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Outline

From 2010 to 2016 I have worked in the quantum atom optics lab, led by
Prof. Philipp Treutlein, in the department of Physics at the University of Basel.
During this time, my research has focused on the generation, detection, and
use of entangled states of trapped atoms and ions. The present document
gives an overview of this work, published in Refs. [1–12], which are attached
at the end (starting on page 61).

In chapter 1 I discuss the topic of spin squeezing, both generally and specifi-
cally for Bose–Einstein condensates of rubidium-87 as observed in our lab. De-
tails about the tomographic reconstruction of the generated quantum states
are given, as well as a discussion of their use in metrology and their interest in
fundamental quantum physics. This chapter represents the bulk of my work in
Basel, and entitles this document. The quote given on the title page refers to
this chapter: “Say whatever you choose about the object, and whatever you
might say is not it.” [13] I like to keep this advice in mind when thinking about
our insights, to avoid confusing our empirical descriptions of measurements
with the ontic, which remains as mysterious as ever.

Chapter 2 discusses lattice-based quantum simulators. It focuses on two
topics: the design of optimized chip structures for generating two-dimensional
arrays of microtraps to implement such quantum simulators, and a modified
spin-wave theory that allows us to determine the approximate phase diagrams
of such lattice models in order to focus our experimental efforts on the most
interesting models and parameter ranges.

In chapter 3 I briefly present a one-semester course on Computational
Quantum Mechanics that I have developed and taught repeatedly in Basel.
This course is a pedagogic distillation of many practical skills and tools I have
acquired during these years of scientific research.
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Chapter 1

Spin squeezing in
Bose–Einstein condensates

uncorrelated

classically correlated

quantum coherent

quantum discordant

entangled

EPR-steerable

Bell-correlated
(nonlocal)

Figure 1.1: Schematic diagram of the Hilbert space of a set of quantum-
mechanical particles. Correlations increase in strength from the outermost
to the innermost circle. Entanglement, for example, is necessary but in-
sufficient for Bell correlations. The various correlation strengths are close
to each other at the bottom point, in the sense explained in section 1.6.

Hilbert space is vast. An ensemble of N qubits, with two internal states
each, has a Hilbert space dimension of 2N . There is no experiment that can
ever hope to explore this space entirely, even for relatively small systems. The
question of drawing a map of this enormous space thus appears naturally:
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8 CHAPTER 1. SPIN SQUEEZING IN A BEC

which states are at the same time interesting and feasible? By interesting I
mean that the state either has a use in quantum metrology, quantum comput-
ing, quantum cryptography or a similar essentially-quantum field, or that it is of
fundamental interest for discovering the workings of the quantum-mechanical
world. There are many interesting but experimentally infeasible states, such
as “Schrödinger cat” (GHZ) states for large N. On the other hand, there are
many easily feasible but uninteresting states (from the quantum perspective),
such as classical (coherent) states.

Spin-squeezed states are both feasible and interesting. They can be gener-
ated by a continuous transformation from a coherent spin state, for instance
by one-axis or two-axis twisting [14], which makes them very robust, both to
measurement noise and particle loss. Nonetheless, they manifest the strongest
possible quantum-mechanical correlations even for small amounts of squeez-
ing. Ideally, an infinitesimal amount of squeezing is sufficient to entangle
the constituent atoms in a way that is of direct practical use in quantum
metrology [7]. Going further, with a bit more than 3 dB of squeezing the
atoms exhibit Bell correlations, which represent the most profound departure
of quantum from classical physics. Thus it thus turns out that very interesting
quantum-mechanical phenomena can be seen in states that are near classical
states (see section 1.6 for a more quantitative statement). Figure 1.1 shows a
very crude map of Hilbert space using different levels of correlations that can
be detected between particles.

This chapter assembles the different pieces of work that have allowed us
to gain more understanding in mapping the correlations between the particles
of a many-body system.

1.1 Bose–Einstein condensation of rubidium-87

In our lab we experiment with two-component Bose–Einstein condensates
(BECs) of rubidium-87 atoms. These bosonic alkali atoms have the convenient
property that at low temperatures, the s-wave scattering lengths between par-
ticles in the different hyperfine states are all repulsive and of similar magnitude,
which allows us to cool them by evaporation. Further, they can be laser-cooled
at the easily available wavelength of 780 nm. Many properties of these atoms
have been collected in Ref. [15]. Generating such a Bose–Einstein condensate
is by now a well-known and well-described process. Briefly, a cloud of atoms
is first trapped and cooled in a magneto-optical trap (MOT), transferred to
a magnetic Ioffe–Pritchard (IP) trap, and from there into smaller and smaller
IP traps while being cooled by radio-frequency (rf) evaporation. After Bose–
Einstein condensation, an “rf knife” is used to reduce the number of particles
in the BEC to the desired value.

In a BEC of atoms in a harmonic trapping potential, every atom occupies
the same spatial wavefunction. This has two main advantages over using a



1.1. BOSE–EINSTEIN CONDENSATION OF RUBIDIUM-87 9

thermal cloud of atoms:

1. There is almost no residual entropy in a BEC. The BEC is surrounded
by a very dilute cloud of thermal atoms, which carry all of the entropy of
the ensemble; but as this thermal cloud is spatially separated from the
much smaller BEC, it does not influence the BEC measurements done
by absorption imaging. This entropy-free experimental starting point
is advantageous for reductionistic studies: the influence of stimuli on
the atomic system can be studied in the absence of noise coming from
the initial state preparation. The BEC transition temperature kBTc =

0.94~ω̄N1/3 [16] is a factor of N1/3 higher than the temperature needed
for ground-state cooling, which makes reaching such a symmetric low-
entropy state feasible in practice.

2. The collective BEC spatial wavefunction is symmetric under particle ex-
change. Since the total quantum state of an ensemble of bosons must
always be symmetric under particle exchange, we thus conclude a pri-
ori that their internal (pseudo-spin) state must also be symmetric under
particle exchange.1 Although such a symmetric internal state can always
be achieved by optically pumping all of the atoms into the same internal
state (i.e. a symmetric product state), the BEC symmetry guarantees
that thermal excitations do not subsequently reduce this symmetry.2

This point will be important below, and is demonstrated experimentally
in subsection 1.2.1.

Over the years, much work has been dedicated to improving the machine
that generates and measures BECs in our lab. This machine, first built in Mu-
nich and subsequently transported to Basel, has seen impressive improvements
in stability and precision. These improvements are part of the day-to-day work
in a lab, and are not described in scientific publications; yet they are what peri-
odically occupied most of my time. The hardware has been described in detail
in the PhD theses of Philipp Treutlein [18], Pascal Böhi [19], Max Riedel [20],
and Caspar Ockeloen [21]. The successive improvements can be tracked in
our series of publications [1,3,7,22,23]. We are able to create Bose–Einstein
condensates very reliably with anywhere from 50 to 3000 atoms, and study
their thermodynamic properties with exquisite accuracy [3].

1The permutation symmetry of the total wavefunction is the product of the permuta-
tion symmetries of the external (spatial) wavefunction and the internal (spin or pseudo-spin)
wavefunction. If both the total wavefunction and the external wavefunction are trivial repre-
sentations of the symmetric permutation group, then the internal wavefunction must also be
a trivial representation. See https://en.wikipedia.org/wiki/Representation_theory_
of_the_symmetric_group.

2The symmetries of the spin state and the spatial state of the atoms can be lowered
simultaneously by p-wave (and higher-wave) scattering. In 87Rb clouds, these processes are
negligible at temperatures below 100µK [17]. Our BECs are typically at temperatures below
100 nK.

https://en.wikipedia.org/wiki/Representation_theory_of_the_symmetric_group
https://en.wikipedia.org/wiki/Representation_theory_of_the_symmetric_group
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Figure 1.2: Schematic diagram of the hyperfine energy levels of a 87Rb
atom in the ground electronic state 52S1/2 in a weak magnetic field.
Our experiments only populate the levels |1〉 = |F = 1, mF = −1〉 and
|2〉 = |F = 2, mF = 1〉. We drive two-photon Rabi transitions between
these two levels with a microwave-radiowave double resonance detuned
by ∆ ≈ 500 kHz from the level |F = 2, mF = 0〉.

Since the nuclear spin of 87Rb is I = 3/2 and its electronic spin in the
52S1/2 ground state is J = 1/2, each atom has a total spin of either F = 1

or F = 2; these two sets of states are hyperfine-split by 2Ahfs = 6.835GHz [15]
(see Figure 1.2). We single out the two hyperfine levels |1〉 ≡ |F = 1, mF = −1〉
and |2〉 ≡ |F = 2, mF = 1〉 for all experiments performed in our lab so far, be-
cause at the “magic” magnetic field of 3.23G their differential Zeeman shift
vanishes to first order, which makes these two levels particularly well suited
for storing a qubit. Qubit lifetimes of many seconds, even minutes [24], have
been observed in this system, albeit in more dilute clouds. These qubits can
be manipulated simultaneously with resonant two-photon pulses consisting of
a microwave (mw) field at around 6.835GHz and a radio-frequency (rf) field
chosen at around 1.8MHz. By choosing the Rabi frequency of these manip-
ulations (Ω ≈ 500Hz) to be much slower than the detuning (∆ ≈ 500 kHz)
to the intermediate state |F = 2, mF = 0〉, we make sure that no hyperfine
states other than |1〉 and |2〉 are ever measurably populated.

The internal state of each atom (indexed by k = 1 . . . N) can thus be
described by a pseudo-spin 1/2 (i.e. a qubit) with spin operator ŝ(k) = 1

2 σ̂
(k)

in terms of the Pauli vector σ̂ = {σ̂x , σ̂y , σ̂z}. The total spin vector of the
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entire ensemble,

Ŝ =

N∑

k=1

ŝ(k), (1.1)

also called the collective spin, is used to describe the properties of the atoms’
internal states. As we have argued above, the total internal state is symmetric
under particle exchange, which implies that the total spin vector of Equa-
tion (1.1) describes a spin of length S = N/23 (see subsection 1.2.1 for how
to validate this experimentally). This means that we can describe the collective
internal state of our BEC in the (N+1)-dimensional symmetric subspace of
the 2N-dimensional Hilbert space of N qubits. This dramatic simplification lies
at the heart of the tomographic method and state visualization of section 1.7,
but it is not necessary for our more fundamental conclusions of section 1.5
and section 1.6.

1.2 Spin measurements

Once we have created a Bose–Einstein condensate of N atoms in a particu-
lar quantum state of their internal degrees of freedom, we are interested in
measuring various observables. The constraints on the available observables
are:

1. The only measurement we can make is counting atoms in the different
hyperfine states of the electronic ground state of 87Rb. Specifically, for
every produced BEC we destructively image the spatially resolved popu-
lations of the two states |1〉 and |2〉 after different times of flight, using
resonant laser absorption. These images give us a moderate-resolution
description of the momentum distribution of the atoms; however, in
practice we do not rely on spatial information and integrate these atom
numbers over the entire images in order to achieve atom counts with
high signal-to-noise ratios. Effectively, our detection is equivalent to an
almost number-resolved Stern–Gerlach experiment [25]. From the atom
counts N1 and N2 in the two absorption images, we calculate the total
atom number N = N1+N2, the total spin S = N/2 = (N1+N2)/2, and
the spin projection quantum number M = (N1 − N2)/2.

2. Before determining the quantum state of the atoms, we can apply differ-
ent unitary operations that act identically on each atom. Specifically, we
can rotate the internal (qubit) state of each atom around the same spin
axis by the same angle, by applying a combined mw/rf Rabi pulse. In this
way, we can measure the spin projection quantum number M along any

3States with total spin S = N/2 − 1, N/2 − 2, . . . have lower symmetry and therefore
cannot describe the collective internal state of an ideal BEC.
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axis d and thus measure expectation values of observables depending on
total-spin operators Ŝd = d · Ŝ.

Together, these constraints mean that for every measurement i we set the
measurement axis orientation

di = n(ϑi , ϕi) = {sin(ϑi) cos(ϕi), sin(ϑi) sin(ϕi), cos(ϑi)}, (1.2)

and from the measured atom counts we determine the total spin Si and the
spin projection Mi along this axis. The tuples (ϑi , ϕi , Si ,Mi) are then used to
extract various observables and quantifiers.

After much improvement, we are now able to measure atom numbers to
within ±4 atoms by absorption imaging [1]. We are also able to control the
amplitudes and phases of internal spin states of the atoms with exquisite pre-
cision, allowing us to detect quantum fluctuations in the projection quantum
numbers Mi with large signal-to-noise ratios. This means that we have suc-
ceeded in eliminating technical noise sources to such an extent that the remain-
ing technical (classical) noise is much smaller than the quantum-mechanical
noise, which cannot be eliminated. The variance of these quantum fluctua-
tions is the quantity that we measure in order to detect correlations between
the atoms in our BECs.

