
that has thus far been restricted to a purely theo-
retical framework.
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QUANTUM OPTICS

Bell correlations in a
Bose-Einstein condensate
Roman Schmied,1* Jean-Daniel Bancal,2,4* Baptiste Allard,1* Matteo Fadel,1

Valerio Scarani,2,3 Philipp Treutlein,1† Nicolas Sangouard4†

Characterizing many-body systems through the quantum correlations between their
constituent particles is amajor goal of quantumphysics. Although entanglement is routinely
observed in many systems, we report here the detection of stronger correlations—Bell
correlations—between the spins of about 480 atoms in a Bose-Einstein condensate.We
derive a Bell correlation witness from a many-particle Bell inequality involving only one- and
two-body correlation functions. Our measurement on a spin-squeezed state exceeds the
threshold for Bell correlations by 3.8 standard deviations.Our work shows that the strongest
possible nonclassical correlations are experimentally accessible in many-body systems and
that they can be revealed by collective measurements.

P
arts of a composite quantum system can
share correlations that are stronger than
any classical theory allows (1). These so-
called Bell correlations represent the most
profound departure of quantum from clas-

sical physics and can be confirmed experimen-
tally by showing that a Bell inequality is violated
by the system. The existence of Bell correlations
at spacelike separations refutes local causality
(2); thus, Bell correlations are also called non-
local correlations. Moreover, they are a key re-
source for quantum technologies such as quantum
key distribution and certified randomness gen-
eration (3). Bell correlations have so far been
detected between up to 14 ions (4), four photons
(5, 6), two neutral atoms (7), two solid-state spin
qubits (8), and two Josephson phase qubits (9).
Even though multipartite Bell inequalities are
known (1, 10–12), the detection of Bell correla-
tions in larger systems is challenging.
A central challenge in quantum many-body

physics is to connect the global properties of a
system to the underlying quantum correlations
between the constituent particles (13, 14). For
example, recent experiments in quantum me-
trology have shown that spin-squeezed states
of atomic ensembles can enhance the precision
of interferometric measurements beyond clas-
sical limits (15–18). This enhancement requires
entanglement between atoms in the ensemble,
which can be revealed by measuring an entan-
glement witness that involves only collective
measurements on the entire system (15, 19–22).
The role of Bell correlations in many-body sys-
tems, on the other hand, is largely unknown.

Whereas all Bell-correlated states are entangled,
the converse is not true (1). In recent theoretical
work, a family of Bell inequalities was derived
that are symmetric under particle exchange and
involve only first- and second-order correlation
functions (23). It was suggested that this could
enable the detection of Bell correlations by col-
lective measurements on spin ensembles. Acting
on this proposal, we derive a collective witness
observable that is tailored to detect Bell correla-
tions in spin-squeezed states of atomic ensem-
bles. We report a measurement of this witness
on 480 ultracold rubidium atoms, revealing Bell
correlations in a many-body system.
We derive our Bell correlation witness in

the context of a Bell test where N observers (in-
dexed by i ¼ 1…N ) each repeatedly perform one
of two possible localmeasurementsMðiÞ

0 orMðiÞ
1

on their part of a composite system and observe
one of two possible outcomes ai ¼ T1. For ex-
ample, the system could be an ensemble of
atomic spins where each observer is associated
with one atom and the measurements corre-
spond to spin projections along different axes.
When all observers choose to measureM0, one
determines experimentally the sum of their aver-
age outcomesS0 ¼

PN
i¼1hM

ðiÞ
0 〉 and correlations

S00 ¼
PN

i;j¼1ði≠jÞ hM
ðiÞ
0 MðjÞ

0 i [see section 1 of the

supplementary materials (24) for a definition
in terms of measured frequencies]. Similarly,
S11 ¼

PN
i; j¼1ði≠jÞ hM

ðiÞ
1 MðjÞ

1 i is determined when
all observers choose M1. A more complex cor-
relation S01 ¼

PN
i; j¼1ði≠jÞhM

ðiÞ
0 MðjÞ

1 i is quan-
tified by letting all pairs of observers choose
opposite measurements, which requires repeated
observations of identically prepared states of the
system because some of these measurements are
mutually exclusive. In (23), a Bell inequality was
derived that contains only these symmetric one-
and two-body correlators.

2S0 þ
1
2
S00 þ S01 þ

1
2
S11 þ 2N≥0 ð1Þ

If an experiment violates this inequality, the
conditional probabilities Pða1;…; aN jx1;…; xN Þ
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to obtain measurement results a1;…; aN for
given measurement settings x1;…; xN (with
xi ∈f0; 1g) cannot be explained by preestab-
lished agreements; i.e., Pða1;…; aN jx1;…; xN Þ≠
∫ dl PðlÞ Pða1jx1; lÞ⋯PðaN jxN ; lÞ, where PðlÞ
is the probability of using agreement l. In this
case, we say that the system is Bell-correlated.
For illustration, consider again the situation
where each observer performs measurements
on the spin of an atom in a large ensemble. If
the system is Bell-correlated, appropriate mea-
surements on the atomic spins show statistics
that cannot be explained by a recipe that deter-
mines the measurement results for each atom
independently of the measurement results and
settings of the other atoms.
The form of S01 demands that we can set the

measurement type of each observer individu-
ally. Testing the Bell inequality in Eq. 1 thus
requires more than collective measurements,

which are sometimes the only available option
in many-body systems. A way around this re-
quirement is to replace the Bell inequality,
which guarantees both that the state is Bell
correlated and that appropriate measurements
were actually performed, by a witness inequality
that assumes a quantum-mechanical descrip-
tion and correct experimental calibration of the
measurements. A similar approach has been suc-
cessfully employed to detect entanglement with
collective measurements only (15, 19–22, 25). We
associate each observer i with a spin 1=2 (in our
experiment, a pseudospin representing two en-
ergy levels of an atom). The measurements are
spin projections M

ðiÞ
d ¼ 2

ˇ

sðiÞ⋅ d along an axis d,
where 2

ˇ

sðiÞ ¼ f

ˇ

sðiÞ
x ;

ˇ

sðiÞ
y ;

ˇ

sðiÞ
z g is the Pauli vector.

