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Abstract. We investigate a system of frustrated hardcore bosons, modeled
by an XY antiferromagnet on the spatially anisotropic triangular lattice, using
Takahashi’s modified spin-wave (MSW) theory. In particular, we implement
ordering vector optimization on the ordered reference state of MSW theory,
which leads to significant improvement of the theory and accounts for quantum
corrections to the classically ordered state. The MSW results at zero temperature
compare favorably to exact diagonalization (ED) and projected entangled-
pair state (PEPS) calculations. The resulting zero-temperature phase diagram
includes a one-dimensional (1D) quasi-ordered phase, a 2D Néel ordered
phase and a 2D spiraling ordered phase. Strong indications coming from the
ED and PEPS calculations, as well as from the breakdown of MSW theory,
suggest that the various ordered or quasi-ordered phases are separated by
spin-liquid phases with short-range correlations, in analogy to what has been
predicted for the Heisenberg model on the same lattice. Within MSW theory,
we also explore the finite-temperature phase diagram. In agreement with the
Berezinskii–Kosterlitz–Thouless (BKT) theory, we find that zero-temperature
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long-range-ordered phases turn into quasi-ordered phases (up to a BKT transition
temperature), while zero-temperature quasi-ordered phases become short-range
correlated at finite temperature. These results show that, despite its simplicity,
MSW theory is very well suited to describing ordered and quasi-ordered phases
of frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at zero
and finite temperatures. While MSW theory, just as other theoretical methods,
cannot describe spin-liquid phases, its breakdown provides a fast and reliable
method for singling out Hamiltonians that may feature these intriguing quantum
phases. We thus suggest a tool for guiding our search for interesting systems
whose properties are necessarily studied with a physical quantum simulator
instead of theoretical methods.
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1. Introduction

Lattice models of strongly interacting bosons have recently been implemented experimentally,
thanks to impressive developments with trapped ultra-cold atoms in optical lattice
potentials [1, 2]. A particularly appealing perspective in this arena is the study of strongly
correlated lattice boson models with frustration, arising for instance from the coupling of bosons
to an (artificial) magnetic field [3]–[5], or from a periodical shaking of the optical lattice [6].
Frustration in the intersite hopping amplitudes is formally equivalent to a description of the
system in a rotating reference frame, which implies that the system is subject to the spontaneous
appearance of vortices. Such vortices can form ordered arrays (vortex crystals) coexisting
with Bose condensation, which consequently takes place in a macroscopic wavefunction
sustaining persisting circulating currents (see [7] and references therein); or they can even
disrupt condensation completely and lead to a disordered insulating state [8]. Such disordered
states are notoriously difficult to study theoretically.

In the particular limit of a very strong interparticle repulsion, frustrated bosonic models
can be exactly mapped onto S = 1/2 frustrated XY antiferromagnets (AFs) [9]. In two
dimensions these models are known to exhibit ground states with spiral order, representing
the magnetic counterpart to the aforementioned Bose-condensed states with vortex arrays. In
special circumstances the interplay between quantum fluctuations and frustration may lead to
disordered spin-liquid states, which are in one-to-one correspondence with bosonic insulating
phases. XYAFs can also be regarded as the limiting case of antiferromagnetic Hamiltonians with
planar anisotropy in the couplings, relevant to the description of frustrated antiferromagnetic
materials, and they can describe the physics of Cooper pairs in arrays of ultra-small Josephson
junctions with magnetic frustration [10]. More recently, we have proposed that frustrated
XYAFs can be experimentally implemented by loading planarly trapped ions into an optical
lattice [11].

From a theoretical point of view, bosonic frustration in the presence of strong interparticle
interactions on a lattice represents a very hard problem in dimensions d > 1, due to the lack
of controlled perturbative expansions in the strongly correlated regime; to the breakdown of
semiclassical methods in the presence of strong quantum fluctuations enhanced by frustration;
and to the appearance of a sign problem in quantum Monte Carlo simulations. Hence
the implementation of bosonic frustration in optical lattice experiments would represent a
fundamental instance of a useful quantum simulation, possibly outperforming any classical
computation (see e.g. [12] and references therein). Indeed, as mentioned above, solving
frustrated bosonic models amounts to solving a large class of frustrated AFs. Fundamental steps
have very recently been taken experimentally towards the implementation of artificial magnetic
fields in cold atom experiments via Raman schemes [13]. Hence exciting progress in this field is
expected in the near future. However, the difficulty of finding accurate theoretical descriptions
of disordered quantum lattice models makes it hard to tell a priori which systems will present
such interesting phases in an experiment. The most attractive aspect of quantum simulators is
their potential ability to emulate model Hamiltonians whose phase diagram cannot be accurately
predicted with current theoretical approaches. Therefore, it would be highly desirable to dispose
of a fast tool that can outline quantum-mechanical phase diagrams, point out disordered phases
and thus classify model Hamiltonians according to their potential relevance for experimental
quantum simulation. We propose that the methods presented here will serve this very
purpose.
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Figure 1. Spatially anisotropic triangular lattice (SATL). The lines denote
interactions and the spins are located at the vertices.

Planar systems of bosons in optical lattices, coupled to an artificial magnetic field, can be
described by the Bose–Hubbard Hamiltonian

HBH =
�

�i, j�

ti j

2

�
b†

i b j + h.c.
�

+
U
2

�

i

ni(ni − 1), (1)

where bi and b†
i are bosonic operators, ni = b†

i bi and �i, j� represents pairs of nearest neighbor
(NN) sites. The hopping amplitude ti j = −t̃i j exp

�
iAi j

�
, where t̃i j � 0, is spatially modulated

by the line integral of the vector potential along the �i, j� bond, Ai j =
� r i

r j
A(r) · dl , as well as

by possible spatial anisotropies in the optical lattice (contained in the bare hopping amplitudes
t̃i j > 0 ). In the following, we will focus on the limit of infinite repulsion U → ∞ and half-filling
�ni� = 1/2, under which the Bose–Hubbard model maps onto the S = 1/2 XY Hamiltonian [11]

HS =
�

�i, j�
ti j(Sx

i Sx
j + Sy

i Sy
j ), (2)

where Sα
i is the αth component of the S = 1/2 spin operator acting on site i .

In this work, we focus on a triangular lattice with antiferromagnetic NN interactions, which
can be seen as a ferromagnetic lattice (t̃i j > 0 ) with half a magnetic flux quantum threaded
through each lattice plaquette. This magnetic flux can, for instance, be interpreted as flipping
the signs of all hopping amplitudes of the bonds along the horizontal direction of the lattice
(figure 1). In this gauge the hopping is transformed to ti j = t̃i j for ri − r j = ±aτ 1, where a is the
lattice spacing and τ 1 = (1, 0), while ti j = −t̃i j for the other (diagonal) NN bond directions. A
canonical transformation rotating the spins in odd rows by an angle π around the z-axis flips the
signs of all diagonal bonds, leading to a model of a spatially anisotropic triangular XYAF with
all ti j > 0. Such a model exhibits strong frustration on the triangular lattice. In the following, we
specialize to the case where the hopping amplitudes ti j take two values, t1 and t2, depending on
the orientation of the bond (parallel to τ1 or along the diagonals ±aτ 2 and ±a (τ 2 − τ 1), with
τ 2 = (1/2,

√
3/2)—see figure 1). This particular case is relevant for the physics of a number of

systems: it can describe neutral atoms trapped in triangular lattices formed with three lasers
intersecting at 120◦ angles [14], one of which has a different intensity than the other two;
another implementation of this model is neutral atoms in an isotropic triangular lattice in the
absence of artificial magnetic fields but with elliptical time-dependent forcing of the lattice [6];
furthermore, it is relevant for triangular Wigner crystals of ions trapped in the minima of an
optical lattice [11].

The aim of this work is the determination of the ground-state and finite-temperature phase
diagrams of the S = 1/2 XYAF—or, alternatively, of frustrated half-filled hardcore bosons—on
a spatially anisotropic triangular lattice (SATL) by means of spin-wave theory. In particular,
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we show that Takahashi’s modified spin-wave (MSW) theory [15] gives an adequate description
of the main features of the ground-state and low-temperature phase diagram, while keeping the
computational effort at a minimum. Spin-wave methods generally account for weak quantum
fluctuations around the ordered state corresponding to the ground state in the classical limit
S → ∞. We show how MSW theory can be extended to arbitrary reference states, whose
ordering vector may be shifted with respect to the ground state in the classical limit [16].
Furthermore, we demonstrate how this procedure allows for a convenient calculation of the
spin stiffness. In the specific case of the S = 1/2 XYAF on an SATL, the spin stiffness proves
to be an effective tool supporting our search for spin-liquid phases. Supplementary results
derived by projected entangled-pair states (PEPS) [17] and exact diagonalizations (ED) using
the Lanczos method allow us to validate the zero-temperature results of the MSW method with
ordering vector optimization. Also, we provide the finite-temperature phase diagram of the
S = 1/2 XYAF on an SATL, and find a region where the breakdown of MSW theory indicates a
disordered state. Such a disordered phase is an ideal candidate for performing a useful quantum
simulation because theoretical tools for studying it adequately are currently lacking. In an
upcoming publication, we will extend this method to the ground-state phase diagrams of the
Heisenberg SATL and the J1 J2 J3 model [18].

For coherence with the theoretical technique used—spin-wave theory—and for a better
comparison with existing results in the literature, the results of this paper will be generally
expressed in the language of spin physics, but guidance will be provided on how to translate the
magnetic observables into bosonic observables.

