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Zusammenfassung

Diese Dissertation umfasst Experimente und theoretische Überlegungen zur
kohärenten Manipulation von ultrakalten Atomen auf einem Atomchip. In
Experimenten untersuchen wir den Einfluss der Chipoberfläche auf die Kohä-
renz von Superpositionen interner atomarer Zustände und realisieren ei-
ne Chip-basierte Atomuhr. Weiterhin werden detaillierte theoretische Vor-
schläge für ein Atomchip-Quantengatter sowie für die Kopplung von Bose-
Einstein-Kondensaten an nanoelektromechanische Systeme gemacht.

Wir fangen Atome in einer magnetischen Mikrofalle auf einem Chip und
präparieren sie in einer kohärenten Superposition zweier interner Zustände,
deren magnetisches Moment nahezu identisch ist. Mit Hilfe von Ramsey-
Interferometrie wird untersucht, welchen Einfluss die Wechselwirkungen mit
der Chipoberfläche auf die Kohärenz der Zustände haben. In Abständen von
5− 130 µm von der Oberfläche beobachten wir Kohärenzzeiten und Lebens-
dauern der Atome von über 1 s. Die Atome in der Chipfalle weisen eine
vergleichbare Kohärenzzeit auf wie Atome in makroskopischen Magnetfallen.
Bei kleineren Abständen beobachten wir einen Verlust von Atomen aufgrund
des anziehenden Casimir-Polder-Oberflächenpotentials.

Die guten Kohärenzeigenschaften ermöglichen es uns, eine Atomuhr auf
dem Mikrochip zu realisieren. Eine Messung der relativen Frequenzstabilität
ergibt 1.7 × 10−11 (τ [s])−1/2. Wir zeigen einfache Verbesserungen auf, mit
denen sich eine Stabilität von 10−13 (τ [s])−1/2 erreichen lassen sollte. Eine
solche Uhr könnte Anwendungen als portabler sekundärer Frequenzstandard
sowie in der Satellitennavigation finden.

Das von uns untersuchte Zustandspaar kann für die Quanteninformations-
verarbeitung verwendet werden. Dazu machen wir einen detaillierten theo-
retischen Vorschlag für ein Kollisions-Quantengatter auf einem Atomchip.
Ein wesentlicher Bestandteil des Gatters sind zustandsselektive Potentiale,
die durch Mikrowellen-Nahfelder erzeugt werden. Diese neuartigen Potentiale
verbinden Eigenschaften von optischen Dipolpotentialen mit denen magne-
tischer Nahfeldfallen. Wir beschreiben das Design und die Fabrikation eines
mehrlagigen Atomchips für Experimente mit Mikrowellen-Nahfeldern.

Über die quantenmechanische Manipulation von Atomen hinaus ermög-
lichen Atomchips neue Experimente im Grenzbereich von Quantenoptik und
Festkörperphysik. Atomare Bose-Einstein-Kondensate könnten zum Beispiel
an die Schwingungen eines mechanischen Nanoresonators gekoppelt werden.
Wir analysieren dieses System theoretisch und zeigen, dass es ein mecha-
nisches Analogon zur Resonator-Quantenelektrodynamik im Regime starker
Kopplung darstellt.





Abstract

In this thesis, I report experiments and theoretical work on the coherent
manipulation of ultracold atoms on an atom chip. We experimentally in-
vestigate the effect of the atom chip surface on internal-state coherence and
demonstrate a chip-based atomic clock. Theoretical proposals are made for
a robust atom chip quantum gate and for the coupling of a Bose-Einstein
condensate to a nanoelectromechanical system.

In our experiments, we trap atoms in a magnetic microchip trap and
prepare them in a coherent superposition of two internal states with nearly
identical magnetic moments. By performing Ramsey interferometry we in-
vestigate the effect of atom-surface interactions on internal-state coherence.
Trap and coherence lifetimes exceeding 1 s are observed with atoms at dis-
tances of 5 − 130 µm from the chip surface. The coherence lifetime in the
chip trap agrees well with the results of similar measurements in macroscopic
magnetic traps. At distances below 5 µm, loss of atoms occurs due to the
attractive Casimir-Polder surface potential.

We make use of the good coherence properties to demonstrate a chip-
based atomic clock and measure its relative frequency stability to 1.7 ×
10−11 (τ [s])−1/2. Our measurements show that with straightforward improve-
ments a relative stability in the 10−13 (τ [s])−1/2 range is realistic. An atom
chip clock may find applications as a portable secondary standard and in
satellite navigation.

We propose to use our state pair for quantum information processing
and describe a realistic implementation of a collisional quantum phase gate
on an atom chip. In our proposal, a key role is played by state-selective mi-
crowave near-field potentials. These potentials are a useful new tool for atom
chip experiments. They combine the versatility of optical dipole traps with
the dissipationless character of static magnetic potentials and the adjustable
geometry of a near-field trap. We describe the design and fabrication of a
multi-layer atom chip for experiments with microwave near-fields.

The work reported here shows that atom chips are a versatile system
for quantum engineering. Moreover, atom chips enable new and intriguing
experiments at the boundary between quantum optics and condensed matter
physics. As an example, we propose to couple a Bose-Einstein condensate
to the mechanical oscillations of a nanoscale cantilever with a magnetic tip.
This system realizes a mechanical analog of cavity quantum electrodynamics,
with the possibility to reach the strong coupling regime.
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Introduction

Quantum mechanics was developed as a theory to describe the behavior of
microscopic objects, such as atoms in a gas. Since its inception in the early
20th century, the often counterintuitive predictions of this theory have been
confirmed in numerous experiments on electrons [1], photons [2, 3], atoms
[4], and many other microscopic particles, but also on mesoscopic systems
such as large biomolecules [5, 6].

Truly macroscopic objects, on the other hand, behave classically. This is
surprising, considering that these objects are composed of the same micro-
scopic particles, which, if isolated, show quantum behavior. Indeed, quantum
mechanics is required for a satisfactory explanation of many of the material
parameters, such as electric conductivity, optical refractive index, or heat ca-
pacity. However, the dynamics of the macroscopic degrees of freedom, such
as the position and the velocity of the center of mass, is governed by classical
physics. The absence of quantum behavior in the dynamics of macroscopic
objects is commonly explained by the process of decoherence [7], induced by
the uncontrolled interaction of the object with its environment.

Quantum engineering aims at creating large quantum systems in which
decoherence is suppressed. The goal is to build complex systems out of
simple ones, while maintaining full quantum control over the constituents.
Engineered quantum systems can be used to perform quantum computations
[8, 9], improve measurement precision beyond what is possible by classical
means [10, 11], or simulate other quantum systems where such a high degree
of control is not available [12, 13]. Furthermore, large quantum systems may
enable experimental tests of theories beyond standard quantum mechanics,
which predict a fundamental upper limit on the “size” of quantum mechanical
superposition states [14, 15]. Experiments in quantum engineering require an
exceptional isolation of the system from its environment, and sophisticated
technologies for quantum control [16, 17, 18, 19, 20].

Ultracold neutral atoms in magnetic microtraps on a chip are a new and
exciting system for quantum engineering [21, 22, 23, 24]. Because of their
electric neutrality, the atoms are very well decoupled from the environment.
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Introduction

With the achievement of Bose-Einstein condensation (BEC) in a gas of neu-
tral atoms [25, 26], it has become possible to initialize a large number of
atoms in a well defined quantum state. In 1999, the first experiment was
reported in which atoms were trapped in magnetic fields generated by mi-
crofabricated wires on a substrate [27]. Soon thereafter, these “atom chips”
were used to prepare BECs, with a much simpler experimental setup and in
much shorter time than in traditional experiments [28, 29]. The versatility
of this technique was further demonstrated in experiments where atoms were
guided, transported, split and merged with the help of suitably designed mi-
crofabricated wire patterns (see [21, 22, 23, 24] and chapter 1 of this thesis
for a review of atom chips). Inspired by the enormous success of microfabri-
cation technology in miniaturizing and integrating electronics components in
modern computers, this has sparked the vision of a “quantum laboratory on
a chip”, where a large number of ultracold atoms can be manipulated on the
quantum level, with the help of tiny wires, magnets, and optical elements.

Coherent superpositions of quantum states, quantum interference, and
entanglement are the main resources which distinguish such a quantum lab-
oratory from its classical counterpart. The capability to manipulate these
resources and to preserve the coherence of the created quantum states for
a long time are thus essential prerequisites for applications of atom chips in
quantum engineering.

Many of the proposed applications (see [22, 23, 24] and references therein)
require that the atoms be trapped at very small distance from the chip sur-
face, typically a few micrometers. This is because the distance of the trapped
atoms to the wires and other structures on the chip sets the length scale on
which the atoms can be manipulated. On a small scale, the dynamics are
faster, which is important e.g. for quantum information processing. Further-
more, features smaller than the size of the atomic wave function are required
for “wave function engineering”, i.e. full quantum control of the atomic mo-
tion.

Trapping ultracold atoms a few micrometers away from a room-tempera-
ture chip surface raises interesting questions about decoherence. Consider
that the mean thermal energy of a single degree of freedom of the surface is
about nine orders of magnitude larger than the mean energy of a trapped
atom. When the first atom chip experiments were carried out, it was largely
unknown which role atom-surface interactions would play in such a situation.
The question was raised whether surface effects would prevent coherent ma-
nipulation on atom chips. In [30, 31] it was predicted that magnetic noise
caused by the thermal motion of the electrons in the chip conductors leads
to significantly reduced trap lifetimes at small atom-surface distances. This
effect was first observed in [32], for a recent review see [24]. These and other
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measurements reporting the fragmentation of BECs near the chip surface
[33] raised doubt about the usefulness of atom chips for quantum engineer-
ing, in particular since none of the experiments up to then had actually
demonstrated coherent manipulation of the atoms.

This thesis

In this thesis, I describe experiments in which atoms are manipulated coher-
ently on an atom chip and report internal-state coherence lifetimes exceed-
ing one second at a few micrometers distance from the chip surface. Based
on these results, I present experimental and theoretical work towards three
applications of atom chips: a chip-based atomic clock, a robust atom chip
quantum gate, and a hybrid quantum system composed of ultracold atoms
coupled to a solid-state nanosystem.

Coherence near the chip surface. — In order to investigate their
coherence properties near the chip surface, we prepare atoms in a coherent
superposition of two internal states |0〉 and |1〉 which are both magneti-
cally trappable, and measure the coherence lifetime. Because the magnetic
moments of the two states are nearly equal, the states experience nearly
identical trapping potentials and the superpositions are very robust against
magnetic-field induced decoherence. This allows us to obtain coherence life-
times exceeding 1 s, measured at several distances in the range of 5−130 µm
from the microchip surface. Our measurements show that with the right
choice of atomic states and a suitable design of the structures on the chip,
surface-induced and other loss and decoherence effects can be suppressed to
a level that is compatible with the requirements of the proposed atom chip
applications.

Atomic clock on a chip. — We make use of the good coherence prop-
erties of our state pair to experimentally demonstrate the first application
of an atom chip in precision metrology. In a proof-of-principle experiment,
we realize a chip-based atomic clock and measure the relative stability of
its transition frequency to 1.7 × 10−11 (τ [s])−1/2. Our measurements show
that with straightforward improvements, a portable atom chip clock with a
relative stability in the 10−13 (τ [s])−1/2 range is realistic. Such a clock would
outperform today’s best commercial atomic clocks by a factor of 10, while
being much smaller than the atomic fountain primary standards.

Microwave near-fields for robust quantum gates on atom chips.
— A detailed theoretical proposal is made for an atom chip quantum gate.
The gate is based on entanglement of atoms via internal-state dependent
elastic collisions, as suggested by Calarco et al. [34]. Our proposal describes
a realistic scenario for the implementation of such a gate, using the same
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robust state pair |0〉 and |1〉 as in the coherence measurements. We find
an overall infidelity compatible with requirements for fault-tolerant quantum
computation.

A key role in our proposal is played by microwave near-fields, which are
used to add the required internal-state dependence to the trapping potentials.
I discuss the theory of microwave potentials and show experimentally how
microwaves can be guided on atom chips. Besides applications in quantum
information processing, microwave near-fields could be useful for experiments
on chip-based atomic clocks, atom interferometry, the Josephson effect, and
the entanglement of BECs.

Ultracold atoms coupled to solid-state nanosystems. — The fact
that atoms can be manipulated coherently at micrometer distance from a
surface has prompted us to investigate the coupling of atoms to nanostruc-
tured solid-state systems on the chip. As a realistic example of such a hybrid
quantum system, we propose to couple a BEC to a nanomechanical can-
tilever resonator with a magnetic tip. We find that the BEC can be used
as a sensitive quantum probe which allows one to detect the thermal motion
of the resonator at room temperature. At lower resonator temperatures, the
backaction of the atoms onto the resonator is significant and the coupled
system realizes a mechanical analog of cavity quantum electrodynamics in
the strong coupling regime. This could be used for interesting experiments
at the boundary between quantum optics and solid state physics.

Chip fabrication and compact glass cell vacuum system. — The
proposed experiments require chips with much smaller and more complex
structures than those which were used in experiments up to now. The chips
of our earlier experiments were fabricated at other research institutes and
had only a single layer of wires. In this thesis, a new fabrication process
is described which we have developed to fabricate atom chips with several
layers of metallization, where the smallest structures are of the order of one
micrometer. Our chips are integrated into a very compact glass cell vacuum
chamber, a technique developed in [35]. This provides excellent access to the
chip wires, which is important in particular for the microwave experiments.
Although the chip and the glass cell are simply attached to each other by
epoxy glue, we achieve ultra-high vacuum and are able to prepare BECs in
the cell. The compact vacuum chamber makes experiments simpler and thus
quantum phenomena more accessible, and will enable portable atom chip
setups.

4



Organization of the chapters

• In chapter 1, I review basic concepts of atom chips, including wire
structures for magnetic trapping and properties of Bose-Einstein con-
densates in chip traps. A detailed discussion of atom-surface interac-
tions and other loss and decoherence mechanisms follows.

• In chapter 2, I describe in detail our new fabrication process for atom
chips with multiple layers of metallization. The microwave atom chip
and a chip for magnetic multi-well potentials are shown, which have
been fabricated with this process.

• In chapter 3, the experimental setup is described. Special emphasis
is on the compact glass cell vacuum chamber and on low noise ab-
sorption imaging of small numbers of atoms. The chapter concludes
with a description of a typical experimental sequence for Bose-Einstein
condensation on the chip.

• In chapter 4, our experiments on coherent internal-state manipulation
of atoms in chip traps are described. The effects of atom-surface inter-
actions on trap and coherence lifetimes are investigated experimentally.
I report on the realization of a chip-based atomic clock and a measure-
ment of its frequency stability.

• In chapter 5, microwave near-fields on atom chips are discussed. First,
I develop the theory of microwave near-field potentials. Then, I show
how microwave guiding structures can be designed and integrated on an
atom chip. An experimental characterization of such structures follows.

• In chapter 6, a robust quantum gate on an atom chip is proposed and
theoretically analyzed, which makes use of the microwave near-field
potentials.

• In chapter 7, I theoretically investigate the coupling of ultracold atoms
to a nanomechanical resonator on an atom chip.

• An outlook (chapter 8) on future experiments concludes this thesis.
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P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, and
T. Calarco,
Physical Review A 74, 022312 (2006).

• Bose-Einstein Condensate Coupled to a Nanomechanical Resonator on
an Atom Chip.
P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel,
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Chapter 1

Atom chip theory

In this chapter I review fundamental concepts of atom chips which are of im-
portance for the work in this thesis. Starting from the principles of magnetic
trapping I discuss the basic wire trap configurations used in our experiments.
Important properties of Bose-Einstein condensates in chip traps are briefly
summarized. A substantial part of this chapter is devoted to processes which
can limit the coherent manipulation of atoms in chip traps: First, collisional
loss processes are discussed which are relevant at the high atomic number
densities in the tight traps of our experiments. Second, a detailed overview
over atom-surface interaction effects is given, including formulae for quanti-
tative estimates of their magnitude. This serves as a theoretical background
for the coherence measurements near the chip surface in chapter 4.

1.1 Atoms in chip traps

We use microfabricated current-carrying wires on a chip to create tightly
confining magnetic traps for ultracold neutral atoms. Such an “atom chip”,
proposed by Weinstein and Libbrecht in 1995 [36], was first successfully re-
alized in 1999 by Reichel, Hänsel, and Hänsch [27], following earlier experi-
ments with discrete wires and permanent magnets [37, 38, 39]. The maximum
magnetic field modulus, gradient, and curvature which can be generated by
an arrangement of current-carrying wires scale as I/s, I/s2, and I/s3, re-
spectively, where I is the current and s is the characteristic size of the wire
arrangement. Microfabricated wires can therefore be used to generate much
more tightly confining magnetic traps with less power dissipation than possi-
ble with macroscopic coils. The achievement of Bose-Einstein condensation
(BEC) [28, 29] and Fermi degeneracy [40] on atom chips in single-chamber
vacuum systems and with an overall experimental cycle as short as a few
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1 Atom chip theory

seconds [29, 40] beautifully illustrates how this benefits atomic physics ex-
periments.

Even more important, atom chips provide a versatile technique for the
coherent manipulation of ultracold atoms on the micrometer scale. Elabo-
rate wire patterns can be fabricated by lithographic techniques as described
in chapter 2. In the near-field of the wires, potentials with complex struc-
ture can be created, tailored to a specific purpose, with narrow features such
as tunneling barriers. The potentials are not restricted to periodic arrange-
ments and can be easily modulated with high spatial and temporal resolution
by adjusting individual wire currents. First steps in this direction are the
transporting, splitting, and merging of atomic ensembles with an “atomic
conveyor belt” [41, 42].

To create potentials with small features of size l, it is in general1 required
that both s and the atom-wire distance d be small, s, d ≤ l. However, as d
decreases, atom-surface interactions come into play, which ultimately limit
coherent manipulation in chip traps, as first pointed out in [30]. These inter-
actions set a lower limit on d and thus on l. This, in turn, also sets a lower
limit on the time scale t ∼ h/E ∼ ml2/h of fully controlled motional dynam-
ics, where E ∼ h2/ml2 is the kinetic energy of atoms of mass m localized
on the scale l. Atom-surface interactions in chip traps have now been ex-
tensively studied and I summarize the relevant effects in this chapter. With
proper choice of chip materials and fabrication techniques, atom trapping at
d as small as a few hundred nanometers is possible, as has been experimen-
tally demonstrated in [44]. Furthermore, quantum-mechanical coherence can
indeed be preserved on atom chips. This was first shown for atomic internal
degrees of freedom in the experiments reported in chapter 4 of this thesis,
and subsequently for motional degrees of freedom in [45, 46].

In recent years, several review papers on atom chips appeared [21, 22,
23, 24], with special emphasis on wire-based magnetic traps. Wire traps
are the workhorses of atom chip experiments, but several other trapping
and manipulation techniques have been added to the stable. These include
permanent magnet traps (for recent work, see e.g. [47, 48, 49, 50]), traps
using combined magneto- and electrostatic fields [51], traps based on time-
varying electric fields [52], superconducting wires [53, 54], and on-chip optics
[45]. Combined radio-frequency and static magnetic fields have been used
to create double well potentials on a chip [46, 43], closely related to our
work on microwave potentials (see chapter 5). Recently, optical cavities were
integrated with atoms chips [55, 56, 57, 58] and used as single-atom detectors,

1Resonant state dressing with microwave or radio-frequency fields allows one to beat
this limit in specific geometries, see chapter 5 and [43].
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1.2 Magnetic trapping of neutral atoms

paving the way for single atom manipulation.
Atom chips have been successfully used to explore new physics in ex-

periments on cavity quantum electrodynamics with trapped BECs [56], low-
dimensional quantum gases [59], number squeezing of BECs [60], the Casimir
effect and other phenomena of atom-surface interactions [44], to name but
some examples. As a first application, a miniaturized atomic clock has been
investigated (see chapter 4). Experiments are underway to extend this list
to quantum information processing (see chapter 6) and the study of atoms
coupled to nanostructured condensed-matter systems (see chapter 7).

1.2 Magnetic trapping of neutral atoms

Magnetic trapping relies on the interaction of the magnetic moment µ of a
particle with an external magnetic field B. In a classical description,2 the
particle experiences a potential energy

E = −µ ·B = −µB cos θ. (1.1)

The angle θ between the magnetic moment and the magnetic field is stabilized
due to the rapid Larmor precession of µ around the magnetic field direction.
Quantum mechanically, the Zeeman energy levels of a neutral atom with total
angular momentum F and corresponding magnetic moment µ = −µBgFF are

EF,mF
= µBgFmFB, (1.2)

where µB is the Bohr magneton, gF is the Landé g-factor of the angular
momentum state F , and mF is the magnetic quantum number associated
with the projection of F onto the direction of B. The classical term cos θ is
now replaced by the discrete values mF/F ; the classical picture of constant
θ is equivalent to the atom remaining in a state with constant mF .

If the atom is moving in an inhomogeneous magnetic field B(r), it still
remains in a state with constant mF if the precessing spin can adiabatically
follow the local direction of the magnetic field.3 Equation (1.2) then describes
an effective magnetic potential energy for the state |F,mF 〉 which depends
only on the magnitude B(r) = |B(r)| of the field. Atoms can be trapped in
a minimum of this potential energy. States with gFmF > 0 are attracted to
a magnetic field minimum, such states are called “low-field seekers”. States
with gFmF < 0 are attracted to a magnetic field maximum, these states are

2This discussion follows [61].
3In this description mF is defined with respect to a position dependent quantization

axis which is taken along the local direction of the magnetic field.

9



1 Atom chip theory

called “high-field seekers”. Since Maxwell’s equations do not allow a local
magnetic field maximum in a source-free region [62], only low-field seeking
states can be trapped with static magnetic fields. Atoms with gFmF = 0 are
not influenced by the magnetic field to lowest order.

Majorana spin flips

An atom is lost from the trap if it makes a transition from a low-field seeking
state to a high-field seeking state or to a state with mF = 0. Such a transition
can be induced by the motion of the atom in the trap. Due to this motion,
the atom experiences a changing magnetic field direction and magnitude in
its moving frame. The trap is only stable if the precessing atomic spin can
follow the changing magnetic field direction adiabatically. This requires that
the rate of change of the magnetic field direction θ is small compared to the
Larmor frequency ωL:

dθ

dt
� ωL =

µB|gF |B
~

. (1.3)

If this condition of adiabaticity is fulfilled, mF is a constant of the motion. An
upper bound for dθ/dt in a harmonic magnetic trap is the trapping frequency.
The condition in Eq. (1.3) is violated in regions of vanishing (or very small)
magnetic field strength B. In these regions, transitions between mF levels
occur, taking the atom to untrapped states. This trap loss mechanism is
known as Majorana spin flips.

1.2.1 Hyperfine structure

For an atom with hyperfine structure such as 87Rb, Eq. (1.2) provides an
approximate description of the magnetic potential energy for weak magnetic
fields where EF,mF

is small compared to the hyperfine splitting Ehfs. For many
experiments with magnetic traps, this description is sufficiently accurate.
Figure 1.1 shows the hyperfine energy levels of the 87Rb electronic ground
state in this limit.4 The magnetically trappable states are indicated.