1.2.1 quantifying the total spin length

In order to validate the assumption that S = N/2, i.e. the assumption of
operating in the symmetric subspace of N particles, we quantify the total spin
length S by measuring 〈Ŝ2x + Ŝ2y + Ŝ2z 〉 = S(S + 1). This measurement is
performed in two steps, using a coherent spin state. In a first experimental
run, we prepare BECs in state |1〉 and measure their atom numbers N1,z ≈ N
and N2,z ≈ 0, from which we calculate 〈Ŝ2z 〉 ≈ N2/4. In a second experimental
run, we rotate the internal state of each atom with a π/2 Rabi pulse into the
coherent superposition (|1〉 + |2〉)/2, and measure the atom numbers N1,x ≈
N2,x ≈ N/2 ±

√
N/2, from which we calculate 〈Ŝ2x 〉 ≈ 〈Ŝ2y 〉 ≈ N/4. We do

not need to perform separate measurements for the expectation values along
the x- and y -axes, since these axes are only defined with respect to a phase
that is indeterminate in the absence of a preferred phase frame. The ratio

Υ =

√
〈Ŝ2x 〉+ 〈Ŝ2y 〉+ 〈Ŝ2z 〉

N
2 (N2 + 1)

=

√
2

〈
(N1,x − N2,x)2

(N1,x + N2,x)(N1,x + N2,x + 2)

〉
+

〈
(N1,z − N2,z)2

(N1,z + N2,z)(N1,z + N2,z + 2)

〉

(1.3)

estimates the quality of the approximation S = N/2, and therefore the ac-
curacy of the assumption of a symmetric spin state. In our experiments, we
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routinely achieve Υ > 97%. At present, we lack a model that describes the
quantitative relationship between Υ and the quantum-mechanical state of the
system; we operate under the assumption that a value of Υ ≈ 1 is sufficient
to justify the approximation of a fully symmetric spin state.

1.3 Spin squeezing

In my opinion spin-squeezed states are the most practical quantum states
to study mesoscopic quantum correlations. They are easy to generate by a
continuous and slight transformation of a coherent spin state (see below),
easy to characterize by their contrast and squeezed variance, and they cover
the entire spectrum of quantum correlations of Figure 1.1 (see section 1.6).
With two-component BECs (section 1.1) all of these operations have been
demonstrated reliably in many laboratories.

Generating spin-squeezed states of Bose–Einstein condensates is by now
a well-established technique in our lab, described in detail in the sequence of
PhD theses of Pascal Böhi [19], Max Riedel [20], and Caspar Ockeloen [21].
Spin-squeezed states are generated from pure BECs by entangling the internal
states of the constituent atoms.

Figure 1.3: Three-step sequence for preparing a spin-squeezed state. The
globes show the calculated Wigner distributions on the unit sphere [11]
for N = 40 spins (i.e. total spin S = 20); color scale as in Figure 1.8.
1. The spin-polarized coherent state |S, S〉 at the north pole (barely vis-
ible). 2. The coherent spin state |π2 , 0, S, S〉 along the +x axis. 3. The
spin-squeezed state |µ = 0.1〉, Equation (1.4).

In the total-spin language of section 1.2, we generate spin-squeezed states
by the following one-axis twisting scheme [14], shown graphically in Figure 1.3:

1. Start with a fully spin-polarized state where all atoms are in the |1〉 level.
This state is the natural outcome of a clean BEC preparation process.
It is a coherent spin state that can be described as the total-spin Dicke
state |S, S〉 = |1〉⊗N in the +z direction, where N1 = N and N2 = 0.
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2. Rotate by 90◦ around the +y axis to generate the coherent spin state
|π2 , 0, S, S〉 = exp(−iπ2 Ŝy )|S, S〉 =

[
(|1〉+ |2〉)/

√
2
]⊗N

pointing in the
+x direction. At this point, the internal states of the atoms are still
unentangled. The required coherent rotation is achieved by a two-photon
mw-rf double-resonance pulse that couples the two levels |1〉 and |2〉
(Figure 1.2); its absolute phase is irrelevant and rather defines what will
become the +y axis in the forthcoming manipulations.

3. Apply the one-axis-twisting Hamiltonian Ĥoat(t) = ~χ(t)Ŝ2z during a
time interval [t0, t1] to find the squeezed state

|µ〉 = exp
(
−iµ

2
Ŝ2z

)
|π
2
, 0, S, S〉 (1.4)

with µ = 2
∫ t1
t0
χ(t)dt the total squeezing amplitude. In our system

this nonlinear entangling Hamiltonian describes the evolution of a BEC
in a potential that differs for the two internal states [22, 23]. Briefly,
a spatially varying microwave near-field leads to microwave level shifts
that depend both on the internal states and on the spatial positions of
the atoms. Consequently, this state-selective and time-dependent force
F (t) giving rise to the Hamiltonian Ĥsplit(t) = −r · F (t)|2〉〈2| spatially
separates the atoms in state |2〉 from those in state |1〉; keep in mind,
however, that every atom is in a coherent superposition of these two
states. As a result of this spatial separation, inter-species collisions no
longer take place, and the collisional phase shift accumulated during this
separation depends on the square of the population difference between
|1〉 and |2〉. More precisely, the instantaneous squeezing rate is [26]

~χ(t) =
g11
2

∫
|ψ1(r)|4d3r+

g22
2

∫
|ψ2(r)|4d3r−g12

∫
|ψ1(r)|2|ψ2(r)|2d3r

(1.5)
in terms of the instantaneous mode wavefunctions ψi(r) (normalized to
1) and the coupling coefficients gi j = 4π~2ai j/m from the s-wave scat-
tering lengths {a11, a12, a22} = {100.40, 98.01, 95.44} Bohr radii [27].
As long as the wavefunctions of the two states are approximately equal
(i.e. overlapping), χ(t) is very small since the third term in Equation (1.5)
cancels the first two; but when the state-selective force separates them
spatially, the third term vanishes and χ(t) can reach values on the or-
der of 1 s−1. During a typical experimental splitting sequence lasting
a few tens of milliseconds, we thus reach values of µ on the order of
0.01 . . . 0.1.

The resulting state |µ〉 still points along the +x axis in the sense that 〈µ|Ŝy |µ〉 =

〈µ|Ŝz |µ〉 = 0, but it is spin-squeezed: along certain spin projection axes
Ŝζ = Ŝz cos(ζ) − Ŝy sin(ζ), perpendicular to the +x axis, its spin projec-
tion variance is less than that of a coherent spin state (µ = 0). An analytic
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calculation for the idealized situation [14] shows that

〈µ|Ŝx |µ〉 = S cos2S−1
(µ

2

)
(1.6)a

〈µ|Ŝ2x |µ〉 =
S(2S + 1)

4
+
S(2S − 1)

4
cos2S−2(µ) (1.6)b

〈µ|Ŝ2ζ |µ〉 = S
2 + S(2S − 1) sin(ζ)

{
sin(ζ)
4

[
1− cos2S−2(µ)

]
− cos(ζ) sin

(
µ
2

)
cos2S−2

(
µ
2

)}
.

(1.6)c

For positive µ, the minimum of Equation (1.6)c is found at the squeezing
angle

ζsq =
1

2
tan−1

(
4 sin

(
µ
2

)
cos2S−2

(
µ
2

)

1− cos2S−2(µ)

)
. (1.7)

The Wineland spin-squeezing parameter [28] is then defined as

ξ2 =
2S〈µ|Ŝ2ζsq |µ〉
〈µ|Ŝx |µ〉

2

=
2S+3−(2S−1)

{
cos2S−2(µ)+

√
[1−cos2S−2(µ)]2+[4 sin(µ2 ) cos2S−2(µ2 )]

2
}

4 cos4S−2(µ2 )
.

(1.8)

For small amounts of squeezing, this parameter ideally decreases from unity as
ξ2 = 1− (S− 1/2)µ+O(µ2). It serves as the quantity that characterizes the
amount of metrologically usable spin-squeezing generated in an experiment: it
measures the noise-to-signal ratio of an interferometric measurement, com-
pared to that achieved with a coherent spin state (see section 1.4 and Ref. [7]).
It is also an entanglement witness since separable states are guaranteed to yield
ξ2 ≥ 1 (see section 1.5).

In the absence of experimental noise, the largest amount of squeezing
(where ξ2 is minimal) is achieved for a squeezing amplitude µ∗ ≈ S−2/3,
where ξ2∗ ≈ S−2/3 [14]; see Figure 1.5 for an example.

We further characterize the amount of squeezing by the distance be-
tween a spin-squeezed state |µ〉 and an unsqueezed coherent spin state |0〉 =

|π2 , 0, S, S〉. For this we calculate the fidelity (overlap)

F (µ) = |〈µ|0〉| ≈
[

1 +
S(2S − 1)

8
µ2
]−1/4

for |µ| .
√
π/S. (1.9)

At the squeezing maximum this fidelity is F (µ∗) ≈ S−1/6. This means that
for large systems (large S), maximally squeezed states are indeed far from
coherent spin states, in the sense that they have a vanishing overlap. We can
thus not claim to find maximal spin squeezing close to coherent spin states.
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Figure 1.4: Overlap F = |〈µ|0〉| with a coherent spin state as a function
of the squeezing parameter ξ2(µ), Equation (1.8), for ideal spin-squeezed
states. The orange curve shows the asymptotic form for S → ∞, Equa-
tion (1.10). The gray curves are numerically calculated values for finite S.
The top axis shows the amount of squeezing in decibels, −10 log10(ξ

2).

The situation is different, however, in the experimentally more relevant
case where we look at states with a fixed (given) squeezing parameter ξ2,
which are achieved with a squeezing amplitude of µξ2 ≈ (1 − ξ2)/(S

√
ξ2).

For these states, the overlap with a coherent spin state is

F (µξ2) ≈
√

2
√
ξ2/(1 + ξ2) for S−2/3 � ξ2 ≤ 1, (1.10)

independently of the system size S (i.e. independently of the number of par-
ticles in the system), as shown in Figure 1.4. What this means is that in
order to achieve a given squeezing parameter ξ2, we do not necessarily need
to venture far from coherent spin states. In particular, spin-squeezed states
with less than 10 dB of squeezing (i.e. 0.1 < ξ2 < 1) have an overlap with
a coherent spin state of more than 75%; spin-squeezed states with less than
3 dB of squeezing (i.e. 0.5 < ξ2 < 1) have an overlap with a coherent spin
state of more than 97%. In this sense, significant spin squeezing is found in
the close vicinity of coherent spin states. In section 1.5 and section 1.6, we
show that these spin-squeezed states, even though they are so close to classi-
cal (coherent) states, are nevertheless as profoundly quantum-mechanical as
possible.
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1.4 Quantum metrology

The most immediate application of spin-squeezed states is in quantum metrol-
ogy, where the reduced variance of one spin component is used to make a
measurement whose uncertainty will consequently be reduced. In Ref. [7] we
have used spin-squeezed states of 87Rb BECs to measure the amplitude of an
oscillating magnetic field with a precision that surpasses the limits of what is
possible without squeezing or entanglement. Due to the small physical size
of the BEC, we can measure this amplitude at different positions in space by
displacing the BEC between spin-squeezing and measuring.

Very generally, the lower limit on the achievable error variance of an ob-
servable X̂ by a probe in quantum state ρ̂ is given by the Cramér–Rao bound
(CRB) [29]

(∆X)2 = Tr(ρ̂X̂2)− Tr2(ρ̂X̂) ≥ 1

F(ρ̂, X̂)
, (1.11)

where F(ρ̂, X̂) is the Fisher information. The more such information a state ρ̂
contains (with respect to the observable X̂), the more precise our measurement
can potentially be. With respect to spin observables X̂ = Ŝn, coherent spin
states have F = N (the standard quantum limit); the maximum possible value
is F ≤ N2 (the Heisenberg limit).

0.00 0.02 0.04 0.06 0.08 0.10
0.001

0.01

0.1

1

10
μ*

ξ*

squeezing amplitude μ

sq
ue
ez
in
g
pa
ra
m
et
er

ξ
2

F
is
he
r
in
fo
rm
at
io
n
N
/ℱ

Figure 1.5: Spin-squeezing parameter ξ2 [orange, Equation (1.8)] and
reciprocal Fisher information N/F [blue, Equation (1.13)] calculated for
N = 2S = 1000 particles in the absence of technical noise. The two
quantities are indistinguishable for squeezing amplitudes µ . µ∗ = 0.023.
For larger µ, the states are over-squeezed but are still useful for quantum
metrology if a suitable measurement protocol is employed.

In order to calculate the Fisher information of spin-squeezed states, we
note that for any pure state ρ̂ = |ψ〉〈ψ| it is proportional to the variance of
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the spin projection [29],

F(ρ̂, Ŝn) = 4
[
〈ψ|Ŝ2n |ψ〉 − 〈ψ|Ŝn|ψ〉

2
]
. (1.12)

The maximum Fisher information of a spin-squeezed state is therefore found
by aligning n with the anti-squeezed axis ζ = ζsq + π

2 . The intuition for this
picture is that a rotation of the spin-squeezed state around the anti-squeezed
axis (i.e. a translation along the squeezed axis) is the fastest and most sensitive
way to make the state orthogonal to itself (see Figure 1.3), which is essentially
what the Fisher information measures [30]. For ideal spin-squeezed states we
use Equation (1.6)c and Equation (1.7) to find

F(µ) = 4〈µ|Ŝ2ζsq+ π
2
|µ〉

= S
2

[
2S + 3− (2S − 1)

{
cos2S−2(µ)−

√
[1− cos2S−2(µ)]

2
+
[
4 sin

(
µ
2

)
cos2S−2

(
µ
2

)]2
}]
.

(1.13)

We notice that F(µ) = N/ξ2 + O(µ4): for small amounts of squeezing, the
Fisher information is closely related to the spin-squeezing parameter (see Fig-
ure 1.5). More spin squeezing (smaller ξ2) implies more Fisher information.
In this way, the operational meaning of the spin-squeezing parameter as the
improvement of an interferometric measurement’s signal-to-noise ratio is mir-
rored by the theoretical description of measurement uncertainties through the
CRB.

