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Whatever you say it is, it isn’t.
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Outline

From 2010 to 2016 I have worked in the quantum atom optics lab, led by
Prof. Philipp Treutlein, in the department of Physics at the University of Basel.
During this time, my research has focused on the generation, detection, and
use of entangled states of trapped atoms and ions. The present document
gives an overview of this work, published in Refs. [1–12], which are attached
at the end (starting on page 61).

In chapter 1 I discuss the topic of spin squeezing, both generally and specifi-
cally for Bose–Einstein condensates of rubidium-87 as observed in our lab. De-
tails about the tomographic reconstruction of the generated quantum states
are given, as well as a discussion of their use in metrology and their interest in
fundamental quantum physics. This chapter represents the bulk of my work in
Basel, and entitles this document. The quote given on the title page refers to
this chapter: “Say whatever you choose about the object, and whatever you
might say is not it.” [13] I like to keep this advice in mind when thinking about
our insights, to avoid confusing our empirical descriptions of measurements
with the ontic, which remains as mysterious as ever.

Chapter 2 discusses lattice-based quantum simulators. It focuses on two
topics: the design of optimized chip structures for generating two-dimensional
arrays of microtraps to implement such quantum simulators, and a modified
spin-wave theory that allows us to determine the approximate phase diagrams
of such lattice models in order to focus our experimental efforts on the most
interesting models and parameter ranges.

In chapter 3 I briefly present a one-semester course on Computational
Quantum Mechanics that I have developed and taught repeatedly in Basel.
This course is a pedagogic distillation of many practical skills and tools I have
acquired during these years of scientific research.
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Chapter 1

Spin squeezing in
Bose–Einstein condensates

uncorrelated

classically correlated

quantum coherent

quantum discordant

entangled

EPR-steerable

Bell-correlated
(nonlocal)

Figure 1.1: Schematic diagram of the Hilbert space of a set of quantum-
mechanical particles. Correlations increase in strength from the outermost
to the innermost circle. Entanglement, for example, is necessary but in-
sufficient for Bell correlations. The various correlation strengths are close
to each other at the bottom point, in the sense explained in section 1.6.

Hilbert space is vast. An ensemble of N qubits, with two internal states
each, has a Hilbert space dimension of 2N . There is no experiment that can
ever hope to explore this space entirely, even for relatively small systems. The
question of drawing a map of this enormous space thus appears naturally:
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8 CHAPTER 1. SPIN SQUEEZING IN A BEC

which states are at the same time interesting and feasible? By interesting I
mean that the state either has a use in quantum metrology, quantum comput-
ing, quantum cryptography or a similar essentially-quantum field, or that it is of
fundamental interest for discovering the workings of the quantum-mechanical
world. There are many interesting but experimentally infeasible states, such
as “Schrödinger cat” (GHZ) states for large N. On the other hand, there are
many easily feasible but uninteresting states (from the quantum perspective),
such as classical (coherent) states.

Spin-squeezed states are both feasible and interesting. They can be gener-
ated by a continuous transformation from a coherent spin state, for instance
by one-axis or two-axis twisting [14], which makes them very robust, both to
measurement noise and particle loss. Nonetheless, they manifest the strongest
possible quantum-mechanical correlations even for small amounts of squeez-
ing. Ideally, an infinitesimal amount of squeezing is sufficient to entangle
the constituent atoms in a way that is of direct practical use in quantum
metrology [7]. Going further, with a bit more than 3 dB of squeezing the
atoms exhibit Bell correlations, which represent the most profound departure
of quantum from classical physics. Thus it thus turns out that very interesting
quantum-mechanical phenomena can be seen in states that are near classical
states (see section 1.6 for a more quantitative statement). Figure 1.1 shows a
very crude map of Hilbert space using different levels of correlations that can
be detected between particles.

This chapter assembles the different pieces of work that have allowed us
to gain more understanding in mapping the correlations between the particles
of a many-body system.

1.1 Bose–Einstein condensation of rubidium-87

In our lab we experiment with two-component Bose–Einstein condensates
(BECs) of rubidium-87 atoms. These bosonic alkali atoms have the convenient
property that at low temperatures, the s-wave scattering lengths between par-
ticles in the different hyperfine states are all repulsive and of similar magnitude,
which allows us to cool them by evaporation. Further, they can be laser-cooled
at the easily available wavelength of 780 nm. Many properties of these atoms
have been collected in Ref. [15]. Generating such a Bose–Einstein condensate
is by now a well-known and well-described process. Briefly, a cloud of atoms
is first trapped and cooled in a magneto-optical trap (MOT), transferred to
a magnetic Ioffe–Pritchard (IP) trap, and from there into smaller and smaller
IP traps while being cooled by radio-frequency (rf) evaporation. After Bose–
Einstein condensation, an “rf knife” is used to reduce the number of particles
in the BEC to the desired value.