All other energy levels of the atoms, as well as
further degrees of freedom (e.g., atomic motion),
are irrelevant for the measurements. We define
the total spin observable

ˇ

Sd ¼ d ⋅
PN

i¼1

ˇ

sðiÞ in the

direction d, which can be probed by collective
measurements on the entire system. For two unit
vectors a and n, we now consider the observable

ˇ

W ¼ −

!!!!!

ˇ

Sn
N=2

!!!!!þ ða ⋅ nÞ2

ˇ

S2a
N=4

þ 1−ða ⋅ nÞ2 ð2Þ

defined in terms of total-spin observables only.
SettingMðiÞ

n ¼ MðiÞ
0 andMðiÞ

m ¼ MðiÞ
1 withm ¼

2ða ⋅nÞa−n, the expectation value of

ˇ

W can
be reexpressed in terms of one- and two-body
correlations functions using h

ˇ

Sni ¼ S0=2 and
16ða ⋅ nÞ2h

ˇ

S2ai ¼ S00 þ 2S01 þ S11 þ 4Nða ⋅ nÞ2;
see section 1 of (24). The Bell inequality in Eq. 1
then guarantees that h

ˇ

W i≥0 whenever the state
of the system is not Bell-correlated. By construc-
tion, this Bell correlation witness

ˇ

W only involves
first and second moments of collective spin mea-
surements along two directions a and n, making
it well suited for experiments on many-body

442 22 APRIL 2016 • VOL 352 ISSUE 6284 sciencemag.org SCIENCE

Fig. 1. Observation of Bell correlations in a BEC with the inequality in
Eq. 3. (A) Illustration of the spin-squeezed state [Wigner function (32)] and
the axes used in themeasurement of the Bell correlation witnessW.The vector
n lies in the plane spanned by the squeezing axis a and the state’s center b.The
squeezing and antisqueezing planes are indicated with thin black lines. (B) His-
togram of measurements of 2Sa/N, from which we determine za

2. (C) In-
dividual measurements of 2Sn(t)/N as a function of Rabi pulse length t. The

red line is a sinusoidal fit, from which we determine the Rabi contrast and
a ⋅ n(t) = cos[ϑ(t)]; see section 2 of (24). (D) Residuals of the fit in (C). (E) Mea-
surement ofWðtÞ as a functionof ϑðtÞ.The red continuous line is thevalueofWðtÞ
computed from themeasurement of za

2 and the fittedRabi oscillation [red line in
(C)]. Bell correlations are present in the blue-shaded region. The observed
four-fold symmetryofWðtÞ indicates that a ⋅ n(t) is well calibrated.The red square
data point at ϑ ¼ 128○ violates the inequality in Eq. 3 by 3.8 standard deviations.
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systems, especially of indistinguishable particles.
Although this inequality was derived with as-
sumptions about the measurement settings, it
does not make any assumptions about the mea-
sured state. Inparticular,wedonot need to assume
that the state is symmetric under particle ex-
change. Moreover, this inequality applies whether
the particles are spatially separated or not, sim-
ilar to entanglement witnesses (22), under the
common assumption that particles do not com-
municate (interact) through unknown channels.
Although such an assumption would be ques-
tioned in a Bell test aimed at disproving the
locally causal nature of the world, it is a well-
satisfied and common assumption in the present
context, where the goal is to explore correlations
in a many-body system, assuming quantummech-
anics to be valid.
For collective measurements, N is taken to

be the number of detected particles, which may
fluctuate slightly between experimental runs.
If this is the case, we can replace N in Eq. 2 by
the observable

ˇ

N and introduce the scaled col-
lective spin Cn ¼ h2

ˇ

Sn=

ˇ

N i and the scaled second
moment z2a ¼ h4

ˇ

S 2
a =

ˇ

Ni; see section 1 of (24).
The inequality then becomes

W ¼ −jCnjþ ða ⋅ nÞ2z2a þ 1− ða ⋅ nÞ2 ≥0 ð3Þ

which is valid for any two axes a and n and for all
non–Bell-correlated states. From this inequality,
a criterion follows that will facilitate comparison
withwell-known spin-squeezing criteria: For any
two axes a and b perpendicular to each other,

z2a ≥
1
2

"
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− C2b

q $
ð4Þ

holds for all non–Bell-correlated states [deri-
vation in section 1.1 of (24)]. The experiment
reported below shows a violation of the in-
equalities in Eqs. 3 and 4 in an atomic ensemble,
hence demonstrating Bell correlations between
the atomic spins.
We perform experiments with two-component