For larger amounts of squeezing, the two parameters decouple: the Fisher
information keeps increasing while the squeezing parameter ξ2 reaches a min-
imum and then increases dramatically. These so-called over-squeezed states
(Figure 1.8) are no longer useful for quantum metrology directly based on
extracting a measurement as a function of a spin projection 〈Ŝζsq〉, since this
measurement no longer has a reduced uncertainty. Instead, quantum-enhanced
measurements that saturate the CRB must be extracted from higher moments
〈Ŝkd 〉 of spin projections (k ≥ 2), which are increasingly difficult to measure
experimentally as k increases. In the limit of maximum Fisher information
F (π) = N2 (the Heisenberg limit), contributions up to k = 2S = N [similar
to parity measurements 〈(−1)Ŝd 〉] become necessary for quantum metrology
to saturate the CRB. Such measurements are exceedingly difficult for large
numbers of particles, and are completely destroyed by the loss of a single
particle.

1.5 Quantum-mechanical entanglement

In Refs. [31–33] it is shown that spin squeezing in a BEC is an entanglement
witness. Every separable state has ξ2 ≥ 1; measuring a spin-squeezing param-
eter of ξ2 < 1 thus implies that the particles composing the system must be
quantum-mechanically entangled.
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In an ideal experiment, the squeezed regime ξ2 < 1 is reached even for in-
finitesimally small squeezing amplitudes µ > 0 [see Equation (1.8)]. Starting
from a separable coherent spin state (µ = 0), quantum-mechanical entan-
glement lies “just under the surface.” In actual experiments, where technical
noise both increases the numerator and decreases the denominator of Equa-
tion (1.8), we nonetheless easily reach the spin-squeezed regime of entangled
particles [1, 7, 23], as shown exemplarily in Figure 1.6.

1.6 Bell correlations and quantum nonlocality

The strongest correlations allowed in our universe are Bell correlations (see
Figure 1.1). These correlations are the resource that is necessary for violating
a Bell inequality, and their existence demonstrates that the universe cannot be
described with a locally causal model [34].

In Ref. [1] we have derived a simple criterion to determine whether Bell
correlations are present in a many-particle quantum system. For this, we start
with a recent Bell inequality [35] acting on a set of N qubits (i.e. particles)
and find the condition

〈Ŝ2a 〉
N/4

≥ 1

2


1−

√√√√1−
(
〈Ŝb〉
N/2

)2

 (1.14)

for total-spin projections along two perpendicular measurement axes a and b.
This condition is satisfied for every state that is not Bell-correlated; violating
it therefore demonstrates the presence of Bell correlations. Since the initial
Bell inequality [35] depends only on symmetric one- and two-body correlation
measurements, this condition depends only on first and second moments of
the total spin operator Ŝ introduced in section 1.2. And since only the scaled
first and second moments appear in Inequality (1.14) (scaled in the sense that
〈Ŝ2a 〉
N/4 = 〈Ŝb〉

N/2 = 1 for a coherent spin state along the b-axis), measurements for
different total particle numbers N can be compared directly.

Figure 1.6 shows that we can violate Inequality (1.14) experimentally, and
demonstrates that the internal states of the atoms in our BEC are Bell-
correlated [1]. For an ideal spin-squeezed state and noiseless measurements,
Inequality (1.14) can detect Bell correlations if µ &

√
2/N + O(N−3/2).

Through Equation (1.9) this gives an overlap of about 97% with a coher-
ent spin state at the onset of detectable Bell correlations for N → ∞. Even
though Bell correlations are stronger than entanglement (see Figure 1.1), and
are in fact the strongest possible correlations allowed by quantum mechanics,
they are found very close to a coherent spin state. It is not necessary to go to
a completely different type of state or to go through a phase transition in order
to create Bell correlations from a coherent spin state. This statement remains
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Figure 1.6: Observation of Bell correlations in a BEC. Black: our ex-
perimental data set of Ref. [1] expressed in terms of the Rabi contrast

Cb = 〈Ŝb〉
N/2 and the squeezed second moment ζ2a =

〈Ŝ2a 〉
N/4 , with 1σ error bars.

The green contours contain 90% (innermost), 99%, . . . , 99.9999% (out-
ermost) of the joint probability density for two random variables Cb (beta
distribution on [−1, 1]) and ζ2a (gamma distribution on [0,∞)) matched
to the data. Red shaded region: entanglement detected by spin-squeezing
ξ2 < 1 (section 1.5). Blue shaded region: Bell correlations detected by
violation of our witness, Inequality (1.14).

true in the macroscopic limit: Bell correlations are not limited to microscopic
systems where we would intuitively expect them. Like quantum-mechanical
entanglement (section 1.5), Bell correlations lie just below the surface of clas-
sical (product) states.

Inequality (1.14) is not necessarily a tight witness: there may be many
Bell-correlated states that satisfy it. In particular, we know that any pure en-
tangled quantum many-body state is also Bell-correlated (the so-called Gisin
theorem [36]), which means that some fraction of the entangled states be-
tween the red and blue curves in Figure 1.6 are likely to be Bell-correlated,
even though we cannot yet detect this with the specific witness in Equa-
tion (1.14). A practical question is thus: among all possible Bell correlation
witnesses, which one allows us to move the blue curve of Figure 1.6 to the
largest possible values of ζ2a? We are planning to address this question in
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future publications.

1.7 Quantum state tomography

In section 1.3, section 1.5, section 1.6, and Refs. [1, 5, 7] we use mean spins
〈Ŝd 〉, mean squared spins 〈Ŝ2d 〉, and spin variances 〈Ŝ2d 〉−〈Ŝd 〉

2
to characterize

the correlations between the atoms’ internal states. Although these expecta-
tion values can be measured precisely, they only give a partial view of the
quantum state of the BEC. In order to gain a fuller view, we have developed
methods for quantum state tomography of the atoms’ internal quantum state.

Quantum state tomography is the attempt to discover the quantum-me-
chanical state of a physical system [4, 11, 37]. The experimenter acquires
a set of measurements of different non-commuting observables and tries to
estimate what the density matrix of the systems must have been before the
measurements were made, with the goal of being able to predict the statistics
of future measurements generated by the same process. Once this density
matrix is known, the expectation value of any observable can be deduced, even
if no direct measurement scheme is known; and even unmeasurable quantities
can be estimated, such as the purity Tr(ρ̂2), the entropy −Tr(ρ̂ · ln ρ̂), or the
Fisher information (see section 1.4).

1.7.1 tomographic methods

In the context of the generation and characterization of non-classical states of
Bose–Einstein condensates with internal degrees of freedom [11], the system
under study is known to be in a totally symmetric state because of its Bose
symmetry (see section 1.1). As described in Equation (1.1), these states
are usually described in terms of total-spin observables, with the effective
spin length equal to half the atom number (see subsection 1.2.1). In this
restricted framework, quantum-state reconstruction is much more feasible than
for general many-particle systems; for this reason, the reconstruction of spin
(or pseudo-spin) density matrices is an important real-world case for quantum
state tomography.

We have developed an algorithm to determine the density matrix of an N-
particle system directly by measuring moments of total-spin projections along
many projection axes [11]. This algorithm is simple and gives direct access
to reduced density matrices: if we measure only up to the N ′th moments of
total-spin projections, we can still find the N ′-particle reduced density matrix.
The downside of this algorithm is that there is no guarantee that these (re-
duced) density matrices are positive semi-definite, which severely limits their
usefulness, as described in detail in Ref. [4]. Further, the reduced N ′-particle
density matrices found with our method are not guaranteed to be the reduc-
tions of a full N-particle density matrix, which is a set of constraints that
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is even stricter than positive semi-definiteness. For all of these reasons, the
original backprojection algorithm of Ref. [11] has not been used much in our
lab, but we have improved it as described in the following.

In Ref. [4] I have studied the problem of the tomographic quantum state
reconstruction of a single qubit in great detail, which has clarified many is-
sues related to large-system tomography, including questions on the preferred
method, the treatment of measurement errors, and the proper interpretation of
non-positive density matrices. As a result we have switched to using maximum-
likelihood estimation (MLE) to determine tomographic density matrices. We
use the RρR algorithm [38], which is guaranteed to give positive semi-definite
density matrices that maximize the likelihood of the observed data (assuming
a Hilbert–Schmidt prior density on the space of density matrices). After we
have adapted it to work with spin systems, this algorithm is feasible even for
N = 1000 atoms using tens of thousands of spin projection measurement re-
sults (see Figure 1.8 for an example). N ′-particle reduced density matrices can
be computed from the resulting N-particle density matrix by partial tracing.

For these calculations, we first define the POVM4 elements representing
the state of the system into which it was projected by the ith measurement
(ϑi , ϕi , Si ,Mi) for i = 1 . . . Q (see section 1.2). If all measurements were
perfect, these POVM elements would be Π̂i = |ϑi , ϕi , Si ,Mi〉〈ϑi , ϕi , Si ,Mi | in
terms of Dicke states along the projection axis of the ith measurement,

|ϑ,ϕ, S,M〉 = e−iϕŜz · e−iϑŜy · e−iϕŜz · |S,M〉

=

S∑

M̃=−S
e−i(M+M̃)ϕdS

M,M̃
[cos(ϑ)]|S, M̃〉, (1.15)

where the dS
M,M̃

(x) are Wigner d-matrix elements and |S,M〉 are Dicke states
along the z-axis. If, however, each projective measurement has an estimated

error δMi = 1
2

√
σ21 + σ22, with σk the estimated measurement errors on the

detected atom numbers N1 and N2, then we define smoothed POVM elements

Π̂i =

∑Si
M=−Si exp

[
− (M−Mi )

2

2δM2i

]
|ϑi , ϕi , Si ,M〉〈ϑi , ϕi , Si ,M|

∑Si
M=−Si exp

[
− (M−Mi )2

2δM2i

] . (1.16)

They represents our knowledge of the state of the system into which it was
projected by the ith measurement. The tomographic reconstruction algorithm
then starts with the unit matrix ρ̂0 = 1/(2S + 1), from which we iterate

R̂n =

Q∑

i=1

Π̂i

Tr(ρ̂n · Π̂i)
, ρ̂n+1 =

R̂n · ρ̂n · R̂n
Tr(R̂n · ρ̂n · R̂n)

. (1.17)

4Positive operator-valued measure: a measure on the space of positive semi-definite
Hermitian operators.
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This iteration has been shown to have the following properties:

• Each density matrix in the sequence ρ̂0, ρ̂1, ρ̂2, . . . is Hermitian and pos-
itive semi-definite.

• ρ̂ = limn→∞ ρ̂n globally maximizes the likelihood of the measured data,

P(data|ρ̂) =

Q∏

i=1

Tr(ρ̂ · Π̂i), (1.18)

over the space of positive semi-definite matrices, assuming that this
space is fitted with a flat prior density.

We iterate this sequence until the trace distance 1
2‖ρ̂n+1 − ρ̂n‖1 becomes

sufficiently small, usually on the order of 10−8 or less. For this purpose
I have written an efficient and portable computer program in the C pro-
gramming language. The input of this program consists of a text file de-
scribing each projective measurement by a tuple (ϑi , ϕi , Si ,Mi , δMi) for i =

1 . . . Q: the ith projective measurement along the quantization axis di =

{sin(ϑi) cos(ϕi), sin(ϑi) sin(ϕi), cos(ϑi)} has detected a total of Ni = 2Si =

N
(i)
1 + N

(i)
2 atoms and a projection quantum number Mi = (N

(i)
1 − N

(i)
2 )/2;

the estimated error on Mi is δMi . In order to generate a density matrix of size
(2S + 1)× (2S + 1), the input of my MLE code needs the total spin S (total
atom number N) of each measurement to be the same. Since the total atom
number in every experimental BEC is different, we must scale the raw data
by first calculating the mean atom number N̄ of all measurements, and then
scaling every measured projection quantum number to Mi = Mi ,raw × N̄/Ni .
Since in practice the fluctuations of N are relatively small, on the order of

√
N

or less, this distortion is considered acceptable. If the total particle number
fluctuates more strongly, post-selecting a narrow range of particle numbers
before tomographic inversion may be required.

The output of my MLE code is a file containing 2(2S+1)2 64-bit floating-
point numbers representing the real and imaginary parts of the coefficients of
the reconstructed density matrix in the basis of Dicke states.

The main difficulty in writing this MLE code was to find a stable and fast
algorithm to calculate Wigner d-matrices for large angular momenta, in order
to evaluate the coefficients of the states of Equation (1.15). To calculate
these matrix elements dS

M,M̃
(x) with x = cos(ϑ), we first use the symmetries

dS
M,M̃

(x) = (−1)M̃−MdS−M,−M̃(x) = (−1)M̃−MdS
M̃,M

(x) = (−1)S−MdS
M,−M̃(−x)

to reduce the calculation to the cases where M ≥ 0, |M̃| ≤ M, 0 ≤ x < 1
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[with the limiting case dS
M,M̃

(1) = δM,M̃ ]. Then we use the stable recursion

dS
S,M̃

(x) =

√(
2S

S − M̃

)(
1− x

2

) S−M̃
2
(

1 + x

2

) S+M̃
2

, (1.19)a

dS
S−1,M̃(x) = (Sx − M̃)dS

S,M̃
(x)

√
2

S(1− x2) , (1.19)b

dS
M,M̃

(x) =
(2S−1)[S(S−1)x−MM̃]dS−1

M,M̃
(x)−S

√
[(S−1)2−M2][(S−1)2−M̃2]dS−2

M,M̃
(x)

(S−1)
√
(S2−M2)(S2−M̃2)

.

(1.19)c

1.7.2 graphical representation: Wigner distribution

The state of a quantum-mechanical spin-S system is given abstractly by its
density operator ρ̂, which we can determine tomographically as in the pre-
vious section. This operator is most commonly represented by the density
matrix with elements ρM,M ′ = 〈S,M|ρ̂|S,M ′〉 expressed in the Dicke basis
with M,M ′ ∈ {−S,−S + 1,−S + 2, . . . ,+S}. This density matrix facilitates
calculations but does not lend itself to direct qualitative interpretation.