In a BEC of atoms in a harmonic trapping potential, every atom occupies
the same spatial wavefunction. This has two main advantages over using a
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thermal cloud of atoms:

1. There is almost no residual entropy in a BEC. The BEC is surrounded
by a very dilute cloud of thermal atoms, which carry all of the entropy of
the ensemble; but as this thermal cloud is spatially separated from the
much smaller BEC, it does not influence the BEC measurements done
by absorption imaging. This entropy-free experimental starting point
is advantageous for reductionistic studies: the influence of stimuli on
the atomic system can be studied in the absence of noise coming from
the initial state preparation. The BEC transition temperature kBTc =

0:94~�!N1=3 [16] is a factor of N1=3 higher than the temperature needed
for ground-state cooling, which makes reaching such a symmetric low-
entropy state feasible in practice.

2. The collective BEC spatial wavefunction is symmetric under particle ex-
change. Since the total quantum state of an ensemble of bosons must
always be symmetric under particle exchange, we thus conclude a pri-
ori that their internal (pseudo-spin) state must also be symmetric under
particle exchange.1 Although such a symmetric internal state can always
be achieved by optically pumping all of the atoms into the same internal
state (i.e. a symmetric product state), the BEC symmetry guarantees
that thermal excitations do not subsequently reduce this symmetry.2

This point will be important below, and is demonstrated experimentally
in subsection 1.2.1.

Over the years, much work has been dedicated to improving the machine
that generates and measures BECs in our lab. This machine, first built in Mu-
nich and subsequently transported to Basel, has seen impressive improvements
in stability and precision. These improvements are part of the day-to-day work
in a lab, and are not described in scientific publications; yet they are what peri-
odically occupied most of my time. The hardware has been described in detail
in the PhD theses of Philipp Treutlein [18], Pascal Böhi [19], Max Riedel [20],
and Caspar Ockeloen [21]. The successive improvements can be tracked in
our series of publications [1,3,7,22,23]. We are able to create Bose–Einstein
condensates very reliably with anywhere from 50 to 3000 atoms, and study
their thermodynamic properties with exquisite accuracy [3].

1The permutation symmetry of the total wavefunction is the product of the permuta-
tion symmetries of the external (spatial) wavefunction and the internal (spin or pseudo-spin)
wavefunction. If both the total wavefunction and the external wavefunction are trivial repre-
sentations of the symmetric permutation group, then the internal wavefunction must also be
a trivial representation. See https://en.wikipedia.org/wiki/Representation_theory_
of_the_symmetric_group.

2The symmetries of the spin state and the spatial state of the atoms can be lowered
simultaneously by p-wave (and higher-wave) scattering. In 87Rb clouds, these processes are
negligible at temperatures below 100�K [17]. Our BECs are typically at temperatures below
100 nK.

https://en.wikipedia.org/wiki/Representation_theory_of_the_symmetric_group
https://en.wikipedia.org/wiki/Representation_theory_of_the_symmetric_group
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Figure 1.2: Schematic diagram of the hyperfine energy levels of a 87Rb
atom in the ground electronic state 52S1=2 in a weak magnetic field.
Our experiments only populate the levels j1i = jF = 1; mF = �1i and
j2i = jF = 2; mF = 1i. We drive two-photon Rabi transitions between
these two levels with a microwave-radiowave double resonance detuned
by � � 500 kHz from the level jF = 2; mF = 0i.

Since the nuclear spin of 87Rb is I = 3=2 and its electronic spin in the
52S1=2 ground state is J = 1=2, each atom has a total spin of either F = 1

or F = 2; these two sets of states are hyperfine-split by 2Ahfs = 6:835GHz [15]
(see Figure 1.2). We single out the two hyperfine levels j1i � jF = 1; mF = �1i
and j2i � jF = 2; mF = 1i for all experiments performed in our lab so far, be-
cause at the “magic” magnetic field of 3.23G their differential Zeeman shift
vanishes to first order, which makes these two levels particularly well suited
for storing a qubit. Qubit lifetimes of many seconds, even minutes [24], have
been observed in this system, albeit in more dilute clouds. These qubits can
be manipulated simultaneously with resonant two-photon pulses consisting of
a microwave (mw) field at around 6.835GHz and a radio-frequency (rf) field
chosen at around 1.8MHz. By choosing the Rabi frequency of these manip-
ulations (
 � 500Hz) to be much slower than the detuning (� � 500 kHz)
to the intermediate state jF = 2; mF = 0i, we make sure that no hyperfine
states other than j1i and j2i are ever measurably populated.