1.2.2 Breit-Rabi formula

The experiments with internal-state superpositions in chapter 4 of this thesis
require a more accurate description of the hyperfine energy levels. Due to
the high spectroscopic precision, deviations from Eq. (1.2) are resolved even
though the applied magnetic fields of a few Gauss fall into the weak-field

4Properties of 87Rb are listed in appendix A.1.
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{2 {1 0 1 2

mF

F = 1 (gF = {1/2)

F = 2 (gF = 1/2)

Ehfs = h  ¢ 6.835 GHz

EF,mF

Figure 1.1: Hyperfine structure of 87Rb in a weak magnetic field. Mag-
netic sublevels |F,mF 〉 are shifted due to the Zeeman effect by EF,mF

.
States marked with a circle are weak-field seekers which can be magneti-
cally trapped.

regime. An accurate description of the 52S1/2 ground state of 87Rb in a
static magnetic field is provided by the Hamiltonian

H = AhfsI · J + µBB (gJJz + gIIz) . (1.4)

The first term describes the hyperfine interaction between the nuclear angular
momentum I and the electron angular momentum J, while the other terms
describe the couplings of J and I to the magnetic field (we have taken the
z-axis along B). Although |gI/gJ | ∼ 10−3, the coupling of I to the magnetic
field is not negligible in this context. Since I = 3/2 and J = 1/2, the total
atomic angular momentum F = J + I can take on the values F = 2 and
F = 1. The energy levels are obtained by diagonalizing the Hamiltonian
Eq. (1.4), which yields the Breit-Rabi formula [63, 64], valid for J = 1/2,
arbitrary I, and arbitrary B:

EF,mF
= − Ehfs

2(2I + 1)
+ µBgImFB ±

Ehfs

2

(
1 +

4mF ξ

2I + 1
+ ξ2

)1/2

,

where ξ =
µB(gJ − gI)B

Ehfs

. (1.5)

Here, Ehfs = Ahfs(I + 1/2) is the hyperfine splitting, the + (−) sign is for
the F = I + 1/2 (F = I − 1/2) manifold, and the energies EF,mF

are now
measured with respect to the “center of gravity” of the hyperfine levels. To
avoid a sign ambiguity in Eq. (1.5), the formula

EF=2,mF =±2 = Ehfs
I

2I + 1
± (gJ + 2IgI)

µBB

2
(1.6)
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Figure 1.2: Hyperfine energy levels of the 87Rb ground state as a function of
magnetic field. (a) Energies of the states |F,mF 〉 calculated with the Breit-
Rabi formula. (b) Energy difference ∆E = (E2,1−E1,−1−Ehfs) between the
states |2,+1〉 and |1,−1〉, which are marked red in (a). Note the difference in
axis scaling compared to (a). The “sweet spot” at B = 3.229 G is indicated.

can be used for the states |F = 2,mF = ±2〉. Figure 1.2(a) shows EF,mF

calculated with the Breit-Rabi formula. We use the convention that |F,mF 〉
refers to the eigenstates of the Hamiltonian Eq. (1.4), which depend on B.
For small magnetic fields, the linear dependence of EF,mF

on B described by
Eq. (1.2) is recovered, and |F,mF 〉 can be approximated by the eigenstates
at B = 0, see also appendix A.3.

Magnetic traps are in general not as well suited for experiments involving
internal-state superpositions as for example optical dipole traps. Only weak-
field seeking states can be trapped, and furthermore, the magnetically trap-
pable states experience different potentials due to their different magnetic
moments. A notable exception are the states |1,−1〉 and |2,+1〉 of 87Rb,
which are both magnetically trappable and have nearly equal magnetic mo-
ments. These “qubit” states experience nearly identical magnetic trapping
potentials and superposition states are very robust against decoherence. In
Fig. 1.2(b), the energy difference between the two states is shown as a func-
tion of magnetic field. At B = 3.229 G, the magnetic-field dependence of
the energy difference vanishes to first order. In the experiments described in
chapter 4, we prepare the atoms at this “sweet spot” to study internal-state
superpositions in a magnetic chip trap.
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1.3 Quadrupole and Ioffe-Pritchard traps

1.3 Quadrupole and Ioffe-Pritchard traps

The magnetic traps used in our experiments can be divided into two cate-
gories [65, 23]: Quadrupole traps and Ioffe-Pritchard traps.

Quadrupole trap

In a quadrupole trap, the minimum is a zero crossing of the magnetic field.
The field around the minimum is of the form

B = B′
xx ex +B′

yy ey +B′
zz ez, (1.7)

with the additional requirement on the field gradients B′
x+B′

y+B
′
z = 0 to sat-

isfy Maxwell’s equations. Here we have chosen the cartesian coordinate vec-
tors ei along the main axes of the quadrupole. The trapping potential given

by Eqs. (1.2) and (1.7) is proportional to B(r) =
√

(B′
xx)

2 + (B′
yy)

2 + (B′
zz)

2

and thus provides linear confinement. In the special case of B′
x = 0, we obtain

a two-dimensional quadrupole field in the yz-plane with B′
y = −B′

z. Atoms
in a quadrupole trap suffer from Majorana spin flips since B = 0 in the trap
center. Quadrupole traps are nevertheless useful for ensembles of relatively
hot atoms which spend most of their time far away from the “hole” in the
trap center where Majorana losses occur [61]. Furthermore, quadrupole fields
are used for magneto-optical traps.

Ioffe-Pritchard trap

The Ioffe-Pritchard trap provides quadratic confinement and has a finite
magnetic field in the trap center.5 In the simplest, axially symmetric case,
the trapping field is of the form

B = B0

 1
0
0

 +B′

 0
−y
z

 +
B′′

2

 x2 − (y2 + z2)/2
−xy
−xz

 . (1.8)

It arises from the combination of a two-dimensional quadrupole field in the
yz-plane with gradient B′ and a “bottle-field” with constant term B0 and
curvature B′′ along x [65]. The magnetic field modulus expanded to second
order in the displacement from the trap center has the form

B(r) ≈ B0 +
B′′

2
x2 +

1

2

(
B′2

B0

− B′′

2

) (
y2 + z2

)
. (1.9)

5A quadratic trap is the lowest-order trap that can have a non-vanishing field in the
center. Indeed, adding a bias field to a three-dimensional linear (quadrupole) trap only
shifts the location of the zero crossing, but does not remove it.
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1 Atom chip theory

This leads to harmonic confinement of atoms of mass m and magnetic mo-
ment µ = µBgFmF with trap frequencies

ωx =

√
µ

m
B′′ and ω⊥ =

√
µ

m

(
B′2

B0

− B′′

2

)
(1.10)

in the axial (ωx) and radial (ω⊥) direction, respectively. Equation (1.10)
shows that the trap aspect ratio ωx/ω⊥ of an ideal Ioffe trap can be tuned
from prolate (cigar-shaped) to isotropic and further to oblate (pancake-
shaped), depending on the value of B′′ compared to B′2/B0, as experimen-
tally demonstrated e.g. in [66]. In general, a Ioffe-Pritchard trap need not
be axially symmetric, and the field in the trap center may be tilted with re-
spect to the principal axes of the harmonic potential. These deviations from
Eq. (1.8) become important for wire traps outside the cigar-shaped regime,
as shown in appendix B.

The Majorana loss rate in a Ioffe-Pritchard trap has been calculated for
F = 1 in [67]. For ωx � ω⊥, it is

γM = 4πω⊥ exp (−2ωL/ω⊥) . (1.11)

In experiments, we typically adjust the Larmor frequency in the trap center
to ωL ≥ 7ω⊥ to make Majorana losses negligible (γM ≤ 10−5 ω⊥).

1.4 Basic wire trap configurations

Magnetic traps can be created on a chip using lithographically patterned
current-carrying wires [21, 22, 23, 24] or permanent magnets [47, 48, 49, 50]
as the magnetic field sources. A great variety of trap geometries is possible
[65]. In the following, we concentrate on wire-based traps which we employ
in our experiments.

1.4.1 Principle of wire traps

The principle of a simple wire trap is illustrated in Fig. 1.3(a). An infinitely
thin, straight wire carrying a current I creates a radial magnetic field, whose
magnitude, gradient, and curvature scale with the distance z to the wire as

B =
µ0I

2πz
, B′ = − µ0I

2πz2
, and B′′ =

µ0I

πz3
, (1.12)

respectively. If a homogeneous bias field Bb is added perpendicular to the
wire, the fields cancel, forming a line of zero field at a distance

z0 =
µ0I

2πBb

. (1.13)
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Figure 1.3: Simple wire trap providing two-dimensional confinement. (a)
By combining the radial field of a straight wire with a homogeneous bias
field, a two-dimensional quadrupole field forms in the plane perpendicular to
the wire. Left column: magnetic field lines. Right column: field magnitude
B(z) at y = 0 for a wire current I = 2 A and a bias field Bb = 40 G. Figure
adapted from [23]. (b) Waveguide for neutral atoms formed at a distance z0

from a lithographically fabricated wire on a chip.

In the vicinity of this line, the magnetic field has the form of a two-dimensional
quadrupole field with gradient B′ = −µ0I/(2πz

2
0) in the plane perpendicular

to the wire. From the scaling of B′ it is evident that for a given current I
the traps become tighter as z0 is decreased.

In our experiments, we trap atoms with the help of planar wires on a
chip substrate, as schematically shown in Fig. 1.3(b). The substrate provides
mechanical stability and efficient heat transport from the wires. Lithographic
techniques allow complex wire structures to be fabricated. The chip wires
have rectangular cross-section, w is the width and t is the thickness of the
wire. The field of an infinitely thin wire is a good approximation to the field
of real wires as long as z0 � w, t. For small z0, the finite wire dimensions
have to be taken into account, as described in section 1.6. Note that the
homogeneous bias field can be generated by larger wires on the same chip.

The straight wire trap provides two-dimensional confinement and can
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Bb,y

Bb,x

|B0(x)|

zm

Figure 1.4: “Dimple” trap above the intersection of two straight wires.
(a) A three-dimensional Ioffe-Pritchard trap is formed (see text), with the
transverse quadrupole fieldBy,z and the field modulus on the trap axis |B0(x)|
as shown. Figure adapted from [21].

thus be used to guide atoms on a chip. Traps providing three-dimensional
confinement can easily be obtained by either bending the wire ends or adding
additional crossing wires, as explained in the following.

1.4.2 Dimple trap above a conductor crossing

The “dimple” trap is a very versatile Ioffe-Pritchard trap which can be cre-
ated above the intersection of two straight wires, see Fig. 1.4. It is based on
a two-dimensional quadrupole field in the yz-plane, provided by the current
I0 and the bias field Bb,y as explained in the previous section. The field zero
forms in the transverse plane at z = z0 ≡ µ0I0/2πBb,y and y = 0. By adding
an additional homogeneous bias field Bb,x along x, the field zero is removed
and a two-dimensional Ioffe-Pritchard potential results, which provides har-
monic confinement in the yz-plane, but no axial confinement along x. The
role of the current I1 in the crossing wire is to modulate the field on the trap
axis to provide axial confinement as well.

For sufficiently small I1 (for a quantitative criterion see appendix B),
the field components B̃x(x, z) and B̃z(x, z) of the crossing wire are weak
compared to the transverse quadrupole field. B̃z results in a shift ym(x) of
the trap minimum, i.e. it tilts the trap axis in the xy-plane, see Fig. 1.4. The
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1.4 Basic wire trap configurations

gradient of B̃x shifts the minimum to z = zm. For small I1, ym ≈ 0 and
zm ≈ z0 and the transverse confinement is nearly unchanged by the crossing
wire. The axial confinement can then be obtained by evaluating the field
modulus on the axis of the unperturbed trap, B0(x) ≈ |Bb,x + B̃x(x, z = z0)|.
If Bb,x and B̃x have opposite sign, a cigar-shaped Ioffe-Pritchard trap forms
[65, 21]. Comparing with the ideal Ioffe trap of Eq. (1.8), one can roughly
say that the field due to I0 and Bb,y provides the transverse quadrupole with
gradient

B′ = µ0I0/2πz
2
0 , (1.14)

the field due to I1 and Bb,x is responsible for

B0 = |Bb,x + µ0I1/2πz0|, (1.15)

and the field of I1 also provides the curvature

B′′ =
∂2B̃x

∂x2

∣∣∣∣∣
x=0,z=z0

= µ0I1/πz
3
0 . (1.16)

The trap frequencies are well approximated by

ωx =

√
µ

m
B′′ and ω⊥ =

√
µ

m

B′2

B0

. (1.17)

However, these formulae are only valid for small I1, where the trap is in the
cigar-shaped regime, as in most experiments. The actual field configuration
of the dimple trap is more complicated. This is discussed in appendix B,
where we also investigate whether isotropic and pancake-shaped dimple traps
can be formed.

1.4.3 Quadrupole U-trap and Ioffe-Pritchard Z-trap

Three-dimensional traps can also be created with a single wire by bending the
wire ends at right angles to form a “U” or “Z”, as shown in Fig. 1.5. In both
cases, the central part of the wire in combination with the bias field forms a
two-dimensional quadrupole for transverse confinement, while the bent wire
parts provide the axial confinement. The trapping potential is qualitatively
different for the case of a “U” and a “Z”: In the case of a “U”, the field
components B̃x generated by the two bent wires point in opposite directions
and cancel at x = 0. The resulting potential is that of a three-dimensional
quadrupole trap, with field zero at x = 0, y > 0, and z ≈ z0. The trap
is shifted along y due to the field components B̃z of the bent wires. In the
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Figure 1.5: (a) Quadrupole “U”-trap and (b) Ioffe-Pritchard “Z”-trap.
Both traps provide three-dimensional confinement. Left column: wire layout
in the plane z = 0 and orientation of the bias field. Center column: Magnetic
field modulus on a line along z through the trap center. Right column:
Magnetic field modulus on a line along x through the trap center. The fields
were calculated for L = 250 µm and I = 2 A, taking a finite wire width of
50 µm into account. The bias field along y is Bb = 54 G (dashed lines) and
Bb = 162 G (solid lines). Figure adapted from [23].

case of a “Z”, the components B̃x point in the same direction, adding up to
a finite field along x in the trap center. The result is a three-dimensional
Ioffe-Pritchard trap with trap center located at x = 0, y = 0, and z ≈ z0.
The axial confinement is provided by the curvature ∂2B̃x/∂x

2. Since in this
configuration B̃z vanishes at x = 0, the trap center is unshifted. However,
the trap axis is tilted, as discussed above for the dimple trap.

1.4.4 Maximum trap frequency and field gradient

Due to the great flexibility in trap design, it is difficult to quote “typical”
chip trap parameters. Even for a fixed wire geometry, parameters such as
the frequency and aspect ratio of the trapping potential can be tuned over
several orders of magnitude by adjusting currents and magnetic fields. Of
particular interest are the maximum magnetic field gradient B′ and trap
frequency ω⊥ that can be created with a wire trap. For a cylindrical wire
of diameter w, B′ increases with decreasing trap-wire distance, reaching a
value of B′ = µ0j/2 at the wire surface, where j in the current density in
the wire. The maximum B′ is thus limited by the maximum j the wire can
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1.5 Arrays of potential wells

support, which is independent of w for micrometer-sized wires where the
total dissipated power is small [23]. For a typical value of jmax = 1011 A/m2,
corresponding to a current of 0.1 A and w = 1 µm, a gradient of B′ =
2× 106 G/cm can be obtained at a distance of 0.5 µm from the wire surface.
The trap frequency ω⊥ is given by Eq. (1.17), where B0 has to be chosen
such that Majorana spin flips are negligible. As shown in [23], this results in
a maximum trap frequency ω⊥/2π ∼ 1 MHz for the above parameters and
87Rb. Note, however, that these values are only useful in traps for single
atoms, since atomic ensembles suffer from collisional loss processes already
at much lower trap frequencies, see section 1.8 below. For a discussion of the
minimum trap-surface distance that can be achieved, see section 1.9. The
maximum trap depth depends on the wire geometry used, for “U” and “Z”-
traps an upper bound is given by the homogeneous bias field Bb, see Fig. 1.5
and [23].

1.5 Arrays of potential wells

The “dimple” trap is an important building block for more complex potentials
[21]. Note that by reversing the direction of the current I1 in the crossing wire,
a guide with a potential barrier is formed instead of a trap. Multiple potential
wells with adjustable barriers in between can thus be formed by multiple
crossing wires carrying currents in alternating directions, as schematically
shown in Fig. 1.6. The length scale of the potential modulation is given by
the spacing between the wires, and for a modulation of significant amplitude
the distance of the atoms to the chip surface has to be of the same order as
the wire spacing. To avoid short cuts, the wires have to be arranged in two
layers which are insulated from each other. In chapter 2, I show how such
chips can be fabricated. This is an example where atom chips offer features
which are complementary to those of optical lattices: while optical lattices are
better suited for the creation of almost perfectly periodic potentials, atom
chips have the advantage that the potential wells and the barriers can be
individually addressed and tuned by the currents without the restriction to
a periodic situation.

Although the design of complex potentials by combining wells and barri-
ers generated by wire crossings seems straightforward, it is important to keep
in mind that while the magnetic potential is only a function of the field mod-
ulus, the fields of different wires add up vectorially. Therefore, the potential
generated by several wires is not simply the sum of the potentials generated
by the individual wires. For complex wire layouts, numerical simulations are
required to accurately determine the resulting magnetic fields and potentials.
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Figure 1.6: An array of wires can be used to create an array of dimple traps
(shown schematically in red) which are separated by adjustable barriers. The
wires carry currents whose direction is indicated by the arrows. Red (green)
arrows correspond to currents forming a potential well (barrier).

1.6 Simulation of trapping potentials

To calculate and analyze the potentials generated by complex wire structures,
I have written a collection of simulation routines based on the software pack-
ages MATLAB and COMSOL. For numerically intensive tasks, functions
written in C are used (MATLAB MEX-files).

The magnetic fields generated by the wires are determined from the cur-
rent density using the Biot-Savart law [68]. A wire can be described in several
ways, depending on the level of idealization which is appropriate:

• An analytical solution exists for the magnetic field of a straight conduc-
tor of finite length and rectangular cross-section, carrying a constant
current density, see appendix A.2. The solution simplifies for a con-
ductor of zero thickness [65]. In many cases, complex wire layouts can
be approximated by segments of such conductors.

• In cases where the approximation of constant current density inside
the conductors is not valid, e.g. in the near-field of a conductor cross-
ing or for conductors of complex shape, the current density is deter-
mined by solving the Laplace equation for the electrostatic potential
inside the conductor [68], using the finite elements methods provided by
COMSOL. The current density is subsequently extracted on a grid, the
Biot-Savart calculation is done numerically with a custom C routine.

In most cases it is a good approximation to assume that all wires have zero
thickness and lie in several planes parallel to the chip surface. Wires of
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1.7 Bose-Einstein condensation in chip traps

finite thickness can often be approximated by several parallel planes of zero
thickness. In addition to the field of current-carrying wires, the field of
permanent magnets can also be included in the simulation.

From the magnetic field, the magnetic potential is calculated, using either
the simple formula (1.2) or the Breit-Rabi formula (1.5). The simulations also
include gravity and the atom-surface potential (see below). To analyze the
potential, various functions have been written which find potential minima,
trace minima along given directions (similar to the method described in [65]),
find trap frequencies, or isopotential surfaces. The visualization is based on
the plotting routines of MATLAB. Examples can be found in Figs. 5.11
and B.2. The simulation routines have been adapted to the calculation of
microwave dressed-state potentials, as described in chapter 5.

1.7 Bose-Einstein condensation in chip traps

The achievement of Bose-Einstein condensation (BEC) in chip traps [28,
29] attracted great attention and triggered a rapid growth of the field of
atom chips. The significance of achieving BEC goes beyond the interest
in the phenomenon itself. The BEC phase transition provides a powerful
technique to prepare a large number of atoms in a single quantum state. By
cooling the gas sufficiently below the transition temperature, a — for most
practical purposes — “pure” BEC can be created, in which all internal and
motional degrees of freedom of the atoms are under experimental control at
the quantum level. This provides a starting point for subsequent experiments
which is as well defined as nature allows it. For some experiments it is simply
the small spatial extension, which can be below 1 µm, or the high atomic
densities which make BEC necessary. Several excellent reviews of BEC exist
[69, 70, 61, 71].

The characteristic feature of BEC in a system of N bosonic particles
is that at least one single-particle state6 is “macroscopically occupied”, i.e.
its occupation number N0 is of order N , while the occupation of the other
states is of order unity.7 Consider a noninteracting gas in three dimensions
in thermal equilibrium at temperature T . A simple rule of thumb is that
BEC occurs when the degeneracy condition p . N is satisfied, where p is
the number of thermally accessible single-particle states [69]. In a harmonic
trap, p ∝ (kBT/~ωho)

3, where ωho = (ωxωyωz)
1/3 is the geometric mean of

6A single-particle state is not necessarily an eigenstate of the single-particle Hamil-
tonian.

7This definition is independent of assumptions about interactions or thermal equilib-
rium [69].
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1 Atom chip theory

the trap frequencies. We thus find for the transition temperature Tc

kBTc = 0.94 ~ωhoN
1/3, (1.18)

where the numerical prefactor is obtained in the limit N � 1 by a rigorous
calculation [70]. For T < Tc, the number of particles in the condensate is

N0(T ) = N
[
1− (T/Tc)

3
]
. (1.19)

At T = 0 (i.e. for most practical purposes T � Tc), the gas is fully condensed,
N0 = N , and all particles occupy identical single-particle wave functions φ(r).
In the noninteracting case, the many-body wave function is thus simply the
product of these single-particle wave functions

ΨN(r1, r2, . . . , rN) =
N∏

i=1

φ(ri), (1.20)

and φ(r) is the single-particle ground state of the confining potential. The
BEC order parameter is defined as Ψ(r) ≡

√
Nφ(r), the atomic density is

n(r) = |Ψ(r)|2, and
∫
|Ψ(r)|2dr3 = N .

A realistic description must include atom-atom interactions. In a cold
dilute gas of 87Rb, these are dominated by elastic binary collisions. At mi-
crokelvin temperatures, the interaction is well approximated by considering
only s-wave scattering, since the thermal deBroglie wavelength is much larger
than the effective range of the van der Waals-type interatomic potential. In
this regime the interatomic potential can be replaced by an effective contact
interaction

V (ri − rj) =
4π~2as

m
· δ(ri − rj) = g · δ(ri − rj), (1.21)

where as is the s-wave scattering length, m is the mass of the atoms, and we
have defined the coupling constant g = 4π~2as/m. For 87Rb, the interactions
are repulsive with as ≈ 5 nm, see appendix A.1 for accurate values depending
on |F,mF 〉.