The Wigner quasi-probability distribution [39] W (Θ,Φ) is an alternative
representation of a quantum spin state. It is a real-valued function on the unit
sphere with the following properties:

1. It is linear in the density operator ρ̂.

2. It is normalized as
∫ π
0 sin(Θ)dΘ

∫ 2π
0 dΦW (Θ,Φ) =

√
4π
2S+1 Tr(ρ̂) =

√
4π
2S+1 .

3. The Wigner distribution associated with a coherent spin state is ap-
proximately a Gaussian centered at the direction of the state (see be-
low). The coherent spin state |S,M = S〉 is centered at the north
pole; that of |S,M = −S〉 is centered at the south pole. The coher-
ent spin state |ϑ,ϕ, S, S〉 defined in Equation (1.15) is centered at
n(ϑ,ϕ) = {sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ), cos(ϑ)}.

4. The operators Ŝx , Ŝy , Ŝz are the generators of state rotations around
their respective Cartesian axes; their effects on the Wigner distribution
are corresponding rotations of the unit sphere. For example, for a rota-
tion by an angle α around the z-axis, we have the equivalence

ρ̂α = e−iαŜz · ρ̂ · e iαŜz ↔ Wα(Θ,Φ) = W (Θ,Φ− α) (1.20)

Rotations around other axes have equivalent geometric interpretations.
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These properties allow us to interpret the Wigner distribution geometrically
and to use it to plan and analyze experiments.

We define the Wigner quasi-probability distribution on the unit sphere as
a sum over spherical harmonics [11,40,41],

W (Θ,Φ) =

2S∑

k=0

k∑

q=−k
ρkqY

q
k (Θ,Φ), (1.21)

with ρk,−q = (−1)qρ∗k,q so that W (Θ,Φ) ∈ R. The coefficients of this
expansion are calculated from the density matrix elements with

ρkq =

S∑

M=−S

S∑

M ′=−S
tSMM

′
kq 〈S,M|ρ̂|S,M ′〉, (1.22)

where we have defined the modified Clebsch–Gordan coefficients [11]

tSMM
′

kq = (−1)S−M
′〈S,M;S,−M ′|k, q〉. (1.23)

These latter coefficients satisfy the orthogonality relations

S∑

M=−S

S∑

M ′=−S
tSMM

′
kq tSMM

′
k ′q′ = δkk ′δqq′ , (1.24)a

2S∑

k=0

k∑

q=−k
tSMM

′
kq tSM

′′M ′′′
kq = δMM ′′δM ′M ′′′ . (1.24)b

This means that the transformation of Equation (1.22) is unitary and is the
spherical equivalent of a Fourier transform; it satisfies an equivalent of Parse-
val’s theorem,

2S∑

k=0

k∑

q=−k
|ρkq|2 = ‖ρ̂‖2F = Tr(ρ̂2), (1.25)

where ‖·‖F is the Frobenius norm. Therefore, conversions between the Wigner
distribution and the density operator can be done without loss of information.
A graphical representation of the Wigner distribution is thus a valid and detailed
way of representing a density operator. Further, as opposed to the coefficients
of the density matrix 〈S,M|ρ̂|S,M ′〉, the coefficients of the Wigner distribution
ρkq are naturally ordered into broad structures (small k) and fine structures
(large k).

coherent spin states

From the list of properties given above, we conclude that the Wigner distri-
bution of the density operator |ϑ,ϕ, S, S〉〈ϑ,ϕ, S, S| of a coherent spin state
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[see Equation (1.15)] depends only on the angle between the direction n(ϑ,ϕ)

of the coherent spin state and the direction n(Θ,Φ) in which we are evaluating
the Wigner distribution,

Wϑ,ϕ(Θ,Φ) =

√
4π

2S + 1
× ωS[n(Θ,Φ) · n(ϑ,ϕ)]. (1.26)

Its angular dependence is given by the normalized “spherical Gaussian” func-
tions

ωS(x) =

2S∑

k=0

2k + 1

4π

√
(2S)!(2S + 1)!

(2S − k)!(2S + k + 1)!
Pk(x)

≈ 2S + 3/2

2π
e−(2S+3/2)(1−x), (1.27)

defined in terms of Legendre polynomials; the approximation is valid for S � 1.
These functions are normalized Gaussians in the sense that ωS(cosϑ) is close
to a Gaussian centered at the north pole, with normalization 2π

∫ 1
−1 ωS(x)dx =

1 and angular size

〈[2 sin(ϑ/2)]2〉 = 2π

∫ 1

−1
2(1−x)ωS(x)dx = 2

(
1−

√
S

S + 1

)
≈ (S+3/4)−1.

(1.28)
They are not strictly positive, but instead their tails oscillate around zero with
a negligible amplitude on the order of 2−2S.

Gaussian smoothing on the unit sphere

We define a quasi-Gaussian smoothing operation on the unit sphere as the
convolution of any spherical function f (Θ,Φ) with a smoothing kernel ωg(x)

from Equation (1.27),

fg(Θ,Φ) = (f ∗ ωg)(Θ,Φ) =

∫ π

0

sinϑdϑ
∫ 2π

0

dϕf (ϑ,ϕ)

× ωg[cos(Θ) cos(ϑ) + sin(Θ) sin(ϑ) cos(Φ− ϕ)]. (1.29)

We note that although g here has the appearance of an angular momentum
(with 2g ∈ N0), it need not correspond to any physical quantity and is merely
used to parameterize the width of the smoothing kernel in a particular ap-
plication [see Equation (1.28)]. In the special case of smoothing a spherical
harmonic with such a Gaussian kernel we find [40]

(Y qk ∗ωg)(Θ,Φ) =





√
(2g)!(2g+1)!

(2g−k)!(2g+k+1)! × Y
q
k (Θ,Φ) if 0 ≤ k ≤ 2g,

0 if k > 2g.
(1.30)
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The form of these damping prefactors
√

(2g)!(2g+1)!
(2g−k)!(2g+k+1)! ≈ exp

[
− k(k+1)
2(2g+1)

]

confirms the intuition that a quasi-Gaussian smoothing operation damps small-
wavelength (large k) structures faster than long-wavelength (small k) struc-
tures.

By convolving or anti-convolving the Wigner distribution, Equation (1.21)
with a spherical Gaussian kernel, Equation (1.30),

Wg(Θ,Φ) =

2S∑

k=0

k∑

q=−k
ρkq

[
(2g)!(2g + 1)!

(2g − k)!(2g + k + 1)!

] 1
2

Y qk (Θ,Φ), (1.31)a

W−g(Θ,Φ) =

2S∑

k=0

k∑

q=−k
ρkq

[
(2g)!(2g + 1)!

(2g − k)!(2g + k + 1)!

]− 1
2

Y qk (Θ,Φ), (1.31)b

we calculate Agarwal’s generalized phase-space distributions [40]. Specifically:

g = ±∞: The Wigner distribution itself, W (Θ,Φ) = W±∞(Θ,Φ), is the only
generalized phase-space distribution that satisfies Parseval’s theorem,
Equation (1.25), and is therefore on an equal footing with the density
operator ρ̂.

g = −S: The Glauber–Sudarshan P representation P (Θ,Φ) = W−S(Θ,Φ) is
found by anti-convolving the Wigner distribution of the state with that
of a coherent state of equal angular momentum S, Equation (1.26).
The P representation contains exaggerated fine structure since large-k
components are strongly amplified in this anti-smoothing operation. It is
useful as a way to calculate reduced density matrices of symmetric states
(section 1.2): the P representation of the N ′-particle reduced density
matrix is found from the P representation of the full N = 2S-particle
density matrix by setting all coefficients with k > N ′ to zero [42].

g = S: The Husimi–Kano Q representation Q(Θ,Φ) = WS(Θ,Φ) is found
by convolving the Wigner distribution of the state with that of a co-
herent state of equal angular momentum S, Equation (1.26). The Q
representation contains less information than the Wigner distribution,
since high-frequency (large-k) contributions are strongly damped in this
convolution. In particular, this smoothing operation averages out all
negative regions of the Wigner function, such that Q(Θ,Φ) ≥ 0.

g � S: Smoothing operations with g � S can be used to include measure-
ment uncertainties into tomographic results, see subsection 1.7.3 and
Figure 1.8.

1.7.3 interpretation of tomographic results

The top panel of Figure 1.8 shows an example of a tomographically determined
quantum state of a one-axis-twisted (over-squeezed) Bose–Einstein conden-
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Figure 1.7: Schematic of tomographic quantum states. The platonic
state ρ̂ and its associated Wigner distribution W (Θ,Φ) are the results of
a tomographic process as described in subsection 1.7.1, using the noisy
measurement operators of Equation (1.16). The statistics of further mea-
surement data are predicted using the same noisy measurement operators
(black arrow). By splitting this noisy measurement process into its two
components, (i) the addition of noise though a smoothing operation, and
(ii) the noise-free projective measurement (blue arrows), the positivist
quantum state Wg(Θ,Φ) is introduced as a representation of our actual
knowledge of the system including the measurement inaccuracies.

sate (see section 1.3). We see immediately that this state has much small-
scale structure that probably does not represent real experimental features.
The reason for this extra structure is that, in the nomenclature of section 3.1
of Ref. [4], the reconstructed density matrix is a platonic quantum state. It
represents our knowledge of the state prior to measurement, i.e. without in-
cluding noise introduced by our measurement operators, Equation (1.16) (see
Figure 1.7). Our measurement uncertainties δMi smooth this exaggerated
small-scale structure through Equation (1.16) upon measurement, so that no
such fine structure could ever be detected with the present setup. For this rea-
son, Ref. [4] recommends constructing a positivist quantum state that already
includes the measurement uncertainty, and that therefore does not exhibit ex-
aggerated (unmeasurable) small-scale structure. As shown in the blue part
of Figure 1.7 this positivist state re-defines the quantum system to include
the measurement inaccuracies, instead of artificially separating the quantum
system from the measurement procedure.

In order to construct the positivist quantum state, we convolve the platonic
(reconstructed) Wigner distribution with the Wigner distribution of a coherent
spin state of angular momentum g (subsection 1.7.2). The effective angular
momentum of this convolution, which is g = 524 in the present case, is
found by assuming that the reason for the projection measurement errors
δMi were fluctuations of the true projection axis orientations di around the
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Figure 1.8: Example of a tomographically reconstructed density matrix of
a system of N̄ = 366 atoms, determined from 16 143 projective mea-
surements along many different axes. The resulting Wigner distribu-
tion [11] is shown in the Hammer projection (see the earth projection
in the bottom-right panel [43]: equal-area; isotropic at the center). We
recognize an over-squeezed spin state (see Figure 1.5). Top panel: The
platonic Wigner distribution W (Θ,Φ) as reconstructed by the RρR algo-
rithm. Bottom panel: The positivist Wigner distribution Wg(Θ,Φ) after
convolution with a Gaussian of angular spread

√
〈[2 sin(ε/2)]2〉 ≈ 2.5◦

(arrow), corresponding to g = 524 (see text and Figure 1.7). Data set
0000 from 20 November 2013.

desired orientations d (ideal)
i , described by a Gaussian distribution of the angle

ε = cos−1(di · d (ideal)
i ) with zero mean and variance 〈ε2〉 ≈ 〈[2 sin(ε/2)]2〉 =

2 − 2〈di · d (ideal)
i 〉. Although this noise model is causally incorrect, it can

reproduce the measured uncertainties in practice. We find that convolving
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the Wigner distribution of a Dicke state |ϑi , ϕi , Si ,Mi〉 with such a Gaussian
(i.e. simulating the fluctuations of the Dicke-state projection axis) leads to a
projection variance of 〈Ŝ2di 〉−〈Ŝdi 〉

2
= δM2i ≈ [Si(Si + 1)−M2i ]/(2g) for large

g. Using this relation we calculate an estimated smoothing angular momentum

1

g
=

1

Q

Q∑

i=1

2δM2i
Si(Si + 1)−M2i

(1.32)

from the experimental data. Applying this smoothing ωg to the Wigner distri-
bution W (Θ,Φ) of the platonic state (top panel of Figure 1.8), we find the
positivist state Wg(Θ,Φ) = (W ∗ ωg)(Θ,Φ) [Equation (1.31)a] that repre-
sents our knowledge of the atomic state including measurement uncertainties
(bottom panel of Figure 1.8). Idealized (noise-free) expectation values using
this positivist state can reproduce our measurement data (see blue part of
Figure 1.7).



Chapter 2

Quantum simulation of
two-dimensional lattice systems

In this chapter I want to discuss briefly the progress that has come out of my
foray into the quantum simulation of lattice models.

Two-dimensional lattice models are a critical test case for our understand-
ing of quantum mechanics in general, and for specific theoretical descriptions
used for their analysis. Since one-dimensional systems can usually be analyzed
fully with the Jordan–Wigner transformation or the Bethe ansatz [44], and
high-dimensional systems are well approximated by mean-field theories (of-
ten even exactly for D ≥ 4), the two-dimensional case is in some ways the
most critical setup. In a two-dimensional system, the number of each site’s
neighbors is large enough for complex correlations and long-range effects to
be established, but small enough so that the site’s individual behavior is not
overwhelmed by its neighbors. Further, two-dimensional systems are exper-
imentally much more accessible than higher-dimensional setups. My former
Diploma student Philipp Hauke has summarized this situation very well in his
PhD thesis [45].