This paper is organized as follows. In section 2, we introduce Takahashi’s MSW formalism,
supplemented with ordering-vector optimization, and provide a general method to calculate
the spin stiffness. The rest of the work is dedicated to the investigation of the phase diagram
of S = 1/2 XYAF on an SATL. Section 3 presents the ground state phase diagram of this
model. In section 4, we extend the phase diagram to finite temperatures and calculate the
Berezinskii–Kosterlitz–Thouless (BKT) transition lines. Finally, in section 5, we present our
conclusions.

2. Modified spin-wave (MSW) formalism

In the past, MSW theory has been found to give a satisfactory qualitative account of the low-
temperature properties of spin systems, even frustrated or disordered ones. In this section, we
review its formalism, mainly following Xu and Ting [16] in the first steps, but considering
XY interactions rather than Heisenberg interactions (for the latter see also [18]). This requires
only minor modifications of the formulae, and it is expected that the validity of the spin-wave
approach is even better justified for XY interactions since in this case the influence of quantum
fluctuations is reduced by the anisotropy in spin coupling.

Our aim is to determine the phase diagram of the Hamiltonian of equation (2). A
fundamental assumption of spin-wave theory as applied to the XY model is that the ground
state shows long-range order (LRO) with the spins classically lying in the xy-plane; for a
translationally invariant system, like the one under investigation, the ordered ground state is
characterized by a well-defined ordering vector Q. Under this assumption, it is convenient to
rotate the local reference system of each spin from (x, y, z) to (η, ζ, ξ) so that the ground state
in the local reference frame has all spins aligned in the same direction. This amounts to the

New Journal of Physics 12 (2010) 053036 (http://www.njp.org/)

http://www.njp.org/


6

following transformation:

S x
i = − sin ( Q · r i) S η

i + cos ( Q · r i) S ζ
i , (3a)

S y
i = cos ( Q · r i) S η

i + sin ( Q · r i) S ζ
i , (3b)

S z
i = −S ξ

i . (3c)

Then S ζ
i , which will be the quantization axis, lies parallel to the classical spin Si = (cos( Q · r i),

sin ( Q · r i), 0). The component S η
i lies perpendicular to it in the xy-plane, and S ξ

i is
perpendicular to the xy-plane. Unlike in ordinary spin-wave theories we do not make any
assumption on the ordering vector Q. In particular, it may well differ from the one exhibited by
the system in the classical limit ( Qcl).

Spin waves can be described by applying the Dyson–Maleev (DM) transformation [19, 20],
which maps the physical spins to interacting bosons,

S −
i → 1√

2S

�
2S − a†

i ai
�

ai , (4a)

S +
i →

√
2S a†

i , (4b)

S ζ
i → −S + a†

i ai , (4c)

where S ±
i ≡ S ξ

i ± iS η
i . The DM transformation is an exact mapping between spins and bosons as

long as projectors are retained which keep the system in the physical subspace, i.e. the subspace
where at each site only 2S DM bosons are present at most. It can be shown that these projectors
have the form P = 1 +O[n/(2S)]3, where n is the DM boson density [21]. Hence, under the
assumption of diluteness of the DM boson gas, n/(2S) < 1 (in fact �n� = S, see below), we can
safely neglect the P projectors.

If the spin Hamiltonian under investigation is obtained as the hardcore limit of the
Bose–Hubbard Hamiltonian, equation (1), it is important to distinguish the DM bosons from
the physical b-bosons from which the effective spin Hamiltonian originated. Indeed the DM
bosons at a site i quantify the deviation of the i th spin from the local direction in the xy-plane
set by the ordered structure with ordering vector Q. On the other hand, the physical bosons
correspond to the spin deviations with respect to full alignment of the spin along the z-axis.
The particle–hole symmetry of the bosonic Hamiltonian, equation (1), in the hardcore limit
leads to half-filling of the physical bosons, which accidentally coincides with the average filling
imposed by Takahashi’s constraint on the DM bosons for S = 1/2 (see section 2.1). Yet all other
properties are in general quite different.

2.1. Derivation of a mean-field Hamiltonian and Takahashi’s constraint

Applying equations (3) and (4) to equation (2), one arrives at the bosonic Hamiltonian

H= S2
�

�i, j�
ti j

�
1 − 1

2S

�
2a†

i ai + 2a†
j a j − a†

i a j − aia
†
j + a†

i a†
j + aia j

�

+
1

(2S)2

�
a†

i aia
†
j a j − a†

i a†
j a ja j − a†

i aiaia
†
j + aia

†
j a ja j + a†

i aiaia j
�

+O
� n

2S

�3
�

cos( Q · r i j).

(5)
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Here we have dropped the terms with six boson operators, which are of order O[n/(2S)3]
and are negligible for n/(2S) < 1. Moreover, the truncation of the Hamiltonian to this order
is consistent with neglecting the effect of the projectors on the physical subspace, which also
amounts to discarding terms of order O[n/(2S)3].

MSW theory relies on the minimization of the free energy. To this end we need the
expectation value of the Hamiltonian equation (5). Under the assumption that the ground state is
a Gaussian state, we make use of Wick’s theorem [22] to decouple the boson–boson interaction
terms, i.e. the terms consisting of four boson operators. The expectation value E ≡ �H� can then
be written as

E = 1
2

�

�i, j�
ti j

��
S +

1
2

− F (0) + F(r i j)

�2

+
�

S +
1
2

− F (0) + G(r i j)

�2
�

cos( Q · r i j). (6)

Here we have defined the correlators

�a†
i a j� = F(r i j) − 1

2δi j , (7a)

�aia j� = �a†
i a†

j � = G(r i j). (7b)

These correlators can be rewritten in terms of independent particles by first Fourier transforming
ak = 1√

N

�
i ai e−ik·r i , where N is the number of sites, and then applying a Bogoliubov

transformation

αk = cosh θk ak − sinh θk a†
−k , (8a)

α†
−k = − sinh θk ak + cosh θk a†

−k . (8b)

Requiring that the Bogoliubov particles be non-interacting imposes �αkαk� � = �α†
kα

†
k� � = 0. This

condition also removes the anti-Hermitian part of the Hamiltonian.
The correlators are now

F (r) = 1
N

�

k

cosh (2θk) e−ik·r
�

nk +
1
2

�
, (9a)

G (r) = 1
N

�

k

sinh (2θk) e−ik·r
�

nk +
1
2

�
, (9b)

with nk = �α†
kαk� = 1/ (exp (ωk/T ) − 1) being the occupation number of Bogoliubov mode k

at temperature T (with the Boltzmann constant kB set as unity). The dispersion relation ωk is
determined self-consistently in the next section.

So far, we have essentially formulated a standard Hartree–Fock theory for the gas of
interacting DM bosons. A very important modification to this theory, due to Takahashi [15],
is the introduction of the constraint of zero magnetization at each site,

�S ζ
i � = −S + �a†

i ai� = −S − 1
2 + F (0) = 0. (10)

The implementation of this constraint amounts to effectively reducing the Hilbert space
dimension available to the DM bosons by fixing their average density to S. For S = 1/2 spins in
a bipartite lattice, one can in fact show a consequent reduction of the Hilbert space dimension
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from ∞ (as in linear spin-wave (LSW) theory) to 4
π

2N

N (as in MSW), which restores, up to
logarithmic accuracy, the physical value of 2N [23].

Takahashi’s constraint imposes that �n�/(2S) < 1, in agreement with the kinematic
constraint on the physical Hilbert space (even without explicit account of the projection
operators on that space), and it guarantees the correctness of the truncations of high powers of
n/(2S) that we introduced above. Finally, if the Hamiltonian is Z2 × U(1) symmetric because
of a uniaxial anisotropy, as in the case that is of interest in this paper, one expects �S ζ

i � = 0.
The constraint equation (10) elegantly restores this reflection symmetry of the ground state with
respect to the quantization axis.

2.2. Derivation of the self-consistent equations

The correct spin wave description is found by minimizing the free energy F = E − TS , where

S =
�

k

[(nk + 1) ln (nk + 1) − nk ln nk] (11)

is the entropy of a set of harmonic oscillators. Minimizing with respect to θk and ωk under the
constraint of equation (10) yields a set of self-consistent equations

tanh 2θk = Ak

Bk
(12)

with

Ak = − 1
N

�

�i, j�
ti j cos( Q · r i j)Gi j eik·r i j , (13a)

Bk = − 1
N

�

�i, j�
ti j cos( Q · r i j)

�
Gi j + Fi j

�
1 − eik·r i j

��
− µ, (13b)

where µ is the Lagrange multiplier for equation (10) corresponding to the chemical potential
for changing the total magnetization.

In equations (13), we have abbreviated Fi j = F(r i j) and Gi j = G(r i j). Note that in the
classical limit S → ∞, one obtains Gi j , Fi j ≈ S and equations (13) become analogous to their
LSW counterparts. The spin-wave spectrum reads

ωk =
�

B2
k − A2

k . (14)

Inserting equations (13) into (14) shows that a finite µ entails a gap at k = 0. This is to be seen
in contrast to LSW theory where the spectrum always has a gapless Goldstone mode at k = 0.
The correlators at the minimum take the form

Fi j = 1
N

�

k

Bk

ωk
cos(k · r i j)

�
nk +

1
2

�
, (15a)

Gi j = 1
N

�

k

Ak

ωk
cos(k · r i j)

�
nk +

1
2

�
. (15b)
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At T = 0 where nk = 0 ∀k �= 0, one finds that µ vanishes. This implies also the disappearance of
the gap at k = 0 that may exist for finite temperature. A vanishing gap is a necessary requirement
for the appearance of the Goldstone mode associated with magnetic LRO. It also enables Bose
condensation of the DM bosons in the k = 0 mode. Separating out the contribution of the zero
mode, �a†

k=0ak=0�/N = �ak=0ak=0�/N ≡ M0 (corresponding to the order parameter measuring
the total spiraling magnetization in the quantization axis directions given by the ordering vector
Q), one arrives at the zero-temperature equations

Fi j = M0 +
1

2N

�

k �=0

Bk

ωk
cos(k · r i j), (16a)

Gi j = M0 +
1

2N

�

k �=0

Ak

ωk
cos(k · r i j), (16b)

and the constraint equation (10) becomes

S +
1
2

= M0 +
1

2N

�

k �=0

Bk

ωk
. (17)

As mentioned above, the occupation of the zero-mode M0 corresponds to a Bose–Einstein
condensate of the DM bosons in the minimum of the dispersion relation. This condensate is
depleted by interactions of the DM bosons. The larger this depletion, the more DM bosons
reside at momenta different from zero, thus decreasing magnetic LRO.