Under typical experimental conditions, the gas is dilute in the sense that
the interparticle spacing is much larger than as, which can be expressed by
the gas parameter 〈n〉a3

s � 1, where 〈n〉 is the mean density. The condensate
depletion due to interactions, which is of order (〈n〉a3

s)
1/2, is small, typically

< 10−2. Such a weakly interacting gas is well described by a Hartree-Fock or
mean-field ansatz for the many-particle state, which for T = 0 is of the same
form as in the noninteracting case, Eq. (1.20). However, the interactions
modify the single-particle state φ(r) into which the atoms condense, such
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1.7 Bose-Einstein condensation in chip traps

that φ(r) is no longer an eigenstate of the single-particle Hamiltonian.8 It
can be determined self-consistently by minimizing the expectation value of
the energy of the N -particle system, which, using Eqs. (1.20) and (1.21),
takes the form

〈H〉N = N

∫
dr3

[
~2

2m
|∇φ(r)|2 + Vext(r)|φ(r)|2 +

gN

2
|φ(r)|4

]
, (1.22)

where Vext(r) is the external potential and we have assumed N � 1. Mini-
mization of Eq. (1.22) subject to the constraint

∫
|φ(r)|2dr3 = 1 leads to the

well-known time-independent Gross-Pitaevskii equation [69]

− ~2

2m
∇2φ(r) + Vext(r)φ(r) + gN |φ(r)|2φ(r) = µcφ(r), (1.23)

which determines φ(r) and the chemical potential of the condensate µc. In
many experimental situations the kinetic energy term in Eq. (1.23) is much
smaller than the other terms, except very close to the edge of the condensate.
In this case the description can be further simplified by dropping the kinetic
term. This is the Thomas-Fermi (TF) approximation, which yields simple
analytical expressions for many condensate properties [70], e.g.

n(r) = N |φ(r)|2 =

{
[µc − Vext(r)] /g where µc > Vext(r),

0 elsewhere,
(1.24)

µc =
~ωho

2

(
15Nas

aho

)2/5

, (1.25)

Ri =
√

2µc/mω2
i , i = x, y, z. (1.26)

Here, aho =
√

~/mωho is the mean oscillator length. The condensate density
n(r) has the form of an inverted parabola, Ri are the TF radii of the BEC.
The mean density is

〈n〉 = (4/7)µc/g, (1.27)

and the mean square density is

〈n2〉 = (8/21)µ2
c/g

2. (1.28)

The TF regime implies9 Nas/aho � 1, and thus µc � ~ωho and Ri �√
~/mωi. It is interesting to compare the different energy and length scales

8Interactions also modify the thermodynamics of the gas, repulsive interactions shift Tc

to lower temperatures [70]. Furthermore, the interactions introduce particle correlations
on a length scale ∼ as, which are neglected in mean-field theory [69].

9In very anisotropic traps, the TF approximation may be invalid along the tightly
confining directions even if Nas/aho � 1. For an interpolation of the TF expressions to
the regime Nas/aho < 1, see [72]. Note furthermore that the condition for the TF regime
is different from the dilute gas condition.
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1 Atom chip theory

of a BEC [61]. Table 1.1 shows typical values for condensates with small N
in tight traps, as in our experiments. The scales are more similar than in
conventional BEC experiments with large N in weak traps.

energy scales length scales
~2/ma2

s = h · 4 MHz as = 5 nm
kBTc = h · 17 kHz 〈n〉−1/3 = 110 nm
µc = h · 9.3 kHz ξ = (8π〈n〉as)

−1/2 = 100 nm
~ωho = h · 1.9 kHz aho = 250 nm

Rx,y,z = (3.7, 0.37, 0.37) µm

Table 1.1: Energy and length scales for a typical 87Rb BEC in our experi-
ments with N = 103 and ωx,y,z/2π = (0.4, 4, 4) kHz. ξ is the healing length,
which is relevant for superfluid effects [70].

The dynamics of the condensate wave function, for T = 0 and neglect-
ing dissipation, are determined in mean-field theory by the time-dependent
version of the Gross-Pitaevskii equation [69]

i~
∂

∂t
φ(r, t) = − ~2

2m
∇2φ(r, t) + Vext(r)φ(r, t) + gN |φ(r, t)|2φ(r, t). (1.29)

The description of a BEC discussed here shows remarkable accuracy in
many situations although it neglects all interaction-induced particle correla-
tions and assumes N � 1. Finite-size effects in atomic BECs are observable,
but remain small down to N ∼ 102 [73]. On the other hand, it has now
become possible to prepare atoms in strongly correlated many-particle states
where a mean-field description is no longer adequate. The first experiment
of this kind was the observation of the Mott insulator transition in an optical
lattice [74]. Atom chips are well suited to explore effects beyond mean-field
physics, in particular in situations where tunable non-periodic traps, ex-
treme trap aspect ratios, or high ωho is required. First experiments on atom
number squeezing are reported in [60], future experiments may involve e.g.
Tonks-Girardeau gases in very anisotropic traps [75], Schrödinger cat states
in double well potentials [76], or collisional blockade mechanisms in tight,
state-selective traps [77].

1.8 Collisional trap loss

We now turn to a first class of effects which limit the coherent manipulation
of the atoms. At high density n, inelastic collisions between the trapped
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1.8 Collisional trap loss

atoms occur, which change the atoms’ internal state [71]. This causes trap
loss if the collision partners are left in untrapped states.10 While collisional
losses are not peculiar to atom chips, they are relevant because the tight
confinement provided by chip traps translates into high n, even for small
total atom number N . For atoms in a single internal state, collisional trap
loss is described by the rate equation

dN

dt
= −γbg

∫
n(r) d3r −K

∫
n2(r) d3r − L

∫
n3(r) d3r,

⇔ 1

N

dN

dt
= −γbg −K〈n〉 − L〈n2〉.

(1.30)

Effects of higher order in n are usually negligible. The background loss
rate γbg is due to collisions with atoms from the residual gas in the vacuum
chamber. It is proportional to the density of the residual gas, but independent
of n. The second term in Eq. (1.30) describes inelastic two-body collisions
between the trapped atoms. The corresponding trap loss rate is

γ2b = K〈n〉 TF∝ ω
6/5
ho N

2/5, (1.31)

where the scaling with ωho and N is for a BEC in the Thomas-Fermi regime.
The third term in Eq. (1.30) describes loss due to three-body recombination,
with a loss rate

γ3b = L〈n2〉 TF∝ ω
12/5
ho N4/5. (1.32)

The constants K and L depend on the spin state of the atoms. Which process
is dominant thus depends both on n and on |F,mF 〉.

The loss rates for thermal bosonic atoms are higher than for a BEC at
the same density. This is because the atom-bunching which is observed for
thermal bosons is absent in a BEC, analogous to photons in a thermal source
and a laser. The rate of two-body (three-body) collisions is proportional
to the second-order (third-order) correlation function; it is thus higher for
thermal atoms by a factor of 2! (3!) [78]. In the following, all rate constants
are quoted for a BEC.

Inelastic two-body collisions

Inelastic two-body collisions occur by two different mechanisms, the strong
spin-exchange interaction and the much weaker spin-dipole interaction [71,

10In addition, the collisions can lead to heating, because energy is released in the inelastic
process. This heating can be suppressed by applying an RF “shield”, so that hot atoms
are quickly removed from the trap [78].

25



1 Atom chip theory

79]. In state |2, 1〉 of 87Rb, spin-exchange processes such as |2, 1〉 + |2, 1〉 →
|2, 0〉+ |2, 2〉 can occur, which conserve total mF . A rate constant of K|2,1〉 =
1.194(19)×10−13 cm3 s−1 was recently measured [80], significantly lower than
the upper bound quoted in [81].

In states |1,−1〉 and |2, 2〉, spin-exchange collisions are forbidden by angu-
lar momentum selection rules and conservation of energy [71, 79, 82]. Inelas-
tic two-body collisions can occur only by the much weaker spin-dipole mech-
anism. At typical experimental parameters we therefore have γ2b � γbg +γ3b

for these states.

Three-body recombination

Three-body recombination is dominant for |1,−1〉 and |2, 2〉 at high n. In
a three-body collision, two atoms form a molecule. The released binding
energy is converted into kinetic energy of the molecule and the third atom,
which is needed to satisfy energy and momentum conservation. The kinetic
energy is typically larger than the trap depth, so that all three atoms are
lost. The rate constant is L|1,−1〉 = 5.8(1.9)× 10−30 cm6 s−1 for state |1,−1〉
[78] and L|2,2〉 = 1.8(0.5)× 10−29 cm6 s−1 for state |2, 2〉 [83].

Superpositions of internal states

If atoms are trapped in superpositions of different internal states |F,mF 〉,
additional loss terms arise due to collisions between the different states. Due
to the near-coincidence of the singlet and triplet scattering lengths of 87Rb,
spin-exchange rates are relatively small compared to other alkalis and any
combination of spin states is thus relatively long-lived [79, 81]. For a super-
position of |0〉 ≡ |1,−1〉 and |1〉 ≡ |2, 1〉, collisional loss is described by

1

N0

dN0

dt
= −γbg − L0〈n2

0〉 −K01〈n1〉 and

1

N1

dN1

dt
= −γbg −K01〈n0〉 −K1〈n1〉,

(1.33)

where Ni and ni are the expectation values of number and density of atoms
in state |i〉, respectively. We have included only the dominant processes, and
assumed that the density distributions n0(r) and n1(r) overlap completely.
For a BEC, the rate constants are L0 = L|1,−1〉 and K1 = K|2,1〉 as given
above, and K01 = 0.780(19)× 10−13 cm3 s−1 [80].

In chapter 4 we will use Eqs. (1.33) to describe loss of atoms from a ther-
mal ensemble in a superposition of |0〉 and |1〉. For thermal ensembles, the
rate constants have to be multiplied with the appropriate statistical factors,

26



1.9 Atom-surface interactions

as explained above. In terms of the BEC rate constants, we get for the ther-
mal gas Lth

0 = 6L0 and Kth
1 = 2K1. If all atoms in the thermal ensemble are

in the same coherent superposition of internal states, they are indistinguish-
able. Therefore we have Kth

01 = 2K01, in contrast to an incoherent mixture,
where Kth

01 = K01 [84].

1.9 Atom-surface interactions

On atom chips, atom-surface interactions give rise to additional mechanisms
of loss, decoherence, and heating. The atoms are trapped at nanokelvin
temperatures, at a distance d of only a few micrometers from the room-
temperature chip surface (Fig. 1.7). This is an intriguing situation, consider-
ing that the mean thermal energy of a single degree of freedom of the surface
is about nine orders of magnitude larger than the mean energy of a trapped
atom. It immediately raises the question how small d can be made before
the atoms “feel” the presence of the surface. Besides being of fundamental

d ~ µm

T ~ 300 nK

T ~ 300 K

Figure 1.7: Ultracold atoms in chip traps interact with the room-
temperature chip surface.

interest, atom-surface interactions are potentially deleterious to the envis-
aged applications of atom chips, which require full coherent control in close
proximity to the surface.

After the first successful chip trap experiments, a series of theoretical and
experimental investigations of this new regime of surface physics was carried
out, see [24, 85, 86] for a review. In chapter 4 of this thesis, I describe
our investigation of atom-surface effects, including the first experiments with
quantum-mechanical superposition states close to the chip surface [87]. In
the following, the effects which are relevant for our experiments are discussed.

Neutral atoms interact with thermal and quantum-mechanical fluctua-
tions of the electromagnetic field, which are substantially modified by the
presence of the surface:
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1 Atom chip theory

• Fluctuating magnetic fields interact with the atomic spin, leading to
trap loss, decoherence, and heating. This effect is dominant near con-
ductors, but negligible near dielectrics. All relevant trap and spin flip
frequencies are < 10 GHz. At these frequencies, the atoms are in the
near-field of the surface, and quantum fluctuations are negligible com-
pared to thermal fluctuations.

• Fluctuating electric fields interact with electric dipole transitions of
the atom at optical frequencies, giving rise to an attractive surface
potential. This effect is present near dielectrics and conductors. At
these frequencies, quantum fluctuations dominate.

In addition to these fundamental coupling mechanisms, technical effects like
wire roughness and adsorbates on the chip surface can distort the trapping
potential, which is a limitation for certain types of atom chip applications,
e.g. waveguiding experiments.

1.9.1 Thermal magnetic near-field noise

In a conductor of conductivity σ at temperature T , thermal agitation of the
electrons leads to current noise. This effect is known as Johnson-Nyquist
noise in electronics. The conductor may be a chip wire used for trapping,
but thermal currents exist in any conductor, independent of whether an
external current is applied or not. The currents are the source of a fluctuating
magnetic field, which is many orders of magnitude stronger than the field due
to black body radiation in the near field of the conductor [31]. At the relevant
frequencies ω/2π < 10 GHz corresponding to wavelengths > 3 cm, the trap
is in this near-field regime. If the magnetic trap is operated with very stable
current sources, technical magnetic field noise can be made negligible. This
leaves thermal magnetic near-field noise as the dominant effect limiting chip
trap performance near conductors, as predicted in [30, 31] and subsequently
observed in [32, 88, 44].

Spectral density

At distance d from a conducting, non-magnetic layer of thickness t, see
Fig. 1.8(a), the spectral density of the magnetic field fluctuations is [89, 31]

SBαβ(ω) =
µ2

0σkBT

16πd
· sαβ · g(d, t, δ), (α, β = x, y, z), (1.34)

where sαβ = diag(1
2
, 1, 1

2
) is a tensor which is diagonal in the coordinate sys-

tem of Fig. 1.8(a). The distinguished axis is normal to the surface. The
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|1,−1〉 → |1, 0〉

|2, 2〉 → |2, 1〉

|2, 1〉 → |2, 0〉

Figure 1.8: Trap loss due to spin flips caused by thermal magnetic near
field noise. (a) Atoms near a conducting layer on top of a dielectric substrate.
In addition to the geometry, the skin depth δ is an important length scale of
the problem (see text). (b) Trap lifetime as a function of d for the indicated
transitions, t = 1 µm, δ � max(d, t), and τbg = 5 s.

dimensionless function g(d, t, δ) depends on the geometry and the skin depth
δ =

√
2/σµ0ω, which carries the frequency dependence of SB(ω). The spec-

tral density is related to the mean square fluctuations of the magnetic field
components

〈B2
α(t)〉 =

1

π

∫ ∞

0

SBαα(ω) dω. (1.35)

It is difficult to obtain exact expressions for g, even for simple geometries.
In various limiting cases, analytical expressions or empirical interpolation
formulae exist [89, 44]:

g =



1 for d� δ � t,

3δ3/2d3 for δ � min(d, t),

t/d

1 + [4dt/(π2δ2)]2
for t� min(δ, d),

t/(t+ d) for δ � max(d, t),

t

t+ d
· w

w + 2d
for δ � max(d, t) and finite w,

(1.36)
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where the last formula is for a wire of thickness t and width w (for a more
accurate treatment of this case, see [90]). Note that if δ is the largest length
scale, it drops out of the problem and SB is a white noise spectrum at the
relevant frequencies. For gold conductors and ω/2π ∼ 1 MHz (a typical
Larmor frequency), one obtains δ ∼ 75 µm, and we are well inside this
regime for distances where surface effects matter. In this regime, the last
two formulae in Eq. (1.36) give the following general scaling: for a metallic
half space, g is a constant, for a thin layer, g ∝ t/d, and for a thin and
narrow wire, g ∝ tw/d2. To reduce magnetic field noise, it is thus desirable
to make the on-chip conductors as thin and narrow as possible.11 On chips
with multiple metal layers where t � δ for each layer, we roughly estimate
SB by adding the spectral densities due to the individual layers.

Although it is a thermal effect, magnetic near-field noise near pure metal
wires cannot be reduced by simply cooling the chip. Due to the temperature
dependence of σ(T ), SB ∝ σ(T )T actually increases if T is decreased [90]. If
special alloys are used for the wires, a decrease of SB by cooling is possible
[90]. The use of superconducting wires would decrease SB as well, although
there is a theoretical controversy on how big this effect is [91, 92].

Trap loss due to spin flips

The fluctuating magnetic near-field couples to the magnetic moment µ of the
atoms in the trap. Components perpendicular to µ drive spin flips, which
result in decoherence and loss from the magnetic trap since only low-field
seeking states are trapped. The transition rate γs between states |i〉 and |f〉
at frequency ωfi is given by Fermi’s golden rule

γs =
1

~2

∑
α,β=x,y,z

〈i|µα|f〉〈f |µβ|i〉SBαβ(ωfi). (1.37)

Let us consider the spin-flip transition between adjacent magnetic sublevels
|i〉 = |F = 1,mF = −1〉 and |f〉 = |F = 1,mF = 0〉 at the Larmor frequency
ωfi = ωL. In most magnetic chip traps, the static field in the trap center
B0 is parallel to the surface, and we have chosen this direction as the z-
axis in Fig. 1.8(a). In this case the evaluation of the matrix elements yields
|〈1, 0|µx|1,−1〉| = |〈1, 0|µy|1,−1〉| = µB/

√
8 and 〈1, 0|µz|1,−1〉 = 0, using

µα = −µBgFFα and Eq. (A.7). For δ � max(d, t) we obtain a lifetime due

11Interestingly, for d � δ �
√

dt, the scaling is SB ∝ δ4/td4, and a smaller t actually
increases SB [89].

30



1.9 Atom-surface interactions

to spin flips of

τs =
1

γs

=
256π~2

3µ2
0µ

2
BσkBT

· d(t+ d)

t
for state |1,−1〉. (1.38)

The overall trap lifetime is τ = (τ−1
s + τ−1

bg )−1, where we take into account
a background lifetime τbg at large d where surface effects are negligible. In
Fig. 1.8(b), we plot τ for different states in comparison. Atoms in |2, 2〉 are
lost in a cascade process |2, 2〉 → |2, 1〉 → |2, 0〉 [44], however the first spin
flip already destroys coherent dynamics.

The spectral density SB(ω) decreases at high frequencies due to the skin
effect. At ω/2π = 6.8 GHz, δ = 0.9 µm, which has to be compared with the
geometrical dimensions d and t, see Eq. (1.36). For typical chip geometries,
the loss rate for hyperfine-changing transitions at GHz frequencies is thus
smaller than that for transitions between adjacent Zeeman sublevels at MHz
frequencies.

In addition to spin flips, magnetic near-field noise causes dephasing, heat-
ing and motional decoherence. As discussed in the following paragraphs, the
rates of these processes are all comparable to or smaller than γs.

Dephasing of spin superposition states

The component of the fluctuating magnetic field parallel to µ leads to de-
coherence of spin superposition states α|0〉 + β|1〉, without changing the
populations (“pure dephasing”). The dephasing rate is given by [31]

γφ =
∆µ2

‖

2~2
SB‖(ω = 0), (1.39)

where ∆µ‖ = 〈1|µ‖|1〉 − 〈0|µ‖|0〉 is the differential magnetic moment of the
states |1〉 and |0〉, ‖ denotes the direction of the static trapping field, and SB‖
is the component of SB parallel to it. In Fig. 1.8(a), µ‖ = µz and SB‖ = SBzz.
In Eq. (1.39) we have made use of the fact that SB(ω) is flat for small ω so
that we can replace its low-frequency average by its value at ω = 0 [31].

For most states |0〉 and |1〉, ∆µ‖ ∼ µB, so that γφ is comparable in
magnitude to the spin flip rate γs. For a state pair with nearly equal magnetic
moments, as we use it in the experiments of chapter 4, ∆µ‖ � µB and
therefore γφ is negligible compared to γs.

Heating and decoherence of the center-of-mass motion

We now discuss how thermal magnetic near-field noise perturbs the center-
of-mass motion of the atoms in the trap.
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Spatially inhomogeneous fluctuations lead to heating and motional deco-
herence. Consider a transition between motional states ψi(x) and ψf (x) in
the trap, assuming that the atom’s internal state does not change. Fermi’s
golden rule yields a transition rate [31]

γh =
µ2
‖

~2

∫
d3x d3x′M∗

fi(x)Mfi(x
′)SB‖(x,x

′, ωfi), (1.40)

where Mfi(x) = ψ∗f (x)ψi(x) is the wave function overlap, SB(x,x′, ω) is the
magnetic field correlation spectrum, and the transition frequency ωfi is of
order of the trap frequency ωt. For small deviations |x − r|, |x′ − r| � lc
from the trap center r, the field correlation spectrum is related to the noise
spectrum by [31]

SB‖(x,x
′, ω) ≈ SB‖(ω)

[
1− (x− x′)2

l2c

]
, (1.41)

where SB‖(ω) is evaluated at r, and lc is the coherence length of the field
fluctuations. It can be shown [31] that lc ≈ d. In order to estimate the
heating rate, we now consider the transition ψ0 → ψ1 between the ground
and first excited state along one dimension of a harmonic trap. The trap is
tightly confining such that the size of ψ0 is a� lc. In this limit one obtains

γh ≈
µ2
‖

~2
SB‖(ωt)

a2

l2c
≈ γs

a2

d2
, (1.42)

where we have related γh to the spin flip rate γs, making use of the fact
that µ‖ ∼ µB and SB‖(ω) is flat in the relevant frequency range. Motional
decoherence occurs at a rate similar to γh [31]. For a � d, heating and
motional decoherence due to near-field noise are thus negligible compared
to spin flips. A similar reasoning applies to atoms split in a double-well
potential, with a given by the separation of the wells [93]. For a� d, on the
other hand, one obtains γh ≈ γs.

Spatially homogeneous fluctuations can also lead to heating and decoher-
ence, since they add to the trapping fields and thus lead to a fluctuating trap
position and curvature. The rate for the transition ψ0 → ψ1 is related to the
spectral density of position fluctuations Sr(ω) by [94]

γh =
mω3

t

2~
Sr(ωt), (1.43)

where Sr is normalized so that the equivalent of Eq. (1.35) holds. For trans-
verse position fluctuations in a cigar-shaped Ioffe trap with gradient B′, we
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1.9 Atom-surface interactions

can relate Sr(ω) to the transverse component SB⊥(ω) of the magnetic field
noise spectral density, Sr(ω) = SB⊥(ω)/B′2. Using ωt = ω⊥, Eq. (1.10), and
ωL = µB|gF |B/~, we obtain

γh ≈
µ2

B

~2
SB⊥(ω⊥)

ω⊥
ωL

≈ γs
ω⊥
ωL

. (1.44)

Since ω⊥ � ωL to avoid Majorana spin flips, we again find γh � γs. A
similar reasoning also applies to fluctuations of the trap curvature.

Summary

In summary, one finds that all loss, heating, and decoherence rates due to
thermal magnetic near-field noise are of the order of the spin-flip rate γs or
smaller. In the following chapters, we will thus use γs as a measure for the
importance of surface effects above metal layers.

Finally, we note that the effect of technical magnetic field noise can be
analyzed along the same lines by simply identifying SB(ω) with the corre-
sponding technical noise spectral density. Noise from technical current fluc-
tuations in a wire, for example, has SB = (µ0∆I)

2/(4πd2∆ω), where we have
assumed that the spectrum is flat, ∆I is the RMS amplitude of the current
fluctuations, and ∆ω/2π the bandwidth of the current source.