In section 2.1 I briefly present a simple technique for analyzing two-dimen-
sional lattice systems theoretically [9,46]. Although I have not continued this
theoretical work during my stay in Basel, my previous work on experimental
implementations of such models has continued to grow. This work started
with the invention of a powerful technique to find the globally optimal radio-
frequency electrode shape for constructing a desired two-dimensional lattice of
ion traps [47]. Briefly, this technique gives the definitive answer to the ques-
tion of how to generate a desired three-dimensional electrostatic potential by
setting up a two-dimensional surface electrode. Before this technique was
invented, surface-electrode ion traps could only be constructed for particular
situations of high symmetry, where the required shape of the radio-frequency
electrode could be found intuitively (e.g. Figure 2.3). Now, optimal electrode
shapes can be calculated with ease even for complicated trap setups (e.g. Fig-

31
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ure 2.5), and their shapes turn out to be of a surprising beauty. The article pre-
senting this technique has a high citation rate, and optimized surface-electrode
ion traps are being constructed in several groups around the world [2, 48, 49].
Further, the generalization of this algorithm to the optimization of magnetic
surface structures for generating two-dimensional lattices of atom traps [12]
has spawned at least two experiments [50–52]. Most of these experimental
implementations, as well as other works using two-dimensional surface elec-
trodes [53–57], are based on the free software package called SurfacePattern
that I have published online [10].

2.1 Modified spin-wave theory

Although modern computational techniques exist to approximate the ground
state and (thermo-)dynamics of two-dimensional lattice models variationally,
such as tensor networks [58], they all fail when the entanglement between
distant lattice sites is too strong. As a result, the behavior of some extended
two-dimensional quantum lattice models, such as the one developed in sub-
section 2.2.1, is still very difficult to simulate on a classical computer. This
difficulty is one of the reasons why experimental implementations of such mod-
els, called quantum simulators, are of great interest, since they can determine
model properties and dynamics that are out of reach for computer simulations.

However, even for complicated lattice models, the phase diagram is usually
dominated by regions that can be simulated efficiently on a classical computer,
often using methods as simple as mean-field theory. For those of us working
in quantum technologies, it is easy to overlook how rare quantum systems are
that cannot be simulated classically at all. To develop quantum simulators, we
need a way of determining a priori which quantum systems hold any potential
for representing a significant test case for our tools and methods. This is
precisely what we have done in Refs. [9,46]; this work is still being pursued [59].

To illustrate this method, we briefly look at the spatially anisotropic trian-
gular lattice (SATL) with XY interactions [46]. Its Hamiltonian

Ĥ =
∑

〈i j〉
ti j(Ŝ

(i)
x Ŝ

(j)
x + Ŝ

(i)
y Ŝ

(j)
y ) (2.1)

is shown schematically in Figure 2.1, with ti j = t1 for horizontal links, ti j = t2
for diagonal links, and ti j = 0 for non-nearest-neighbors; the spin operators
correspond to spins of any length S. The classical (S → ∞) ground state
can be studied with ease; but in the most quantum-mechanical case S = 1/2

even the zero-temperature quantum phase diagram contains speculative spin-
liquid regions. This is due to the interplay between quantum fluctuations
and frustration, which tends to require a fully quantum-mechanical treatment,
particularly for small S.
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t1

t2t2

Figure 2.1: Left panel: Schematic representation of the spatially
anisotropic triangular lattice with XY interactions, with spins located at
the vertices (black circles). The Hamiltonian is given in Equation (2.1).
Right panel (from Ref. [60]): (a) Classical zero-temperature spin ordering
(S →∞, i.e. no quantum fluctuations): decoupled Néel-ordered horizon-
tal (t1) chains for t2/t1 = 0; three-sublattice spiral ordering for t2/t1 = 1;
Néel order on the t2 lattice for t2/t1 ≥ 2. (b) Zero-temperature quantum
phase diagram for S = 1/2; SL is short for spin liquid.
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Figure 2.2: Schematic temperature-dependent phase diagram of the XY
SATL, Figure 2.1, in terms of the anisotropy and the scaled temperature.
Horizontal lines mark 1D-Néel order; diagonal lines spiral order; and cross-
hatches 2D-Néel order. Phases A, C, and E are short-range ordered, i.e.
exponential decay of correlations; phases B and D are quasi-long-range
ordered, i.e. algebraic decay of correlations. The phase B’ is believed to
be a part of B. In regions F and G, the MSW formalism breaks down.

Takahashi’s modified spin-wave (MSW) theory [61] describes each spin by
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its fluctuations around the classical state found by taking the limit S → ∞.
These fluctuations are described by a Dyson–Maleev transformation, which is
similar to the better-known Holstein–Primakoff transformation, and maps spin
fluctuations to bosonic excitations. As in Ref. [62] we extend this method by
optimizing the underlying classical state instead of using the S → ∞ state,
i.e. by minimizing the free energy of the system with respect to the under-
lying classical ordering vector. This extension yields a set of self-consistent
equations that can be solved even for very large systems. However, they only
have a meaningful solution on a subset of the possible system parameters. In
particular, the method’s breakdown in region F of Figure 2.2 indicates that
the spin-liquid phase of the quantum phase diagram (bottom-right panel of
Figure 2.1) may extend to finite temperatures. It is precisely this region F,
singled out by the MSW theory with ordering vector optimization, where future
quantum simulators are encouraged to study the spatially anisotropic triangu-
lar lattice; all other regions of the phase diagram do not require a description
more sophisticated than a spin-wave theory.

2.2 SurfacePattern software

The design of surface-electrode ion traps and surface-magnetic atom traps
requires that we can calculate the three-dimensional electromagnetic fields
produced by such surface structures efficiently. In Ref. [63] I have described
in detail how these calculations are done for surface electrodes giving rise to
electric fields in space (including the leading-order effects of going beyond the
approximation of a gapless infinite electrode plane); in Ref. [12] the same is
done in less detail for magnetic surface structures. Although these references,
and the works they are based on, offer a complete picture of the techniques
to use, a practical computer implementation was called for in order to design
ion and atom traps. Together with Janus Wesenberg, I have written a Math-
ematica package that offers this functionality in an efficient and easy-to-use
form. This SurfacePattern package [10] allows the user to specify the shape of
any two-dimensional electrode (or magnetized surface structure or wire loop,
see subsection 2.2.4) by giving its outline as a polygonal shape, which may be
finite or stretch to infinity. The package can then calculate the electrostatic
potential, and its spatial derivatives, at any point in space.

To illustrate this in practice, we look at an example: we assume that an
infinite grounded plane contains a square electrode at unit potential, located
at 0 ≤ x, y ≤ 1. We calculate the potential V (x, y , z) = V[x,y,z] any-
where in three-dimensional space, as well as its spatial gradient ∇V (x, y , z) =

dV[x,y,z], with

In[1]:= Needs["SurfacePattern‘"]
In[2]:= P = PolygonPixel[{{0, 0}, {1, 0}, {1, 1}, {0, 1}}];
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In[3]:= V[x_, y_, z_] = ComputeFinitePotential[0, P, {x,y,z}];
In[4]:= dV[x_, y_, z_] = ComputeFinitePotential[1, P, {x,y,z}];

The boundary condition on this potential is that limz→0+ V (x, y , z) is precisely
the potential in the plane given by the square electrode:

lim
z→0+

V (x, y , z) = V (x, y) =

{
1 if 0 < x < 1 and 0 < y < 1,

0 otherwise.
(2.2)

Notice that we specify the polygonal electrode by a counter-clockwise list of
points. For a polygon stretching to infinity, we use InfPoint[a] to specify
a point in direction a, with a = 0 being in the x-direction, a = π/2 in the
y -direction, etc. The potential of a semi-infinite strip electrode is thus defined
with

In[5]:= Q = PolygonPixel[{InfPoint[0], {0, 1}, {0, 0}}];
In[6]:= W[x_, y_, z_] = ComputeFinitePotential[0, Q, {x,y,z}];
In[7]:= dW[x_, y_, z_] = ComputeFinitePotential[1, Q, {x,y,z}];

In the same way, spatial derivatives up to fifth order of the potentials gen-
erated by arbitrary polygonal electrodes, as well as circular disc electrodes,
can be calculated with ease. This packaging of useful algorithms [64–66] has
made calculations in the infinite gapless plane very practical. For example,
the electrode shapes of Refs. [55, 57] and subsection 2.2.3 were found by
optimizing a merit function (the pseudo-potential roughness in the electron-
or ion-guiding channel) that was calculated as a function of the coordinates
of the vertices of these electrode polygons. Such parametric optimizations
can only be performed satisfactorily if the calculation of the merit function,
and thus of the electrostatic potential throughout space, is very efficient for
many different parameter sets (electrode shapes). Optimizing such shapes
by traditional three-dimensional electrostatic solvers, which is many orders of
magnitude slower, leads to sub-optimal results when the optimization cannot
be converged fully [67].

In addition to these potential calculations, the SurfacePattern package
contains the algorithm of Refs. [12,47] that finds the globally optimal shapes
of electrodes to achieve a desired three-dimensional field configuration. For
this, the electrode is manually subdivided into a set of “pixel” electrodes, each
of which will be either connected to unit potential or to ground; the algorithm’s
goal is to find the optimal pattern of these connections. The user specifies
the values of the potential and its spatial derivatives at one or more points in
three-dimensional space (or specifies Automatic if a value is unimportant and
is allowed to take any value), and the algorithm finds the binary pixel potentials
that maximize the numerical prefactor to these design constraints. In this way,
the resulting pattern requires the least possible electrode voltage (or surface
magnetization) to achieve the largest possible field values and derivatives. We
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have found empirically that these binary patterns of pixel potentials are usually
such that large areas of the surface are connected to the same potential; fine-
structured or even fractal electrodes do not occur in this method. This makes
the generated surface electrodes attractive for fabrication.

-1.0 -0.5 0.0 0.5 1.0
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Figure 2.3: Optimized electrode calculated on a grid of 51 × 51 square
pixels. Black pixels are connected to the rf voltage source, and white
pixels are connected to ground, in order to generate the desired three-
dimensional electrostatic potential for an ion trap at the point (0, 0, 0.25).
This shape matches the well-known optimal ring trap, whose circular edges
are indicated with red circles [68].

As an example, we calculate the optimal radio-frequency surface electrode
shape for a simple quadrupolar ion trap at the point q = (0, 0, 1/4) above
the origin. We require that at the ion trap location, the three-dimensional
electric potential has a zero gradient, ∇V (q) = (0, 0, 0), and a quadrupolar

curvature tensor proportional to
[
1 0 0
0 1 0
0 0 −2

]
, with the proportionality factor to

be maximized by the algorithm. The value of the electric potential itself is not
important (Automatic). To start, we limit the possible electrode shapes to
the square |x |, |y | ≤ 1, which we divide into 51× 51 square pixels:

In[1]:= Needs["SurfacePattern‘"]
In[2]:= With[{d = 2/51},

px = Flatten[Table[
PolygonPixel[{{x,y}, {x+d,y}, {x+d,y+d}, {x,y+d}}],
{x,-1,1-d,d}, {y,-1,1-d,d}]]];

For debugging, this set of pixels can be displayed with random coloring:


(* Content-type: application/vnd.wolfram.mathematica *)

(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)

(* CreatedBy='Mathematica 10.4' *)

(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[       158,          7]
NotebookDataLength[      6069,        200]
NotebookOptionsPosition[      5583,        180]
NotebookOutlinePosition[      5942,        196]
CellTagsIndexPosition[      5899,        193]
WindowFrame->Normal*)

(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
 RowBox[{"Needs", "[", "\"\<SurfacePattern`\>\"", "]"}], "\n", 
 RowBox[{
  RowBox[{"With", "[", 
   RowBox[{
    RowBox[{"{", 
     RowBox[{"d", "=", 
      RowBox[{"2", "/", "51"}]}], "}"}], ",", 
    RowBox[{"px", "=", 
     RowBox[{"Flatten", "[", 
      RowBox[{"Table", "[", 
       RowBox[{
        RowBox[{"PolygonPixel", "[", 
         RowBox[{"{", 
          RowBox[{
           RowBox[{"{", 
            RowBox[{"x", ",", "y"}], "}"}], ",", 
           RowBox[{"{", 
            RowBox[{
             RowBox[{"x", "+", "d"}], ",", "y"}], "}"}], ",", 
           RowBox[{"{", 
            RowBox[{
             RowBox[{"x", "+", "d"}], ",", 
             RowBox[{"y", "+", "d"}]}], "}"}], ",", 
           RowBox[{"{", 
            RowBox[{"x", ",", 
             RowBox[{"y", "+", "d"}]}], "}"}]}], "}"}], "]"}], ",", 
        RowBox[{"{", 
         RowBox[{"x", ",", 
          RowBox[{"-", "1"}], ",", 
          RowBox[{"1", "-", "d"}], ",", "d"}], "}"}], ",", 
        RowBox[{"{", 
         RowBox[{"y", ",", 
          RowBox[{"-", "1"}], ",", 
          RowBox[{"1", "-", "d"}], ",", "d"}], "}"}]}], "]"}], "]"}]}]}], 
   "]"}], ";"}]}], "Input",
 CellChangeTimes->{{3.6675693800562067`*^9, 3.667569387776813*^9}, 
   3.667570098861169*^9}],

Cell[BoxData[
 RowBox[{"Graphics", "[", 
  RowBox[{
   RowBox[{
    RowBox[{
     RowBox[{"{", 
      RowBox[{
       RowBox[{"RandomColor", "[", "]"}], ",", 
       RowBox[{"PixelGraphics", "[", "#", "]"}]}], "}"}], "&"}], "/@", "px"}],
    ",", 
   RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.6675693800562067`*^9, 3.66756942280873*^9}}],