2.3. Optimization of the ordering vector

It is not a priori clear whether the classical ordering vector Qcl correctly describes the LRO
in the quantum system. To account for the competition between states with LRO at different
ordering vectors Q we extend the MSW procedure by optimizing the free energy with respect
to the ordering vector Q. This procedure, first introduced in [16], significantly improves the
predictions of MSW theory. It amounts to finding the best ordered reference state with in-plane
ordering vector Q (spiral state) whose free energy is minimized not at the classical level, but
including the effect of quantum fluctuations self-consistently within MSW theory.

The minimization of F with respect to Qx and Qy yields two additional equations, which
must be added to the set of self-consistent equations,

∂

∂ Qx
F = −1

2

�

�i, j�
ti j sin( Q · r i j)r x

i j

�
F2

i j + G2
i j

�
= 0, (18a)

∂

∂ Qy
F = −1

2

�

�i, j�
ti j sin( Q · r i j)r

y
i j

�
F2

i j + G2
i j

�
= 0. (18b)

The values of Fi j and Gi j can now be calculated by solving self-consistently equation (18)
together with equations (10) and (12)–(15). At zero temperature, equations (10) and (15) have to
be replaced by equations (17) and (16), respectively. Through Wick’s theorem, the knowledge
of the quantities Fi j and Gi j allows for the computation of the expectation value of any
observable.
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2.4. Spin stiffness

The optimization of the ordering vector allows for a straightforward calculation of the spin
stiffness. This additional information, complementary to the order parameter, helps us in
identifying candidate regions for spin-liquid behavior.

The MSW ansatz always returns only a single one of all the possible ordering vectors Q0

as the optimal ordering vector. However, if the true ground state is only SRO, we might expect
the Q-minimum to be relatively shallow and that a slight change of the ordering vector barely
affects the free energy F . This means that the order is not very stable against twists of the spin
configuration. We quantify the curvature of the minimum by the spin stiffness tensor

ραβ = 1
N

d2F
dQαdQβ

����
Q= Q0

, (19)

evaluated at the optimized ordering vector Q0. In particular, we will determine the parallel spin
stiffness ρ� ≡ 1

2 Tr ρ = 1
2

�
ρxx + ρyy

�
and the Gaussian spin stiffness

ϒ = det ρ . (20)
The spin stiffness gives a measure of how stiff magnetic LRO order is with respect to

distortions of the ordering vector and it provides a fundamental self-consistency check of our
approach. In fact, finding a small spin stiffness casts doubts on the reliability of the spin-wave
approach in describing such a strongly fluctuating state and hence suggests that the true ground
state might be quantum disordered.

Since a change in Q affects the correlators Fi j and Gi j , we must compute ϒ self-
consistently. After finding the optimal Q0 by the self-consistent procedure described in the
previous sections, we calculate 1

NF
�
Qx , Qy

�
self-consistently for several ordering vectors

Q = Q0 + � Q and fit a quadratic form to the results. Since the minimum in the free energy
can be very shallow, this procedure can be somewhat affected by numerical noise. As an
approximation to the true spin stiffness, the partial spin stiffness ρ

partial
αβ can be computed via

the partial derivatives, i.e. without recalculating the self-consistent equations. It reads

ρ
partial
αβ ≡ 1

N
∂2

∂ Qα∂ Qβ

F

= − 1
2N

�

�i, j�
ti j cos( Q · r i j)rα

i jr
β
i j

�
F2

i j + G2
i j

�
. (21)

We define ϒpartial analogously to ϒ (equation (20)) as the determinant of the partial spin-stiffness
tensor. The system can lower its energy by adjusting Fi j and Gi j to the new ordering vector
and therefore ϒ is always smaller than ϒpartial. We will see later that in some cases the partial
Gaussian spin stiffness ϒpartial gives a good estimate of the real Gaussian spin stiffness ϒ , but
there are cases where it is considerably larger.

In the following, we present the zero-temperature phase diagram of the anisotropic
triangular lattice. This paradigmatic example will show that the spin stiffness is an important
quantity that provides a deeper insight into the order properties of the system.

2.5. From spins to bosons

As we mentioned in the introduction, in the S = 1/2 case the spin Hamiltonian is equivalent
to that of infinitely repulsive bosons at half-filling with frustrated hoppings. Hence, it is
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Figure 2. (a) Classical ground-state phase diagram of the anisotropic triangular
lattice with sketches of the 1D state at α = 0, the spiral state at α = 1 and the
2D-Néel state for α � 2. (b) Quantum mechanical phase diagram from [11]. SL
is short for spin liquid.

important to match spin observables with their bosonic counterparts. Following the DM
or the Holstein–Primakoff transformation, spin operator and physical (hardcore) b bosons
obey the relationship S̃+

i = b†
i , S̃−

i = bi , S̃z
i = Sz

i = b†
i bi − 1/2.5 Here the b operators obey

anticommutation rules on site, {bi , b†
i } = 1. A nonzero magnetic order parameter M0 implies

the appearance of off-diagonal LRO in the bosonic one-body density matrix, �b†
i b j�

|r i j |→∞
−→

M2
0 cos (Q · r i j). The ordering vector Q corresponds to the finite momentum at which

condensation occurs. The condensed state in the spiral phase is characterized by a pattern of
persistent currents forming a crystal of vortices, whose geometrically correlated structure is
captured by the spin chirality (see below). Finally, the parallel spin stiffness corresponds to the
superfluid density of the bosons, ρs = ρ�/S.

3. Ground-state phase diagram of the anisotropic triangular lattice

In this section, we compute the ground-state phase diagram of the spatially anisotropic triangular
lattice (SATL) with nearest neighbor (NN) XY interactions. We consider a wide range of α ≡
t2/t1, where t1 denotes the bond strengths along the chains and t2 the bond strengths along the
diagonals (black and red bonds, respectively, in figure 1). The parameter α interpolates between
an ensemble of decoupled one-dimensional (1D) chains at α = 0, the isotropic triangular lattice
at α = 1, and the square lattice for α → ∞.

If we assume the spins to behave classically, the 2D-Néel order, present for α � 2, starts
to continuously deform into spiral order at α � 2 (compare figure 2(a)). The spiral phase
extends down to α = 0 where the chains decouple. In a previous publication, we presented
the quantum mechanical phase diagram as predicted by projected entangled-pair state (PEPS)
calculations [11]; it is reproduced for convenience in figure 2(b). According to this, both
the square lattice limit (α → ∞) and the most frustrated case, the isotropic triangular lattice
(α = 1), display magnetic LRO. In the limit of uncoupled chains (α = 0), the system displays

5 Here the operator S̃+
i (S̃−

i ) raises (lowers) the spin with respect to the z-axis, in contrast to S+
i and S−

i (as defined
in section 2), which act with respect to the quantization axis ζ of the twisted coordinate system, equation (3).
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Figure 3. The cluster of 30 spins for which we carried out exact diagonalization
(ED). The 24-spin system is equivalent, only with the top and bottom rows
removed. The clusters are chosen for largest symmetry with respect to reflection
on the axes and for a ratio of t2- (red) to t1-bonds (black) closest to 2.

quasi-LRO with algebraically decaying correlations. However, similarly to what has been found
in the Heisenberg model [24], the system seems to feature spin-liquid phases with exponentially
decaying correlations between different types of order or quasi-order. In the appendix, we
provide a further spectral feature coming from the ED of a small cluster, which is consistent with
the observation coming from PEPS calculations. Further distinct features of the quantum model
are that the transition between the 2D-Néel and spiral orders is shifted by quantum fluctuations
to considerably smaller values of α and that the quasi-ordered 1D-like state extends over a whole
region of finite α in the phase diagram.

In the following, we compare predictions of MSW theory with these PEPS results and
ED. This will allow us to validate the reliability of the MSW method. The following system
geometries are considered for the three different methods:

• PEPS: a rhombic lattice of 20 × 20 = 400 spins with open boundary conditions and bond
dimension D = 2. PEPS is a powerful numerical tool that goes beyond mean-field theory,
but which, for small bond dimension D, only partially accounts for the entanglement in
the ground state. This limitation becomes particularly serious close to quantum phase
transitions. However, in [11] it was demonstrated that D = 2 is already accurate enough
to effectively capture the physics of the system.

• ED: Lanczos diagonalization of clusters of 24 and 30 spins (the latter is shown in figure 3),
again with open boundary conditions (necessary in order to allow for the accommodation
of arbitrary ordering vectors).

• MSW: rhombic lattices of 32 × 32 = 1024 and 64 × 64 = 4096 spins and in the infinite-
lattice (thermodynamic) limit, under periodic boundary conditions. We find that at these
lattice sizes, all quantities have essentially reached the infinite lattice limit in most of the
parameter space. As can be expected, the deviations from the thermodynamic limit are
sizable only in the 1D limit and at critical points. The thermodynamic limit is computed by
replacing finite sums over the first Brillouin zone with integrals.