1.9.2 Casimir-Polder and van der Waals-London sur-
face potential

An atom in its ground state close to a metallic or dielectric surface feels an
attractive potential Vs(z) that arises due to the interaction of the fluctuating
electric dipole of the atom with the fluctuating electromagnetic field, which
depends on distance z from the surface [95, 85, 96]. Approaching the sur-
face from large z, the atom experiences several regimes of this interaction,
see Fig. 1.9 [96]. For z � λT , where λT = ~c/kBT is the thermal photon

z
¸T¸opt/2¼a0

{ T/z3
CP thermalvdW

{ 1/z4{ 1/z3

Figure 1.9: Scaling of Vs(z) with distance z from the surface.

wavelength (λT = 7.6 µm for T = 300 K), thermal fluctuations of the field
are dominant. In thermal equilibrium, the potential scales like −T/z3 (Lif-
shitz or thermal regime). At smaller distances, λT � z � λopt/2π, quantum
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fluctuations dominate, and the potential scales like −1/z4 (Casimir-Polder
regime). Retardation effects are important, since z is larger than the (re-
duced) wavelength λopt/2π of the strongest electric dipole transition of the
atom. For the Rb ground state, λopt/2π ≈ 120 nm for the D2 and D1 lines.
At yet smaller distances, λopt/2π � z � a0, retardation is negligible and
the potential scales like −1/z3 (van der Waals-London regime). For com-
pleteness we note that for z ∼ a0, where a0 is the Bohr radius, aspects of
chemical physics come into play, governing phenomena like the adsorption of
the atom on the surface. In most ultracold atom experiments, the strength
of the surface potential is negligible in the Lifshitz regime (but see [97]). Of
importance are the Casimir-Polder and van der Waals-London regimes; ex-
perimental studies with ultracold atoms are reported in [44, 98, 99]. In the
experiments of chapter 4, we observe loss of atoms due to the Casimir-Polder
potential.

The following formula for the surface potential of the atomic ground state
interpolates between the Casimir-Polder and van der Waals-London regimes
[100, 99]:

Vs(z) = − C4

z3(z + 3λopt/2π2)
with C4 =

3~cα0

32π2ε0

· εr − 1

εr + 1
φ(εr). (1.45)

It is valid for a planar dielectric substrate at T = 0, but also yields a good
approximation for thermal equilibrium situations at room temperature. The
substrate is assumed to fill the half space z ≤ 0. α0 is the static polarizabil-
ity of the atomic ground state, and n =

√
εr is the refractive index of the

substrate material at wavelength λopt. The function φ(εr) is nearly constant
and equals 0.81 for n = 3.7 (Silicon) [101]. The potential in front of a good
conductor can be obtained by letting εr →∞, in which case φ→ 1.

Figure 1.10(a) shows the combined potential Vt(z) + Vs(z) seen by an
atom close to a Si surface, where Vt(z) = 1

2
mω2

t (z − d)2 is the trapping
potential. In the limit of large d, the surface potential can be approximated
to have zero range, and the trap depth is given by Vt(0) = 1

2
mω2

t d
2. The

effect of the finite range of Vs(z) is to decrease the trap depth to Vb(d, ωt), as
can be seen in the figure, and the trap vanishes already at d > 0. We now
determine the minimum trap-surface distance dm required to trap atoms of
energy E = ζ~ωt, where ζ is a constant. From the condition Vb(dm, ωt) =
ζ~ωt, we numerically determine dm as a function of ωt, using Eq. (1.45) for
the surface potential. Figure 1.10(b) shows the result for several values of
ζ. For Vb < ~ωt/2, the trap no longer supports a bound state. The curves
yield a lower limit on dm, since effects such as tunneling or evaporation of
atoms from the potential have been neglected. To suppress these effects,
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1.9 Atom-surface interactions

only a moderate increase of d is required, since Vb increases stronger than
quadratically with d.
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Figure 1.10: Decrease in trap depth due to the surface potential Vs. (a)
Trapping potential with and without Vs, shown for a Si surface at z = 0 and
a harmonic trap Vt of frequency ωt/2π = 1 kHz with minimum at d = 2 µm.
The trap depth is decreased to Vb(d, ωt). (b) Trap-surface distance dm at
which Vb(dm, ωt) = ζ~ωt, shown for several values of ζ. (see text).

From Fig. 1.10(b) we conclude that it is possible to manipulate atoms at
a distance of a few hundred nanometers from the chip surface with ωt in the
range of several kHz to hundreds of kHz. As discussed in section 1.4.4, such
trap frequencies are indeed realistic. An even closer approach to the surface
seems possible if the surface potential is modified. This can be achieved by
structuring the surface [102] or by using substrate materials whose dielectric
function has a resonance at the relevant wavelength [95]. Furthermore, quan-
tum reflection could allow confinement of atoms with an attractive surface
potential, although in the experiment [102] the observed trap lifetimes were
smaller than the trap oscillation period.

The identification of the physical mechanisms giving rise to the Casimir-
Polder and van der Waals-London interactions and their relation to the
Casimir effect between macroscopic bodies is a fascinating subject with a
long history [103, 104]. An “atomic physicist’s interpretation” of the Casimir-
Polder potential can be given in terms of the AC Stark effect caused by the
interaction of the atomic dipole with the vacuum fluctuations of the electro-
magnetic field, treating the surface as a macroscopic object [95, 105]. In free
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space, this AC Stark effect is the main contribution to the Lamb shift. The
presence of the surface modifies the boundary conditions and thus the mode
spectrum of the electromagnetic field. The resulting change in the AC Stark
effect leads to the Casimir-Polder potential. The distance-dependence arises
because at distance z, only those modes whose wavelengths are greater than z
have mode functions which are substantially modified by the surface. While
the Casimir-Polder potential is thus a direct manifestation of the vacuum
fluctuations of the electromagnetic field, the surface potential in the van der
Waals regime cannot be interpreted in this way [95, 105]. Instead it is due
to self-reaction, i.e. the interaction of the atomic dipole with its own field
reflected by the surface. The common statement that the Casimir-Polder
potential is a “retarded van der Waals potential” thus seems somewhat mis-
leading in the light of the different interpretations [105].

1.9.3 Corrugated potentials

Technical imperfections such as wire roughness and contamination of the
surface with adsorbates can distort the trapping potentials on an atom chip.

Adsorbates

When working with ultracold atoms on a chip, it is difficult to avoid that
some of the atoms become stuck to the surface. Depending on the surface
material, the electrons in the adatom and the surface will be redistributed
such that each adatom develops a small electric dipole moment µe, oriented
normal to the surface. The combined electric field E(r) of the adatoms
interacts with the ultracold atoms trapped near the surface. An attractive
potential

Va(r) = −α0

2
|E(r)|2 (1.46)

is created via the quadratic Stark effect, where α0 is the atomic polarizability.
In [106, 107], this effect was observed for 87Rb adsorbates on Si, Ti, Y, Lu,
Hf, and glass surfaces. The potential Va is stronger above materials such
as Si and Ti, whose work functions are comparable to or greater than the
ionization energy of 87Rb, resulting in strong polarization of the adatoms. An
electric dipole moment of µe ≈ 1×10−29 Cm per adatom was extracted from
the data for Si. On glass, µe was found to be about one order of magnitude
weaker.

The potential Va strongly depends on the spatial distribution of adatoms
on the surface [107]. To estimate the order of magnitude of the effect, we show
Va in Fig. 1.11 for several BECs deposited at the same location on a Si surface.
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1.9 Atom-surface interactions

We assume a homogeneous distribution of Na adatoms within a region of
length L and width W , with L and W corresponding to the extension of a
BEC. This is likely to overestimate the effect because a realistic distribution
is smeared out [107]. Figure 1.11 shows that Va can be stronger than the
Casimir-Polder surface potential (1.45), resulting in tighter limits on the
minimum atom-surface distance. In addition, an inhomogeneous distribution
of adatoms can lead to corrugations of the potentials created on the chip.
The effect of adatoms can be mitigated by careful experimental control to
reduce Na, and by passivating the chip surface with a thin layer of SiO2 so
that µe is smaller.
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Figure 1.11: Electrostatic potential created by adsorbates on the chip sur-
face. (a) Ultracold 87Rb atoms trapped above Na

87Rb adatoms homoge-
neously distributed over a region of length L and widthW on the chip surface.
(b) Potential Va due to the adatoms for different values of Na as indicated
in the figure (solid lines), with L = 3 µm and W = 1 µm, corresponding to
the extension of a small BEC. For Na = 106, the local surface coverage with
87Rb is about 10% of a monolayer. The Casimir-Polder surface potential Vs

is shown for comparison (dashed line).

Wire roughness

The wires on an atom chip show a certain degree of roughness, which arises
from technical imperfections of the fabrication process, see Fig. 2.6 in chap-
ter 2. This leads to deviations of the current flow from a straight path,
resulting in corrugations of the magnetic potentials created by the wires. Un-
der special circumstances, namely for very elongated and cold atomic clouds

37



1 Atom chip theory

close to the surface, these corrugations have been observed to cause a break
up of the atomic cloud into several fragments [24].

At distance d from the wire, only wire roughness on a length scale s ≥ d
leads to potential corrugations with significant amplitude [24]. Features with
s � d average out at the position of the atoms. If the atomic ensemble is
tightly trapped in all three dimensions, such that its size R � d, the cor-
rugations manifest only as a constant offset of the trap bottom, which is
easily compensated for by adjusting the wire current. If, on the other hand,
R � d, as in waveguiding experiments, the atoms will see the corrugated
potential and break up into fragments of size ≥ d. This shows that wire
roughness is a serious issue for waveguiding experiments on an atom chip.
On the other hand, it is of minor importance for the experiments and pro-
posals discussed in this thesis, where the atoms are tightly trapped in all
three dimensions. Corrugations of the trapping potential can be reduced by
using fabrication techniques which produce very smooth wires, such as those
discussed in chapter 2. In addition, the corrugations can be suppressed by
modulating the wire current, as demonstrated in [108].
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Chapter 2

Multilayer atom chip
fabrication

The microfabrication process which we have developed for our atom chips is
described in this chapter. Using this process, we have fabricated atom chips
carrying gold wires with lateral structure sizes down to 1 µm. The wires are
arranged in two layers of metallization which are electrically insulated from
each other by a micrometer-thin layer of polyimide. These new structures
are significantly smaller and more complex than those employed in our ear-
lier atom chip experiments [23]. Our new chips enable, among other things,
the generation of tunable tunneling barriers for BECs, two-dimensional ar-
rays of potential wells, and state-selective microwave potentials for quantum
information processing.

After summarizing the fabrication goals and challenges, I discuss the main
fabrication techniques used, the difficulties encountered, and their resolution.
Furthermore, I show measurements of the maximum current density the chip
wires can support. In appendix C, a detailed description of the fabrication
recipe can be found. The multi-layer process developed here has been used
to fabricate the chips for two new experiments which are currently under-
way. The first chip can be used to study Bose-Einstein condensates in small
magnetic multi-well potentials. The second chip carries microwave guiding
structures for the manipulation of atoms with microwave near-fields (see
chapter 5). Both chips are shown at the end of this chapter.

We thank Prof. Kotthaus from the Center for NanoScience (CeNS) at
LMU Munich for generously allowing us to fabricate our chips in the clean-
room facilities of his group.
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2 Multilayer atom chip fabrication

2.1 Fabrication goals and challenges

Many of the proposed applications of atom chips in both fundamental science
and technology require chips with smaller and more complex structures than
those that were used in the experiments until now. Tunneling of atoms, for
example, which is at the heart of certain schemes to generate Schrödinger cat
states [76], can only be observed at very narrow potential barriers. Quan-
tum information processing, as another example, will eventually require large
arrays of individually addressable microtraps on a single chip [109]. Such po-
tentials can be generated on atom chips with multiple layers of micrometer-
sized wires, as shown schematically in Fig. 2.1. A two-layer chip allows for

Substrate (insulator)

wires on 
lower layer:

width ~10 µm

3 µm gaps

5 µm metal layer
5 µm insulating layer

wires on 
upper layer: 
width 2 µm

2 µm
gaps upper layer 

thickness: 1 µm

2D array of
potential wells

Figure 2.1: Atom chip with two layers of micrometer-sized wires, separated
by a thin insulating layer. Only the chip center is shown where the smallest
structures are located.

greater flexibility in trap design by avoiding wire crossings which would arise
in a single layer. This is essential for the chip shown, where two perpendicu-
lar sets of wires are used to trap a BEC in a small array of magnetic potential
wells, separated by tunable tunneling barriers (cf. section 1.5). Similar two-
layer chip layouts are required for the experiments with microwave near-fields
proposed in chapters 5 and 6 of this thesis. While fabrication techniques for
complex microstructures are available [110], they have to be adapted to the
peculiar requirements of ultracold atom experiments.

In our group, the first atom chip experiments were carried out with chips
fabricated at other institutes [27, 111, 112]. Several research groups have
developed custom fabrication processes for wire-based atom chips [113, 114,
111, 115, 116, 44, 117, 118, 119]. In these processes, optical or electron beam
lithography is used to define the wire patterns, and metal is deposited by
thermal evaporation, sputtering, or electroplating. Most chips have only a
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single layer of metallization, with wire widths in the range of 1− 100 µm. A
few impressive multi-layer chips were fabricated, albeit with structure sizes
≥ 100 µm. Multi-layer atom chips with micrometer-sized structures of high
aspect ratio, as in Fig. 2.1, do not seem to be available. We therefore decided
to develop the necessary fabrication process.

Fabrication challenges

The following challenges arise in fabricating the atom chip in Fig. 2.1:

• The lateral size of the wires in the top layer is near the resolution
limit of standard laboratory equipment for optical lithography. The
relatively high aspect ratio of the wires (thickness comparable to lateral
size) is needed to support the DC and microwave currents for magnetic
trapping, but poses additional difficulties in the fabrication process.

• The upper metal layer has to serve as a high quality mirror for the
laser beams of the magneto-optical trap (see chapter 3), with small
gaps between wires and few defects over a large surface area of several
cm2.

• The insulating layer has to fill the gaps between wires on the lower
layer and planarize the chip for processing of the upper layer. At the
same time, the experiments require the insulating layer to be a few
micrometers thin and provide good heat conductivity.

• The wires on the lower gold layer have to be ≥ 5 µm thick in order
to support currents of several amperes for trapping the relatively large
atomic clouds in the initial stages of the experiment. At the same time,
there are structures of 3 µm lateral size in this layer. Such high aspect
ratio structures are difficult to fabricate.

• An insulating substrate with a large heat conductivity is needed to
dissipate the heat generated in the conductors.

• All chip components have to be compatible with ultra-high vacuum
conditions (10−10 mbar).

• The chip has to withstand temperatures up to 350 ◦C during fabrication
and up to 150 ◦C when it is fully assembled (e.g. during gluing of glass
cell and vacuum bake out).

• The chip wires have to be contacted without obstructing optical access
for the trapping and imaging laser beams.
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• Some experiments with elongated BECs require extremely smooth wire
edges and surfaces to avoid corrugations of the trapping potential which
have been observed to lead to fragmentation of the BEC.

The challenges peculiar to a two-layer fabrication process could be circum-
vented by fabricating two single-layer chips which are then glued on top of
each other. In this case, however, the distance between the two metallization
layers would be at least several tens of micrometers, since thinner substrates
can hardly be processed without breaking. This has the drawback that the
maximum confinement provided by wires on the lower layer is significantly
reduced, and that the characteristic feature size of the potentials generated
by the lower layer is much larger than that of the upper layer.

2.2 Fabrication process

The fabrication process we have developed meets all the requirements men-
tioned above. It can be broken down into the following steps:

• Substrate preparation.

• Fabrication of the lower wire layer by optical lithography and electro-
plating.

• Application of the insulating layer.

• Fabrication of the upper wire layer by optical lithography and lift-off
metallization.

• Chip dicing, mounting, and bonding.

Both metal layers on our chip are made of gold because of its high conduc-
tivity of σ = 4.5× 107 Ω−1 m−1 at room temperature, its chemical inertness,
and its high reflectivity of 98% for light at 780 nm. The insulating layer is
made of spin-on polyimide.

A thorough introduction to the fundamentals of microfabrication can be
found in [110]. For a good tutorial introduction to atom chip fabrication, see
[111]. A very useful paper listing etch rates for a large number of etchants
and materials is [120]. A detailed fabrication recipe for our process, with all
relevant parameters, a list of chemicals, clean-room equipment, and micro-
fabrication company web pages, can be found in appendix C.
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2.2.1 Substrate

The substrate of the atom chip has to support the wires, provide electri-
cal insulation between them, and dissipate the heat generated in the wires.
Therefore, a substrate with high thermal conductivity and a smooth, insulat-
ing surface is needed. For chips with microwave or radio-frequency guiding
structures, the dielectric constant and loss tangent are similarly important
selection criteria. In addition, mechanical strength, low outgassing, and com-
patibility with the chemicals used for processing are required. In our exper-
iments, we use silicon as substrate material for the experiment chip and
aluminum nitride for the base chip.

Our two-layer chips are fabricated on single crystal Si wafers in (100) ori-
entation. A common substrate thickness is 525 µm, the thermal conductivity
is ≈ 150 W/(mK) at room temperature. The wafers are polished on one side
and have very small surface roughness, sufficient even for the smallest wires.
We cleave the wafers with a diamond scorer. Neither the resistivity of Si nor
the 2 nm native oxide layer on the substrate are sufficiently insulating the
wires if we aim for a control over the DC currents on the 10−5 level. We
therefore grow a 20 nm layer of SiO2 on the wafer by thermal oxidation at
1100 ◦C. This layer provides a DC resistance of > 40 MΩ between the wires.
Since SiO2 has a thermal conductivity of only 1.5 W/(mK), the insulating
layer should not be made thicker than necessary [115].

AlN is a non-toxic polycrystalline ceramic [121] with an excellent heat
conductivity of 180 W/(mK) at room temperature, a factor of five higher
than that of Al2O3 (see [23] for a comparison with other materials). Com-
pared with Si, AlN is less brittle. It can be laser machined and easily cleaved
with a diamond scorer. A polished AlN surface (specified surface roughness
Ra < 40 nm) has a significant residual roughness, with isolated defects of
micrometer size. This is a problem if structures < 10 µm are desired. We use
AlN for the base chips in our experiments, which have only a single layer of
gold with structure size > 10 µm. We found that electroplated gold on AlN
substrates is not compatible with the polyimide baking step in our two-layer
fabrication process (see section 2.2.3 below). We therefore use AlN only for
single layer chips which do not have to be heated to temperatures above
200 ◦C.

Both AlN and Si are common substrate materials for microwave circuits.
AlN has a dielectric constant of εr = 8.7 and a loss tangent of tan δ =
1 × 10−3 at 10 GHz. If only DC currents are used in the experiment, Si
of any doping level can be employed as substrate material. For microwave
applications, however, it is very important to choose high-resistivity Si to
avoid strong dielectric losses. High-resistivity Si is grown by the floating-

43



2 Multilayer atom chip fabrication

zone method; our wafers have a resistivity of ρ > 104 Ωcm, εr = 11.9, and
tan δ ≈ 10−3 at 10 GHz. Although the nominal loss tangents are comparable,
we found microwave loss to be somewhat higher on Si than on AlN. A possible
explanation is the charge layer forming at the Si-SiO2 interface [122].

The substrates have to be thoroughly cleaned before processing starts.
This is a multi-step process detailed in appendix C. We furthermore bevel
the edges of the Si substrate so that edge beads formed during spin coating
with photoresist or polyimide do not give rise to a gap between the chip
surface and the photomask during lithography (cf. Fig. 2.2).

2.2.2 Optical lithography

In optical lithography, light is used to transfer a pattern on a mask to a light-
sensitive resist layer on a chip. In contact lithography, the mask is in direct
contact with the resist during exposure. After developing, the resulting resist
pattern is used as a stencil for etching or depositing material.

We use a commercial Cr mask for contact lithography for both wire layers
on our chip. The mask itself is fabricated by laser lithography with a laser
spot size of 0.8 µm, the manufacturer (Delta Mask) specifies a minimum line
width of 1.5 µm. Masks with smaller structures can be written by electron
beam lithography.

UV exposure

polyimide Au

g
w

edge
bead

mask

Si
t

resist

exposed resist

Figure 2.2: Optical lithography with a contact mask. A gap between the
mask and the substrate decreases the spatial resolution due to diffraction of
light.

The resolution of contact lithography is limited by the near-field diffrac-
tion of light at the structures in the mask and thus decreases if there is a
gap between the mask and the substrate. Consider photoresist of thickness
t exposed with light of wavelength λ through a mask with a pattern of equal
lines and spaces of periodicity 2w, see Fig. 2.2. The theoretical resolution,
i.e. the minimum linewidth resolved, is given by Fresnel diffraction theory:

wmin = (3/2)
√
λ(g + t/2),
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where g is the gap between resist and mask [110, 123]. To obtain high
resolution, g has to be as small as possible, meaning that any edge beads and
defects of the photoresist and the underlying structures have to be avoided.
Furthermore, the substrate has to be pressed flush against the mask, this
may require supporting the chip below its center with a small rubber ring.

For lithography of the lower gold layer, the thickness of the resist is t =
6.5 µm. The mercury lamp in the mask aligner provides light at several
spectral lines near λ = 400 nm. For g = 0, we obtain a theoretical resolution
of wmin = 1.7 µm for this layer.

On our two-layer chips, the wires of the lower gold layer lead to an un-
even topography, which is smoothed out but not completely planarized by the
polyimide. This limits the resolution which can be achieved in the lithogra-
phy of the upper layer. As shown in Fig. 2.2, a gap of g = 5 µm forms where
no wires are present in the lower layer. For λ = 400 nm and t = 1.6 µm,
we obtain a resolution of wmin = 2.3 µm in this region, compared with
wmin = 0.8 µm where g = 0. Due to the high contrast of the photoresist,
fine-tuning of the lithography parameters allows one to beat this limit, but
feature sizes significantly smaller than wmin cannot be obtained. A further
limitation of the attainable resolution arises due to the partially transparent
polyimide layer, which leads to diffuse reflections of UV light from the gold
surface underneath [124].

Even though our structure size is close to the resolution limit, we have
decided to use optical lithography because it is a parallel process which allows
large chips to be structured in seconds. Smaller structures can be fabricated
by electron beam lithography, which has a resolution of 10−100 nm depend-
ing on resist thickness, but is much slower and more difficult to implement.

2.2.3 Lower gold layer: electroplating

We use an electroplating technique to fabricate the lower gold layer [125, 126].
In electroplating, the chip serves as the cathode of an electrolytic cell. Resist
structures on the chip form a mold for the electroplated gold. Under an
applied voltage, gold ions from the plating solution deposit on the areas
not covered by resist. The amount of deposited material per unit time is
controlled by the current flow. Electroplating is more time and material
efficient than metal deposition through thermal evaporation or sputtering.
It is therefore better suited for the fabrication of wires with a thickness
> 1 µm. Furthermore, large aspect ratio structures are easier to fabricate
than with lift-off or etching techniques.

The process flow is illustrated in Fig. 2.3. First, we deposit a 2 nm
Ti adhesion layer and a 50 nm Au seed layer on the substrate by thermal
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Figure 2.3: Electroplating. The process steps are explained in the text.

evaporation (a). This layer serves as the cathode. We spin coat the chip with
a 6.5 µm thick layer of photoresist (b) and subsequently pattern it by optical
lithography (c+d). The resist structures serve as a mold for the electroplated
gold and should be slightly taller than the desired thickness of the wires. We
use the positive tone resist ma-P 1240 from micro resist technology, which,
according to the specifications, is characterized by high pattern stability in
acidic and alkaline plating baths from pH = 1− 13.5. We routinely pattern
2 µm wide and 6 µm tall structures with this resist.