Bose-Einstein condensates (BECs) of rubidium-
87 atoms trapped magnetically on an atom chip
(26) and prepared in a spin-squeezed state as in
(18, 21) [see section 2 of (24)]. We start with a
BEC without discernible thermal component in
the ground-state hyperfine level jF ¼ 1;mF ¼
−1i≡j1i. We are only concerned with the spin
state of the atoms, whereas their uniform mo-
tional BEC state is irrelevant for the system’s
description. We perform only collective manipu-
lations and measurements that are symmetric
under particle exchange. A two-photon resonant
Rabi field addresses the hyperfine transition
from j1i to jF ¼ 2;mF ¼ 1i≡j2i, with these two
states representing a pseudospin 1/2 for each
atom. The internal state of the entire BEC is de-
scribed by a collective spin, with the componentˇ

Sz ¼ ð

ˇ

N 1 −

ˇ

N2Þ=2 corresponding to half the atom
number difference between the two states. With
a p=2 Rabi pulse, we prepare a coherent spin
state ½ðj1iþ j2iÞ=

ffiffiffi
2

p
&'N , in which the atomic

spins are uncorrelated. To establish correla-
tions between the spins, we make use of elastic

collisions, which give rise to a Hamiltonianˇ

H ¼ c

ˇ

S 2
z . Controlling the rate c with a state-

dependent potential (21), we evolve the sys-
tem in time with

ˇ

H to produce a spin-squeezed
state (19, 27), which has reduced quantum noise
in one collective spin component (Fig. 1A). To
characterize this state, we count the numbers of
atoms N1 and N2 in the two hyperfine states by
resonant absorption imaging (21). We correct
the data for imaging noise and collisional phase
shifts. From averages overmanymeasurements,
we determine Cz and z2z . Projections along other
spin directions are obtained by appropriate Rabi
rotations before the measurement.
For the measurement of the Bell correlation

witnessW, we use BECs with a total atom num-
ber of N ¼ 476 T 21 (preparation noise after
postselection) and −5:5ð6Þ dB of spin squeezing,
according to the Wineland criterion (28). We
first measure z2a, choosing a to be the squeezing
axis where Ca ≈ 0 and z2a is minimized (Fig. 1B).
We find z2a ¼ 0:272ð37Þ; all quoted uncertainties
are statistical standard deviations (SD). For the
measurement of Cn, we sweep the vector n in
the plane defined by the state’s center b and
the vector a (Fig. 1A) by applying a Rabi pulse
of duration t. The measurement of CnðtÞ as a
function of t is shown in Fig. 1C. From a si-
nusoidal fit to the observed Rabi oscillation, we
obtain the Rabi contrast Cb ¼ 0:980ð2Þ as well
as a precise calibration of a ⋅ nðtÞ ¼ cos½ϑðtÞ&
needed to evaluateW. From the resulting mea-
surement of WðtÞ (Fig. 1E), we observe a viola-
tion of the inequality in Eq. 3 over a large range
of angles. For ϑ ¼ 128°, we see the strongest vio-
lation with a statistical significance of 3.8 stan-
dard deviations (red square in Fig. 1E).
The inequality in Eq. 3 relies on a fine balance

between competing terms, and a satisfactory
demonstration of its violation depends on ac-
curate knowledge of the angle ϑ between a and
n. The inequality in Eq. 4, on the other hand, is
more robust to uncertainties in this angle and
shows that our entire data set is inconsistent
with the hypothesis of our state not being Bell-
correlated. The black data point in Fig. 2 rep-

resents our data set by its Rabi contrast (the
amplitude of the red fit in Fig. 1C) and squeezed
second moment (Fig. 1B), giving an overall like-
lihood of 99.9% for Bell correlations [see sec-
tion 2 of (24)]. This likelihood can be interpreted
as a P value of 0.1% for excluding the hypothesis:
Our data were generated by a state that has no
Bell correlations, in thepresence ofGaussiannoise.
An experiment closing the statistics loophole
would exclude all possible non–Bell-correlated
states, including those producing statistics with
rare events. However, because of the way the
bounds on W vary with N , such an experiment
would require a number of measurements that
increases with the number of spins [see section 3
of (24)].
We now discuss how our Bell correlation wit-

ness is connected to entanglement measures
that were used previously to characterize spin-
squeezed BECs (15, 19–22). These entanglement
measures depend on the squeezed variance, for
which the squeezed second moment z2a is an
upper bound (with equality if Ca ¼ 0, which is
close to what we have measured). In terms of
the latter, the Wineland spin-squeezing param-
eter (28) x2≤z2a=C

2
b witnesses entanglement (19)

if x2 < 1, shown as a red-shaded region in Fig. 2.
Similarly, (k+1)–particle entanglement is wit-
nessed by measuring squeezed variances (and
hence z2a) below the gray k-producibility curves
(20) in Fig. 2. These entanglement witnesses
refer to the Ramsey contrast, whereas our data
point in Fig. 2 refers to the measured Rabi con-
trast; in our experiment, these two quantities
have nearly identical values. We can thus draw
conclusions about both entanglement and Bell
correlations from Fig. 2. In particular, we con-
clude that our witness requires at least 3 dB of
spin squeezing for detecting Bell correlations.
We have shown that Bell correlations can be

created and detected in many-body systems.
This result has been obtained from awitness that
requires collective measurements only. Although
we have tested this witness with a spin-squeezed
BEC, it could also be tested on other systems,
such as thermal atoms in a spin-squeezed state.