In the triangular lattice with NN interactions, one finds in the MSW formalism that
equation (18b) gives Qy = 0 and from equation (18a) we obtain the formula

Qx = 2 arccos

�

−α

2

F2
τ 2

+ G2
τ 2

F2
τ 1

+ G2
τ 1

�

. (22)

Here τ 1 = (1, 0) and τ 2 = (1/2,
√

3/2) are the primitive lattice vectors (here and in the
rest of the work, we take the lattice spacing a to be equal to unity). For Fi j = Gi j = S,
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0.180 1 1.35 1.66 2 α
spiral order ´Neel order

Figure 4. Two ordered phases (spiral and Néel) are separated by regions in which
imaginary modes appear and convergence of the MSW equations breaks down
(red).

attained when S → ∞, this reduces to the ordering vector of the LSW theory (Qcl
x , Qcl

y ) =
(2 arccos(−α/2), 0), which coincides with the classical ordering vector.

3.1. Breakdown regions for MSW theory

As a first step in our analysis, we investigate the parameter regions where LRO is to be expected,
and the locations where MSW theory ceases to be applicable. To this end we first investigate
if there appear imaginary modes in the dispersion relation, which would indicate instabilities.
Afterwards we study the order parameter M0 and the spin stiffness.

3.1.1. Imaginary frequencies and breakdown of convergence. Convergence in the self-
consistent equations of MSW theory with ordering vector optimization, equations (12)–(14),
(16), (17) and (22) cannot be achieved in selected regions of the ground-state phase diagram,
namely for α � 0.18 and for 1.35� α � 1.66, as summarized in figure 4. (Interestingly, conver-
gence is restored in the pure 1D limit, α = 0, for which the theory formulates surprisingly good
predictions.) This breakdown of convergence corresponds to the appearance of an imaginary
part in the spin-wave frequencies, equation (14), signaling an instability of the ordered ground
state. The breakdown of a self-consistent description of the system in terms of an ordered
ground state is strongly suggestive of the presence of a quantum-disordered ground state in the
exact behavior of the system. Hence, one can interpret these parameter regions as candidates
for the spin-liquid phases predicted by PEPS calculations [11] (compare figure 2(b)).

3.1.2. Order parameter and spin stiffness. A fundamental indication for the validity of spin-
wave theories is generally given by the order parameter M0 (figure 5) and the spin stiffness
(figure 6). The influence of quantum fluctuations is strong where they are small, and the primary
assumption that the system can be described by a semi-classical spin-wave state begins to falter
in such a case. Since the MSW formalism only takes quantum fluctuations partially into account,
a small order parameter and/or spin stiffness also suggests that the true quantum ground state
could be completely disordered.

Interestingly in the regions of largest spatial isotropy of the interactions, i.e. around α = 1
(isotropic triangular lattice) and at large α (isotropic square lattice), the order parameter M0

coincides with that of LSW theory. As we will see later, at the points α = 0, 1, ∞, the ordering
vector found with the present MSW approach also exactly matches the classical one, due to
symmetry.

In the square lattice limit α → ∞, the order parameter attains the value M0 = 0.435 in
the thermodynamic limit, which is very close to M = 0.437 as extrapolated from quantum
Monte Carlo calculations [25]. For the spin stiffness [25] obtained ρ�/α = 0.270; the MSW
method returns only a slightly larger value ρ�/α = 0.272. It appears that in this special case
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Figure 5. Comparison of the MSW order parameter M0 (as defined before
in equation (16)) for different system sizes (numbers behind the labels).
Also included is

√
S ( Q) /N (equation (23)) for ED (Lanczos) and PEPS

computations, and the staggered magnetization M of LSW theory. A large value
indicates strong LRO, with the theoretical maximum being 0.5.

the main quantum corrections are correctly captured by MSW theory. The large values of the
order parameter (around 87% of the theoretical maximum) and of the spin stiffness support the
assumption that the classical picture remains essentially valid in the large-α limit.

The loss of LRO in the 1D limit (α → 0) is reflected in the breakdown of the order
parameter M0, which occurs at a finite value of the interchain coupling, α ≈ 0.18 (note that
within LSW theory the order parameter vanishes only for α → 0). This coincides with the
appearance of imaginary spin-wave energies as discussed in the previous section. At small but
finite α the spin stiffness ρyy essentially vanishes, which is characteristic of a 1D-like state
that consists of effectively decoupled chains. This suggests that the physics becomes basically
independent of the y-component of Q for α � 0.35.

A single XY chain can be solved exactly by the Bethe–Ansatz equations, and by the
use of twisted boundary conditions, one can obtain the exact solution for the spin stiffness
ρxx = 1/π ≈ 0.318 [26]. Our MSW result of ρxx ≈ 0.308 lies surprisingly close. For 1D models,
it is known that a nonzero spin stiffness is accompanied by quasi-long-range correlations with
power-law decay. The critical nature of the state in the 1D-like phase is reflected also in the fact
that finite-size effects play an important role.

The MSW order parameter can be compared with the results from ED and PEPS
calculations. In both cases, the Fourier transform of the spin–spin correlations, the static
structure factor

S (k) = 1
N

�

i, j

e−ik·(r i −r j )�Sx
i Sx

j + Sy
i Sy

j �, (23)

allows us to extract an ordering vector Q that maximizes S(k), as well as the order parameter M
that is defined as M =

√
S ( Q) /N in the thermodynamic limit. In figure 5, we compare
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Figure 6. (a) Gaussian spin stiffness ϒ ; (b) the components of the spin stiffness
tensor. The mixed second derivative ρxy vanishes for symmetry reasons. The
numbers behind the labels of the graphs give the considered system size. The
inset in (a) is a close-up of the region of small α. The curves labeled ‘partial’
were obtained by using equation (21).

√
S ( Q) /N for ED of systems of 30 and 24 spins, and with PEPS calculations on a 20 × 20

lattice.
The comparison of ED and MSW results shows that MSW is quantitatively reliable in the

Néel phase for α � 1.66. For smaller α values the comparison is more problematic: in particular,
while ED and PEPS confirm the existence of an ordered spiral region for α around 1, the
magnitude of the order parameter appears to be largely overestimated by MSW theory, which is
not surprising considering the partial account of quantum fluctuations by the MSW approach. In
particular, MSW theory produces the counterintuitive prediction that the frustrated spiral phase
for 0.18 < α < 1.35 has an order parameter that can be larger (around the isotropic α = 1 point)
than that of the unfrustrated case of the square lattice (recovered for α → ∞). We observe that
MSW theory is only moderately improving upon LSW theory around the α = 1 point for what
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Figure 7. Comparison of the x-component of the ordering vector, Qx , using
ED (blue), PEPS (light green) and the MSW ansatz (red). Also shown are the
classical values (black). The numbers in the labels of the curves are the respective
system sizes. The black circle marks the isotropic spiral ordering vector of
Qx = 120◦, which occurs classically and within MSW theory at α = 1.

concerns the quantum fluctuations of the order parameter—in particular, its prediction for M0

essentially coincides with that of LSW for α = 1.
In summary, from the MSW order parameter M0 we can derive a loss of LRO at α � 0.18,

and the spin stiffness suggests a strong weakening of interchain correlations already at α � 0.35.
The spin stiffness also decreases strongly upon approaching the parameter region 1.35� α �
1.66. Together with the appearance of imaginary spin-wave frequencies for α � 0.18 and
1.35� α � 1.66, this strongly indicates the appearance of disordered phases in these regions.
Due to its semiclassical character the MSW ansatz is not adapted to properly describe these
phases, and we must resort to methods such as PEPS that take quantum fluctuations into account
more completely. However, in the rest of the parameter space, magnetic LRO order seems to
survive quantum fluctuations.

In the next section, we investigate in detail the nature of the ordered phases.

3.2. Ordering vector, spin–spin and chiral correlations

In this section, we introduce several observables which reveal the type of order appearing in the
system and which will be used in the discussions of sections 3.3 and 3.4.

The ordering vector is a direct outcome of MSW theory and can be extracted from the ED
data by determining the position of the peak of the static structure factor, equation (23). Figure 7
displays the x-component of the ordering vector Q (with Qy = 0). Three limiting values are
known. For α = 0, intra-chain antiferromagnetic (Néel) order is described by Q = π x̂ . For
α → ∞, square-lattice Néel order is described by Q = 2π x̂ . In the isotropic lattice (α = 1) the
threefold symmetry forces the ordering vector to Q = 4π

3 x̂ . (The ED and PEPS results deviate at
α = 1 because the required threefold symmetry is broken by the shape of the simulation clusters,
figure 3.) The importance of optimizing the ordering vector is apparent in figure 7. In fact, the
MSW ordering vector deviates strongly from the classical (and LSW) results in large parts of
the phase diagram.
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Figure 8. NN correlation K0,τ i , where τ i = τ 1 (solid lines) and τ i = τ 2 (dashed
lines), respectively, comparing ED (blue), PEPS (green) and MSW theory
(orange). The black triangles are the MSW data for a 1D chain of length
N = 106 and the stars in magenta are the exact results for a linear chain in the
thermodynamic limit derived by the use of the Jordan–Wigner transform.

The spin–spin correlations of NNs shed further light on the order properties. We analyze
them through the two-site total spin,

Ki j ≡ 1
2�(Si + S j)

2� = �Si · S j� + 3
4 , (24)

which we plot in figure 8. This quantity vanishes if the spins are in a singlet (which is equivalent
to perfect anticorrelation), it takes the value 3

4 if the spins are uncorrelated, and it takes the value
1 if the spins form a triplet (which means perfect correlation). For PEPS and ED, we report the
values of Ki j averaged over the central spins, where boundary effects are minimal.