For the following electroplating step (e), we use the simple homemade
setup shown in Fig. 2.4. The chip and the anode are connected to a power
supply and submerged in 1 liter of a sulfite-based gold solution from Metakem
which is kept at a temperature of 57 ± 1 ◦C in a water bath. The plating
solution is based on ammoniumsulfite-gold(I) ([(NH4)3Au(SO3)2]), has pH =
7.5 and contains 15 g of gold. It is commonly used for dentistry and jewelery
and yields very smooth gold deposits of 99.99% purity. The anode is a
platinized titanium mesh, also from Metakem. To start depositing gold, a
voltage is gradually applied between the gold seed layer and the anode, until
the desired plating current flows. While electroplating, the solution is stirred
and the chip is constantly agitated with a motor to avoid local depletion of
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Figure 2.4: Electroplating equipment.

the solution and thus ensure a more homogeneous gold layer. The thickness
h of the gold layer deposited after a time t can be determined by Faraday’s
law:

h = α
ItM

nFS%
= 1.1× 10−10 m3

A s
× It

S
, (2.1)

where I is the plating current, M the molar mass and % the mass density
of gold, F is Faraday’s constant, n = 1 is the charge of the gold ions, and
α ≈ 1 the current efficiency for gold plating. The surface area S of the
deposited gold film is given by the surface area of the wire layout plus the
contact pads and connectors. The Metakem solution is specified for a current
density j = I/S = 1−15 mA/cm2. In the parallel plate configuration we use,
the current density is approximately constant over the exposed gold areas of
the chip. Since the contribution of the contact pads and connectors to S
is not precisely known, Eq. (2.1) is used as a rough guideline. The actual
deposition rate for a given layout is determined experimentally, and h varies
by about 10% from chip to chip, probably because of varying contact pad
size.

After the wires are electroplated to the desired thickness, the current is
turned off. The chip is removed from the bath and thoroughly rinsed with
water. The resist is stripped with acetone (f), residues in small gaps are
removed with piranha etch. In the final step (g), the Au seed layer and the
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Ti adhesion layer are removed by a wet etch with aqua regia. This isolates
the electroplated wires from each other. The gold etch also attacks the wires,
increasing surface roughness. It is therefore desirable to work with a seed
layer as thin as possible.

Figure 2.5 shows electroplated gold structures on Si chips fabricated with
our process. Fig. 2.5(c) shows a fully functional parallel wire structure cor-
responding to the lower gold layer of the chip design in Fig. 2.1.

Figure 2.5: Electroplated gold structures (5 µm thick) on a Si chip. (a)
Entire chip with contact pads. (b) Minerva, Roman goddess and logo of the
Max Planck Society. (c) Microscope image of parallel gold wires fabricated
according to the design in Fig. 2.1. The gaps are 3 µm wide.

Wire roughness

Wire roughness leads to deviations of the current flow from a straight path
along the wire. This causes corrugations in the magnetic trapping potential,
which are responsible for the fragmentation of Bose-Einstein condensates
observed in very elongated traps at distances below several tens of microm-
eters from the atom chip wires (see section 1.9.3). In [117], the roughness
of electroplated wires was analyzed and identified as the cause of fragmenta-
tion. The roughness was significantly larger than that of wires fabricated by
thermal evaporation.

In Fig. 2.6, we show SEM micrographs of electroplated wires on our chip
in comparison with the wires of [117]. The roughness of our wires is about one
order of magnitude smaller than that of [117]. The RMS surface roughness
of a 7 µm thick wire on Si fabricated with our method is 15 nm, measured
with an AFM in a 20 µm× 20 µm window. In [117], a roughness of 200 nm
RMS was measured.1

1In [117], the edge roughness of the wire was measured. From the SEM picture we
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Figure 2.6: SEM images of electroplated gold wires fabricated by different
methods. (a)+(b): Wires of 5 µm thickness on our chip. The grain size of
the electroplated gold is of the order of 200 nm. (c)+(d): The wire analyzed
in [117] (thickness 4.5 µm). Grains of micrometer-size are visible.

The smoother surface of our wires (and that of [116], where an even
lower roughness is reported) is very likely due to the gold plating solution
used. Different solutions (and also the same solution at different process
parameters) deposit gold of very different grain size [126]. We have com-
pared the Metakem solution to a cyanide-based solution (Auruna 5000 from
Umicore). Wires fabricated with the cyanide-based solution showed rough-
ness on a micrometer-scale, comparable to [117]. Wires electroplated with a
potassiumsulfite-gold solution from Metakem had somewhat larger roughness
than with the ammoniumsulfite-gold solution.

The roughness of our electroplated structures is still a factor of 2–3 larger
than that of evaporated gold of similar thickness. Roughness increases with
the thickness of the gold deposit and also depends on the substrate. On Si,
the electroplated gold layers have a specular surface. On AlN, the defects of
the substrate are visible in the gold surface.

conclude that the edge roughness is comparable to the surface roughness.
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Caveats

Electroplating requires careful control of many process parameters. The com-
plex chemistry of the plating bath is easily disturbed by contaminants. In-
compatibilities with other processing chemicals have been observed. In the
following, we list a number of potential problems which we have identified
during optimization of the process.

• We found an incompatibility of AlN substrates with our electroplating
process in combination with subsequent thermal processing. As shown
in Fig. 2.7(a), defects in electroplated gold on AlN form if the chip is
heated to temperatures > 200 ◦C. On other substrate materials, this
problem does not occur (Fig. 2.7(b)). We also observe directly that
the AlN surface is attacked by the plating solution (Fig. 2.7(c+d)),
even if no gold is deposited on this substrate. Due to this problem,
AlN substrates are not compatible with the polyimide baking step in
our two-layer fabrication process. However, electroplated gold on AlN
can be used for single layer chips which are not heated to such high
temperatures. The problem may be solved using a different plating so-
lution. However, the alternatives we have tried all produced gold layers
of larger roughness than the sulfite-based solution (see above). To solve
the problem, we therefore decided to use Si as substrate material. Si
has the additional advantage over AlN that it has much lower surface
roughness.

Figure 2.7: Incompatibility of electroplated gold on AlN with thermal
processing. (a) Defects (“bubbles”) in electroplated gold on AlN after heat-
ing to 350 ◦C. (b) No defects form in electroplated gold on a glass substrate,
which was processed identically to (a). (c) Surface of AlN substrate before
processing. (d) Same AlN substrate as in (c) after it has been submerged for
50 min in the plating solution.

• Initially we had problems with the adhesion of gold to the substrate,
even after rigorous substrate cleaning. The electroplated gold and the
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seed layer could be easily peeled off. The problem may have been
related to contamination of the Ti adhesion layer due to gettering of
residual gas in the evaporation chamber. We now always pre-heat the
Ti for a few minutes before deposition and avoid delay between the Ti
and Au deposition. Now we obtain very good adhesion, which means
that the adhesion of the gold to the substrate is stronger than the
cohesion of the gold layer itself.

• Adhesion of the electroplated Au to the Au seed layer can be impaired
by residual photoresist. By removing the residues in an oxygen plasma
cleaner prior to electroplating, this problem can be avoided. We fur-
thermore try to avoid any delay between this cleaning step and the
electroplating.

• After the plating solution has been used for a number of chips, but
long before the gold in the solution is exhausted, the gold starts to
grow inhomogeneously and adhesion becomes worse. Depending on
the flow direction of the solution during plating, a “shadow” behind
the resist structures is visible in the gold layer, in particular at the
edge of the chip. If the flow direction is reversed, the shadow forms on
the other side. This problem is probably related to a change in bath
chemistry, e.g. due to resist bleeding, although we have not tracked
down the cause. It can be mitigated by reducing the flow speed of the
plating solution, allowing for the fabrication of a few more chips. The
problem can be reliably “solved” by purchasing a new bottle of plating
solution.

• The plating solution is specified for temperatures of 55 − 65 ◦C, but
we have observed rounding of the resist structures at temperatures
≥ 60 ◦C. This is a further indication that the solution attacks the pho-
toresist.

• The bath has to be filtered after use. Particulate contaminations lead
to defects on the chip.

• Uncontrolled voltage changes of the power supply (e.g. during turn on)
have to be avoided while the chip is submerged in the plating solution.
Reverse polarity, applied even for a short time, can prevent the growth
of gold on the chip.

• Fresh aqua regia has to be used for etching the seed layer to avoid
brownish deposits on the gold.
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2.2.4 Insulating and planarizing polyimide layer

The purpose of the polyimide layer is to planarize the chip surface and elec-
trically insulate the gold layers from each other. Polyimide has a thermal
conductivity which is about three orders of magnitude smaller than that of
gold or silicon. Therefore, the polyimide layer has to be as thin as possible
to allow for large current densities in the wires of the upper gold layer.

As illustrated in Fig. 2.8, a layer of polyimide does not globally planarize a
chip surface with an uneven topography. It rather acts as a “low-pass filter”
which locally smoothes out the topography. Only features with a lateral
extension smaller than the planarization length, which is ≈ 20 µm for our
polyimide, can be fully flattened out [127].

polyimide

planarization
length ~ 20 µm

isolated wire narrow gaps multiple coatings

Au
Si

Figure 2.8: Planarization and insulation with polyimide. Narrow gaps are
easier to planarize than broader, isolated features. Multiple coatings improve
planarization.

We use the spin-on polyimide PI 2562 from HD Microsystems, which is
specifically designed for planarization applications. The chip is spin-coated
with the polyamic ester. Air bubbles in the coating have to be avoided
by careful dispensing or manually removed before spinning. Curing of the
polyimide is carried out at 200 ◦C in air and then at 350 ◦C in a nitrogen
atmosphere.

The degree of planarization is higher for several thin coatings compared
with a single thick coating of equal total thickness. We typically deposit three
layers of 2.0 µm thickness, fully curing each layer before applying the next.
For the first layer, an adhesion promoter is used (HD MicroSystems VM651).
In Fig 2.9 we show AFM measurements of the polyimide surface topography
above wires in the lower gold layer. Thin gaps (5 µm wide) between 5 µm
thick wires are planarized to a step height of 300 nm, which is sufficient for
our purpose.

Fully cured polyimide is resistant to solvents, most acids, and diluted
piranha etch, but can be dry etched in an oxygen plasma [120]. If necessary,
planarization can be improved by back-etching the polyimide [127]. The
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Figure 2.9: Planarization with polyimide. Surface topography of three
polyimide layers above small gaps in the lower gold layer, measured with an
AFM. Note the different scaling of the two axes. On this chip, the polyimide
layers were 4.3, 1.9, and 1.0 µm thick.

polyimide layer protects the gold underneath and can be easily cleaned by
wiping it off with acetone.

Polyimide has εr = 4.2 and tan δ = 0.016 at 10 GHz. Although dielectric
losses are larger than for our substrate materials, we have successfully used
thin layers of polyimide on our microwave chips.

As discussed in section 2.2.3, we found an incompatibility between elec-
troplated gold wires on AlN substrates and the polyimide high temperature
cure. On Si substrates, no such effect is observed. Still, the surface roughness
of the lower gold layer increases slightly due to the high temperature.

2.2.5 Upper gold layer: lift-off metallization

We fabricate the upper gold layer with a lift-off metallization technique. In
this technique, patterned resist acts as a mask for evaporated gold. After
removal of the resist (“lift-off”), only the desired gold structures remain on
the chip. Gold layers deposited by evaporation have smaller surface rough-
ness than electroplated wires. This is important for the use of the upper gold
layer as a mirror for the magneto-optical trap.

The lift-off sequence is illustrated in Fig. 2.10. We spin-coat the polyimide
layer on our chip with a 1.6 µm thick layer of photoresist. We use the image
reversal resist AZ 5214 E from Clariant, which allows one to create resist
sidewalls with a negative slope (“undercut”) for lift-off metallization. The
resist is exposed for a few seconds with UV light through a mask which bears
a negative image of the wires to be fabricated (a). Due to the small exposure
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a)   UV exposure b)   image reversal
       bake (120°C)

c)   flood exposure

d)  develop resist
     until undercut
     forms

e)  evaporate gold f )   lift-off resist

Figure 2.10: Lift-off sequence with an image reversal resist. Gold is de-
posited by e-beam evaporation. The process steps are explained in the text.

dose, the resist is not fully exposed down to the substrate. The exposed area
is wider on the top than on the bottom of the resist layer, which will lead
to a negative slope of the resist sidewalls after image reversal. The short
exposure dose also helps to reduce loss of contrast due to diffuse reflections
from the polyimide layer and the gold structures below it.

The image reversal bake on a hot plate at 120±1 ◦C cross-links the resist
in the exposed areas and thus renders it insoluble in the developer and in-
sensitive to further exposure (b). Subsequently, the chip is flooded with UV
light (c), which now renders the previously unexposed areas soluble. These
areas are removed during development (d). The development time is care-
fully adjusted so that the resist structures develop an undercut. Residues of
photoresist are removed by a short oxygen plasma cleaning step. Subsequent
baking of the resist structures on a hot plate was found to improve resist
stability in the next step.

A 1 µm thick layer of gold is deposited on top of a 3 nm thick Ti adhesion
layer by e-beam evaporation in a UHV evaporation chamber (e). The resist
acts as a mask for the gold, the undercut prevents gold in the resist trenches
from sticking to gold on top of the resist. The gold deposition rate should
not exceed 1 Å/s and the undercut should not be too large to avoid collapse
of the smallest resist structures during deposition. Lift-off is performed in a
bath of hot acetone (f). This removes the resist and the gold on top of it
and leaves behind the desired structures. If necessary, lift-off can be forced
by agitation, with pliers, or by mild ultrasound.

For successful lift-off, the resist layer should be somewhat thicker than the
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thickness of the deposited gold layer. The resist undercut can be adjusted
by changing exposure time, image-reversal temperature, and development
time. In practice, once a suitable set of parameters has been found, we only
adjust the development time for each series of chips. This adjustment is
necessary, probably because of aging of the chemicals. A strong undercut
can be seen in an optical microscope as a bright outline of the resist edges.
However, for very small periodic structures, mechanical and thermal stability
of the resist requires that development be stopped before the bright outline
is visible. While developing the process, we checked the undercut with an
electron microscope, see Fig. 2.11. However, we found that the electron beam
bakes the resist to the polyimide layer, making lift-off difficult. We therefore
use the electron microscope to check the undercut only on test chips.

Figure 2.11: SEM images of the upper gold layer before and after lift-off.
(a) Resist structure with deposited gold on top. (b) Close-up of (a), the
undercut of the resist sidewalls is visible. (c) Gold structure remaining after
lift-off.

Figure 2.12 shows wires on the upper gold layer. The smallest periodic
wire arrays which we have fabricated consist of 2 µm wide and 1 µm thick
wires separated by 2 µm gaps. The surface roughness is 3 nm RMS, measured
with an AFM in a 2 µm× 2 µm window. As can be seen in Fig. 2.12(c), the
smoothing of the surface topography provided by the polyimide layer enables
the fabrication of micrometer-sized wires on top of larger gold structures.

After fabrication of the upper gold layer, it could be advantageous to
passivate the chip surface by depositing a few nanometers of SiO2. A thin
SiO2 layer could reduce the electric fields from Rb adsorbates on the surface,
as discussed in section 1.9.3, without compromising the reflectivity of the
gold mirror.
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Figure 2.12: Wires on the upper gold layer of a two-layer chip. (a) Gold
wire (1 µm thick and 1.7 µm wide) fabricated with the lift-off technique. The
grain size of the evaporated gold is of the order of 100 nm. (b) Parallel wires
fabricated according to the design in Fig. 2.1. Each wire is similar to the
one shown in (a). (c) Small wires (800 nm thickness) on the upper gold layer
cross a large wire on the lower gold layer. A single polyimide layer of only
4 µm thickness already provides sufficient smoothing of the underlying gold
structure, which is 7 µm thick.

2.2.6 Chip dicing and bonding to the base chip

After the wire structures have been fabricated, the chip is cut to size with a
diamond blade. This “experiment chip” is subsequently glued onto a “base
chip”, which serves as a carrier, heat sink, and electrical vacuum feed through
(see section 3.1). Figure 2.15 shows an example of the complete atom chip
package, fully bonded and connected.

The base chip consists of a single layer of electroplated wires on a 800 µm
thick AlN substrate. AlN is preferred over Si because of its larger heat con-
ductivity and better mechanical stability. The base chip wires are fabricated
similarly to the wires on the lower gold layer of the experiment chip. The
wires, which are designed to carry up to 10 A current, are electroplated to a
thickness of 12 µm. The smallest structures on the base chip are ≈ 90 µm
wide. We therefore use a simple lithography mask printed on an overhead
transparency for this chip.

The base chip substrate has arrays of holes on each side, which are laser-
cut by the company A.L.L. Lasertechnik before we fabricate the wires. The
holes allow us to solder wires on the front side of the chip to pins of a con-
nector fed through from the back side, using a 70In/30Pb reflow solder paste
from Indium Corporation. A connector on the back side has the advantage
that it does not inhibit optical access to the chip.

The experiment chip is glued onto the base chip using the UHV-compatible
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thermally conductive epoxy glue H77S from Epo-Tek, which is outgassed
prior to application (see also section 3.1). The amount of glue used is impor-
tant. Care is taken that the gap between the chips is completely filled with
epoxy to avoid virtual leaks in the vacuum system. The glue layer should be
as thin as possible for good thermal conductivity. Excess glue is wiped off
prior to curing on a hot plate at 150 ◦C. The wires on the experiment chip
are wire bonded to the base chip, using up to 15 gold bond wires per chip
wire. To contact the wires on the lower gold layer of the experiment chip,
the polyimide is scratched off above the contact pads.

2.3 Atom chips fabricated with this process

The development of the whole fabrication process took more than half a year
of work. Now it takes about two days to fabricate a chip with a single gold
layer and about one week to fabricate a two-layer chip. This enables us to try
out new chip designs quickly, which proved to be extremely valuable in the
development of chips with microwave guiding structures. With the process
described above, we have fabricated the atom chips for two new experiments
which are currently being pursued.

2.3.1 Chip for magnetic multi-well potentials

The first chip can be used to create a small array of magnetic potential wells
for Bose-Einstein condensates. The potential wells, which can be individually
addressed, are separated by tunable tunneling barriers. Experiments are
currently underway in Jakob Reichel’s group in Paris. Figure 2.13 shows
pictures of this chip.

2.3.2 Microwave atom chip

The second chip can be used to study atoms in microwave near-field poten-
tials, as described in chapter 5. Experiments with this chip are currently
being pursued in our group in Munich. Figure 2.14 shows pictures of the
experiment chip, Fig. 2.15 shows the chip as it is mounted on the base chip.
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Figure 2.13: Atom chip for experiments with Bose-Einstein condensates in
magnetic multi-well potentials.
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Figure 2.14: Atom chip for experiments with Bose-Einstein condensates in
microwave near-fields.

Figure 2.15: Microwave atom chip package. The experiment chip is glued
and wire bonded to the base chip. Microwave connectors are soldered onto
the front side of the base chip. The DC wires are soldered to pins from a
connector on the back side.
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2.4 Measurements of the critical current den-

sity

To avoid thermal breakdown of the wires, it is important to know the max-
imum current Imax a wire on the chip can support. We determine Imax by
applying current pulses and recording the voltage drop across the wire, which
yields the resistance R. Due to resistive heating, an increase in R is observed
as a function of time and applied current. On test substrates, we increase the
current until the wires are destroyed, which yields Imax. The duty cycle of
the measurements is close to a realistic experimental situation, with current
pulses of 3 s duration separated by cool-down intervals of 10 s.

Figures 2.16(a+b) show results of such a measurement for a small wire
on the upper gold layer. The increase in wire resistance is clearly visible. For
this micrometer-sized wire, Imax = 80 mA, corresponding to a critical current
density of jmax = 4 × 1010 A/m2. On the upper gold layer, jmax is limited
by the relatively small heat conductivity of the polyimide. Due to the small
total dissipated power, the substrate below the polyimide layer does not heat
up significantly, the wire temperature reaches steady state after 200 ms. For
a more detailed analysis of such measurements, see [115].

In Fig. 2.16(c+d), a similar measurement is shown for a larger wire
on the lower gold layer. For this wire, Imax = 2.8 A, corresponding to
jmax = 6 × 1010 A/m2. The wire burns at its smallest constriction when
the overall increase in R is still < 50%, which can be explained by the rel-
atively large contribution of the on-chip lead wires to R. This larger wire
does not reach steady state during the current pulse, indicating heating of the
substrate due to the large dissipated power of 30 W [115]. We have compared
measurements on AlN and Si substrates for wires with similar dimensions,
but found no significant difference in jmax, consistent with the comparable
heat conductivities of these substrate materials.

Our measurements were carried out in air, with the substrate placed on
the metal chuck of a probe station. Since heat transport from on-chip wires
is dominated by conduction to the substrate rather than air convection or
radiation, in particular for moderate wire temperatures and substrates with
high thermal conductivity, our measurements give a reasonable estimate of
jmax under vacuum conditions.

We tested the microwave guiding structures on our chip in a similar way,
as described in section 5.3.3.
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Figure 2.16: Measurements of resistive wire heating. (a) Voltage drop U
across a gold wire of length L = 500 µm, width W = 2.0 µm, and thickness
T = 1.1 µm on a 6 µm thick layer of polyimide. The amplitudes I of the
applied current pulses are indicated. U includes the voltage drop across
the lead wires. (b) Increase in relative resistance R/R0 and inferred wire
temperature T as a function of I for the wire in (a). R is determined at the
end of the current pulse and corrected for the 2.6 Ω resistance of the lead
wires, which we assume to be at constant temperature due to their much
larger cross section. R0 = 7.4 Ω is the wire resistance at room temperature.
(c) Measurement similar to (a), but for a larger wire on a 725 µm thick
Si substrate with 20 nm oxide. The smallest constriction in the wire has
L = 850 µm, W = 10 µm, and T = 4.5 µm. The on-chip lead wires have
L = 10 mm and W = 40 µm. The wire temperature does not reach steady
state during the current pulse. (d) R/R0 at the end of the current pulse
(R0 = 2.6 Ω). Here, the on-chip lead wires are included due to their small
cross section.
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Chapter 3

Experimental setup and BEC
preparation

The experimental apparatus and a typical sequence for the preparation of
a BEC on our chip are the subject of the present chapter. A BEC or a
similarly prepared ultracold thermal ensemble with a temperature just above
condensation serves as the starting point for the experiments described in
subsequent chapters.

Our experimental apparatus consists of the atom chip, an ultrahigh-
vacuum chamber of which the chip is an integral part, low-noise current
sources connecting to the chip wires, Helmholtz coils for the generation of
homogeneous magnetic bias fields, a diode laser system for laser cooling, a
CCD camera for imaging of the atoms, radio-frequency electronics for evap-
orative cooling, and computers for experiment control and data analysis.
These components are described in this chapter. The radio-frequency and
microwave electronics involved in the coherent manipulation of the atoms’
internal state are described in chapter 4. The techniques involved in guiding
microwave near-fields on the chip are discussed in chapter 5.

Figure 3.1 shows the main part of our setup. In its present version, it
contains the microwave atom chip, fabricated as detailed in chapter 2. The
experimental work reported in this thesis also involves other chips in earlier
versions of the setup. The experimental conditions and the techniques used
for BEC preparation are similar in all cases.

A distinctive feature of our apparatus is the very compact single-chamber
vacuum system where the chip substrate itself serves as one wall of a vacuum
glass cell. This eliminates the need for bulky vacuum feed throughs for the
up to 44 chip wires. Despite the fact that the vacuum seal is provided by
epoxy glue and the whole experimental sequence from loading of the magneto-
optical trap (MOT) to condensation takes place in the same cell, the pressure
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is sufficiently low for BEC and we measure magnetic trap lifetimes of several
seconds. The detailed description of the glass cell and vacuum assembly is
one emphasis of this chapter. A second emphasis is on the absorption imaging
setup, which we have optimized to detect small atomic ensembles with very
low noise in atom number.

