introduced a class of conformal versions of the quasi-conformal carpet
cloak previously introduced by Li and Pendry. We have obtained exact analytical mathemat-
ical forms for the refractive-index profiles of usual bumps as well as of other shapes, e.g., of
gratings. Our analytical formulas can simply replace nontrivial numerical calculations along
the lines of the quasi-conformal mapping. This step considerably eases working with these
refractive-index profiles in practice. The analytical forms also allow us to study the asymp-
totic behavior of the refractive-index profiles (e.g., polynomial or exponential). This aspect is
important for assessing and optimizing the performance of finite-size cloaks as blueprints for
experiments. In this regard, we obtain much smaller lateral beam displacements for certain
metal profiles than previous quasi-conformal [8] as well as previous conformal maps [12].
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