Spiral phases carry not only a magnetic order parameter, but also a chiral order parameter.
In particular, a vector chirality [27] can be defined on an upwards pointing triangle with
counter-clockwise labeled corners (i, j, k) as κ� = 2

3
√

3

�
Si × S j + S j × Sk + Sk × Si

�
z, and

on a downwards pointing triangle with counter-clockwise labeled corners (i, l, j) as κ∇ =
2

3
√

3

�
Si × Sl + Sl × S j + S j × Si

�
z. Long-range chirality correlations are defined as [28]

ψ− = �(κ� − κ∇) (κ�� − κ∇�)� , (25)

where the triangle pairs (�, ∇) and (��, ∇�) share a τ 1 edge. In figure 9, we plot the
average chirality correlation of the central plaquette with all other plaquettes, normalized to
the theoretical maximum 4/9. The MSW data have been obtained by expanding the chiral
correlation up to the fourth order in the boson operators, which is consistent with the truncation
of the bosonic Hamiltonian equation (5) to the same order. Going to higher orders does not
change the outcome in the regions where M0 is large, but can yield different results where M0

is small. In particular, the unphysical negative values attained by ψ− for small α are an artifact
of this truncation.

3.3. Transition from two-dimensional Néel order to spiral order

An inspection of figures 7–9 shows that the MSW formalism indeed reproduces the main
features of the phase diagram of figure 2(b) quite accurately.
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Figure 9. Averaged chiral correlation normalized to the theoretical maximum
4/9 for ED (blue), PEPS (light green) and MSW theory (orange, dark green and
red). The black dotted line is the classical result and the black solid line is the
classical chiral correlation that is obtained if for a given α the Q of the MSW
calculation rather than Qcl is used.

First of all, coming from the large-α limit, we observe that all methods (MSW theory,
ED and PEPS) show a jump in the wavevector associated with the dominant correlations in
the system, from Q = 2π x̂ , characteristic of the Néel phase, to a continuously varying Q,
characteristic of a spiral phase. PEPS indicates a jump from dominant Néel correlations to
dominant spiral correlations at α ≈ 1.4. ED for 30 spins shows a first-order phase transition
(with a sharp level crossing) between Néel and spiral correlations at the slightly larger value of
α ≈ 1.44. In the case of MSW theory, the jump in the ordering vector is realized when going
across the breakdown region, namely when passing from α ≈ 1.66 (which is the lower bound to
the Néel phase within MSW theory) to α ≈ 1.35 (which represents the upper bound of the spiral
phase). In particular, all three different approaches point to the fact that Néel order persists to
much lower α than the classical value α = 2.

The persistence of Néel order over a larger parameter region than in the classical case
is reminiscent of what is observed in other models. Indeed, quantum fluctuations generally
stabilize states where spins are ordered collinearly (see e.g. [29, 30]), a property that is
reproduced by the MSW ansatz with ordering vector optimization. The mechanism behind it
is strongly connected to order-by-disorder phenomena [30].

The abrupt transition from a phase with dominant Néel correlations to a phase with
dominant spiral correlations is confirmed by the spin–spin correlations as displayed in figure 8.
Anticorrelation along the strong τ 2-bonds and correlation along the weak τ 1-bonds are
characteristic of a 2D-Néel ordered state; these correlations decrease rapidly for α < αcrit outside
of the Néel-ordered phase. The change of the type of order is further supported by the overlap
|�ψα|ψ∞�| of the new ground state with the 2D-Néel ordered state of α = ∞, which we plot in
figure 10 for the ED: above the phase transition it still attains a finite and quite large value, while
it vanishes identically below the phase transition. Finally, the onset of strong chiral correlations
shows that the new phase is indeed a spirally correlated one (figure 9).
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Figure 10. Overlap of the ground state at α with the 2D-Néel ground state of
α = ∞, |�α=∞�, and with the 6D subspace that corresponds to the ground state
of α = 0, respectively (ED, 30 spins).

The breakdown region of MSW theory, 1.35� α � 1.66, is strongly suggestive of the loss
of magnetic LRO, corresponding to a spin-liquid state. This region of disordered behavior is
only roughly consistent with that indicated by PEPS calculations [11] for the appearance of a
short-ranged spin-liquid phase, namely 1.2� α � 1.4. Nonetheless it is tempting to associate
the breakdown of MSW theory with this quantum-disordered phase.

3.4. Persistence of one-dimensional quasi-long-range order up to finite inter-chain couplings

In MSW theory, at α ≈ 0.18 the order parameter M0 breaks down. This is an indication of
the transition to a phase without magnetic LRO such as the one reproduced in the 1D limit
α → 0. For α � 0.18, the weak α-dependence of the ordering vector, the spin–spin correlations
and the energy strongly indicate the persistence of a phase with 1D quasi-LRO properties
to finite inter-chain couplings. Furthermore, the spin stiffness component ρyy practically
vanishes for α � 0.35, which suggests that if we took quantum fluctuations into account in
a more accurate way than in MSW theory, spiral (2D) order would probably be lost below
α � 0.35.

In the limit α → 0, we find that the intra-chain spin–spin correlation Ki,i+τ 1 ≡ Kτ 1 � 0.355
lies close to the exact result that can be obtained by using the Jordan–Wigner transform,
Kτ 1 = − 1

π
− 1

π2 + 3
4 � 0.330. The inter-chain spin–spin correlations on the other hand vanish,

which is equivalent to Ki,i+τ 2 ≡ Kτ 2 = 3
4 .

We find that the ordering vector of the MSW theory compares very well to the one
computed by ED in the entire range of α (figure 7). Especially the very weak dependence of Q
on α near the 1D limit is found in both approaches, contrary to classical and LSW theories that
exhibit linear dependences on α. This means again that quantum fluctuations stabilize collinear

order within the chains. This is confirmed by ED: the overlap
��6

i=1

���ψα|ψ i
0�

��2
of the ground
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Figure 11. Momentum distribution of a half-filled gas of frustrated hardcore
bosons on the SATL (corresponding to the spin static structure factor S(k)), for
various values of the spatial anisotropy α. The data (on a logarithmic color scale,
scaled to the number of sites) result from an MSW calculation on an 18 × 18
lattice. The black hexagon marks the first Brillouin zone and the black cross
marks its origin.

state with the subspace spanned by the sixfold degenerate6 ground states of α = 0 remains very
large (almost 80%) up to α ≈ 0.5 (figure 10). Moreover, the small chiral correlations in both
PEPS and ED show that for small α there is no spiral LRO.

3.5. Momentum distribution of the hardcore bosons

After characterizing the zero-temperature phase diagram of the spin model in the previous
sections, we now wish to make contact with the cold-atom implementation of such a model
via hardcore bosons. The most common observable in cold-atom experiments is the momentum
distribution [1], which exactly corresponds to the static structure factor for S = 1/2 spins (23)

nb (k) = 1
N

�

i, j

e−ik·(r i −r j )�b†
i b j� = S (k) (26)

via the spin-to-hardcore-boson mapping described in section 2.5. Figure 11 shows the MSW
prediction for the momentum distribution at various α values, spanning all the condensation

6 This degeneracy is due to the particular geometry of the 30-spin system, compare figure 3. At α = 0 the even
chains have to be in a singlet state, while the four odd chains may each be in a state, with total spin ±1/2, which
yields a degeneracy of 24. Restriction to the (physical) states with zero total magnetization Mz results in a reduction
of this degeneracy to a sixfold one.
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regimes of the bosons at zero temperature. At α = 0 (not shown) the system displays quasi-
condensation at finite momenta along the uncoupled chains, resulting in vertical ridges at Qx =
±π in the momentum distribution. These ridges corrugate as the interchain coupling increases,
and true condensation peaks emerge in reciprocal space, corresponding to a condensate state,
which supports a crystalline vorticity pattern. For α = 1, these peaks are located at the six
corners of the first Brillouin zone. For α < 1, the peaks are elongated in the y-direction, while
for α > 1 they are elongated in the x-direction, witnessing the spatial anisotropy of the lattice.
This situation persists up to the breakdown of MSW theory at α = 1.35; after recovery of
the theory at α = 1.66, the momentum distribution shows condensation at the four corners
of the Brillouin zone of a (deformed) square lattice, defined by the dominant diagonal bonds
of the SATL.

The peak height (normalized to the number of sites) is given by the square of the order
parameter M0.

3.6. Discussion

Here we summarize the main features of the zero-temperature phase diagram obtained via
MSW theory with Q-vector optimization. The region where the system behaves like a set
of essentially decoupled chains with 1D quasi-order is extended to considerable interchain
interactions. The order parameter indicates that the point where interchain correlations set in
occurs at α ≈ 0.18; the spin stiffness suggests that an effective decoupling of the chains may
even persist up to α ≈ 0.35. At larger α the system crosses over to a spirally ordered phase that
persists up to α ≈ 1.35, where MSW breaks down, suggesting a quantum disordered ground
state. At α ≈ 1.66, MSW theory finds again a self-consistent solution, this time corresponding
to a 2D-Néel state.

These results are mostly consistent with the PEPS phase diagram of figure 2(b). In
particular, the persistence of 1D behavior to surprisingly large values of α, the fact that the long-
range ordered spiral phase survives quantum fluctuations, and the extension of 2D-Néel LRO
down to much smaller values of α than in the classical equivalent, are reproduced. However,
there are some deviations, which are generally to be expected from a spin-wave approach.
The range of the ordered phases appears to be somewhat overestimated by MSW theory.
Furthermore, the gapped spin-liquid phases are not faithfully described: while the breakdown
of MSW theory for 1.35� α � 1.66 suggests a disordered ground state, the gapped spin liquid
in the region 0.4� α � 0.6, suggested by the PEPS data [11], is not observed in the MSW
results. Still the proposed phase diagram is significantly improved with respect to the LSW
phase diagram, which follows the classical phase diagram too closely.