In the following I assume the reader is familiar with standard experimental
techniques used in BEC experiments — if not, see [128, 61] and references
therein.

Figure 3.1: Main part of the microwave atom chip setup. Three pairs of
Helmholtz coils surround the chip and glass cell assembly (see the close-up
in Fig. 3.2). The laser beams for cooling and imaging are fiber coupled. The
setup can be enclosed in a magnetic shielding measuring 50 cm in diameter.
One half of the shielding is removed in the picture.

3.1 Compact glass cell vacuum system

Experiments with ultracold atoms require an ultrahigh-vacuum chamber to
isolate the atoms from the environment. The magnetic trap lifetime is ulti-
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Figure 3.2: Close-up of the setup in Fig. 3.1. Chip and glass cell are visible
between the Helmholtz coils.

mately limited by collisions of the trapped atoms with atoms from the resid-
ual gas. Already the first atom chip BEC experiments in our group [29, 129]
showed that the tight confinement provided by magnetic chip traps reduces
the cycle time of a BEC experiment from about one minute in standard non-
chip setups to a few seconds in our setup. To achieve trap lifetimes of the
same order, a single-chamber vacuum system with a background pressure in
the 10−10 mbar range is sufficient. Compared with the earlier experiments
in our group, we now use an even more compact vacuum system where the
chip is directly glued to a glass cell so that the substrate itself serves as one
wall of the vacuum chamber, as shown in Fig. 3.3. This technique, which
was invented by D. Anderson and J. Reichel [35], is further optimized here.
It eliminates the need for electrical feed through and intra-vacuum wiring to
the chip. In our current experiment the chip has 44 wires, some of which
carry microwave signals, so that compactness and easy access to the chip
wires is of great benefit.

65



3 Experimental setup and BEC preparation

3.1.1 Chip and glass cell assembly

The fabrication of the atom chip is described in chapter 2. After the chip has
been glued and bonded to the base chip, see Fig. 2.15, it is ready to be con-
nected to the glass cell in which the whole experiment takes place. Figure 3.3
shows chip and glass cell fully assembled. For time-of-flight imaging the chip
is oriented upside down so that the atoms fall away from the chip surface due
to gravity if the trap is switched off. The whole assembly is glued together
with the UHV-compatible epoxy 353ND from Epo-Tek (www.epotek.com).
We always outgas the glue prior to application (30 min at ≈ 10−2 mbar) to
remove air bubbles formed during mixing of the two components.

Figure 3.3: Atom chip and glass cell vacuum chamber.

The cubic glass cell (Hellma 704.027-BF, www.hellma-worldwide.de)1 has
an inner edge length of 3.0 cm. It is anti-reflection coated for 780 nm on the
outside. We have either used cells made of crown glass or Pyrex. Pyrex has
the advantage that its thermal expansion coefficient is smaller and better
matched to that of the AlN base chip [23]. The cell is open on one face,
this is where the chip will be attached. With a diamond drill we drill out
a 23 mm diameter hole in the opposite face which will be attached to a

1We use a modified version, without the company label printed on the cell.
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glass-to-metal adaptor (Caburn DN40CF Pyrex to stainless steel adaptor,
www.caburn.co.uk). We polish the edge of the glass end of the adaptor to
ensure it is flush with the glass cell face. After thorough cleaning, the two
parts are glued together. The epoxy is cured at 150 ◦C, with temperature
ramps of at least 1.5 h duration and ensuring a homogeneous temperature
distribution.

In the next step, the chip is glued to the open face of the glass cell. We
place the chip on a hot plate, supporting it with a metal block. Epoxy glue
is applied to the polished edges of the glass cell, which is then placed on top
of the chip in the desired place. We slightly rotate the glass cell with respect
to the wire layout to avoid interferences of the laser between the uncoated
inner glass cell walls during imaging. The glass cell is pressed against the chip
only by the weight of the glass-to-metal adaptor. The amount of glue used in
this step is important. A sufficient amount should be used to completely fill
the gap between the mating faces. On the other hand, using too much glue
should be avoided since excess glue forms a meniscus in the corner between
glass and base chip, which can obstruct optical access to the experiment chip
for beams parallel to the chip surface. If the experiment chip substrate is
very thin, a spacer substrate glued between the experiment and base chips
helps to avoid this problem. The curing schedule is critical. We first let
the epoxy cure for two days at room temperature, during which it shrinks
and turns yellow. The whole assembly is then covered with a metal cylinder
and heated with the hot plate. The epoxy is fully cured in this “oven” by
ramping within 1.5 h to a chip temperature of 150 ◦C, staying for 1 h at
this temperature, and then ramping back to room temperature within 1.5 h.
After this step the epoxy is hard and has a brown color. The glass cell is
now ready to be flanged to the vacuum system.

The choice of the right glue and the curing schedule are critical for achiev-
ing vacuum pressures sufficient for BEC. According to the manufacturer, the
epoxy 353ND shrinks a lot during cure. In earlier experiments this has led
to cracks in the glass cell or at the interface between glass cell and chip.
We now avoid this problem with the curing schedule described above which
lets the epoxy adjust slowly at room temperature. The final cure at high
temperature ensures good mechanical and vacuum properties. We have also
tried to use a room-temperature curing epoxy instead of 353ND, however,
some of the cells glued in this way had reduced vacuum long-term stability.
With our new curing recipe, we have up to now fabricated three vacuum cells
without any of the abovementioned problems.

In [130], a slow degrading of the vacuum has been reported for cells glued
with Epo-Tek 353ND. We do not observe this problem. One of our glass cells
glued with 353ND has been operated for more than four years at a pressure of
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< 5× 10−10 mbar. In [130] there is evidence that the reported short vacuum
lifetime of about one month is related to a very intense UV flash lamp used to
desorb atoms from the glass cell inner walls, which might degrade the epoxy.
We use light bulbs for Rb desorption with much less power in the UV (see
below), which seem to have no effect on the epoxy vacuum seal.

3.1.2 Vacuum chamber

Chip and glass cell are attached to a stainless steel ultrahigh-vacuum (UHV)
chamber made of 35 mm tubing with DN40CF flanges, see Fig. 3.4. During
the experiments, the pressure is maintained by a 40 l/s ion pump (Varian
VacIon Plus 40 Diode) and a Ti-sublimation pump. The Ti pump is turned
on about once every month by applying 35 A for 3× 1 min to one filament.
An ion gauge (Leybold Ionivac IE514 Extractor) reads the background gas
pressure. A viewport on the bottom of the chamber provides additional
optical access to the chip. Three Rb dispensers (see below) are attached to
an electrical feed through.

Figure 3.4: Vacuum chamber.

We bake out the vacuum system in two steps. First, the steel chamber
is baked for about ten days at 200 ◦C with a blind flange attached instead
of the glass cell. The ion pump is baked with the magnets in place. During
initial pump down and bake out, the chamber is pumped by a turbo pump.
After a pressure < 10−7 mbar has been reached, the ion pump is switched
on. During bake out we activate the Rb dispensers by slowly increasing
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3.1 Compact glass cell vacuum system

the current to 5.0 A and operating at this value for 5 min. This procedure
is repeated several times. A few 30 s long pulses to 6.0 A are applied as
well. The Ti filaments are cleaned by applying 35 A for 1 min, repeated
several times. During cool down of the chamber (one day), we continuously
run 3.0 A through the dispensers to avoid that contaminants accumulate
on them. After the system has reached room temperature and we have
turned on the Ti-sublimation pump once again, the ion gauge typically reads
3× 10−10 mbar.

We then flood the chamber with nitrogen and attach the glass cell. With
the glass cell in place, the system is pumped down and a quick helium leak
check is performed. Then it is baked out again for about ten days. Bake out
temperatures in this second step are 110 ◦C at the chip and glass cell, 125 ◦C
at the flange of the glass-to-metal adaptor, and 150 ◦C at the steel chamber.
We try to maintain a homogeneous temperature distribution over the chip
and glass cell and use slow temperature ramps (one day). The temperature
at the glass cell is ramped up first and cooled down last. We again operate
the dispensers and Ti filaments a few times as described above and leave the
dispensers on during cool down. The pressure the ion gauge reads after the
system has cooled down is almost identical to that after the first baking step,
typically 3× 10−10 mbar.

For our current experiments a further miniaturization of the steel part
of the vacuum system is not necessary and was not attempted. In [35] it is
shown that the vacuum system can be significantly miniaturized, and there
is now a commercial company selling portable vacuum systems for atom
chip experiments (www.coldquanta.com). This is very beneficial for future
applications of atom chips e.g. as portable atomic clocks or inertial sensors.

Rb dispensers

As a source of atomic Rb we use three Rb dispensers which are placed in-
side the glass-to-metal adaptor. They are spot welded to Kapton-coated
wires, which are connected to the electrical feed through and also serve as
mechanical support for the dispensers. Two dispensers from SAES getters
(Rb/NF/3.4/12 FT10+10, www.saesgetters.com) and one dispenser from Al-
vatec (Alvasource AS-RbIn-5-F, www.alvatec.com) are built into the chamber
for redundancy. The SAES dispensers contain Rb chromate mixed with a
reducing agent, the Alvatec dispenser contains a RbIn alloy. Both dispenser
types release atomic Rb together with additional contaminants (“dirt”) when
they are heated to a few hundred degrees Celsius by sending a current through
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them.2 Rb is released only above a certain threshold current, whose value
varies from one dispenser to the next and also depends on dispenser mount-
ing. It typically lies between 2.5 and 3.5 A for the SAES dispensers. In
the experiment, only one dispenser is used at a time, a few hundred mA
above its threshold. We have observed in several experiments that the ratio
of the Rb to dirt partial pressures increases, i.e. the dispenser improves if
it has been operated for several weeks. Note that the ion gauge does not
accurately measure the Rb pressure in the glass cell. Rb atoms stick to the
walls very well and the Rb pressure can therefore vary substantially within
the chamber. The quality of the vacuum near the chip is best determined by
magnetic trap lifetime measurements, see below.

Light induced atom desorption

At low atomic densities and distances larger than several tens of micrometers
from the chip surface, the lifetime of trapped atoms is limited by collisions
with background gas atoms. The background gas consists of Rb atoms, whose
partial pressure is a highly nonlinear function of the dispenser current, and
other atomic species, whose density shows a weaker dependence on dispenser
current. Both a large initial atom number and a long magnetic trap lifetime
are needed for successful evaporative cooling to BEC. This implies a com-
promise between high Rb pressure during MOT loading and low Rb pressure
during magnetic trap operation.

In a single chamber vacuum system this compromise is facilitated if the
Rb pressure can be quickly modulated in time. One option to achieve this
is to modulate the dispenser current [131]. However, it takes several tens of
seconds until the dispenser has completely cooled off after a current pulse,
which is longer than our experimental cycle of < 15 s. We therefore use
light induced atom desorption (LIAD) in some of our experiments, which
allows one to modulate the Rb pressure on a timescale of about one second
[129, 29, 132]. In this technique, light from a 35 W halogen lamp (Phillips
13165) desorbs Rb from the walls of the vacuum chamber. The pressure is
modulated by switching the lamp on and off. The Rb on the chamber walls is
continuously replenished by running the Rb dispenser at a moderate constant
current. Under typical experimental conditions, see below, the effect of the
halogen lamp is to increase the MOT atom number by a factor of 3–5 without
decrease in magnetic trap lifetime. This factor strongly depends on the Rb
background pressure which is set by the dispenser current. The MOT can

2We normally use one of the SAES dispensers for the experiment. We have not yet
thoroughly investigated the Alvatec dispenser, but first tests indicate that it unfortunately
does not work better than the SAES dispensers.
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3.2 Laser system

be loaded by LIAD even if the dispenser is turned off. On the other hand,
at very high dispenser current, LIAD is no longer effective in increasing the
MOT atom number. One drawback of using LIAD is that shot-to-shot atom
number fluctuations in the MOT are larger. Finally, we note that we have
successfully created BECs both with and without using LIAD.

Ioffe trap lifetime as a function of dispenser current

To characterize the vacuum in the glued glass cell, we measure the lifetime of
atoms in a Ioffe trap as a function of the dispenser current. Figure 3.5 shows
such a measurement with atoms in a Ioffe Z-trap generated by a wire current
of 2 A and a bias field of 10 G. The dispenser used for this measurement is
typically operated at a current of 3.0 A, where we load about 1× 107 atoms
into the MOT with the help of LIAD, see section 3.7. Under these conditions,
BEC preparation is possible without the need for carefully optimizing atom
number in each step of the experimental sequence.
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Figure 3.5: Magnetic trap lifetime in the glued glass cell as a function of
dispenser current.

3.2 Laser system

Magnetic traps for neutral atoms are not deep enough to capture atoms di-
rectly from a room-temperature vapor. Typical microtrap depths for 87Rb
atoms correspond to temperatures of the order of 1 mK. Efficient trap load-
ing therefore requires a laser-cooled atomic ensemble with a temperature in
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the microkelvin range [133, 134]. Chip-based magnetic traps which are suf-
ficiently tight to hold atoms against gravity form at distances . 1 mm from
the surface, where optical access from one half space is blocked by the chip.
We therefore use a mirror magneto-optical trap (mirror MOT) in the first
laser cooling stage, which can be operated sufficiently close to the surface
[27, 21]. The atoms are further cooled in optical molasses [135, 136] to a
temperature of 10 µK. To increase the loading efficiency, we optically pump
all atoms into a weak-field seeking state before we switch on the magnetic
trap. At the end of each experiment, the atoms are imaged by a laser beam
onto a CCD camera. The details of trap loading and imaging of the atoms
are described in more detail below. In this section I discuss the laser setup
used for this purpose. Figure 3.6 shows the laser beams entering the glass
cell.

Figure 3.6: Laser beams for cooling, optical pumping, and imaging. All
beams are guided to the experiment by optical fibers. Polarizing beam split-
ters (PBS), quarter wave plates (λ/4), cameras (CCD), and polarization of
the four MOT beams are indicated. RHP (LHP) corresponds to right (left)
handed polarization with respect to the beam propagation direction. The
current I in the “U”-shaped copper structure behind the chip is used in
combination with the homogeneous bias field Bb to generate the magnetic
quadrupole field for the first mirror MOT stage. The outline of the water-
cooled copper block is shown.
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3.2.1 Mirror MOT

In a MOT, radiation pressure forces provided by red detuned laser beams
result in viscous damping and cooling of the atomic motion. In addition, an
inhomogeneous magnetic field is applied to make the light forces position-
dependent and thus provide spatial confinement as well [137, 133]. The MOT
can cool and trap atoms directly from a room-temperature vapor [138, 139].
A standard MOT requires six laser beams on three perpendicular axes. This
configuration cannot be used to trap atoms close to the chip. A solution
which was developed in our group is the “mirror MOT” [27, 21], where two
of the laser beams are reflected from the chip surface, as shown in Fig. 3.6.
The resulting total light field is similar to that of a six-beam MOT. The
magnetic quadrupole field for the MOT can be generated by a “U”-shaped
wire on or behind the chip in combination with a homogeneous field, as
described in section 1.4.3. With a mirror MOT, the atoms can be trapped
at distances < 1 mm from the surface. This enables loading of the magnetic
microtraps without the need for magnetic transport by macroscopic coils.

The four mirror MOT cooling beams are circularly polarized and red
detuned with respect to the F = 2 → F ′ = 3 hyperfine transition of the
87Rb D2 line. Atoms in the MOT can be off-resonantly pumped by the
cooling laser via other excited hyperfine states to the F = 1 ground state.
To pump the atoms back into the cooling cycle, a repumping beam on the
F = 1 → F ′ = 2 transition is overlapped with the two cooling beams which
are reflected from the chip. The same beams used for the MOT are also used
(without the magnetic field) for sub-Doppler cooling in optical molasses.

Mirror on the chip surface

The chip surface has to be a highly reflective mirror for the mirror MOT. In
some of our experiments, the experiment chip is coated in a replica technique
[21] prior to wire bonding to the base chip. Either a homogeneous metal layer
or a dielectric transfer coating from O.I.B. Jena (www.oib-jena.de) is used.
This provides a very good mirror quality, although the wire structures are
not perfectly planarized and their topography is still faintly visible in the
reflected light. The disadvantage of this technique is that the additional
layer of glue and coating of > 10 µm thickness on top of the chip makes it
impossible to create traps with trap-wire distances . 10 µm. Furthermore,
the layer would act as a dielectric overlay for the guiding structures on the
microwave chip. For our most recent chips we have therefore chosen a layout
in which the upper gold wire layer itself serves as the mirror, see chapter 2.
In the chip center, the gaps between the wires are ≤ 5 µm wide. However,
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3 Experimental setup and BEC preparation

tapering of the microwave guides necessitates larger gaps in the outer chip
regions, cf. Fig. 2.15. We observe a strong distortion of the MOT laser beams
reflected from this chip. Nevertheless, the number of atoms trapped in the
MOT is sufficiently large for BEC experiments.

Copper block with water cooling and U-wire

To generate the magnetic quadrupole field in the first MOT stage of the
experiment, we use a “U”-shaped copper wire structure installed behind the
chip, see Fig. 3.6. This structure can carry large currents (at least several
tens of amperes). It replaces the bulky anti-Helmholtz coils used in the first
MOT stage in our earlier experiments [27, 21]. This reduces the size of the
apparatus without compromising MOT performance. Compared with on-
chip wires, the large copper structure allows for a MOT with more atoms
since it provides a magnetic field which is close to an ideal quadrupole in
a larger region of space [140]. The “U”-shaped conductor is integrated into
a water cooled copper block, which also serves as a heat sink for the chip.
It is attached to the back side of the base chip after vacuum bake out, see
Fig. 3.3, using heat-conductive paste and small drops of epoxy.

3.2.2 Diode laser system

Laser cooling, optical pumping, and imaging of the atoms requires laser light
on the D2 line of 87Rb at 780.2 nm. Several beams driving different hyperfine
transitions are needed, as shown in Fig. 3.7. This section briefly describes
the setup used to generate laser light at these frequencies. A more detailed
description can be found in [141].
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Figure 3.7: Level scheme of the 87Rb D2 line [64] and laser frequencies used
in our experiment.
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3.2 Laser system

All laser beams are derived from three frequency stabilized diode lasers
for which we normally use Sharp laser diodes (GH0781JA2C) with a nominal
output power of 120 mW.

The MOT cooling, imaging, and F = 2 → F ′ = 2 optical pumping beams
are derived from two lasers in master-slave configuration. The linewidth of
the master laser diode is decreased with an external grating in Littrow con-
figuration [142]. The laser is locked to the F = 2 → F ′ = (2, 3) crossover
resonance in a Rb vapor obtained by Doppler-free saturation spectroscopy
[143]. The error signal is generated in a lock-in technique by radio-frequency
modulation of the laser current [144]. It is fed back to the piezo actuator
controlling the grating position (integral path) and to the laser current (pro-
portional path). Stabilized in this way, the laser has a linewidth of a few
hundred kHz.

Part of the light of the master laser is used for the F = 2 → F ′ = 2
optical pumping beam (see below). The other part is frequency shifted by
a double-pass acousto-optic modulator (AOM) to near the F = 2 → F ′ = 3
transition. The frequency of this AOM can be adjusted to set the detuning of
the cooling and imaging beams from the atomic resonance. The double-pass
configuration minimizes the beam deflection due to the change in frequency.
The frequency shifted beam is injected into the slave laser diode, thus forcing
it to lase at the same frequency. From the slave diode, the cooling and
imaging light is derived. The master-slave setup has the advantage that the
slave laser does not need to be grating stabilized and thus provides higher
output power for the MOT beams. Furthermore, the beam pointing does not
change if the AOM frequency is changed.

The third laser provides light for the MOT repumping and F = 1 → F ′ =
1 optical pumping beams. It is stabilized in the same way as the master laser
and locked to the F = 1 → F ′ = (1, 2) crossover resonance.

All beams are sent through additional AOMs to set their frequencies and
for fast switching before they are guided to the experiment by polarization-
maintaining optical fibers. Mechanical shutters in front of the fibers are used
to completely block the beams during magnetic trapping.

• The MOT cooling light is split into the four beams required for the
mirror MOT and each beam is coupled into a separate fiber. After the
fibers, the beams are circularly polarized, have an e−2 beam diameter
of 12 mm, and a power of about 3.4 mW in each horizontal beam
and 8.5 mW in each of the two other beams. The frequency detuning
∆ = ω−ωa of the cooling and imaging beams from the F = 2 → F ′ = 3
resonance at frequency ωa can be varied from ∆ = −16 Γ to +7 Γ, where
Γ is the natural linewidth of the D2 line.
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• The MOT repumping beam is resonant with the F = 1 → F ′ = 2
transition. It is coupled into the fibers of the two MOT beams which
are reflected from the chip. The power after each fiber is 1.2 mW.

• The imaging beam is split up and coupled into two separate fibers
for imaging on two independent axes. After the fibers, both beams are
circularly polarized and have an intensity of typically I = 0.1 Is, where
Is is the saturation intensity of the |F = 2,mF = 2〉 → |F ′ = 3,m′

F =
3〉 transition.

• The two beams for optical pumping are resonant with the F = 2 →
F ′ = 2 and F = 1 → F ′ = 1 transitions, respectively. They are coupled
into one of the imaging beam fibers. After the fiber, the F = 2 → F ′ =
2 beam has an intensity of 2 mW/cm2, the F = 1 → F ′ = 1 beam is
about two orders of magnitude weaker.

Our laser system uses standard optical components and is already very simple
and reliable. We have made no effort to further miniaturize it. Such a
miniaturization has been demonstrated in [145], leading to a portable atom
chip setup which weighs 150 kg, fits into a volume of 1 m3, and runs on
batteries.

3.3 Magnetic field coils, current sources, and

magnetic shielding

Magnetic field coils

The glass cell is surrounded by three pairs of coils which generate homoge-
neous magnetic bias fields, see Fig. 3.1. The largest coils are for the bias field
along y and have 60 windings of copper wire and an inductance of 0.67 mH
per coil. The coil pair generates a field of 93 G at a current of 10 A. To
reduce thermal drifts, the coils are water cooled from the outside. In favor
of a more compact setup the bias coils could be replaced by suitable conduc-
tors, placed, e.g., on the base chip. This would allow for faster switching and
probably also improve magnetic field stability, since the relative position of
the wires is fixed by the substrate. However, the gradients of the wire fields
would necessitate different calibrations of the generated bias field at different
locations on the chip. For convenience we therefore use external coils as long
as the stability and switching requirements are met.
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Current sources

The magnetic field coils and the wires on the chip are driven by ultra-stable
current sources. We have developed our own bipolar current sources which
provide a maximum output current of Im = ±3 A into a floating load with
RMS current noise ∆I/|Im| = 5 × 10−6 in a frequency band of 0.3 Hz –
200 kHz. The current drifts on a time scale of 1 s – 1 h by 1 × 10−5 |Im|
peak-to-peak. The current through a resistive load of 1 Ω, a typical value for
a large chip wire, can be switched with full amplitude in 15 µs (10% - 90%
of step size). A second version of the current sources provides a maximum
output current of Im = ±5 A. It is optimized for inductive loads and switches
5 A through a coil with an inductance of 0.9 mH in 0.6 ms. Details can be
found in [141]. Where current stability and switching time are less critical,
we use commercial current sources from FuG (www.fug-elektronik.de) and
High Finesse (www.highfinesse.com).