Cell[BoxData[
 RowBox[{
  RowBox[{"opt", "=", 
   RowBox[{"OptimalFinitePattern", "[", 
    RowBox[{"px", ",", 
     RowBox[{"{", 
      RowBox[{"{", 
       RowBox[{
        RowBox[{"{", 
         RowBox[{"0", ",", "0", ",", "0.25"}], "}"}], ",", "Automatic", ",", 
        RowBox[{"{", 
         RowBox[{"0", ",", "0", ",", "0"}], "}"}], ",", 
        RowBox[{"{", 
         RowBox[{
          RowBox[{"{", 
           RowBox[{"1", ",", "0", ",", "0"}], "}"}], ",", 
          RowBox[{"{", 
           RowBox[{"0", ",", "1", ",", "0"}], "}"}], ",", 
          RowBox[{"{", 
           RowBox[{"0", ",", "0", ",", 
            RowBox[{"-", "2"}]}], "}"}]}], "}"}]}], "}"}], "}"}]}], "]"}]}], 
  ";"}]], "Input",
 CellChangeTimes->{{3.6675693800562067`*^9, 3.667569461912414*^9}}],

Cell[BoxData[
 RowBox[{"Graphics", "[", 
  RowBox[{
   RowBox[{"MapThread", "[", 
    RowBox[{
     RowBox[{
      RowBox[{"{", 
       RowBox[{
        RowBox[{"GrayLevel", "[", 
         RowBox[{"1", "-", "#2"}], "]"}], ",", 
        RowBox[{"PixelGraphics", "[", "#1", "]"}]}], "}"}], "&"}], ",", 
     RowBox[{"{", 
      RowBox[{"px", ",", 
       RowBox[{"opt", "[", 
        RowBox[{"[", "1", "]"}], "]"}]}], "}"}]}], "]"}], ",", 
   RowBox[{"Frame", "\[Rule]", "True"}]}], "]"}]], "Input",
 CellChangeTimes->{{3.6675693800562067`*^9, 3.667569483075202*^9}}],

Cell[BoxData[{
 RowBox[{
  RowBox[{
   RowBox[{"V", "[", 
    RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], "=", 
   RowBox[{
    RowBox[{"opt", "[", 
     RowBox[{"[", "1", "]"}], "]"}], ".", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       RowBox[{"ComputeFinitePotential", "[", 
        RowBox[{"0", ",", "#", ",", 
         RowBox[{"{", 
          RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "&"}], "/@", 
      "px"}], ")"}]}]}], ";"}], "\n", 
 RowBox[{
  RowBox[{
   RowBox[{"dV", "[", 
    RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], "=", 
   RowBox[{
    RowBox[{"opt", "[", 
     RowBox[{"[", "1", "]"}], "]"}], ".", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       RowBox[{"ComputeFinitePotential", "[", 
        RowBox[{"1", ",", "#", ",", 
         RowBox[{"{", 
          RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "&"}], "/@", 
      "px"}], ")"}]}]}], ";"}], "\n", 
 RowBox[{
  RowBox[{
   RowBox[{"ddV", "[", 
    RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], "=", 
   RowBox[{
    RowBox[{"opt", "[", 
     RowBox[{"[", "1", "]"}], "]"}], ".", 
    RowBox[{"(", 
     RowBox[{
      RowBox[{
       RowBox[{"ComputeFinitePotential", "[", 
        RowBox[{"2", ",", "#", ",", 
         RowBox[{"{", 
          RowBox[{"x", ",", "y", ",", "z"}], "}"}]}], "]"}], "&"}], "/@", 
      "px"}], ")"}]}]}], ";"}]}], "Input",
 CellChangeTimes->{{3.6675693800562067`*^9, 3.667569504134728*^9}, 
   3.667570109041788*^9}],

Cell[BoxData[
 RowBox[{
  RowBox[{"dV", "[", 
   RowBox[{"0", ",", "0", ",", "0.25"}], "]"}], "//", "Chop"}]], "Input",
 CellChangeTimes->{{3.667641566575288*^9, 3.6676415697381973`*^9}, {
  3.667641611287519*^9, 3.6676416116114397`*^9}}],

Cell[BoxData[
 RowBox[{
  RowBox[{
   FractionBox[
    RowBox[{"ddV", "[", 
     RowBox[{"0", ",", "0", ",", "0.25"}], "]"}], 
    RowBox[{"opt", "\[LeftDoubleBracket]", "2", "\[RightDoubleBracket]"}]], "//",
    "Chop"}], "//", "MatrixForm"}]], "Input",
 CellChangeTimes->{{3.667641573796337*^9, 3.667641587186983*^9}}]
},
WindowSize->{808, 911},
WindowMargins->{{Automatic, 182}, {16, Automatic}},
FrontEndVersion->"10.4 for Mac OS X x86 (32-bit, 64-bit Kernel) (February 25, \
2016)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)

(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[558, 20, 1273, 37, 80, "Input"],
Cell[1834, 59, 374, 11, 28, "Input"],
Cell[2211, 72, 780, 22, 46, "Input"],
Cell[2994, 96, 565, 16, 46, "Input"],
Cell[3562, 114, 1453, 47, 63, "Input"],
Cell[5018, 163, 238, 5, 28, "Input"],
Cell[5259, 170, 320, 8, 51, "Input"]
}
]
*)



The Mathematica code for this example is embedded in this PDF document. If you double-click the link, the code will be opened in Mathematica.



2.2. SURFACEPATTERN SOFTWARE 37

In[3]:= Graphics[{RandomColor[], PixelGraphics[#]} & /@ px, Frame -> True]

The optimal configuration is calculated with

In[4]:= opt = OptimalFinitePattern[px,
{{{0, 0, 0.25},
Automatic,
{0, 0, 0},
{{1,0,0},{0,1,0},{0,0,-2}}}}];

which specifies the constraints on the three-dimensional potential at the point
q. The output variable opt[[1]] now holds a list of potentials to be applied
to the 2601 pixels, which we show in Figure 2.3 with

In[5]:= Graphics[MapThread[{GrayLevel[1-#2],PixelGraphics[#1]}&,
{px, opt[[1]]}], Frame -> True]

The resulting three-dimensional potential and its spatial derivatives are com-
puted with

In[6]:= V[x_, y_, z_] = opt[[1]].
(ComputeFinitePotential[0, #, {x, y, z}]& /@ px);

In[7]:= dV[x_, y_, z_] = opt[[1]].
(ComputeFinitePotential[1, #, {x, y, z}]& /@ px);

In[8]:= ddV[x_, y_, z_] = opt[[1]].
(ComputeFinitePotential[2, #, {x, y, z}]& /@ px);

We find, as desired, that dV[0,0,0.25]={0,0,0}. Further, we find that the
curvature tensor at the point q, calculated with ddV[0,0,0.25], is 3.76291
times the desired curvature tensor. This maximized prefactor, given in opt[[2]],
is only 0.5% below the analytic value for a fully optimized ring trap [68] (red
circles in Figure 2.3).

Aside from finite pattern calculations and optimizations, the SurfacePat-
tern package can also deal with infinite two-dimensional patterns. In gen-
eral, these patterns are set up in the p1 wallpaper group by subdividing a
parallelogram-shaped unit cell, defined by two lattice vectors, into n × n

parallelogram-shaped “pixels”. Examples of such calculations are given below
in subsection 2.2.1 and subsection 2.2.4.

With calculations of this kind, and the examples on the website of Ref. [10],
many design problems of practical relevance can be tackled, especially in situa-
tions where we have no intuitive way of determining the shape of an electrode
for given design constraints. In what follows I briefly present several such
results.
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2.2.1 infinite pattern: the Kitaev honeycomb model [8]

In 2006 Alexei Kitaev presented the first exactly solvable model of a two-
dimensional spin-1/2 lattice system with a topologically non-trivial ground
state (a “toric code”) [69]. Very briefly, what this means is that the excita-
tions of this system are Abelian or non-Abelian anyons, depending on coupling
strengths. These excitations lie at the center of topological quantum comput-
ing, where entangling operations consist of spatially moving (“braiding”) such
anyons around each other.

The top panel of Figure 2.4 shows the Hamiltonian of the Kitaev honey-
comb model graphically. In Ref. [8] we have proposed a concrete implemen-
tation of this Hamiltonian, based on a carefully crafted two-dimensional array
of trapped ions, shown in the bottom panels of Figure 2.4. The core of this
implementation is the realization that the effective couplings between the in-
ternal states of the ions can be approximately proportional to the dipole–dipole
vibrational couplings between the ions’ spatial motions. If the principal axes
of vibrations of ions in a honeycomb lattice are chosen correctly, then these
dipole–dipole couplings can represent approximately the desired link-specific
couplings of the Kitaev model. These principal axes of vibration, and their as-
sociated pseudo-potential curvatures, serve as inputs into a surface-electrode
optimization carried out with SurfacePattern. We find a structure that satisfies
all of these constraints, shown in Figure 2.4 (bottom right panel). Connect-
ing this blue electrode to a radio-frequency source would generate the desired
three-dimensional trap structure, which, when populated with a single ion per
trap and driven magnetically, would approximate the physics of the Kitaev
model.

To date, this proposal has not been implemented. However, the work of
the following subsection 2.2.2 represents a first step in exactly this direction.

Mathematica code

Here we calculate the surface electrode pattern of Figure 2.4 (bottom-right
panel). First, we load the SurfacePattern package:

In[1]:= Needs["SurfacePattern‘"]

The calculation is done on an infinite hexagonal lattice whose basis vectors
are, in units of the inter-ion spacing,

In[2]:= lattice = {{Sqrt[3], 0}, {Sqrt[3]/2, 3/2}};

Within each unit cell of this lattice there are two ion traps located at height h
above the chip, and with Cartesian coordinates given by P1 and P2:
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Figure 2.4: Top panel: Graphical representation of the Kitaev hon-
eycomb model, taken from Ref. [69]. The Hamiltonian is Ĥ =

−Jx
∑
x-links σ̂

(j)
x σ̂

(k)
x − Jy

∑
y -links σ̂

(j)
y σ̂

(k)
y − Jz

∑
z-links σ̂

(j)
z σ̂

(k)
z , con-

structed from three different link types and two different site types. Bot-
tom left panel: Our proposed implementation of this Hamiltonian with a
two-dimensional lattice of trapped ions. The interaction of the vibrational
motion of the green ion with its neighbors, mediated by the Coulomb inter-
action, is shown exemplarily for the X-link component, which is strongest
(100%) along the X-direction, vanishes along the Y - and Z-directions,
and remains at 6% or lower for all other directions. Red and blue lines
represent wires carrying radio-frequency currents for driving these cou-
plings magnetically. Couplings along the Y - and Z-links are established by
rotating this pattern by ±120◦ and shifting the magnetic drive frequency.
Bottom right panel: Surface radio-frequency electrode (blue) and dc elec-
trodes (white) that generate a honeycomb lattice of ion traps with the
desired principal directions of vibration that lead to the couplings of the
bottom left panel. The trapping height is half the inter-ion spacing.

In[3]:= h = 1/2;
In[4]:= P1 = {0, 0, h};
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In[5]:= P2 = {Sqrt[3], 1, h};

The principal axes of vibration (curvature) at the microtrap sites, in Cartesian
coordinates, corresponding to the three types of couplings:

In[6]:= m1X = {1/Sqrt[2], 1/Sqrt[6], -1/Sqrt[3]};
In[7]:= m1Y = {1/Sqrt[2], -1/Sqrt[6], 1/Sqrt[3]};
In[8]:= m1Z = {0, -Sqrt[2/3], -1/Sqrt[3]};
In[9]:= m2X = {-1/Sqrt[2], -1/Sqrt[6], -1/Sqrt[3]};
In[10]:=m2Y = {-1/Sqrt[2], 1/Sqrt[6], 1/Sqrt[3]};
In[11]:=m2Z = {0, Sqrt[2/3], -1/Sqrt[3]};

These directions have been chosen such that the resulting dipole–dipole cou-
plings, shown in Figure 2.4 (bottom-left panel), approximate the Kitaev Hamil-
tonian. For each microtrap, in the local coordinate system spanned by these
three principal axes of vibration, the curvature tensor of the rf electric field is
such that the three vibrational eigen-frequencies of the trapped ion’s motion
are as far from each other as possible, while fulfilling the sum rule of a traceless
curvature tensor:

In[12]:=curvature = {{1/GoldenRatio, 0, 0},
{0, 1, 0},
{0, 0, -GoldenRatio}};

Find the optimal periodic pattern that satisfies the above constraints, subdi-
viding the unit cell of the lattice into n× n pixels:

In[13]:=n = 50;
In[14]:=opt = OptimalPeriodicPattern[lattice, n,

{{{P1, Transpose[{m1X, m1Y, m1Z}]},
Automatic, {0, 0, 0}, curvature},

{{P2, Transpose[{m2X, m2Y, m2Z}]},
Automatic, {0, 0, 0}, curvature}}, {}];

Make a plot of the optimal pattern in a finite region (bottom-right panel of
Figure 2.4):

In[15]:=s = 2;
In[16]:=PlotPeriodicPattern[opt, {{-s, s, Sqrt[3]/n}, {-s, s, Sqrt[3]/n}}]

We compute the dth spatial derivative tensor of the three-dimensional potential
generated at r = {x, y, z} by this optimized electrode pattern (d ∈ {0, 1, 2, 3})
with

In[17]:=V[d_, {x_, y_, z_}] :=
ComputePeriodicPotential[d, lattice, {x, y, z}, opt[[1]]]

From this, the ponderomotive pseudo-potential can be calculated with

In[18]:=W[x_, y_, z_] := #.#& @ V[1, {x, y, z}]
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2.2.2 finite pattern: the cloverleaf traps [2]
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Figure 2.5: Surface-electrode ion trap featuring three individual traps,
from Ref. [2]. Left panel: Scanning electron microscope (SEM) image
of a cleaved copy of the chip. It provides a cross-sectional view verti-
cally through the trap chip (bottom half of image) and a top view of
the horizontal, planar trap electrode surface (top half of image) of the
40 µm array. Buried electrode interconnects as well as the overhangs of
electrodes that shield trapped ions from insulating surfaces are exposed
in this view. A loading channel, vertically traversing the chip, collimates
a neutral atom beam from an oven on the backside of the chip. Right
panel: SEM top-view of the 80 µm array, dark lines indicate gaps between
individual electrodes and dashed circles highlight the three trap sites at
T0, T1, and T2 that lie 40 µm above the electrode plane; corresponding
loading holes appear as dark spots. A vertical plane connecting T0 and
T2 is shown as a dotted line and labelled with δ0. The single RF electrode
extends beyond the image area and encloses 30 control electrodes grouped
into four islands depicted in the central part of the image, enabling the
control of individual trap sites (see Figure 2.6). Laser beams (coloured
arrows) are parallel to the chip surface and wave vectors kP/D of prepa-
ration and detection beams are parallel to the magnetic quantisation field
B0 (white arrow).