Two improvements have proven to be crucial: firstly, the minimization of the free energy
with respect to Q in the self-consistent equations has enabled us to describe the considerable
shift of the ordering vector to a surprisingly satisfactory level. Secondly, the investigation of the
Gaussian spin stiffness serves as a measure of the actual stiffness of the LRO phase. As such it
allows us to detect regions where spin-liquid behavior may appear in the true quantum ground
state.

4. Finite temperature phase diagram of the anisotropic triangular lattice

We now investigate how the phase diagram of the antiferromagnetic NN XY Hamiltonian
on the anisotropic triangular lattice extends to finite temperatures, making use of MSW
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theory with ordering-vector optimization. All calculations in this section are carried out in the
thermodynamic limit.

At finite temperatures, continuous symmetries cannot be spontaneously broken in two
dimensions [31, 32]. In the XY model, instead of LRO, one finds quasi-LRO at finite
but low temperature. At the Berezinskii–Kosterlitz–Thouless (BKT) temperature TBKT, the
system undergoes a topological phase transition from quasi-LRO to an exponential decay of
correlations, involving the unbinding of vortex–antivortex pairs [33]–[35]. The existence of a
BKT transition in the XY model must be seen in contrast to the Heisenberg model, where
Kosterlitz and Thouless [35] showed that vortex excitations are not topologically stable, a fact
that precludes the possibility of a BKT transition.

The possibility of observing the BKT transition is a particular advantage of MSW
theory. The BKT phase with algebraic order is generally predicted by LSW theory to remain
stable at arbitrary temperatures. The nonlinearities contained in MSW theory allow the
disruption of quasi-LRO and the transition to the short-range-ordered (SRO) phase. However,
vortex–antivortex excitations are not explicitly present in the theory and therefore, in principle,
TBKT cannot be accurately estimated.

4.1. Spin–spin correlations

An important observable for the analysis of a temperature-dependent phase diagram is the two-
point correlation function

Ci j ≡ �Sx
i Sx

j + Sy
i Sy

j �/ cos( Q · ri j) = 1
2(F2

i j + G2
i j). (27)

In our analysis we focus on Cm τ 1 and Cm τ 2 , where m is a positive integer, and τ 1 = (1, 0)

and τ 2 = (1/2,
√

3/2) are the lattice vectors. The behavior of Cm τ 1 captures the intra-chain
correlations, whereas that of Cm τ 2 describes interchain correlations.

In order to locate the BKT transition, we calculate the residual sum of squares R =�
m

�
Cm τ 1,2 − f (m τ 1,2)

�2
for two trial functions, an exponential f (r) = Ae−r/ξ , where ξ is the

correlation length, and an algebraic fit f (r) = A/rη. We fit these functions to the correlations
of the central spin with sites that are m = 3 . . . 15 lattice spacings apart. The lower limit to
the fit region is necessary because the trial functions are only valid for the long-distance part
of the correlations, while the upper limit is chosen by us because computation time for the
correlations increases considerably with the distance between the spins. We identify a BKT
transition with a point where the residual sum of squares R of the exponential fit becomes equal
to that of the algebraic fit. This has to be understood as only a rough estimate of the transition
temperature. When giving explicit values of transition temperatures we take the average of the
values obtained from fits to Cm τ 1 and Cm τ 2 .

Figure 12 shows representative log–log plots of the correlation function Cm τ 1 at α ≡
t2/t1 = 0.7 and α = 100 (where the ground states show spiral and 2D-Néel orders, respectively)
for several temperatures. In these plots, algebraically decaying correlations correspond to
straight lines. For α = 0.7 a clear transition from algebraic to exponential decay at the computed
BKT temperature can be observed, a behavior that is found in the entire parameter range of
the spiral phase. On the contrary, at α = 100 we cannot find such a clear transition. Rather,
the curves acquire a curvature in a fairly continuous way, which makes it difficult to pinpoint
the transition. In order to check how the suggested BKT line changes when taking correlations to
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Figure 12. Correlation function Cm τ 1 along the chains in the thermodynamic
limit (a) for α = 0.7 and (b) for α = 100 for several temperatures. The
normalized temperatures T/(t1 + 2t2) considered (for lines from top to bottom)
are (a) T/(t1 + 2t2) = 0.064 . . . 0.078 in steps of 0.002 and (b) T/(t1 + 2t2) =
0.068 . . . 0.164 in steps of 0.016. The line closest to TBKT calculated from MSW
data is shown in bold. Note the difference in the maximal m between (a) and (b).

more distant spins into account, we computed spin–spin correlations for α = 100 up to distances
of 64 lattice spacings. This yields a transition temperature of TBKT/(t1 + 2t2) = 0.134, which is
approximately 15% lower than what is obtained if distances of only up to 15 lattice spacings
are considered. In light of the approximate nature of MSW theory, we find that this level of
precision is satisfactory.

Another useful observable is represented by the gap � = �k=0 of the spin-wave dispersion,
which is intrinsically connected to the two-point correlations. The gap is directly imposed by the
chemical potential µ (see equations (13) and (14)), and its magnitude determines the rapidity
of the decay of correlations. A finite gap leads to exponentially decaying correlations, while a
vanishing one entails power-law correlations. Hence, in principle, the onset of a gap at finite
temperatures corresponds to the occurrence of a BKT transition.

In reality, the thermal onset of a gap we observed within MSW is typically very gradual,
and a clear identification of the transition point via the gap is generally problematic. This
observation can be understood on the basis of a well-known fact: the chemical potential of
the half-filled DM boson gas, which determines the existence of a gap, cannot vanish at finite
temperature because of the absence of Bose–Einstein condensation in two dimensions. As a
consequence, we find a finite gap at any finite temperature, which means that the correlations
decay exponentially at long distances. This suggests that, strictly speaking, MSW theory is
not able to describe the BKT transition. However, for temperatures much lower than the BKT
transition (estimated as explained above), the gap is very small, being below our numerical
precision. For all practical purposes such a small gap entails a decay of correlations that is not
distinguishable from an algebraic decay. Moreover, in a selected region of the phase diagram
(corresponding to the spiral phase), the gap is seen to increase drastically around the estimated
BKT transition temperature, and correspondingly the correlation function is seen to decay much
more rapidly above that temperature. Hence, we conclude that MSW theory still accounts for
one of the most salient features of the BKT transition, namely a discontinuous behavior of
correlations as the temperature is increased.

New Journal of Physics 12 (2010) 053036 (http://www.njp.org/)

http://www.njp.org/


24

1 1.66 20

0.15

G

C

B F

E

D

A

1

α

T/(t +2t )2

B’

0.05

0.18 1.35

0.1

Figure 13. Schematic temperature-dependent phase diagram of the XY SATL.
The different regions are listed along with their main characteristics in table 1.
Horizontal lines mark 1D-Néel order; diagonal lines spiral order; and cross-
hatches 2D-Néel order. In regions F and G, the MSW formalism breaks down.

Table 1. Parameter regions found in the finite-temperature phase diagram
of figure 13. We distinguish mainly between phases with quasi-LRO, i.e.
algebraic decay of correlations, and phases with SRO, i.e. exponential decay of
correlations. Moreover, two regions are listed where the MSW formalism ceases
to be applicable ((F) and (G)).
Phase Qx Decay of correlations

(A) 1D-like SRO π Intrachain: exponential
Interchain: uncorrelated

(B) Spiral quasi-LRO π < Qx < 2π Algebraic
(C) Spiral SRO π < Qx < 2π Exponential
(D) 2D-Néel quasi-LRO Qx = 2π Algebraic
(E) 2D-Néel SRO Qx = 2π Exponential
(F) Unstable (imaginary modes) – –
(G) Breakdown of theory – No correlations

Finally, we can extract from the correlations the temperature at which the MSW formalism
breaks down. It is characterized by the complete loss of all correlations, even to the NN. This
behavior, occurring at temperatures of the order of the coupling strength, is clearly an artifact
of the method, since in real systems the complete loss of correlations occurs only at extremely
high temperatures where spin–spin interactions become negligible.

4.2. The phase diagram

In this section, we present the finite-temperature phase diagram of the anisotropic triangular
lattice model obtained via the MSW method with ordering vector optimization7. We derive
it from the observables introduced in the previous section. For reference we first present a
summarizing sketch of the phase diagram in figure 13, which introduces the phase labels we
will refer to in the following discussion. Table 1 lists the main properties of these phases.

7 Note that we use units in which the Boltzmann constant kB equals unity.
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First, at small α, there is a phase with properties similar to the algebraic 1D-Néel-
like state found at T = 0 but with exponential decay of intra-chain correlations (phase A).
Further, we generally find that the phase diagram contains two quasi-LRO regions: a region at
intermediate α corresponding to spiral quasi-LRO (phase B) and another region at large α that is
characterized by Néel quasi-LRO (phase D). These phases undergo BKT transitions to similar
phases with SRO, phases C and E, respectively. Moreover, between them lies a region where
imaginary frequencies occur in the spin-wave dispersion relation, which can be interpreted as
an indication of an extremely short-range-ordered phase (phase F). This general structure of the
phase diagram is supported by all the observables we investigate. At large T the MSW method
breaks down (see section 4.1) and therefore does not allow for any interpretation in that domain
(region G).