SCIENCE sciencemag.org 22 APRIL 2016 • VOL 352 ISSUE 6284 443

Fig. 2. Observation of Bell correlations
in a BEC with the inequality in Eq. 4.
The black circle shows the data set of
Fig. 1 expressed in terms of the Rabi contrast
Cb and the squeezed second moment za

2, with
1 SD error bars.The blue-shaded region shows
Bell correlations detected by violation of
the inequality in Eq. 4. A pair of random
variables with the same parameters as our
data set has a 99.9% overlap with this region
[see section 2 of (24)].The red-shaded
region shows entanglement witnessed by
spin squeezing (19, 28). The gray lines show
limits on za

2 below which there is at least
(k+1)–particle entanglement (20), increasing
in powers of two up to k ¼ 256. Our data set
has a 99% overlap with the area below the
limit for k = 24-particle entanglement.
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Our results imply that the correlations between
the atoms in a spin-squeezed Bose-Einstein con-
densate are strong enough to violate a Bell in-
equality. This Bell inequality could be violated
directly by first localizing the atoms—e.g., through
anondestructive, spin-independentmeasurement
of their position—and then measuring their in-
ternal states individually [see section 4 of (24)].
Further study of these statesmay enable insights
intomany-body correlations outside of the quan-
tum formalism. Our results naturally raise the
question of how our witness can be extended to
detect genuine multipartite nonlocality (11) or to
quantify the degree of nonlocality (29, 30), in a
similar way as the degree of entanglement can be
quantified in terms of k-producibility (Fig. 2) (20).
Finally, Bell correlations are a resource in quantum
information theory—e.g., for certifiable random-
ness generation. Although Bell-correlation–based
randomness has been extracted from two-qubit
systems (31), an implementation in a many-body
system would considerably increase the amount
of randomness per experimental run.
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GEOLOGY

Continental arc volcanism as
the principal driver of
icehouse-greenhouse variability
N. Ryan McKenzie,1,2,3* Brian K. Horton,2,4 Shannon E. Loomis,2 Daniel F. Stockli,2

Noah J. Planavsky,1 Cin-Ty A. Lee5

Variations in continental volcanic arc emissions have the potential to control
atmospheric carbon dioxide (CO2) levels and climate change on multimillion-year
time scales. Here we present a compilation of ~120,000 detrital zircon
uranium-lead (U-Pb) ages from global sedimentary deposits as a proxy to
track the spatial distribution of continental magmatic arc systems from the
Cryogenian period to the present. These data demonstrate a direct relationship
between global arc activity and major climate shifts: Widespread continental
arcs correspond with prominent early Paleozoic and Mesozoic greenhouse
climates, whereas reduced continental arc activity corresponds with icehouse
climates of the Cryogenian, Late Ordovician, late Paleozoic, and Cenozoic.
This persistent coupled behavior provides evidence that continental volcanic
outgassing drove long-term shifts in atmospheric CO2 levels over the past
~720 million years.

E
arth experienced multiple shifts in climate
state over the past ~720 million years (My),
with extensive icehouse intervals during
the Cryogenian (1, 2), latest Ordovician (3),
late Paleozoic (4), and mid-late Cenozoic

alternating with greenhouse intervals during the
early Paleozoic and Mesozoic–early Cenozoic
eras (5, 6). These shifts are attributed to changes
in the partial pressure of atmospheric carbon di-
oxide (PCO2) (5–8). Long-term (≥106 years) changes

in PCO2 are controlled by the magnitude of carbon
input to the ocean-atmosphere system from vol-
canic and metamorphic outgassing, as well as the
removal of this carbon primarily through silicate
weathering and subsequent precipitation and
burial of carbonate minerals, along with organic
carbon burial (8, 9). Although sporadic processes
such as enhanced plume activity (10) and moun-
tain building (11) have been invoked as drivers of
specific greenhouse or icehouse intervals, no
unifying model explains all of the observed
fluctuations.
Arc magmatism along continental-margin sub-

duction zones is thought to contribute more CO2

to the atmosphere than other volcanic systems,
owing to decarbonation of carbonates stored in
the continental crust of the upper plate (12–16).
Although direct measurements of CO2 outgas-
sing rates are limited, current continental vol-
canic arc (CVA) emissions are estimated to be as
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Bell Correlations in a Bose-Einstein Condensate
Supplementary Materials

1 Detailed derivation of the Bell correlation witness
In general, Bell inequalities are tested in scenarios where a number N of observers each perform
one of several possible measurements and observe discrete outcomes. We label the measure-
ment setting of party i P t1, . . . , Nu as x

i

and its outcome as a
i

“ ˘1. For a given set of
measurement settings x̄ “ px1, . . . , xN

q the experiment is repeated many times to measure the
frequencies (conditional probabilities) P pā|x̄q of observed outcomes ā “ pa1, . . . , aN

q. A Bell
inequality is then a linear combination of such conditional probabilities, together with a bound
satisfied by every classical model (relying on pre-established agreements) (1).

We define the marginal probability distribution for subsystem i, P
i

pa
i

|x
i

q “

∞
ā

1|a1
i“ai

P pā1
|x̄q,

and similarly the bipartite marginal for subsystems i and j, P
ij

pa
i

, a
j

|x
i

, x
j

q “

∞
ā

1|a1
i“ai^a

1
j“aj

P pā1
|x̄q.