The first experimental step towards two-dimensional lattice models like the
Kitaev honeycomb model (subsection 2.2.1) has been taken recently in Tobias
Schätz’s group [2]. In this work, two radio-frequency surface electrodes were
designed to generate three equidistant ion traps each, spaced by either 40 µm
or 80 µm, localized 40 µm above the electrode plane. These surface electrodes
have been fabricated with the utmost precision at Sandia National Laboratories
as multi-layer under-etched sandwich structures, including localized holes for
back-side loading, as shown in Figure 2.5.
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Figure 2.6: Individual control of mode orientations in the 80 µm chip (right
panel of Figure 2.5). EMCCD images of pairs of ions near T0 and T1,
and a single ion near T2 (insets are magnified four-fold). The dc control
electrodes are colored in the right image according to their bias voltage vj
(see text). Ion pairs align along u2, the lowest-frequency vibrational mode
in the local trap. The left image captures ion positions for Urot = 0V, and
ω2 = 2π × 1.9(2)MHz near T0. The right image illustrates the rotation
effect for Urot = 2.45V: mode u2 near T0 with ω2 = 2π× 1.8(2)MHz is
rotated by ϕ2,y = 31(5)◦, whereas ion positions near T1 and T2 remain
unchanged; white circles indicate initial ion positions (for Urot = 0V).

Ions were successfully trapped in all rf microtraps, as shown in Figure 2.6
for the 80 µm chip. As in every ion-trap experiment, it is crucial to be able
to control the position and principal axes of vibrational motion of every ion
trap separately, in order to (i) compensate for fabrication inaccuracies and
stray electric fields and (ii) tune the traps into particular resonances with each
other, to generate the desired dipolar (vibrational) couplings [8]. Each ion
trap has eight degrees of freedom that can be tuned independently: the three
spatial coordinates of its minimum location and the five degrees of freedom
of the curvature tensor of the radio-frequency electric field at the minimum.1

For an array of three ion traps, 24 degrees of freedom need to be controlled
with at least 24 dc electrodes whose potentials can be set independently. The

1The curvature tensor of the electric field is a symmetric 3× 3 matrix with zero trace.
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designs of Ref. [2] include 30 such control electrodes for additional flexibility.
In the right panel of Figure 2.6 an example of the use of these control

electrodes is shown. We design a voltage pattern v such that the jth control
electrode is set to Uj = Urot×vj , where Urot is an overall voltage prefactor and
vj are numerical coefficients with ‖v‖ = 1. This voltage pattern v is calculated
such that the ion positions of all three traps and the ion trap curvatures of
traps T1 and T2 do not change with Urot, and such that the curvature tensor
of trap T0 is rotated in the xy -plane as sensitively as possible with Urot. The
figure shows the control electrodes colored according to their coefficients vj .
The experimental work of Figure 2.6 demonstrates that the construction and
individual control of our designed ion microtraps is possible. In the future,
larger arrays in the spirit of subsection 2.2.1 will be attempted.

Mathematica code

The Mathematica code to calculate the 80µm cloverleaf electrode shape (Fig-
ure 2.6 and right panel of Figure 2.5) is given as an example on the web site
of Ref. [10]. Here I give a minimal version of this code.

First, we load the SurfacePattern package:

In[1]:= Needs["SurfacePattern‘"]

We will do the pattern optimization over a finite hexagonal region of unit
size around the origin, to respect the symmetry of the setup. This region is
subdivided into 3n2 + 3n + 1 hexagonal pixels:

In[2]:= n = 50;
In[3]:= px = Flatten[Table[PolygonPixel[

Table[({i+j/2, j*Sqrt[3]/2} + {Cos[p], Sin[p]}/Sqrt[3])/(n+1/2),
{p, Pi/6, 2Pi, Pi/3}]],

{i, -n, n}, {j, -n-Min[0,i], n-Max[0,i]}]];

For debugging, this set of pixels can be displayed with random coloring:

In[4]:= Graphics[{RandomColor[], PixelGraphics[#]} & /@ px, Frame -> True]

There will be three traps arranged in an equilateral triangle, parametrized by the
angle p ∈ {0, 2π/3, 4π/3}. For the trap at angle p, the trapping conditions are
given by P[p], containing the Cartesian coordinates of the trap position, the
three principal axes of curvature of the trap, and the conditions on the electric
field at the trap location (zero of the gradient; quadrupolar confinement in the
frame of the principal axes):

In[5]:= h = 1/8; (* trapping height *)
In[6]:= f = 2*h; (* inter-trap distance *)
In[7]:= P[p_] = {{{f*Cos[p]/Sqrt[3], f*Sin[p]/Sqrt[3], h},
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The Mathematica code for this example is embedded in this PDF document. If you double-click the link, the code will be opened in Mathematica.
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Transpose[{{-Sin[p]/Sqrt[2], Cos[p]/Sqrt[2], -1/Sqrt[2]},
{-Sin[p]/Sqrt[2], Cos[p]/Sqrt[2], 1/Sqrt[2]},
{Cos[p], Sin[p], 0}}]},

Automatic, {0, 0, 0}, {{1, 0, 0}, {0, 1, 0}, {0, 0, -2}}};

The curvature tensor is thus a symmetric quadrupole with the stiff axis being
the radial direction (outward from the array’s center of symmetry), whereas
the two perpendicular directions are the soft axes.

The optimal pattern of connections to the rf source is found with

In[8]:= opt = OptimalFinitePattern[px, Table[P[p], {p, 0, 4Pi/3, 2Pi/3}]];

We show this optimal pattern such that the rf electrode appears in black:

In[9]:= Graphics[Transpose[{GrayLevel[1-#]&/@opt[[1]], PixelGraphics[px]}],
Frame -> True]

We compute the dth spatial derivative tensor of the three-dimensional po-
tential generated at r = {x, y, z} by this optimized electrode pattern (d ∈
{0, 1, 2, 3, 4, 5}) with

In[10]:=V[d_, {x_, y_, z_}] :=
opt[[1]].(ComputeFinitePotential[d, #, {x, y, z}] & /@ px)

From this, the ponderomotive pseudo-potential can be calculated with

In[11]:=W[x_, y_, z_] := #.#& @ V[1, {x, y, z}]

2.2.3 switchable Y-junction for ion shuttling

The long-term goal of research into quantum information processing (QIP)
is the construction of a quantum computer [70]. At the present time, there
are several promising architectures for constructing such a device, where long
coherence times are matched by fast and reliable one- and two-qubit gates.
Nonetheless, to date no QIP device can be scaled to a size where it can start
answering open questions about complex systems.

One of the systems where high-fidelity two-qubit quantum gates have been
demonstrated is trapped ions [71,72]. It has been suggested that these gates
could be assembled into a fault-tolerant quantum computer if the ions could be
shuttled through space without losing their coherence [73], essentially trans-
porting quantum information between different interaction regions. Ion shut-
tling along channels and through X-intersections has already been demon-
strated with high fidelity [74].

We have designed a switchable Y-intersection where an ion can be shuttled
from one channel to any of two others (Figure 2.7). The idea was to have
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Figure 2.7: Switchable Y-junction between three ion channels. Top left:
SurfacePattern simulation involving always-on rf electrodes (brown) and
switchable rf electrodes that are currently on (orange) or grounded (yel-
low). In this configuration, an ion guiding channel is generated that con-
nects the upper-left to the upper-right corner through a 60◦ turn (blue
line, at unit height above the chip surface). Top right: SEM image of
this pattern fabricated by Sandia National Labs, including dc control elec-
trodes. Bottom: SEM closeup of a section of a failed chip, showing the
under-etched electrodes and the vertical interconnects in the multi-layer
structure, similar to the left panel of Figure 2.5. In this elegant chip,
the trapped ions never “see” the dielectric insulator pillars below the elec-
trodes, and the bottom of the gaps between the electrodes is a grounded
plane.

nine switchable electrodes that could be either connected to the same radio-
frequency voltage source as the straight electrodes forming the ion channels,
or connected to ground (or any dc voltage for additional control). For a fixed
setting of the switches, the electrodes would generate a smooth ion guiding
channel from one arm of the chip to another arm, without encountering any
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pseudopotential bumps. The ion would be confined at all times while passing
the intersection, instead of going ballistically through an unconfined region as
in static X- or Y-intersections [75]. The Mathematica code for calculating
the rf electric field of this electrode is given as an example on the web site of
Ref. [10].

This design was fabricated with extreme care at Sandia National Labs as a
multi-layer chip with several conducting planes and vertical interconnects (see
Figure 2.7).

2.2.4 periodic Ioffe–Pritchard atom trap arrays

According to Maxwell’s equations, both the electric field E and the magnetic
field B are divergence-free in free space (in the absence of charges and cur-
rents, respectively), and can therefore be written as the gradients of scalar
fields. For the electric field, we write E = −∇Φ in terms of the electric po-
tential Φ; by analogy, the magnetic field can be written as B = −∇Ψ in terms
of the scalar magnetic potential Ψ (to be distinguished from the vector po-
tential A for which B = ∇×A). These potentials thus both satisfy Laplace’s
equation in free space: ∇2Φ = ∇2Ψ = 0. The boundary condition of the elec-
tric potential is determined by the electric potentials of the surface electrodes
(see section 2.2); similarly, the boundary condition of the scalar magnetic po-
tential is set by the out-of-plane surface magnetization [12]. Since this surface
magnetization can be set by depositing and patterning a ferromagnetic thin
film on a non-magnetic substrate, the optimized surface patterns of section 2.2
can be used to design and generate almost arbitrary magnetic fields in three-
dimensional space. Alternatively, a current-carrying wire tracing the outlines
of these magnetized regions counter-clockwise generates the same magnetic
field (via the Stokes theorem).

In Ref. [12] we have used this method to calculate the optimal binary two-
dimensional pattern of surface magnetization that would generate a square
lattice of Ioffe–Pritchard atom traps. This pattern, shown in the top left panel
of Figure 2.8, was fabricated at several length scales at the universities of Am-
sterdam and the Negev, for trap separations from 100 nm to 10µm [51, 76].
In all samples, thin iron-platinum (FePt) films were patterned to the desired
shape using lithographic techniques, then magnetized permanently in a strong
field perpendicular to the surface. Then, by applying a much weaker homo-
geneous bias field (the Ioffe field), these magnetic surface patterns generate
two-dimensional arrays of identical Ioffe–Pritchard atom traps. The bottom
panel of Figure 2.8 shows an absorption image of 87Rb atoms loaded into
these traps. The goal of these experiments is to build two-dimensional atom
trap lattices as a platform for two-dimensional lattices of quantum information
carriers.
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Figure 2.8: Square lattice of Ioffe–Pritchard traps. Top panels: Opti-
mized magnetization pattern and Ioffe axis (left) and SEM image of the
micro-fabricated FePt surface structure fabricated at 1µm trap separa-
tion (right). Bottom panel: Absorption image showing rubidium atoms
loaded simultaneously into hexagonal (left side) and square (right side)
lattices with a 10µm trap separation. The dotted line denotes the in-
terface, where there is a crossover between the two geometries. From
Refs. [51,76].
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Chapter 3

Teaching practical quantum
mechanics on a computer

When I first learned quantum mechanics at several universities, we were taught
the basic notations and core principles, and proceeded to solve every analyt-
ically solvable model over and over again (square well, harmonic oscillator,
gravity well, hydrogen atom). These models are so specialized and have so
little to do with what I knew about the mechanics of the human world, that
it took me a very long time after my diploma degree to develop an intuitive
understanding of quantum mechanics and to begin to see how to apply it to
problems I knew well from classical mechanics. My graduate studies in Physi-
cal Chemistry at Princeton University helped greatly in this development, since
the quantum-mechanical description of molecular structures and dynamics is
within reach of the intuition of a graduate student. My post-doctoral stay in
Ignacio Cirac’s theory group at the Max Planck Institute of Quantum Optics
allowed me to diversify and solidify this knowledge. In this way, over the years,
I was able to integrate quantum mechanics into my view of how the world can
be described at a practical level.