The internal state of each atom (indexed by k = 1 : : : N) can thus be
described by a pseudo-spin 1/2 (i.e. a qubit) with spin operator ŝ(k) = 1

2 �̂
(k)

in terms of the Pauli vector �̂ = f�̂x ; �̂y ; �̂zg. The total spin vector of the
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entire ensemble,

Ŝ =

NX

k=1

ŝ(k); (1.1)

also called the collective spin, is used to describe the properties of the atoms’
internal states. As we have argued above, the total internal state is symmetric
under particle exchange, which implies that the total spin vector of Equa-
tion (1.1) describes a spin of length S = N=23 (see subsection 1.2.1 for how
to validate this experimentally). This means that we can describe the collective
internal state of our BEC in the (N+1)-dimensional symmetric subspace of
the 2N-dimensional Hilbert space of N qubits. This dramatic simplification lies
at the heart of the tomographic method and state visualization of section 1.7,
but it is not necessary for our more fundamental conclusions of section 1.5
and section 1.6.

1.2 Spin measurements

Once we have created a Bose–Einstein condensate of N atoms in a particu-
lar quantum state of their internal degrees of freedom, we are interested in
measuring various observables. The constraints on the available observables
are:

1. The only measurement we can make is counting atoms in the different
hyperfine states of the electronic ground state of 87Rb. Specifically, for
every produced BEC we destructively image the spatially resolved popu-
lations of the two states j1i and j2i after different times of flight, using
resonant laser absorption. These images give us a moderate-resolution
description of the momentum distribution of the atoms; however, in
practice we do not rely on spatial information and integrate these atom
numbers over the entire images in order to achieve atom counts with
high signal-to-noise ratios. Effectively, our detection is equivalent to an
almost number-resolved Stern–Gerlach experiment [25]. From the atom
counts N1 and N2 in the two absorption images, we calculate the total
atom number N = N1 +N2, the total spin S = N=2 = (N1 +N2)=2, and
the spin projection quantum number M = (N1 � N2)=2.

2. Before determining the quantum state of the atoms, we can apply differ-
ent unitary operations that act identically on each atom. Specifically, we
can rotate the internal (qubit) state of each atom around the same spin
axis by the same angle, by applying a combined mw/rf Rabi pulse. In this
way, we can measure the spin projection quantum number M along any

3States with total spin S = N=2 � 1; N=2 � 2; : : : have lower symmetry and therefore
cannot describe the collective internal state of an ideal BEC.
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axis d and thus measure expectation values of observables depending on
total-spin operators Ŝd = d � Ŝ.

Together, these constraints mean that for every measurement i we set the
measurement axis orientation

di = n(#i ; ’i) = fsin(#i) cos(’i); sin(#i) sin(’i); cos(#i)g; (1.2)

and from the measured atom counts we determine the total spin Si and the
spin projection Mi along this axis. The tuples (#i ; ’i ; Si ;Mi) are then used to
extract various observables and quantifiers.

After much improvement, we are now able to measure atom numbers to
within �4 atoms by absorption imaging [1]. We are also able to control the
amplitudes and phases of internal spin states of the atoms with exquisite pre-
cision, allowing us to detect quantum fluctuations in the projection quantum
numbers Mi with large signal-to-noise ratios. This means that we have suc-
ceeded in eliminating technical noise sources to such an extent that the remain-
ing technical (classical) noise is much smaller than the quantum-mechanical
noise, which cannot be eliminated. The variance of these quantum fluctua-
tions is the quantity that we measure in order to detect correlations between
the atoms in our BECs.

1.2.1 quantifying the total spin length

In order to validate the assumption that S = N=2, i.e. the assumption of
operating in the symmetric subspace of N particles, we quantify the total spin
length S by measuring hŜ2

x + Ŝ2
y + Ŝ2

z i = S(S + 1). This measurement is
performed in two steps, using a coherent spin state. In a first experimental
run, we prepare BECs in state j1i and measure their atom numbers N1;z � N
and N2;z � 0, from which we calculate hŜ2

z i � N2=4. In a second experimental
run, we rotate the internal state of each atom with a �=2 Rabi pulse into the
coherent superposition (j1i + j2i)=2, and measure the atom numbers N1;x �
N2;x � N=2 �

p
N=2, from which we calculate hŜ2

x i � hŜ2
y i � N=4. We do

not need to perform separate measurements for the expectation values along
the x- and y -axes, since these axes are only defined with respect to a phase
that is indeterminate in the absence of a preferred phase frame. The ratio

� =

s
hŜ2
x i+ hŜ2

y i+ hŜ2
z i

N
2 (N2 + 1)

=

s
2

�
(N1;x � N2;x)2

(N1;x + N2;x)(N1;x + N2;x + 2)

�
+

�
(N1;z � N2;z)2

(N1;z + N2;z)(N1;z + N2;z + 2)

�

(1.3)

estimates the quality of the approximation S = N=2, and therefore the ac-
curacy of the assumption of a symmetric spin state. In our experiments, we
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