We notice that these marginals do not depend on the other elements of x̄ because of the no-
signaling principle. In terms of these marginals, the expectation values in inequality (1) are
S0 “

∞
N

i“1

∞
a“˘1 a P

i

pa|0q and S
k`

“

∞
N

i,j“1pi‰jq
∞

a,b“˘1 ab P
ij

pa, b|k, `q.
The expectation values of the spin operators in Eq. (2) are given in the last paragraph of

Ref. (23). With m “ 2pa ¨ nqa ´ n such that }a} “ }m} “ }n} “ 1, they become

S0 “ 2x

ˆSny

S00 “ 4x

ˆS2
ny ´ N

S11 “ 4x

ˆS2
my ´ N

“ 16pa ¨ nq

2
x

ˆS2
ay ´ 8pa ¨ nqx

ˆSa
ˆSn `

ˆSn
ˆSay ` 4x

ˆS2
ny ´ N

S01 “ xp

ˆSn `

ˆSmq

2
y ´ xp

ˆSn ´

ˆSmq

2
y ´ Npn ¨ mq

“ 4pa ¨ nqx

ˆSa
ˆSn `

ˆSn
ˆSay ´ 4x

ˆS2
ny ´ N

“
2pa ¨ nq

2
´ 1

‰
, (S1)

and thus S00 ` 2S01 ` S11 “ 16pa ¨ nq

2
x

ˆS2
ay ´ 4Npa ¨ nq

2 is independent of ˆSn. With these
relations and the fact that ˆS´n “ ´

ˆSn we find that inequality (1) proves that

´

ˇ̌
ˇ̌
ˇ
x

ˆSny

N{2

ˇ̌
ˇ̌
ˇ ` pa ¨ nq

2 x

ˆS2
ay

N{4

` 1 ´ pa ¨ nq

2
• 0 (S2)

for every state that is not Bell-correlated.
If the total atom number N varies from one measurement to the next, we extend the above

analysis by replacing x

ˆSny{N by x

ˆSn{

ˆNy and x

ˆS2
ay{N by x

ˆS2
a{

ˆNy, which is possible because
the spin operators ˆSn and ˆSa commute with the atom number operator ˆN . More precisely,
note that the operators ˆSn and ˆSa are block-diagonal in terms of the particle number, i.e.
ˆSn “ ‘

N • 1

ˆSpNq
n where ˆSpNq

n denotes the action of the spin operator ˆSn on the subspace with
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particle number N , and similarly for ˆSa. In this basis, the particle number operator takes the
form ˆN “ ‘

N • 1

N ¨

pNq, where pNq is the identity operator on the space with particle number

N , and “ ‘

N • 1

pNq. Therefore, we have that x

ˆSn{

ˆNy ” xp ‘

N • 1

ˆSpNq
n q ¨ p ‘

N • 1

N ¨

pNq
q

´1
y “

∞
N

p
N

x

ˆSny

N

{N , where x

ˆSny

N

“ Trp

ˆSn⇢̂pNq
q is the N -particle contribution to the spin op-

erator, ⇢̂pNq
“ p

pNq⇢̂ pNq
q{p

N

is the normalized N -particle component of the density matrix
⇢̂, and p

N

“ Trp

pNq⇢̂ pNq
q is the probability of having N particles. Similarly, we can write

x

ˆS2
a{

ˆNy “

∞
N

p
N

x

ˆS2
ay

N

{N with x

ˆS2
ay

N

“ Trp⇢̂
N

ˆS2
aq, so that

´

ˇ̌
ˇ̌
ˇ

*
ˆSn

ˆN{2

+ˇ̌
ˇ̌
ˇ`pa¨nq

2

*
ˆS2
a

ˆN{4

+

`1´pa¨nq

2
“

ÿ

N

p
N

«
´

ˇ̌
ˇ̌
ˇ
x

ˆSny

N

N{2

ˇ̌
ˇ̌
ˇ ` pa ¨ nq

2 x

ˆS2
ay

N

N{4

` 1 ´ pa ¨ nq

2

�
.

(S3)
If no component ⇢̂pNq is Bell-correlated, then every term in this sum is nonnegative accord-
ing to inequality (S2), and consequently inequality (3) is satisfied. Conversely, a violation of
inequality (3) proves that at least one component ⇢̂pNq of the system’s state is Bell-correlated.

1.1 A Bell correlation witness for two perpendicular measurement direc-
tions

Inequality (3) relies on a fine balance between competing terms, and a satisfactory demon-
stration of its violation depends on accurate knowledge of the angle # between a and n (see
section 2 for calibration procedure). Here we derive a Bell correlation witness that is more ro-
bust to uncertainties in this angle, that summarizes the overall violation in a single comparison
(see figure 2), and that can be compared to some known entanglement witnesses.

We decompose n “ a cosp#q ` b sinp#q cosp'q ` c sinp#q sinp'q in terms of three ortho-
normal vectors ta, b, cu (see figure 1A for an example, with c “ a ˆ b), and define the scaled
collective spin components Ca “ x2

ˆSa{

ˆNy etc. The resulting inequality ⇣2
a • ´rCa cosp#q `

Cb sinp#q cosp'q ` Cc sinp#q sinp'q ` sin

2
p#qs{ cos

2
p#q, valid for all non-Bell-correlated states

according to (3), can be violated if there exists an angular direction p#, 'q for which it is
violated; that is, the measurements along the perpendicular axes ta, b, cu on any non-Bell-
correlated state satisfy

⇣2
a • ZpCbc, Caq “ max

#Pr0,⇡s

„
Cbc sinp#q ´ Ca cosp#q ´ sin

2
p#q

cos

2
p#q

⇢

• ZpCb, 0q “

1 ´

a
1 ´ C2

b

2

(S4)

with Cbc “

a
C2
b ` C2

c . The function ZpCbc, Caq is discussed in more detail below. All non-Bell-
correlated states thus satisfy inequality (4), which we have violated experimentally as shown in
figure 2.

2



Figure S1: Graphical representation of the function ZpCbc, Caq from Eq. (S4). The horizon-
tal line Ca “ 0 is shown as a blue line in figure 2.