Remembering the difficulties I encountered and the frustrating opaqueness
of the path between quantum-mechanics courses, on the one hand, and full-
fledged descriptions of real-world systems, on the other, I decided in 2012 to
offer a weekly lecture at the University of Basel that would plow this path for
advanced physics students. My vision was to enable them to take what they
have learned in previous lectures and start applying their tools to more complex
and more interesting systems. Naturally, none of these more complex systems
can be described in the paper-and-pencil analytical ways that homework prob-
lems of undergraduate quantum-mechanics lectures can; and so I decided to
offer an Introduction to Computational Quantum Mechanics. Although the
course is taught in the Mathematica programming system, its concepts and
tools can be transferred to any programming language. I have offered this
lecture in the Fall of 2012 and 2013, as well as in the Spring of 2015 and
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2016.
The goal of this lecture is to take the students after several undergraduate

lectures on quantum mechanics and show them some of the possibilities of the
quantum-mechanical description of our world. Although the lecture presents
many tools and insights, the students are expected to propose and complete
an individual project where they apply these tools to a problem of their choice.
My hope is to encourage the students to find their own questions and to delve
deeply into a particular problem, which will change their view of quantum
mechanics and allow them to build confidence for using their skill and intuition
in their future research.

The lecture script is published on the arXiv [6] with the goal of reaching
a larger audience throughout the world, particularly in places where advanced
quantum-mechanics lectures cannot be found. Because of its length, only its
introduction is included in this document.
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My publications since 2010

During my stay at the Department of Physics of the University of Basel, I have
contributed to the publication of the following works. All of these, with the
exception of Refs. [6, 10], are published in reputable peer-reviewed scientific
journals.

[1] Bell Correlations in a Bose-Einstein Condensate
Science 352(6284):441-444 (April 2016)
(see section 1.6 and page 67)
Characterizing many-body systems through the quantum correlations be-
tween their constituent particles is a major goal of quantum physics. Al-
though entanglement is routinely observed in many systems, we report
here the detection of stronger correlations – Bell correlations – between
the spins of about 480 atoms in a Bose-Einstein condensate. We derive
a Bell correlation witness from a many-particle Bell inequality involving
only one- and two-body correlation functions. Our measurement on a
spin-squeezed state exceeds the threshold for Bell correlations by 3.8
standard deviations. Our work shows that the strongest possible non-
classical correlations are experimentally accessible in many-body systems,
and that they can be revealed by collective measurements.

[2] Arrays of individually controlled ions suitable for two-dimensional
quantum simulations
Nature Communications 7:11839 (June 2016)
(see subsection 2.2.2 and page 89)
A precisely controlled quantum system may reveal a fundamental un-
derstanding of another, less accessible system of interest. A universal
quantum computer is currently out of reach, but an analogue quantum
simulator that makes relevant observables, interactions and states of
a quantum model accessible could permit insight into complex dynam-
ics. Several platforms have been suggested and proof-of-principle exper-
iments have been conducted. Here, we operate two-dimensional arrays
of three trapped ions in individually controlled harmonic wells forming
equilateral triangles with side lengths 40 and 80 µm. In our approach,
which is scalable to arbitrary two-dimensional lattices, we demonstrate
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individual control of the electronic and motional degrees of freedom,
preparation of a fiducial initial state with ion motion close to the ground
state, as well as a tuning of couplings between ions within experimental
sequences. Our work paves the way towards a quantum simulator of
two-dimensional systems designed at will.

[3] Sideband Rabi spectroscopy of finite-temperature trapped Bose gases
Physical Review A 93:043624 (April 2016)
(see section 1.1 and page 99)
We use Rabi spectroscopy to explore the low-energy excitation spec-
trum of a finite-temperature Bose gas of Rubidium atoms across the
phase transition to a Bose-Einstein condensate (BEC). To record this
spectrum, we coherently drive the atomic population between two spin
states. A small relative displacement of the spin-specific trapping po-
tentials enables sideband transitions between different motional states.
The intrinsic non-linearity of the motional spectrum, mainly originating
from two-body interactions, makes it possible to resolve and address
individual excitation lines. Together with sensitive atom-counting, this
constitutes a feasible technique to count single excited atoms of a BEC
and to determine the temperature of nearly pure condensates. As an
example, we show that for a nearly pure BEC of N = 800 atoms the
first excited state has a population of less than 5 atoms, corresponding
to an upper bound on the temperature of 30 nK.

[4] Quantum State Tomography of a Single Qubit: Comparison of Meth-
ods
Journal of Modern Optics 63(18):1744 (January 2016)
(see section 1.7 and page 105)
The tomographic reconstruction of the state of a quantum-mechanical
system is an essential component in the development of quantum tech-
nologies. We present an overview of different tomographic methods for
determining the quantum-mechanical density matrix of a single qubit:
(scaled) direct inversion, maximum likelihood estimation (MLE), mini-
mum Fisher information distance, and Bayesian mean estimation (BME).
We discuss the different prior densities in the space of density matrices,
on which both MLE and BME depend, as well as ways of including ex-
perimental errors and of estimating tomography errors. As a measure of
the accuracy of these methods we average the trace distance between
a given density matrix and the tomographic density matrices it can give
rise to through experimental measurements. We find that the BME
provides the most accurate estimate of the density matrix, and suggest
using either the pure-state prior, if the system is known to be in a rather
pure state, or the Bures prior if any state is possible. The MLE is found
to be slightly less accurate. We comment on the extrapolation of these
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results to larger systems.

[5] Tighter quantum uncertainty relations following from a general prob-
abilistic bound
Physical Review A 92:012102 (July 2015)
(see section 1.2 and page 121)
Uncertainty relations (URs) such as the Heisenberg-Robertson or the
time-energy UR are often considered to be hallmarks of quantum theory.
Here, a simple derivation of these URs is presented based on a single clas-
sical inequality from estimation theory, a Cramér-Rao-like bound. The
Heisenberg-Robertson UR is then obtained by using the Born rule and
the Schrödinger equation. This allows a clear separation of the proba-
bilistic nature of quantum mechanics from the Hilbert space structure
and the dynamical law. It also simplifies the interpretation of the bound.
In addition, the Heisenberg-Robertson UR is tightened for mixed states
by replacing one variance by the quantum Fisher information. Thermal
states of Hamiltonians with evenly gapped energy levels are shown to
saturate the tighter bound for natural choices of the operators. This
example is further extended to Gaussian states of a harmonic oscilla-
tor. For many-qubit systems, we illustrate the interplay between entan-
glement and the structure of the operators that saturate the UR with
spin-squeezed states and Dicke states.

[6] Lecture script: Introduction to Computational Quantum Mechanics
arXiv:1403.7050 [quant-ph] (since 2014)
(see chapter 3 and page 127)
This document is the lecture script of a one-semester course taught
at the University of Basel in the Fall semesters of 2012 and 2013 and
in the Spring semester of 2015. It is aimed at advanced students of
physics who are familiar with the concepts and notations of quantum
mechanics. Quantum mechanics lectures can often be separated into
two classes. In the first class you get to know Schrödinger’s equation
and find the form and dynamics of simple physical systems (square well,
harmonic oscillator, hydrogen atom); most calculations are analytic and
inspired by calculations originally done in the 1920s and 1930s. In the
second class you learn about large systems such as molecular structures,
crystalline solids, or lattice models; these calculations are usually so com-
plicated that it is difficult for the student to understand them in all detail.
This lecture tries to bridge the gap between simple analytic calculations
and complicated large-scale computations. We will revisit most of the
problems encountered in introductory quantum mechanics, focusing on
computer implementations for finding analytical as well as numerical so-
lutions and their visualization. Most of these calculations are too com-
plicated to be done by hand. Even relatively simple problems, such as
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http://arxiv.org/abs/1403.7050


64 MY PUBLICATIONS SINCE 2010

two interacting particles in a one-dimensional trap, do not have analytic
solutions and require the use of computers for their solution and visu-
alization. More complex problems scale exponentially with the number
of degrees of freedom, and make the use of large computer simulations
unavoidable. The course is taught using the Mathematica programming
language; however, the concepts presented are readily translated to any
other programming language.

[7] Quantum Metrology with a Scanning Probe Atom Interferometer
Physical Review Letters 111:143001 (October 2013)
(see section 1.4 and page 135)
We use a small Bose-Einstein condensate on an atom chip as an inter-
ferometric scanning probe to map out a microwave field near the chip
surface with a few micrometers resolution. With the use of entangle-
ment between the atoms, our interferometer overcomes the standard
quantum limit of interferometry by 4 dB and maintains enhanced per-
formance for interrogation times up to 10 ms. This corresponds to
a microwave magnetic field sensitivity of 77 pT/

√
Hz in a probe vol-

ume of 20 µm3. Quantum metrology with entangled atoms is useful in
measurements with high spatial resolution, since the atom number in the
probe volume is limited by collisional loss. High-resolution measurements
of microwave near fields, as demonstrated here, are important for the
development of integrated microwave circuits for quantum information
processing and applications in communication technology.

[8] Quantum simulation of the hexagonal Kitaev model with trapped
ions
New Journal of Physics 13(11):115001 (November 2011)
(see subsection 2.2.1 and page 141)
We present a detailed study of quantum simulations of coupled spin sys-
tems in surface-electrode (SE) ion-trap arrays, and illustrate our findings
with a proposed implementation of the hexagonal Kitaev model [69]. The
effective (pseudo)spin interactions making up such quantum simulators
are found to be proportional to the dipole–dipole interaction between the
trapped ions, and are mediated by motion that can be driven by state-
dependent forces. The precise forms of the trapping potentials and the
interactions are derived in the presence of an SE and a cover electrode.
These results are the starting point to derive an optimized SE geometry
for trapping ions in the desired honeycomb lattice of KitaevÕs model,
where we design the dipole–dipole interactions in a way that allows for
coupling all three bond types of the model simultaneously, without the
need for time discretization. Finally, we propose a simple wire struc-
ture that can be incorporated into a microfabricated chip to generate
localized state-dependent forces which drive the couplings prescribed by
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this particular model; such a wire structure should be adaptable to many
other situations.

[9] Modified spin-wave theory with ordering vector optimization II: spa-
tially anisotropic triangular lattice and J1J2J3 model with Heisen-
berg interactions
New Journal of Physics 13(7):075017 (July 2011)
(see section 2.1 and page 165)
We study the ground-state phases of the quantum antiferromagnet on
the spatially anisotropic triangular lattice (SATL) and on the square lat-
tice with up to next-next-nearest-neighbor coupling (the J1J2J3 model),
making use of Takahashi’s modified spin-wave (MSW) theory supple-
mented by ordering vector optimization. We compare the MSW results
with exact diagonalization and projected-entangled-pair-states calcula-
tions, demonstrating their qualitative and quantitative reliability. We
find that the MSW theory correctly accounts for strong quantum ef-
fects on the ordering vector of the magnetic phases of the models under
investigation: in particular, collinear magnetic order is promoted at the
expense of non-collinear (spiral) order, and several spiral states that are
stable at the classical level disappear from the quantum phase diagram.
Moreover, collinear states and non-collinear ones are never connected
continuously, but they are separated by parameter regions in which the
MSW theory breaks down, signaling the possible appearance of a non-
magnetic ground state. In the case of the SATL, a large breakdown
region appears also for weak couplings between the chains composing
the lattice, suggesting the possible occurrence of a large non-magnetic
region continuously connected with the spin-liquid state of the uncou-
pled chains. This shows that the MSW theory is—despite its apparent
simplicity—a versatile tool for finding candidate regions in the case of
spin-liquid phases, which are among prime targets for relevant quantum
simulations.

[10] SurfacePattern: a Mathematica package for surface atom and ion
traps
https://atom.physik.unibas.ch/people/romanschmied/code/SurfacePattern.php
(since July 2011)
(see section 2.2 and page 195)
The Mathematica package SurfacePattern is a collection of algorithms
for calculating electric and magnetic fields above planar structures, both
finite and periodic-infinite. It contains functions to create patterns in
2D from polygons and disks representing electrodes, permanently mag-
netized regions, or regions delimited by edge wires. From these, the
potentials throughout space and their spatial derivatives are calculated.
SurfacePattern also contains fast algorithms to calculate optimal 2D
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patterns that generate desired fields specified by spatially localized con-
straints, e.g. specific spatial arrangements of ion traps or Ioffe–Pritchard
atom traps. This package is freely available through the terms of the
GNU Public License (Version 3).

[11] Tomographic reconstruction of the Wigner function on the Bloch
sphere
New Journal of Physics 13(6):065019 (June 2011)
(see section 1.7 and page 199)
We present a filtered backprojection algorithm for reconstructing the
Wigner function of a system of large angular momentum j from Stern–
Gerlach-type measurements. Our method is advantageous over the full
determination of the density matrix in that it is insensitive to experimen-
tal fluctuations in j , and allows for a natural elimination of high-frequency
noise in the Wigner function by taking into account the experimental
uncertainties in the determination of j , its projection m and the quan-
tization axis orientation. No data binning and no arbitrary smoothing
parameters are necessary in this reconstruction. Using recently pub-
lished data [23], we reconstruct the Wigner function of a spin-squeezed
state of a Bose–Einstein condensate of about 1250 atoms, demonstrat-
ing that measurements along quantization axes lying in a single plane are
sufficient for performing this tomographic reconstruction. Our method
does not guarantee positivity of the reconstructed density matrix in the
presence of experimental noise, which is a general limitation of backpro-
jection algorithms.

[12] Optimized magnetic lattices for ultracold atomic ensembles
New Journal of Physics 12(10):103029 (October 2010)
(see subsection 2.2.4 and page 217)
We introduce a general method for designing tailored lattices of mag-
netic microtraps for ultracold atoms on the basis of patterned perma-
nently magnetized films. A fast numerical algorithm is used to automat-
ically generate patterns that provide optimal atom confinement while
respecting desired lattice symmetries and trap parameters. The algo-
rithm can produce finite and infinite lattices of any plane symmetry; we
focus specifically on square and triangular lattices, which are of interest
for future experiments. Typical trap parameters, as well as the impact of
realistic imperfections such as finite lithographic resolution and magnetic
inhomogeneity, are discussed. The designer lattices presented open new
avenues for quantum simulation and quantum information processing
with ultracold atoms on atom chips.
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