It is also important to note that our calculations cease to converge properly for too low
temperatures, when the chemical potential becomes smaller than the accuracy of our numerical
integrations. Depending on the region of the phase diagram the lowest temperatures for which
appropriate results could be derived vary from less than one-tenth of a per cent to several
per cent of the coupling strengths. This pathology is not observed at T = 0 (as calculated in
section 3) because an exact vanishing of the chemical potential allows the special treatment
of the zero mode as captured in equations (16) and (17). Except for some points, we typically
calculated down to T/(t1 + 2t2) = 0.025. Since the bond strengths are the only energy scales
in the problem, it seems a reasonable assumption that our finite temperature results can be
analytically continued down to T = 0+ without encountering discontinuities (except, possibly,
at exactly T = 0, where—in contrast to any finite temperature—Bose–Einstein condensation
of the DM bosons becomes possible). Nevertheless, this issue should be kept in mind in the
following analysis.

The breakdown of the calculations for too low temperature can be clearly seen in figure 14,
which displays the phase diagrams obtained from several observables.

A natural starting point for a thorough analysis of the temperature-dependent phase
diagram is given by the respective ground state phases. Proceeding from small to large α, we
divide the analysis in sections corresponding to different ground state behavior.

4.2.1. 1D-like phase (phase A). The 1D quasi-ordered ground state phase for which we
found strong indications below α ≈ 0.18 becomes an SRO phase at finite temperatures (phase
A). It is characterized by vanishing correlations between neighboring chains already at zero
temperature. The finite gap leads to exponentially decaying intra-chain correlations for all T .
This is consistent with the expected finite-temperature behavior above a ground state with
quasi-LRO.

The assumption that this low-α phase really describes decoupled chains is reinforced by the
component ρpartial

yy of the spin stiffness, which vanishes in this region, and by the ordering vector
that takes on the 1D value (π, 0), similar to the equivalent of the ground-state phase diagram.
Moreover, neighboring spins on different chains are uncorrelated, whereas NNs on the same
chain are anticorrelated. It is remarkable that this phase is preferred over the quasi-ordered
spiral phase with rising temperatures. In section 3.4, we have seen that quantum fluctuations
stabilize 1D-Néel quasi-order. The same mechanism is at work here: collinear spin correlations
are stabilized by fluctuations, in this case thermal ones.

Note that in the 1D-like phase A, the inter- and intra-chain correlations behave completely
differently. In the rest of the phase diagram, they follow one and the same pattern, since in a
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Figure 14. Linear color plots of (a) the x-component of the ordering vector
Qx , (b) the intrachain correlation Kτ 1 , (c) the interchain correlation Kτ 2 , (d) the
partial Gaussian spin stiffness ϒpartial and ((e) and (f)) the partial spin stiffnesses
ρpartial

xx and ρpartial
yy , respectively. The mixed component of the spin stiffness ρpartial

xy
vanishes for symmetry reasons. (g) displays the entropy and (h) the gap �. The
points mark the BKT transition for τ 1 = (1, 0) (red), the BKT transition for τ 2 =
(1/2,

√
3/2) (orange), the breakdown temperature (blue) and the temperature

where inter-chain correlations disappear (yellow), all computed through the two-
point correlations Cm τ 1,2 . In the gray region, imaginary frequencies appear in the
spin-wave dispersion.

truly 2D structure the correlations in one direction typically cannot disappear without affecting
the correlations in the other one.

4.2.2. Spiral phases (phases B and C). At intermediate inter-chain couplings 0.18� α � 1.35
and at low temperatures, we find a spiral phase with magnetic quasi-LRO (phase B). It can be
seen as the finite-temperature continuation of the spirally ordered ground-state phase. At higher
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temperatures, a BKT transition to a phase with a spiral ordering vector but with an exponential
decay of correlations occurs (phase C). Within our resolution of the phase diagram it seems that
phase C disappears on the large-α side of the B-phase dome and that phase B is delimited at
large α by the region F where imaginary spin-wave frequencies appear. Furthermore, on the low-
α side, phase C becomes extremely narrow and is almost immediately followed by a transition
to phase A described in the previous section. The broadest extent in temperature of C is around
α = 1.

At the isotropic point α = 1, the BKT transition from B to C is approximately located at
TBKT/(t1 + 2t2) = 0.0836. Quantum effects lower the transition temperature considerably from
the classical value T cl

BKT/(t1 + 2t2) = 0.165 found by classical Monte Carlo simulations [36].
A pure-quantum self-consistent harmonic approximation, developed in [37], gives TBKT/(t1 +
2t2) = 0.0625. The fact that MSW theory gives a significantly higher estimate is not surprising
given that the paper by Capriotti et al [37] takes vortex–antivortex excitations explicitly into
account, while MSW theory does not.

We also find that in the same domain of large frustration (α close to 1) where spiral quasi-
order is most stable, the breakdown of the theory occurs at a lower critical temperature.

We note also a strong drop in the transition temperatures around α ≈ 0.4. In figure 13 this
is marked by a dashed line, which separates phase B from a phase B� with similar properties.
We believe that this behavior is a numerical artifact and that in fact B and B� are one and the
same phase.

4.2.3. Spin-liquid candidate region (phase F). At the high-α side of the spiral phases, we find
an extended region where the spin-wave dispersion acquires imaginary modes. This means that
MSW theory predicts an instability here. The width of this region in α stays approximately
constant but it moves to smaller α with increasing temperature, leaving space to the collinear
SRO phase (E). The region F extrapolates well down to the suspected spin-liquid phase between
1.35� α � 1.66 at T = 0. Given that MSW is seen to break down at a putative spin-liquid
phase at T = 0 due to its lack of order, a fortiori one can expect MSW to break down in the
same parameter range at finite temperatures, because at finite T the theory would be required to
describe not only the ground state but also the excitations on top of it.

Note also that the spin stiffness decreases upon approaching this region, which could be
interpreted as a precursor of an SRO phase.

4.2.4. 2D-Néel states (phases D and E). As expected from BKT theory, when going to
finite temperatures the 2D-Néel ground state first changes into a low-T quasi-long-range
ordered phase (phase D), which at a temperature TBKT undergoes a transition into a high-
T short-range-ordered phase (phase E). Both are characterized by an ordering vector at the
2D-Néel value Q = (2π, 0). Furthermore, neighboring spins that share a diagonal bond are
strongly anticorrelated, whereas neighboring spins that lie on the same chain are positively
correlated.

The square XY lattice, which is reached as α ≡ t2/t1 → ∞, has been extensively studied
in the past. The classical BKT temperature T cl

BKT/t2 = 0.695, which has been calculated by
using classical Monte Carlo simulations [38], is significantly lowered in the quantum limit to
around TBKT/t2 ≈ 0.35 (quantum Monte Carlo calculations [39, 40]). Our MSW results yield
a BKT temperature of TBKT/t2 ≈ 0.27 at α = 100, where the system has practically reached
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the square lattice limit8. Once again the disagreement with the MSW result is not surprising,
given that this theory does not account properly for vortex–antivortex excitations. In particular,
the BKT line for α � 1.6 is not very distinct, due to the location problems mentioned in
section 4.1. Therefore, its quantitative value should be interpreted with caution, especially in this
parameter range. However, the qualitative behavior of the phase diagram seems to be described
correctly.

In the following section, we turn to observables that show more clearly how order in the
different phases persists at finite temperatures.

4.3. Observables that help in distinguishing between long-range order and short-range order

Here we focus on observables that help us to distinguish between different types of regimes (i.e.
quasi-LRO or SRO), namely the partial Gaussian spin stiffness ϒpartial, the gap �, the entropy
and the occupation of the zero mode nk=0.

4.3.1. Entropy, spin stiffness and gap. The entropy (equation (11)) shows behavior consistent
with the quasi-ordered character of the low-temperature 2D-Néel phase D and the spiral phase
B in the sense that it is smaller in phases with stronger order as can be seen in figure 14(g).
Correspondingly, in phases B and D, ϒpartial is large (figure 14(d)) and � is very small
(figure 14(h)).

At the BKT transition, no sharp change occurs in these observables as may be expected.
However, the contour lines of the spin stiffness, the entropy and the gap all seem to be consistent
with the shape of the TBKT curve.

We report the gap � for two representative values of α in figures 15(a) and (b). It evolves
smoothly through the BKT transition in the Neel phase, whereas in the spiral phase it is seen to
display a sharp increase right above the BKT transition up to the transition to phase A. On the
contrary, for all phases a sharp increase in � (accompanied by a sharp drop in ϒpartial) can be
discerned at the breakdown temperature where correlations are completely lost.

In phase A (better visible for smaller values of α, which are not shown) we find that the
gap is almost a linear function of temperature up to very close to the breakdown temperature.
This is typical of critical systems where the temperature introduces the only energy scale, which
is reflected in the gap.

4.4. Occupation of the zero mode

The occupation of the zero mode nk=0 (figures 15(c) and (d)) gives an insightful measure of the
strength of correlations. Due to constraint (10), a large population of the zero mode entails a
smaller population of excited modes and therefore leads to stronger correlations.

Similar to what was seen for the gap in the previous section, at the transition between
phases C and A, nk=0 drops from very large values to something of the order of 1. Afterwards
it changes only slightly with T . It is useful to remember that the average mode occupation,�

k nk/N , equals S by virtue of constraint (10). This means that in the 1D-like SRO phase A,
nk=0 is relatively small but still larger than the occupation of the other modes.

8 At this value of α we computed the correlations to spins as far as 64 lattice sites away, in contrast to the rest of
the phase diagram (see section 4.1.)