1.2 Details on the function ZpCbc, Caq

For C2
a ` C2

bc § 1, ZpCbc, Caq of Eq. (S4) satisfies

C6
bc ` rC2

a ` 4p1 ´ Zqs

2
pC2

a ´ Z2
q ` C4

bcr3C2
a ` 8ZpZ ´ 1q ´ 1s

`C2
bcr3C4

a ´ 2C2
ap10Z2

´ 19Z ` 10q ` 8ZpZ ´ 1qp2Z2
´ 2Z ´ 1qs “ 0, (S5)

and we can find Z numerically as the larger of the two real roots of this polynomial. While
explicit formulas exist for this root with validities in different domains of pCbc, Caq, they are
very long and not suited for printing here. In figure S1 we show ZpCbc, Caq graphically. We
note that BZpCbc, Caq{B|Cbc| • 0 and BZpCbc, Caq{B|Ca| • 1, which yields the monotonicity
used in inequality (S4).

2 Details on the experimental setup and procedure
We experiment with two-component Bose-Einstein condensates of 87Rb atoms (15, 18, 21, 26)
in the hyperfine states |F “ 1, m

F

“ ´1y ” |1y and |F “ 2, m
F

“ 1y ” |2y. The atoms are
magnetically trapped on an atom chip (26) with trapping frequencies f

x

“ 110 Hz and f
y

“

f
z

“ 729 Hz. The experiment prepares condensates without discernible thermal components
and with N “ 474 ˘ 27 atoms (rms preparation noise) in state |1y. To remove outliers, we
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post-select BECs with N P r425, 520s. The resulting data set has N “ 476 ˘ 21. Because the
magnetic moments of states |1y and |2y are almost equal, the two states experience nearly the
same magnetic trapping potential and show very good coherence properties (26). The internal
state of the atoms is manipulated via two-photon [radio-frequency (rf) and microwave (mw)]
resonant Rabi rotations with a Rabi frequency of 384 Hz, for which the mw field is blue-detuned
by «500 kHz from the intermediate state |F “ 2, m

F

“ 0y (18). Such Rabi pulses achieve
coherent population transfers with very high fidelities; in particular, we are not able to detect
any atoms transferred to other states of the ground-state manifold. This allows us to focus
entirely on the effective two-level system of states |1y and |2y, described by pseudo-spins 1/2.

The experimental sequence is illustrated in figure S2, representing the Wigner function of
the collective spin state on a sphere (32). It starts with the preparation of a spin-squeezed state
using the one-axis twisting scheme (27). In this scheme, a coherent spin state (figure S2A)
evolves in time with a Hamiltonian ˆH “ � ˆS2

z

, resulting in a spin-squeezed state with reduced
quantum noise in a certain spin component (figure S2B). To generate this Hamiltonian, we
control the collisional interactions between the two states with a state-dependent microwave
near-field potential (26). A state-selective splitting of the two potential minima by 150 nm
induces coherent demixing-remixing dynamics as described in Refs. (18, 21). The preparation
needs two complete oscillations («55 ms) to generate –5.5(6) dB of spin squeezing according
to the Wineland criterion (28).

The optimization and calibration processes for our state-selective absorption imaging are
explained in Refs. (18, 33). The times of flight are 4.0 ms for state |2y and 5.5 ms for |1y, and
we achieve detection noise levels of �

N1,det “ 4.5 and �
N2,det “ 3.9 atoms, where �2

Ni,det are
the variances of the measured atom numbers N

i,det due to imaging noise. Starting from the
method described in Refs. (18, 33) we add an empirical correction to account for the relatively
high optical density of the cloud (which is of order 1). By driving Rabi rotations on BECs with
different atom numbers we fit quadratic corrections ⌫

i

that restore the sinusoidal shapes of the
Rabi oscillation for both states. The atom numbers obtained in this way are N

i

“ N
i,det `

⌫
i

N2
i,det with ⌫1 “ 1.46p9q ˆ 10

´4 and ⌫2 “ 2.57p9q ˆ 10

´4. Omitting these corrections would
underestimate the atom number noise. The accuracy of the resulting atom number calibration
is confirmed by recording atomic projection noise as a function of atom number (18,33), which
shows the expected value of ⇣2

a « 1 for coherent states (figure S2A) independently of N .
As illustrated schematically in figure S2B, our spin-squeezed states are (i) not exactly on

the equator, due to different particle loss rates in the two states during the preparation, and (ii)
tilted by «11.0˝ against the horizontal due to the one-axis twisting dynamics. All subsequent
operations on these states are resonant Rabi rotations Rp↵, 'q corresponding to active rotations
of the state on the Bloch sphere by an angle ↵ around an axis tcosp'q, sinp'q, 0u lying in the
equatorial spin plane. Projective measurements of the collective pseudo-spin state are always
taken along the `z spin axis, but after coherent Rabi rotations applied to the state; in this way,
the passive rotations of inequalities (3) and (4) (i.e. measurements along different axes for a
fixed state) are experimentally replaced by active rotations (i.e. measurements along a fixed
axis for differently rotated states).
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Figure S2: Graphical representation of the experimental sequence for detecting Bell corre-
lations. Spherical projections of the simulated Wigner function on the Bloch sphere (32) during
state preparation and measurement, for a total spin S “ 50 corresponding to N “ 2S “ 100

pseudo-spin-1/2 particles. Projective measurements are along the vertical (`z) spin axis. (A)
Initial coherent state along the `x spin direction. (B) After one-axis twisting, including phase
error (left/right) and amplitude error (up/down). (C) Measurement of ⇣2

a after rotation Rp, '0q

such that Ca « 0 and ⇣2
a is minimal. (D-F) Measurements of Cnp⌧q for three different Rabi pulse

durations ⌧ , corresponding to three different axes np⌧q. The difference between (C) and (D) is
that the latter contains an additional phase error in the state preparation, which we account for
in the calibration of a ¨ np⌧q “ cosr#p⌧qs.
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Figure S3: Experimental data used to estimate ⇣2
a. (A) Raw measurements p2Sa{Nqraw “