Magnetic shielding

In the experiments described in chapter 4 we found that ambient magnetic
field noise is one of the factors limiting the coherence time of internal-state
superpositions. Furthermore, the atom number and temperature at the end
of the RF-induced evaporative cooling process are sensitive to the magnetic
field in the trap center [141, 146]. Ambient magnetic field noise leads to atom
number fluctuations in the BEC, which prevented the reproducible prepara-
tion of BECs with atom numbers significantly below 103 in our experiments
up to now.

To improve magnetic field stability in future experiments, our most recent
apparatus has a removable magnetic shielding, see Fig. 3.1. The shielding is
made of a single layer of high permeability material. Without shielding, we
measure erratic drifts of the ambient magnetic field on a time scale of 1 min
with an amplitude of typically 25 mG peak-to-peak.3 Inside the shielding,
the amplitude of the drift is reduced to 0.3 mG peak-to-peak [141].

3.4 Radio-frequency evaporative cooling

As of now, efforts to reach BEC by laser cooling techniques alone were not
successful, and all BEC experiments rely on evaporative cooling in the final
cooling stage [146]. Forced evaporative cooling of the atoms is performed by
slowly lowering the trap depth. This allows atoms in the high energy tail of

3The drift is most likely caused by the nearby subway line.
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the thermal distribution to escape the trap. The remaining atoms continu-
ously rethermalize via elastic collisions to lower and lower temperatures. A
requirement for evaporative cooling is that the collisional re-thermalization
time of the atoms in the trap is much shorter than the trap lifetime. Tight
microtrap potentials allow for very high atomic densities and thus high col-
lision rates. This speeds up evaporative cooling, and consequently shorter
trap lifetimes can be tolerated. This feature enables BEC experiments in the
glued glass cell vacuum chamber, where the trap lifetime is of the order of a
few seconds.

In a magnetic trap, evaporative cooling can be conveniently performed by
driving spin-flip transitions to untrapped states with an oscillating magnetic
field at radio frequency. Due to the inhomogeneous static magnetic field in
the trap, the spin flips are energy selective. Atoms escape from the trap at
the position where the RF is in resonance with the Larmor frequency in the
local magnetic field. By sweeping the RF from high to low frequencies, the
effective trap depth is lowered.

In our experiment, we apply the RF to a simple 5-turn coil of 3 cm
diameter which is placed next to the glass cell. Several RF sweeps generated
by different signal generators can be concatenated. Typical frequencies are
in the range of 30− 1 MHz, sufficient power is provided by a 1 W amplifier.

3.5 Experiment control

The whole experiment is controlled by a computer equipped with several
National Instruments digital and analog output cards (two PCI-6733, one
PCI-6723, and one PCIe-6259). In total, 20 analog channels with a resolu-
tion of 16 bit, 32 analog channels with a resolution of 13 bit, and 48 digital
channels are available. A time step size of 50 µs is usually sufficient in the ex-
periment. The experimental sequence is composed and written into memory
with a software originally developed by J. Reichel. Two additional comput-
ers control image acquisition of the CCD cameras. On these computers, a
software written by W. Hänsel was used in the earlier experiments, now we
use a MATLAB-based application written by P. Böhi.

3.6 Absorption imaging of small numbers of

atoms

In our experiments, all data is taken by resonant absorption imaging [61].
In this technique, the shadow cast by the atoms in a beam of resonant laser

78



3.6 Absorption imaging of small numbers of atoms

light is imaged onto a CCD camera, see Fig. 3.8. The measurements reported
in this thesis are performed on ensembles with small atom number N ∼
103 − 104, so that low noise imaging is required. Future experiments will
require detection of even smaller ensembles, with a statistical uncertainty in
the atom number determination which is smaller than

√
N , so that effects

like atom number squeezing are observable. In this section I describe an
imaging system which meets this requirement.

CCD

atoms

imaging beam

glass cell

copper block

Figure 3.8: Schematic picture of absorption imaging.

Atom-light interaction

The atoms act as a medium of complex refractive index nr =
√

1 + nα/ε0 for
the imaging beam, where n is the density distribution and α the polarizability
of the atoms. We image with σ+ light on the cycling transition |F = 2,mF =
2〉 → |F ′ = 3,m′

F = 3〉, which can be described as a two-level system.
Assuming nr − 1 � 1, the refractive index near resonance can be expressed
as [61]

nr = 1 + n · 3λ3

8π2
· i− δ

1 + δ2 + I/Is
, (3.1)

where δ = 2(ω − ωa)/Γ is the detuning in half linewidths, Is = ~Γω3
a/12πc2

is the saturation intensity of the transition, and λ = 2πc/ωa. The imaginary
part of nr gives rise to absorption of the probe light.4 The collimated imag-
ing beam with transverse intensity distribution I0(x, y) is attenuated by the
atomic cloud to I(x, y) = I0(x, y) exp[−D(x, y)], where

D(x, y) =

∫
σ(x, y, z)n(x, y, z)dz (3.2)

4The absorbed light is reemitted approximately isotropically. This emitted light could
be used for fluorescence imaging. In the analysis of absorption images, the reemitted
light is neglected, since only a small fraction of it is collected by the imaging optics. The
phase shift of the light due to the real part of nr could also be used for imaging, but the
maximum achievable signal is lower than for resonant absorption imaging [61].
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is the optical density of the atoms and

σ =
σ0

1 + δ2 + I/Is
, with σ0 =

3λ2

2π
, (3.3)

is the scattering cross section, which in general depends on position through
I. The largest signal is obtained by imaging on resonance, δ = 0. We usually
choose I � Is so that σ ≈ σ0 is a constant and the atomic column density
can be determined as

ñ(x, y) ≡
∫
n(x, y, z)dz = D(x, y)/σ0. (3.4)

The intensity distribution of the light in the plane of the atoms is imaged
onto a CCD camera. In each run of the experiment, the camera takes two
pictures, one with atoms, Fa, and one without atoms, Fr. Taking two pictures
allows one to compensate for inhomogeneities in the intensity distribution of
the imaging beam [61]. A third picture Fd taken about once a day without
imaging light accounts for stray light and electronic offsets. The optical
density is determined pixelwise as

D ≡ − ln[I/I0] = − ln[(Fa − Fd)/(Fr − Fd)]. (3.5)

From D, the number of atoms located in an area A in the plane of the atoms
is calculated by summing over the pixels (i, j) corresponding to that area,

N ≡
∫

A

ñ(x, y)dxdy =
A

σ0

∑
(i,j)∈A

Dij. (3.6)

Imaging setup

We use the CCD camera Ap1E from Apogee, equipped with a Kodak sensor
(KAF-0401E). The CCD has a quantum efficiency Qe = 0.35 at 780 nm, a
RMS readout noise of ∆Nr = 15 e−/pixel, and an electronic gain of g =
8 e−/count. The pixel size is 9 µm × 9 µm. Two anti-reflection coated
achromatic lenses with 2.5 cm diameter form the image on the CCD. The
magnification is 3.5, so that a single pixel corresponds to an area Ap =
(2.6 µm)2 in the plane of the atoms. Two lenses provide higher spatial
resolution than a single lens since the lenses we use are optimized for infinite
conjugate ratio. The first lens is placed at a distance of 12 cm from the
atoms. The measured spatial resolution of our imaging system is xi = 8 µm.

The imaging beam is usually oriented parallel to the chip surface. To
image atoms at small atom-surface distance, the beam can be tilted by a
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few degrees towards the surface, so that both the atoms and their mirror
image in the chip surface are visible [147]. This allows one to determine the
atom-surface distance, which corresponds to half the distance between the
two images, see section 4.6.

Figure 3.9 shows an absorption image of a BEC containing 2.51 × 103

atoms after 7 ms of time-of-flight (for BEC preparation, see section 3.7). The
image is taken with an imaging pulse of intensity I = 0.04 Is and duration
τ = 200 µs. The small ensembles we detect in time-of-flight always have
D < 1.

200 µm

0.6

0.4

0.2

0.0

optical
density

Figure 3.9: Absorption image of a BEC. The noise on the image is domi-
nated by photon shot noise. The cross sections are 3 pixels wide.

Noise in absorption imaging

The predominant source of noise in most absorption imaging setups are in-
terference fringes in the imaging beam with high spatial frequency, caused
by diffraction from the chip surface, from dirt on the optics, and by reflec-
tions from the various optical surfaces in the beam path. In the presence
of mechanical vibrations, these fringes are cancelled out incompletely by the
normalization procedure described above, because their position is fluctuat-
ing between Fa and Fr. We have put substantial effort into eliminating this
source of noise in our experiment. To suppress vibrations, all optical elements
are supported by robust mounts, the mechanical shutter and the fan of the
camera are disabled. The dark count rate of the CCD is low enough so that
it does not have to be cooled below ambient temperature. We minimize the
number of reflecting surfaces by taking out all uncoated windows inside the
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3 Experimental setup and BEC preparation

camera.5 Fringes due to reflections from the glass cell are avoided by tilting
the imaging beam with respect to the cell windows. Although there are still
some fringes in the imaging beam, probably caused by the lens surfaces, they
are stable and do not show up in the optical density.

The remaining noise in Fig. 3.9 is actually dominated by photon shot
noise, which is the fundamental limitation of signal to noise in absorption
imaging. On average, each pixel is hit by

〈Np〉 = IApτ/~ω = 3.5× 103 (3.7)

photons, creating
〈Ne〉 = Qe · 〈Np〉 = 1.2× 103 (3.8)

electrons (all numbers given are for the parameters of Fig. 3.9). The RMS
noise in the detected number of electrons per pixel is

∆Ne =
√

(∆Ns)2 + (∆Nr)2 + (∆No)2 ≈ ∆Ns =
√
〈Ne〉 = 35, (3.9)

where we have assumed that photon shot noise ∆Ns dominates over readout
noise ∆Nr and other noise contributions ∆No, as is the case for our imaging
system. For D < 1, the images Fa and Fr show relative fluctuations in
the counts per pixel6 of comparable magnitude, ∆Fa/〈Fa〉 ≈ ∆Fr/〈Fr〉 ≈
∆Ne/〈Ne〉. The expected noise in the optical density on a single pixel is thus

∆D =
√

2 ·∆Ne/〈Ne〉 =
√

2/〈Ne〉 = 0.04, (3.10)

where the factor
√

2 accounts for the uncorrelated shot noise on Fa and Fr.
We indeed observe noise with ∆D ≈ 0.04 on the camera pixels. The observed
∆D corresponds to noise in the detected atom number per pixel of

∆N = (Ap/σ0)∆D = 1.0. (3.11)

If we integrate over k pixels, which corresponds to replacing the area Ap

by A = kAp in Eqs. (3.7–3.11), the noise increases. For photon shot noise

limited atom detection, one expects ∆N ∼
√
k. We observe a somewhat

faster increase with k for k > 10, indicating residual technical noise. The
actual uncertainty in the detected atom number depends on how well the
atoms are localized. For the cloud in Fig. 3.9, which is detected in time-of-
flight, we have k = 410 and a statistical uncertainty in the detected atom

5To protect the CCD, the window directly in front of it should be replaced with an
anti-reflection coated window rather than just taken out.

6Note that the amplifier gain g enters the number of counts registered on the pixels as
Nc = Ne/g, but drops out of the optical density or signal-to-noise, because it amplifies all
signals in the same way.
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number of ∆N = 30. This uncertainty is already somewhat smaller than the
uncertainty of

√
N = 50 which would be required for the detection of atom

number squeezing in the BEC of Fig. 3.9.
The noise in atom number can be reduced by detecting the cloud directly

after release from the trap, so that it is better localized. However, the ex-
pansion of the cloud during to the imaging pulse still has to be taken into
account. The area over which the atoms are spread out at the end of the
pulse can be estimated to

A = x2
i + x2

0 + (v0τ)
2 +

σ0I

3~ω
v2

rτ
3, (3.12)

where xi is the spatial resolution of the imaging system, x0 is the initial size
and v0 the velocity spread of the cloud. The last term takes into account
the transverse blurring of the cloud due to the random photon recoils during
scattering of imaging light [61, 148]. On average, each photon scattering event
changes the atomic velocity by vr = h/mλ. Another issue is the displacement
of the atoms along the imaging beam, d = (σ0I/2~ω)vrτ

2, which has to
be smaller than the depth of focus of the imaging system. Taking these
effects into account, the statistical uncertainty in the detected atom number
is ∆N = 4 for a small BEC imaged with our setup directly after release
from the trap, with I/Is = 0.04 and τ = 200 µs which yields A = (12 µm)2.
Systematic errors in atom number determination due to uncertainty in δ or
I are estimated to a few percent of the detected N .

A theoretical optimization of signal to noise shows that resonant absorp-
tion imaging can barely reach single atom detectivity [148]. Improvements
towards this goal are to use a lens which provides higher spatial resolution,
a CCD with higher Qe, and a shorter imaging pulse at I ' Is. In this case,
a careful calibration of intensity is necessary [149].

3.7 Experimental sequence for BEC

In this section I describe a typical experimental sequence for BEC prepara-
tion. The quoted numbers are taken from our first BEC in a glued glass cell.
The chip used in this experiment was fabricated by B. Lev [111]. Similar ex-
perimental sequences are employed in our other experiments. For a detailed
discussion of BEC on an atom chip, see also [129, 29].

3.7.1 Mirror MOT

In the first stage of the experiment, we collect atoms in a mirror MOT from
a Rb vapor. A constant Rb background pressure is maintained by one of
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3 Experimental setup and BEC preparation

the SAES dispensers at a continuous current of typically 3.0 A. The ion
gauge reads 5.7 × 10−10 mbar while the dispenser is on. The choice of the
dispenser current involves a compromise between magnetic trap lifetime and
atom number. At this dispenser current, we observe magnetic trap lifetimes
of typically 6 s. The experiment involves three MOT stages:

1. The first MOT is optimized to collect as many atoms as possible. We
therefore operate it at a relatively large atom-surface distance of 3 mm.
The magnetic field gradient is ≈ 10 G/cm in the strongest direction,
the detuning of the cooling beams from resonance is ∆ = −1.9 Γ. We
modulate the Rb pressure by LIAD with a halogen lamp. The light is
switched on at the beginning and switched off again 0.8 s before the
end of the MOT loading stage. After 8 s of loading in this way, the
MOT typically contains 1.0× 107 atoms.

The quoted MOT atom number was obtained on a chip with a dielec-
tric mirror coating, the magnetic field gradient of the first MOT was
provided by external coils. We achieve similar MOT atom numbers on
the microwave atom chip (Fig. 3.3) where the upper gold wire layer
serves as the mirror and the “U”-shaped copper structure provides the
quadrupole field [141]. If instead a smaller “U”-shaped wire on the chip
is used for the first MOT, the atom number is smaller.

2. In the second MOT stage the atoms are quickly moved closer to the chip
surface. We switch off the quadrupole field of the first MOT and switch
on a quadrupole field generated by a current in a “U”-shaped wire on
the base chip in combination with a bias field (cf. Fig. 1.5). The wire is
1 mm wide and the length of the central part of the “U” is 1 cm. Using a
chip wire at this stage has the advantage that the MOT position is well
defined with respect to subsequent magnetic traps. During magnetic
field switching, the laser beams are turned off for 2 ms. After switching,
the MOT is ramped within 25 ms to a distance of 0.6 mm from the
surface by decreasing the wire current from 7.0 A to 2.4 A at a bias
field of 3.1 G. This also compresses the MOT by increasing the field
gradient. The MOT steady-state atom number at the new position is
much lower than the number of atoms which can be transferred from
the first MOT, therefore the duration of this stage and the next should
not exceed several tens of ms.

3. In the third MOT stage, the MOT density is increased and the tem-
perature is decreased by increasing ∆ by a few Γ for the duration of a
few milliseconds.
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3.7.2 Optical molasses

At the end of the MOT stage, the laser beams and all magnetic fields are
switched off. After the magnetic fields have decayed, we switch the cooling
and repumping beams back on for a 4 ms long stage of optical molasses
cooling, at lower intensity of the cooling light and a detuning of ∆ = −12 Γ.
This reduces the temperature of the atoms to 10 µK.

Low molasses temperatures can only be reached if the ambient magnetic
fields are properly zeroed. This is achieved by a variant of Hanle spectroscopy.
Our technique involves absorption imaging of the atoms with the circularly
polarized F = 2 → F ′ = 2 optical pumping beam. The repumping light is
turned on simultaneously to avoid optical pumping to F = 1. We scan the
magnetic field components transverse to the pumping beam with a constant
longitudinal field applied. The detected atom number has a minimum if the
transverse components are zero because of optical pumping of the atoms into
a dark state. We then scan the longitudinal field component with a constant
transverse field applied. The detected atom number has a maximum at
zero longitudinal field because the dark state ceases to exist. After a few
iterations of this process, the ambient fields are zeroed to about 20 mG,
which corresponds to their temporal drift in our laboratory.

3.7.3 Optical pumping

Before we switch on the magnetic trap we optically pump the atoms into the
desired hyperfine sublevel.

• To prepare the atoms in |F = 2,mF = 2〉, we switch on the F =
2 → F ′ = 2 pumping light and the repumping light simultaneously for
200 µs. During pumping, a magnetic field of 1.5 G is applied, whose
direction is chosen such that the pumping beam has σ+ polarization
with respect to the field.

• Alternatively, the atoms can be prepared in |F = 1,mF = −1〉 by
switching on the F = 2 → F ′ = 2 and F = 1 → F ′ = 1 pumping
beams simultaneously, but not the repumping light. In this case, the
magnetic field is oriented such that the beams have σ− polarization.

The pumping efficiency is close to unity for |2, 2〉 and somewhat lower for
|1,−1〉, the scattering of photons during pumping increases the temperature
of the atoms to 13 µK. At this stage, the cloud contains about 80% of the
atoms from the first MOT.
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3 Experimental setup and BEC preparation

3.7.4 Magnetic traps and evaporative cooling

After optical pumping, the magnetic trapping fields are turned on fast com-
pared to the atomic motion but slow compared to the Larmor precession
frequency, so that the atoms remain spin-polarized. We maximize the trans-
fer efficiency by optimizing the position of the last MOT. For small numbers
of atoms in |2, 2〉, the transfer efficiency is above 90%, indicating a very high
optical pumping efficiency. For larger atom numbers, the transfer efficiency
drops, because the size of the laser-cooled atomic cloud exceeds the magnetic
trap volume. For the above parameters and atoms in state |2, 2〉, the first
magnetic trap contains 5.4 × 106 atoms after a holding time of 200 ms at
a distance of 500 µm from the surface. In the experiment described here,
the first trap was a quadrupole trap,7 generated by a current of 3 A in a
“U”-shaped wire of 1.6 mm length and a bias field of 8 G. Within 300 ms,
about 5× 106 atoms were transferred from this trap into a Ioffe Z-trap (trap
Z1, see Fig. 3.10 and Tab. 3.1), where they had a temperature of 70 µK. In
our other experiments, comparable atom numbers were directly loaded into
a similar Ioffe Z-trap.
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Figure 3.10: (a) Wire layout of the Ioffe traps used for evaporative cooling.
The Z-wire is 50 µm wide. The long Z-wire has a section of 20 µm width
at the position where the dimple wires cross. The dimple trap is formed by
three 3 µm wide parallel wires, each carrying a current ID/3. All wires are in
a single gold layer of 4 µm thickness on an AlN substrate. (b) Trapping po-
tentials for some of the traps listed in Tab. 3.1. The magnetic field minimum
in the yz-plane is shown as a function of x. In the yz-plane, the trapping
potentials are harmonic near the trap center.

7This has only historical reasons. The chip was originally designed for a different
purpose.
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Step ∆t II ILI ID Bb,x Bb,y d f1 f2 f3 B0 νRF

[ms] [A] [G] [µm] [kHz] [G] [MHz]
Z1 10 2 0 0 0 10.8 350 0.028 0.40 0.41 1.2
ramp 250 2 0 0 ↓ ↓
Z2 1500 2 0 0 0.8 55 70 0.017 8.6 8.6 1.1 30 → 8.5
ramp 150 ↓ 0 0 ↓ ↓
Z3 3 1 0 0 0.4 20 100 0.013 3.2 3.3 0.6
ramp 50 ↓ ↓ 0 0.4 20
long Z 1 0 1 0 0.4 20 100 0.009 3.4 3.4 0.5
ramp 150 0 1 ↓ ↓ 20
dimple1 1000 0 1 0.3 5.5 20 90 0.42 4.1 4.1 0.5 4 → νstop

ramp 50 0 1 0.3 5.5 ↓
dimple2 5 0 1 0.3 5.5 8 170 0.12 0.37 0.42 4.1

Table 3.1: Sequence of Ioffe traps created with the wires in Fig. 3.10.
Duration ∆t, trap-wire distance d, trap frequencies fi, magnetic field in the
trap center B0, and radio frequency for evaporative cooling νRF shown in
addition to wire currents and bias fields. Arrows indicate smooth parameter
ramps. All magnetic field ramps are adiabatic with respect to the atomic
motion.

Evaporative cooling in a dimple trap

Evaporative cooling to BEC is performed in the sequence of Ioffe traps shown
in Fig. 3.10 and Tab. 3.1. The goal of this sequence is to reach the BEC
phase transition directly in the dimple trap where subsequent experiments
take place. If the BEC was prepared at a different location on the chip (e.g.
in the trap Z2) and then transported into the dimple trap, problems with
heating and excitation of dipole oscillations would arise. Direct loading of the
dimple trap with laser-cooled atoms is not an alternative, because the dimple
is created by very small wires and its trapping volume is too small to capture
a sufficiently large number of atoms. Our solution is to first capture atoms
in a large-volume Z-trap and pre-cool the ensemble in a first evaporative
cooling stage until it is cold enough to fit into the dimple. After the transfer,
a second evaporative cooling stage cools the atoms in the dimple and thus
prepares the BEC at the desired location.

In detail, the sequence proceeds as follows: After the atoms have been
captured in trap Z1, the trap is compressed adiabatically to increase the
elastic collision rate and thus enable fast evaporative cooling. The initial
temperature of the ensemble in the tight trap Z2 is around 450 µK. A first
RF sweep for evaporative cooling is applied. At the end of this sweep, 8×105

atoms are left, the temperature is 130 µK. The Z-trap is decompressed (Z3),
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mainly to decrease the current in the Z-wire. Subsequently, the wire current
is switched from the Z wire to the long Z wire (long Z). The decrease in wire
current is necessary because the long Z wire has a narrow section and cannot
carry currents as high as the Z wire. The narrow section of the long Z wire
is crossed by wires which can be used to create the dimple trap. After the
dimple has been turned on (dimple1), a second RF cooling sweep empties
the plateau-like part of the potential and transfers all atoms into the dimple.
BEC is reached if the final RF frequency νstop of this sweep is lowered to
about 70 kHz above the dimple trap bottom.