New Journal of Physics 12 (2010) 053036 (http://www.njp.org/)

http://www.njp.org/


29

t1 2t2

T t1 2t2

a 0.7

B

C

A G

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
t1 2t2

T t1 2t2

b 1.9

D E G

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

nk 0

T t1 2t2

c 0.7

B

C

A G

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0

1

2

3

4

5
nk 0

T t1 2t2

d 1.9

D E G

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0

5

10

15

20

25

Figure 15. Gap � ((a) and (b)) and occupation of the zero mode nk=0 ((c) and
(d)) for two values of α. The vertical lines denote the critical temperatures of
the BKT transition calculated via the decay of correlations in the direction τ 1 =
(1, 0) (red, dash-dotted), the corresponding BKT transition for τ 2 = (1/2,

√
3/2)

(orange, dashed), the breakdown temperature (blue) and the temperature where
interchain correlations disappear (black, dotted) (in (b) and (d) the last two
markers overlap), all computed through the two-point correlations Cm τ 1,2 . Upper
case letters refer to the phases of figure 13.

The behavior of nk=0 is different for the 2D-Néel phase. At the BKT line that we extracted
from the analysis of the two-point correlation functions Cm τ 1 and Cm τ 2 , nk=0 decreases strongly
but smoothly. However, up to the breakdown point its values are still several times larger than
in the 1D-like phase. This supports our identification of the BKT transition, but the smoothness
of nk=0 also shows the reason why the observables of section 4.3 could not point out a sharp
transition.

4.5. Discussion

The finite-temperature phase diagram is observed to be a natural extension of the ground-state
phase diagram. We find that zero-temperature LRO phases are reflected in finite-temperature
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phases with quasi-LRO, while phases with quasi-LRO at T = 0 turn into SRO phases at any
finite temperature. When temperatures are at or below a few per cent of the coupling strengths,
the main characteristics of the ground-state phase diagram are retrieved, with a short-range
1D-like phase (A) and two quasi-ordered phases (one with spiral properties near the isotropic
triangular limit (B) and one with 2D-Néel-like characteristics at large values of α (D)), which
are separated by a potential spin liquid (F). This last phase was identified by (i) the breakdown
of MSW theory, which indicates that the assumption of an underlying ordered state is invalid,
and (ii) the lowering of the spin stiffness as this phase is approached. In the appendix, we give
further evidence for spin-liquid behavior in this phase at T = 0 gleaned from very limited ED
results.

We have given a rough estimate of TBKT over the entire range of anisotropies. We find
agreement in the rough magnitude of TBKT at points where estimations of the BKT temperatures
computed by other methods exist. In our results, the BKT transition is more clearly visible in
the correlations for the spiral phase than for the 2D-Néel phase.

5. Conclusions

We have extended Takahashi’s MSW theory by optimization of the ordering vector, which
allows us to account for the order that deviates from the classical one.

We have used this method to calculate the ground-state phase diagram of the SATL with
S = 1/2 spins and XY interactions. We found the expansion of a quasi-ordered 1D-like phase
to finite inter-chain couplings, a spiral phase and a 2D-Néel phase. At the transition between the
latter two, the breakdown of MSW theory indicates the loss of LRO.

We have extended this phase diagram to finite temperatures and computed BKT transitions,
although the results are to be interpreted only semi-quantitatively because MSW theory does not
explicitly account for vortex–antivortex excitations. We find that the ground-state phases clearly
imprint their properties on the finite-temperature phase diagram at low temperatures, with LRO
phases being replaced by quasi-ordered ones and quasi-ordered phases by SRO ones.

Qualitative and even quantitative agreement with PEPS and ED calculations was found
in the regions where magnetic LRO was expected. In particular, it has been shown that MSW
theory with ordering vector optimization is able to account satisfactorily for the main quantum
corrections to the ordering vector. Furthermore, our calculations show that the spin stiffness is a
useful observable for finding candidate regions for spin-liquid behavior in the ground state.
Indeed the breakdown of MSW theory, or the very weak stiffness of the magnetic order it
predicts, can be used as an indication of the absence of LRO in the exact ground state of the
model.

We find two main recurrent features for strongly frustrated quantum magnets in two
dimensions: collinear order is considerably stabilized by quantum and/or thermal fluctuations
against spiral order, and ordered or quasi-ordered phases characterized by different forms of
order (collinear versus spiral) do not continuously get connected with each other, but rather they
seem to be separated by quantum disordered phases. While MSW theory cannot determine the
properties of such disordered phases, it provides a fast and clear method for finding candidates
of disordered phases. This method can therefore serve as a guide in our search for interesting
quantum-mechanical lattice models, which require an experimental quantum simulator for
further study of their phase diagram.
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Figure A.1. Spectra of the S = 1/2 XYAF on the SATL from ED on a 24-site
cluster, for various values of the lattice anisotropy α. The lower right panel shows
the average maximal level spacing (see the text) as a function of α.
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Appendix. Signatures of ordering and spin-liquid behavior in the exact diagonalization

spectra of a small cluster

We present here ED data for the spectrum of the S = 1/2 XYAF on the SATL. We perform
our calculations on a 24-spin cluster with the geometry depicted in figure 3. The system
Hamiltonian, equation (2), commutes with the total magnetization along the z-axis, Stot

z , so that
excited states can be classified on the basis of this quantum number9.

Figure A.1 shows the excitation energies of the first excited states in each Stot
z sector (up to

Stot
z = 11) with respect to the minimum energy in each sector, E0(Stot

z ) (E0(Stot
z = 0) corresponds

to the ground-state energy). Upon varying α we observe a significant evolution of the low-
energy spectrum of the system, which points at the widely different regimes explored by the
system. In particular, in the spirally and Néel ordered phases—exemplified in figure A.1 by
α = 1 and 2, respectively—we observe that in each Stot

z sector there are a few states lying close
to the minimum energy one and separated from the other excited states by a large gap. According
to a standard ‘tower-of-states’ argument [41], these low-lying states are expected to collapse to
the ground state in the thermodynamic limit, giving rise to degenerate superpositions of all Stot

z
sectors, each breaking the U(1) rotational symmetry of the Hamiltonian and displaying spiral or

9 The momentum is not a good quantum number here, given that we consider open boundary conditions.
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Néel order. The higher-energy states will instead reproduce the true excitation spectrum in the
thermodynamic limit.

This tower-of-states feature is, on the contrary, absent in other regions of the phase diagram,
in which the energy levels in each Stot

z sector are more homogeneously spaced. The absence of a
low-lying multiplet of states separated from the higher-energy states by a large gap is observed
in models whose ground state is generally considered to be a spin liquid [42]. We therefore
introduce an observable aimed at quantifying the extent to which the spectrum exhibits the
expected features in presence of spontaneous symmetry breaking in the thermodynamic limit.
We consider the average maximal level spacing �̄max, defined as

�̄max = 1
NS + 1

NS�

Stot
z =0

max
i

�
Ei+1(Stot

z ) − Ei(Stot
z )

�
, (A.1)

namely �̄max is the maximal level spacing in each Stot
z sector, averaged over the NS + 1 = 12

sectors considered. The maximal level spacing is extracted by considering the lowest ten levels
Ei(Stot

z ), which captures the behavior of the low-energy part of the spectrum. The above quantity
is chosen so that it will be maximal in the presence of a large separation between the low-lying
tower of states and the higher-energy spectrum, while it will be minimal in the presence of
homogeneously spaced levels in each sector.

When plotting �̄max as a function of α, as shown in figure A.1, we observe two very
pronounced relative minima, at α ≈ 0.6 and α ≈ 1.4. Remarkably these two minima correspond
to the two regions in parameter space where PEPS calculations predict the occurrence of a spin-
liquid phase [11] (compare figure 2). Hence, the lack of the tower-of-states feature in the spectra
of a small cluster is consistent with the PEPS prediction.
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[39] Ding H-Q and Makivić M S 1990 Phys. Rev. B 42 6827
[40] Harada K and Kawashima N 1997 Phys. Rev. B 55 R11949
[41] Lhuillier C 2005 arXiv:cond-mat/0502464v1
[42] Lecheminant P, Bernu B, Lhuillier C, Pierre L and Sindzingre P 1997 Phys. Rev. B 56 2521

New Journal of Physics 12 (2010) 053036 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevB.50.13821
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.60.6588
http://dx.doi.org/10.1103/PhysRevLett.65.243
http://arxiv.org/abs/cond-mat/0202109v1
http://dx.doi.org/10.1103/PhysRevB.44.906
http://dx.doi.org/10.1103/PhysRevB.61.14607
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1103/PhysRevLett.52.433
http://dx.doi.org/10.1103/PhysRevB.60.7299
http://dx.doi.org/10.1103/PhysRevB.52.10221
http://dx.doi.org/10.1103/PhysRevB.42.6827
http://dx.doi.org/10.1103/PhysRevB.55.R11949
http://arxiv.org/abs/cond-mat/0502464v1
http://dx.doi.org/10.1103/PhysRevB.56.2521
http://www.njp.org/

	1. Introduction
	2. Modified spin-wave (MSW) formalism
	2.1. Derivation of a mean-field Hamiltonian and Takahashi's constraint
	2.2. Derivation of the self-consistent equations
	2.3. Optimization of the ordering vector
	2.4. Spin stiffness
	2.5. From spins to bosons 

	3. Ground-state phase diagram of the anisotropic triangular lattice
	3.1. Breakdown regions for MSW theory
	3.2. Ordering vector, spin--spin and chiral correlations
	3.3. Transition from two-dimensional Nel order to spiral order
	3.4. Persistence of one-dimensional quasi-long-range order up to finite inter-chain couplings
	3.5. Momentum distribution of the hardcore bosons 
	3.6. Discussion

	4. Finite temperature phase diagram of the anisotropic triangular lattice
	4.1. Spin--spin correlations 
	4.2. The phase diagram
	4.3. Observables that help in distinguishing between long-range order and short-range order
	4.4. Occupation of the zero mode
	4.5. Discussion

	5. Conclusions 
	Acknowledgments
	Appendix.  Signatures of ordering and spin-liquid behavior in the exact diagonalization spectra of a small cluster
	References