N1´N2
N1`N2

, post-selected to 425 § N1 ` N2 § 520. The linear trend due to collisional phase
shifts (red line), with slope � “ ´6.8p12q ˆ 10

´4 per atom determined from a much larger
data set, is used to correct the measurements without changing their mean value. (B) Corrected
measurements 2Sa{N “ p2Sa{Nqraw ´ �pN ´ xNyq.

Inequalities (3) and (4) are most easily violated when a is the axis that minimizes ⇣2
a, which

in our case means that the measurements should be taken along the squeezed spin component
and that the state should be placed on the equator of the sphere as precisely as possible, as
illustrated in figure S2C. In a first set of measurements, we thus rotate the squeezed state by
Rp, '0q, adjusting the pulse area  and the phase '0 so that Ca is as close as possible to zero
and ⇣2

a is minimal. In practice, we scan '0, keeping  “ 11.0˝ fixed, and pick the value of '0

that minimizes |Ca|.
During the preparation of the spin-squeezed state, collisions lead to an N -dependent phase

shift between |1y and |2y, also know as “clock shift” in the context of precision measure-
ments (33). Because N fluctuates from shot to shot, this leads to a corresponding fluctua-
tion in the azimuthal position of the state on the Bloch sphere. After applying the rotation
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Rp, '0q, this translates into a weak dependence of the measured raw values p2Sa{Nqraw “

N1´N2
N1`N2

on the measured total atom numbers N “ N1 ` N2, see figure S3A. Since this cor-
relation is deterministic and N is measured accurately in every shot, we can correct for this
slight misalignment of the measurement axes, similar to what is commonly done in precision
atomic clocks. Using a much larger data set we estimate the slope of this correlation to be
� “ ´6.8p12q ˆ 10

´4 per atom. This value is then used to correct each individual measurement
to 2Sa{N “ p2Sa{Nqraw ´ �pN ´ xNyq without changing their mean values. The corrected
measurements 2Sa{N are presented in figure S3B. A histogram of the same data is shown in
figure 1B. For a precise determination of ⇣2

a we also correct our data for detection noise: the best
estimate is obtained by subtracting p�2

N1,det ` �2
N2,detq{xNy from xp2Sa{Nq

2
ˆ Ny. We obtain

Ca “ x2Sa{Ny “ ´1p2q ˆ 10

´3 and ⇣2
a “ 0.272p37q, with a sample size of 190 points. If we

do not subtract detection noise for the estimate of ⇣2
a, we still see a violation of inequality (3)

by up to 2.1 standard deviations.
An alternative method for dealing with this N -dependent clock shift is to post-select the

data to a much narrower window in N , and using the measured values p2Sa{Nqraw directly.
Such a strong post-selection with N P r465, 485s gives a value of ⇣2

a “ 0.225p51q, consistent
with our previous estimate but with a lower statistical significance due to the reduced sample
size of 68 points.

In a second experimental run, illustrated in figures S2D-F, we measure Cnp⌧q for many differ-
ent axes np⌧q. For this we apply Rp, '0q followed by a second rotation Rp#p⌧q, '1q, where ⌧
is the Rabi pulse duration, and the phase '1 is adjusted to maximize the contrast: this sequence
ensures that the rotation is precisely around an axis perpendicular to the position of the state on
the equator. Since in this second run the state has slightly shifted in phase due to experimental
drifts, the first rotation does not bring the state exactly onto the equator and we end up with
a slightly different Cnp⌧“0q ‰ Ca even for ⌧ “ 0, as shown in figure S2D. We simultaneously
account for this shift and calibrate the Rabi frequency and its nonlinearity by fitting Cnp⌧q “

Cb sinp⌧0 ` �⌧ ` �⌧ 2
q with tCb, ⌧0, �, �u “ t0.980p2q, ´0.030p9q, 2.464p15q ms

´1, ´1.6p5q ˆ

10

´2
ms

´2
u, from which we compute #p⌧q “ ⌧0`�⌧ `�⌧ 2

´arcsinpCa{Cbq such that a¨np⌧q “

cosr#p⌧qs.
Using the above values of ⇣2

a, Cnp⌧q, and a ¨ np⌧q, we plot the expectation value W as a
function of ⌧ (see figure 1E). A sign of a properly calibrated angle #p⌧q is seen in the four-fold
symmetry of figure 1E.

To estimate the overlap of our data set with the blue shaded region of figure 2, we assume
that Cb is a random variable following a beta distribution on the interval r´1, 1s and ⇣2

a is an
independent random variable following a gamma distribution on r0, 8q, with both mean values
and both variances as determined experimentally. In figure S4 their joint probability distribution
is shown as green contours. A numerical integral of this joint probability distribution over the
blue shaded region gives p “ 0.9989.

In the same way, we can estimate the overlap of our data set with the various k-producibility
areas of figure 2. We find overlaps of 0.010 for k “ 24 and 0.046 for k “ 29, which allow us to
rule out 24-producibility at the 1% level and 29-producibility at the 5%-level.
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Figure S4: Probability distribution describing the experimental error bars of our data
point in figure 2. The green contours contain 90% (innermost), 99%, . . . , 99.9999% (outer-
most) of the joint probability density for two random variables Cb and ⇣2

a as described in the
text.
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3 Finite statistics analysis
In this section, we analyse the effect of having performed only a finite number of measure-
ments. We construct a quantum state that satisfies our inequality (3), yet produces a violation
comparable to the one reported in figure 1 with high probability. In future experiments aiming
at state-independent demonstrations of Bell correlations, such states must be excluded to close
the statistics loophole. In order to do this, we must perform a number of measurements at least
proportional to the number of particles.

Let us consider the quantum state

⇢̂ “ p1 ´ qq|�yx�| ` qp|ÒyxÒ|q

bN , (S6)

where |�y is a squeezed state of N spins, generated by one-axis twisting (27) and optimized for
maximally violating inequality (3); and |Òy is the state of one spin oriented along the squeezing
axis. For N “ 476 and # “ 128

˝, the values of the witness (2) evaluated on the two components
of ⇢̂ are

Wp|�yx�|q “ W1 « ´0.133

W
“
p|ÒyxÒ|q

bN

‰
“ W2 « 180. (S7)

By linearity of the witness, the state ⇢̂ produces a value Wp⇢̂q “ p1 ´ qqW1 ` qW2. Hence, for
q • q˚

“

´W1
W2´W1

« 7.38 ˆ 10

´4, this state is not considered Bell-correlated by our witness.
However, since q˚ is very small, whenever we make only a few measurements on ⇢̂, we

are most likely to sample only the squeezed state |�y, which can violate our witness since
W1 † 0. Taking M measurements on a state with q • q˚, this happens with probability
p “ p1 ´ qq

M

§ p1 ´ q˚
q

M

“ p˚. In our case, our best violation W “ ´6.1p16q ˆ 10

´2 was
achieved with Mn “ 10 measurements along n and Ma “ 190 along a, for a total of M “ 200,
hence we have p˚

« 0.86. The value of p˚ sets a lower bound on the p-value of a statistical
test tailored to rule out the null hypothesis “The measured state satisfies inequality (3).” Hence,
without making any further assumptions, our finite statistics do not allow us to rule out the
possibility that our state is not Bell-correlated with a confidence larger than 14%.

A similar reasoning applies to the case of entanglement witnesses based on two-body cor-
relators, such as those described in (19). The Wineland squeezing parameter (28) of the second
part of state (S6) is so different from the squeezing parameter of the first one, that a very small
component q is enough to make the squeezing parameter of the entire state larger than one on
average. However, as long as fewer than lnppq{ lnp1 ´ qq measurements are performed on the
system, with probability p all measurements only sample the first part of the state, and thus
produce statistics (including contrast and squeezing parameter) that are indistinguishable from
those of a squeezed state.

In the case of our witness, the state (S6) also sets a lower bound on the p-value of the
hypothesis “The measured state satisfies inequality (3)” for any number of particles: for N
sufficiently large, one has W1 « ´

1
4 and W2 « 0.38N (still for # “ 128

˝). A p-value of 5% is
then only possible for a number of measurements M Á 4.5N .
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This conclusion can be reconciled with the observation that our inequality is violated with
3.8 standard deviations of experimental uncertainty by noting that the above state (S6) produces
statistics with rare events, following a distribution that is very far from Gaussian. No mechanism
is known by which states like (S6) could be produced in our experiment; further, over many
years of conducting experiments with spin-squeezed BECs, we have never observed the rare
events described in the previous section, and such outliers would be easy to detect.

4 Towards a Bell test with a many-body quantum system
In the main text, we demonstrate that Bell correlations can be detected in a many-body system
with the help of a witness observable. Unlike a Bell inequality, this witness relies on knowledge
of the measurements that are performed. Still, violation of the witness inequality certifies that
the measured state could be used to violate a Bell inequality. Here we discuss how one might
proceed to verify this, and thus observe a Bell inequality violation with a many-body system.

In order to test a Bell inequality, one must be able to address several parties individually. In
the case of Bell inequality (1) from the main text, this is required in order to observe the term
S01. Ideally, all spins could be separated from each other and addressed individually. Given
that the state we prepare experimentally violates inequality (3), we know that it would violate
inequality (1) in this situation.

However, separating the particles into just two well-identifiable entities could in principle al-
ready be sufficient to test a Bell inequality. In a BEC, for instance, the spins could be partitioned
into two groups of atoms by means of a state-independent potential. An adequate bipartite Bell
inequality, different from (1), could then be tested by measuring these two groups of spins sep-
arately. Experimentally, the precision of the measurements needed to observe a bipartite Bell
violation might be a limiting factor in this scenario.

A Bell inequality violation obtained in this way would be device-independent. Indeed, once
a set of parties can be well identified and individually addressed, the measurements performed
need not be trusted anymore. Rather, a Bell inequality violation certifies that proper measure-
ments have been performed. Also, the outcome statistics observed in such a test could not be
described in terms of pre-established agreements.

Note that in the situation of a Bell inequality violation, one might be interested in closing the
detection loophole. In this situation, post-selection of the data would not be allowed. Further-
more, one might still need to rely on the assumption that particles belonging to different parties
do not communicate. This is similar to the assumption that the spins do not communicate while
testing a witness. This assumption could be relaxed by separating the parties sufficiently to
allow for measurements to be performed at space-like separations.
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