3.7.5 Time-of-flight and absorption imaging

The dimple is decompressed in order to reduce the trapping frequencies (dim-
ple2) before the atoms are released from the trap by switching off all wire
currents. After a few ms of ballistic expansion, the atoms are imaged by ab-
sorption imaging in a homogeneous bias field of 8 G. Because of the lower trap
frequencies in the final trap, it is easier to switch off the trap fast compared
to the inverse of the trapping frequencies. In this way, images taken di-
rectly after release reveal the atomic density distribution in the trap. Images
taken after a time-of-flight which is long compared to the inverse trapping
frequencies reveal the momentum distribution of the atoms.

The ground hyperfine states F = 1 and F = 2 can be imaged selectively.
State F = 2 can be imaged directly with the σ+-polarized F = 2 → F ′ = 3
imaging beam. Atoms in the magnetic sublevel mF = 2 scatter photons
with maximum Clebsch-Gordan coefficient on the cycling transition to |F ′ =
3,m′

F = 3〉. Atoms in other magnetic sublevels are first optically pumped
into mF = 2. For convenience we sometimes use a single pulse of imaging
light for both optical pumping and imaging. This works if the number of
photons scattered by each atom is much larger than one and the magnetic
field is not larger than a few Gauss. We usually use an imaging pulse of
200 µs duration with an intensity of I = 0.1 Is. To detect the state F = 1,
the atoms are first transferred to F = 2 by a short pulse of repumping light
and then imaged as described for F = 2.

3.7.6 Observation of Bose-Einstein condensation

Figure 3.11 shows absorption images of the BEC phase transition in the glued
glass cell vacuum chamber, obtained with atoms in state |F = 2,mF = 2〉.
BEC reveals itself in the sharp increase in the optical density below Tc,
in the bimodal velocity distribution of the partly condensed cloud, and in
the anisotropy of the velocity distribution of the BEC in contrast to the
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isotropic velocity distribution of the thermal cloud [61]. The images are
taken after 15 ms of time-of-flight, the temperature is adjusted by the value
of νstop. We observe BEC at a critical temperature of Tc = 1.5 µK in an
ensemble of 9×103 atoms. Temperatures are quoted for the “dimple1”-trap.
Using the calculated trapping frequencies from Tab. 3.1, we expect a critical
temperature of 1.8 µK from Eq. (1.18), which is valid for a non-interacting
gas. If we include corrections due to interactions and finite-size effects [70],
we expect Tc = 1.5 µK, which is precisely what we observe. The main axes
of the elliptic BEC cloud in the absorption image reflect the orientation of
the main axes of vibration in the final magnetic trap, which are tilted with
respect to gravity.

T = 2.1 µK T = 1.4 µK T = 0.7 µK
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Figure 3.11: Absorption images of the BEC phase transition observed in
the glued glass cell vacuum chamber. The difference in νstop between the
pictures is 40 kHz. Left: isotropic cloud of a thermal ensemble at T > Tc.
Center: ensemble just below the phase transition, T . Tc, showing a bimodal
velocity distribution. Right: BEC of 3.5 × 103 atoms without discernible
thermal component. The anisotropic expansion of the BEC is visible. The
temperature of this “pure” BEC has been extrapolated from an observed
linear dependence of T on νstop. Gravity points downward in the picture.

The presented sequence is taken from our first experiment in which we
obtained BEC in a glued glass cell vacuum chamber. Similar wire structures
and sequences have been used in the experiments of chapter 4 to prepare
the atoms in the trap for coherence measurements close to the surface, and,
more recently, on the microwave atom chip to prepare a BEC in a trap near
the microwave guiding structures. The main difference in these experiments
is that the atoms are magnetically trapped in state |1,−1〉 instead of |2, 2〉.
For this we use magnetic traps with similar trap frequencies and potential
gradients as described here. Because of the smaller magnetic moment of
|1,−1〉, which is only µB/2 compared with µB for state |2, 2〉, this requires
stronger magnetic field gradients and curvatures, which we achieve with a
combination of higher wire currents and bias fields and traps at smaller atom-
surface distance.
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Chapter 4

Coherence near the surface: an
atomic clock on a chip

In this chapter I report on experiments in which ultracold atoms are manip-
ulated coherently on an atom chip. The atoms are prepared in a coherent
superposition of two hyperfine ground states which are both magnetically
trappable and very robust against magnetic-field induced decoherence. With
a thermal ensemble close to quantum degeneracy we perform Ramsey spec-
troscopy in a magnetic chip trap and study the effect of the chip surface on
coherence and trap lifetimes. Coherence and trap lifetimes exceeding 1 s are
observed with atoms at distances of d = 5 − 130 µm from the microchip
surface. For d < 5 µm, the atoms are lost in the Casimir-Polder surface po-
tential. The coherence lifetime in the chip trap is independent of d within our
measurement accuracy, and agrees well with the results of similar measure-
ments in macroscopic magnetic traps. The long coherence lifetime allows us
to demonstrate the first application of an atom chip. In a proof-of-principle
experiment, we realize a chip-based atomic clock and measure its frequency
stability to 1.7× 10−11 (τ [s])−1/2.

Some of the results reported in this chapter were published in [87].

4.1 Magnetically trappable “qubit” or “clock”

states

The ability to create and manipulate superpositions of internal states of
the trapped atoms is essential for atom chip applications. Take quantum
information processing as an example [34]. In most of the proposed schemes,
two internal states |0〉 and |1〉 of the atom serve as qubit states. In order to be
able to perform a large number of gate operations, long coherence lifetimes of
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4 Coherence near the surface: an atomic clock on a chip

the superposition states α|0〉+β|1〉, |α|2+ |β|2 = 1 are required and therefore
decoherence processes have to be avoided.1 As another example, consider an
atomic clock, where the transition frequency ν10 between the internal states
is used as a frequency reference. The coherence lifetime yields an upper limit
on the interrogation time. This, in turn, limits the spectral resolution with
which ν10 can be determined.

Achieving long coherence lifetimes with trapped atoms is complicated by
the fact that trapping relies on the sensitivity of atomic energy levels to exter-
nal fields. Technical, thermal, and quantum-mechanical fluctuations of these
fields can thus disturb the energy levels and lead to decoherence. Further-
more, a trap requires non-uniform fields, which leads to spatially dependent
energy shifts and thus to inhomogeneous broadening of the transition for
trapped ensembles. A further complication in the case of trapped ensem-
bles are collisional losses and energy shifts, which scale with density and are
therefore much more severe in traps than in atomic fountains or beams. In
addition to these decoherence mechanisms, which are also present in macro-
scopic traps [84], atoms in chip traps can potentially suffer from a reduction
of trap and coherence lifetimes due to interaction with the surface of the
chip, as described in section 1.9.

In order to obtain long coherence lifetimes with magnetically trapped
atoms near the chip surface, we choose the |0〉 ≡ |F = 1,mF = −1〉 and
|1〉 ≡ |F = 2,mF = 1〉 hyperfine levels of the 87Rb ground state for our
experiments (Fig. 4.1). This state pair, which has previously been used
for precision spectroscopy in macroscopic magnetic traps [84], has unique
properties which greatly suppress the effects mentioned above and thus make
it particularly well suited for the use as “qubit” or “clock states”.

Both states are magnetically trappable, and the magnetic moments of the
two states are approximately equal. As shown in section 1.2.2, the Breit-Rabi
formula predicts that at a magnetic field of Bm = 3.229 G, both states ex-
perience the same first-order Zeeman shift and the remaining magnetic field
dependence of the transition frequency ν10 is minimized (see also Fig. 4.2
below). In all of our experiments, we therefore adjust the field in the cen-
ter of the trap to Bm. This greatly reduces spatial inhomogeneities of ν10

in the trap, since both states experience the same trapping potential to a
good approximation. Furthermore, superpositions of this state pair are par-
ticularly robust against decoherence due to magnetic field noise, because,
to lowest order, this only leads to common-mode shifts. This suppression

1Here we use the term “decoherence” for any process that disturbs the relative phase
of the states |0〉 and |1〉 in the superposition in an experimentally uncontrolled way. For
a discussion of the various physical mechanisms which can lead to decoherence in our
experiment, see below.
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Figure 4.1: Hyperfine states of 87Rb used for the coherence experiments.
The approximate microwave and radio frequencies used to drive the two-
photon transition between the qubit states |0〉 and |1〉 are indicated.

is very important for our experiments, considering that technical magnetic
field noise is usually one of the dominant sources of decoherence for magnetic-
field sensitive states [150], and thermal magnetic near-field noise is a relevant
atom-surface coupling mechanism in the regime of distances studied here (cf.
section 1.9). A further advantage in using 87Rb for the experiments is that
collisional losses in superpositions of different spin states are greatly reduced
compared with other alkali atoms (cf. section 1.8).

4.2 The two-photon transition

Coherent internal-state manipulation is achieved by coupling |0〉 and |1〉
through a two-photon microwave-radio frequency transition, as shown in
Fig. 4.1. The microwave frequency νmw = ωmw/2π is typically detuned
δint = ∆int/2π = 1.2 MHz above the |F = 2,mF = 0〉 intermediate state.
The radio frequency νrf = ωrf/2π can be adjusted to set the detuning

∆ = ωmw + ωrf − ω10 (4.1)

of the two-photon drive from the two-photon resonance at frequency ν10 =
ω10/2π. If the Rabi frequencies Ωmw and Ωrf of the microwave and radio fre-
quency single-photon transitions satisfy Ω2

mw,Ω
2
rf � ∆2

int and the detunings
satisfy |∆| � |∆int|, the two states |0〉 and |1〉 can be treated as a two-level
system which is coupled by an effective two-photon Rabi frequency [151]

ΩR = ΩmwΩrf/2∆int. (4.2)
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The single-photon Rabi frequencies are given by ~Ωmw =
√

1
8
µBBmw and

~Ωrf =
√

3
8
µBBrf , where Bmw (Brf) is the microwave (radio frequency) field

amplitude, and we have assumed linear polarization perpendicular to the
static magnetic field in the trap center. For the calculation of hyperfine
transition matrix elements, see chapter 5 and appendix A.3.

Microwave and radio-frequency electronics

The microwave is generated by a phase locked dielectric resonator oscillator
(PDRO-6378, 6835± 5 MHz, Communication Techniques, Inc.). The PDRO
phase locks its internal crystal oscillator to the 100th harmonic of an external
reference frequency (generated by a Rohde & Schwarz SMG). The phase lock
can be operated in a narrow range of output frequencies of 6835 ± 5 MHz.
The microwave signal is sent through a switch and then amplified by two
amplifiers in series (Kuhne Electronic KU 682 TR-UM, 500 mW, 6835 ±
10 MHz, and KU 682 XH-UM, 15 W, 6835± 10 MHz) to a power of 15 W,
which is radiated from a sawed-off rectangular waveguide. To protect the high
power amplifier from reflections, we use a circulator between the amplifier
and the waveguide with a high-power 50 Ω termination at one port. The
waveguide is placed outside the glass cell, radiating towards the chip surface.
The linear polarization of the microwave is approximately perpendicular to
the magnetic field in the trap center.

The radio frequency is generated by a function generator (Stanford Re-
search Systems DS345), sent through a switch, and amplified to 1 W. It
is either applied to the same external coil that is used for radio frequency
evaporative cooling, or directly to a wire on the chip.

All frequency generators of our experiment are phase locked to an ultra-
stable 10 MHz quartz oscillator (Oscilloquartz OCXO 8607-BM, for specifi-
cations of the frequency stability see Fig. 4.18 below).

Magnetic field dependence of the transition frequency

By performing Ramsey spectroscopy (see below) of the two-photon transi-
tion, we measure ν10 as a function of the magnetic field in the trap center,
B0, as shown in Fig. 4.2. Measurements of this type allow us to calibrate our
magnetic field and the frequency of the quartz reference oscillator, using the
frequency dependence which is expected from the Breit-Rabi formula (sec-
tion 1.2.2), which can be approximated in the vicinity of Bm = 3.228 917(3) G
by [84]

ν10 = νmin + k (B0 −Bm)2 , (4.3)
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Figure 4.2: Measured magnetic field dependence of the two-photon transi-
tion frequency. The frequency νhfs is the hyperfine splitting for B0 = 0.

with νmin = 6 834 678 113.59(2) Hz and k = 431.359 57(9) Hz/G2.

Microwave level shifts

While the two-photon drive is turned on, the two-photon resonance frequency
is shifted to ν ′10, away from the value ν10 it has in the undriven system, typ-
ically by a few tens of Hz (see also [151]). The frequency shift scales linearly
with the applied microwave power. It arises because the microwave causes
AC Zeeman shifts of the hyperfine levels — this is the same physical mecha-
nism that is used to generate the microwave potentials discussed in chapter 5.
Various transitions contribute, because several polarization components are
present in the microwave field. For the experiments described in the present
chapter, the spatial dependence of the AC Zeeman shift is negligible, because
microwave field gradients are very weak in the far field of the rectangular
waveguide. The radio frequency causes similar level shifts, however, for lin-
ear radio frequency polarization, the shifts are identical for |0〉 and |1〉 and
thus do not lead to a frequency shift of the transition.

The microwave level shift can be measured by comparing the resonance
frequency obtained in Rabi spectroscopy with that obtained in Ramsey spec-
troscopy. A Rabi experiment is sensitive to the level shifts and yields ν ′10.
A Ramsey experiment is largely insensitive and yields ν10, because the shift
arises only during the short π/2-pulses and the microwave is turned off be-
tween the pulses (see below). For our measurements, we have decreased the
shift by decreasing the ratio Ωmw/Ωrf , keeping the product Ωrf · Ωmw ∼ ΩR

constant. In this way, we obtain ΩR/2π � |ν ′10−ν10| and can thus drive high

95



4 Coherence near the surface: an atomic clock on a chip

contrast Rabi oscillations with the two-photon drive tuned near the Ramsey
resonance at ν10.

4.3 Phenomenological description of loss and

decoherence

For comparison with our experiments, we use a density matrix model for the
two-level system {|0〉, |1〉}, which includes population loss and decoherence in
a phenomenological way [152, 153]. Below we show measurements of the loss
and decoherence rates and identify the physical mechanisms behind them.

Density matrix description of a two-level system

A two-level atom can be described by a 2 × 2 density matrix ρij, where ρ00

and ρ11 are the populations of state |0〉 and |1〉, respectively, and ρ01 = ρ10
∗

are the coherences (Fig. 4.3). The atom is coherently driven by a classical

j0i

j1i

!10 !

½11

½00

¢
ΩR

°1

°0

Figure 4.3: Two-level system with coherent driving and population loss
(see text).

oscillatory field of frequency ω (in our case ω = ωmw + ωrf), with resonant
Rabi frequency ΩR and detuning ∆ = ω − ω10 from resonance (neglecting
the microwave level shifts). The dynamics are described in a frame rotating
at frequency ω, and because ∆,ΩR � ω10, we can make the rotating-wave
approximation. In the following, ρij are the components of the density matrix
in the rotating frame, the components in the stationary frame are ρ̃ii = ρii,
ρ̃10 = e−iωtρ10, and ρ̃01 = eiωtρ01. The equations of motion are

d

dt
ρ11 =

i

2
(Ω∗

Rρ10 − ΩRρ01)− γ1ρ11,

d

dt
ρ00 = − i

2
(Ω∗

Rρ10 − ΩRρ01)− γ0ρ00, and

d

dt
ρ10 = i∆ρ10 +

i

2
ΩR (ρ11 − ρ00)− γcρ10.

(4.4)
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4.3 Phenomenological description of loss and decoherence

Loss and decoherence are taken into account by introducing phenomenolog-
ical rate constants, which can be measured in experiments. γi is the rate at
which the population of state |i〉 decays, and

γc = (γ0 + γ1)/2 + γφ (4.5)

is the decay rate of the coherences. Consistency requires that γc can never
be smaller than the average population loss rate of the two states. The
rate γφ affects only the coherences (“pure dephasing”). In the specific case
of our experiment, γ0 and γ1 are dominated by trap loss, so that the total
population ρ11 +ρ22 is not conserved. Loss processes which empty one of the
levels and populate the other have negligible rates.

Our experiments are performed on ensembles of N atoms simultaneously,
and we use ρij as a calculational tool to describe ensemble averages.2 The
expectation value of the number of atoms detected in state |i〉 is Ni = Nρii.
As shown below, trap loss in atomic ensembles includes effects of inelastic
collisions. The rates γi thus depend on time and on the initial state ρij(t = 0).
On short time scales, we can use the constants γi ≡ γi(t = 0) to describe
loss. Similarly, decoherence may be non-exponential. However, we find that
our experiments are well described by assuming a constant γφ.

Mechanisms of decoherence

Different mechanisms of decoherence can be distinguished [7, 154, 155]. De-
coherence in the narrow sense is caused by progressive entanglement of a
system with its environment, accompanying collisional loss or spontaneous
scattering of stray light in our case. This is to be distinguished from de-
phasing caused by fluctuating or spatially inhomogeneous classical fields,
e.g. ambient magnetic fields. From the practical point of view of a “quan-
tum engineer”, dephasing is equally deleterious to coherent manipulation as
decoherence by entanglement.

It is useful to distinguish homogeneous from inhomogeneous dephasing.
Homogeneous dephasing affects all atoms in the same way and would be
present in experiments on single atoms as well. Inhomogeneous dephasing
arises only in the ensemble average, if the phases of different atoms in the
ensemble evolve at different rates. Because each individual atom maintains
phase coherence, inhomogeneous dephasing can be reversed by the spin echo
method, in contrast to the (in practice) irreversible homogeneous dephasing.

2We keep in mind that a single-atom density matrix does not provide a complete
description of an ensemble of atoms. It yields correct predictions only for single-atom
observables measured in the ensemble average [7].
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4 Coherence near the surface: an atomic clock on a chip

Coupling between internal and motional dynamics

A possible coupling between the internal state and the motional dynamics of
the atoms is neglected in Eqs. (4.4). In a series of experiments, the group of
E. A. Cornell has shown that such a coupling arises due to small differences in
the confining potentials and collisional effects, both for BECs [156, 157] and
ultracold thermal gases at high atomic densities [158, 159].3 In our coherence
measurements, we usually work with thermal ensembles at relatively low
mean densities 〈n〉 < 3× 1012 cm−3 and in traps which are only moderately
anisotropic. In this regime, we expect coupling between internal and motional
dynamics to be weak [158, 160]. Indeed, we do not observe such a coupling in
the absorption images. Because we integrate the atom number over the whole
sample, the effect of an unresolved coupling between internal and motional
degrees of freedom is included in the measured γφ.

In the following, I describe several experiments in which we investigate
the dynamics of the system just described. Measurements of γi and γφ as a
function of atom-surface distance allow us to search for atom-surface coupling
mechanisms.

4.4 Chip layout and atom preparation

The experiments reported in this chapter were performed with an earlier
version of our setup, which is described in detail in [65, 129, 27, 29]. Figure 4.4
shows the relevant wires and the layer structure of the chip. The experimental
parameters and the sequence used for the preparation of the atoms are very
similar to the ones described in chapter 3.

We first load a laser-cooled ensemble of atoms in state |0〉 into a large
Ioffe Z-trap at position C1 in Fig. 4.4(a). After a first stage of evaporative
cooling, the atoms are transferred into a Ioffe dimple trap at position C2,
where a second stage of evaporative cooling prepares an ultracold thermal
ensemble with a temperature close to quantum degeneracy. This ensemble is
then loaded into a Ioffe-type “measurement trap”, also centered at position
C2, in which all subsequent experiments are performed. The measurement
trap typically contains a thermal ensemble of N = 1.5×104 atoms in state |0〉
at a temperature of 0.6 µK, a factor of three above the critical temperature
for BEC. We use a thermal ensemble instead of a BEC for our measurements
because the lower density of a thermal ensemble reduces the effect of collisions
on trap and coherence lifetimes. Low temperatures are required to reduce

3Interestingly, in low-density samples, collisions between atoms can also help to main-
tain coherence across the sample, as shown in [84].
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Figure 4.4: (a) Layout of the relevant wires on the chip substrate. C1:
position of the initial magnetic trap. C2: position of the “measurement
trap” used in the experiments. (b) Layer structure of the substrate. Current
is carried by gold wires he ∼ 27 µm below the silver surface. d denotes the
atom-surface distance, while dw refers to the atom-wire distance.

inhomogeneous broadening of the transition due to the residual differential
Zeeman effect.

The measurement trap is created by the currents I0, I1, and IM2 and the
bias field Bb = (Bb,x, Bb,y, 0) as shown in Fig. 4.4(a). Although the wire
geometry is somewhat different, the trapping potential is similar to that of
a Ioffe Z-trap. By adjusting all three currents and Bb,y, the atoms can be
placed at distances d = 0 − 130 µm from the chip surface (see Fig. 4.4(b)),
with relatively small changes in the shape of the magnetic potential. For each
experimentally studied distance, the field magnitude B0 in the trap center
was calibrated spectroscopically as shown in Fig. 4.2 and set to B0 = Bm

by adjusting Bb,x. Typical experimental parameters are I0 = 500 mA, I1 =
120 mA, IM2 = 700 mA, Bb,y = −5.50 G, and Bb,x = −2.18 G, leading to
trap frequencies (fx, fy, fz) = (50, 350, 410) Hz at d = 9 µm. The atoms are
held in the measurement trap while the coherent internal-state manipulation
is performed. After the manipulation, the trap is switched off within 150 µs
and the atoms are detected after a time of flight of typically 4 ms. Atoms
are detected by absorption imaging on the F = 2 → F ′ = 3 transition, as
explained in chapter 3. This allows direct determination of the number of
atoms in state |1〉, N1. To alternatively determine the number of atoms in
state |0〉, N0, we first blow away all atoms in |1〉 with the resonant probe
light. The |0〉 atoms are then optically pumped to |F = 2,mF = +2〉 and
imaged as before.
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4 Coherence near the surface: an atomic clock on a chip

4.5 Rabi oscillations

When we apply the two-photon drive to atoms in the microtrap for a variable
time τ , we observe Rabi oscillations, Fig. 4.5, in which the atomic population
oscillates coherently between |0〉 and |1〉. In this way, qubit rotations would
be realized in a quantum computer.

j0i

j1i

¿ [ms] 0 1 2 3 4 5 6 7

D

0

1.4

Figure 4.5: Rabi oscillations between |0〉 and |1〉 as a function of microwave
and radio frequency pulse duration τ . Each absorption image corresponds
to a single shot of the experiment in which either |0〉 or |1〉 is detected. The
dashed line indicates the chip surface.

Figure 4.6 shows the measured Ni(τ)/[N0(τ) + N1(τ)] obtained by inte-
grating the density distributions in Fig. 4.5. The observed oscillation of the
atomic population is described by [152]

N1(τ)

N
=

Ω2
R

Ω2
sin2

[
1
2
Ωτ

]
,

N0(τ)

N
= 1− N1(τ)

N
,

(4.6)

where Ω =
√

Ω2
R + ∆′2. Eqs. (4.6) are obtained from Eqs. (4.4) in the limit of

weak damping, ΩR � (γi, γc), and for |0〉 as the initial state. We fit Eqs. (4.6)
to the data, which yields ΩR/2π = 226 ± 4 Hz and ∆′/2π = 63 ± 13 Hz.
The detuning ∆′ = ω − ω′10 measured in this way includes the microwave
level shifts, as discussed in section 4.2. The data for N0 and N1 were taken
consecutively. Therefore shot-to-shot fluctuations in the initially prepared
atom number N show up as noise in Fig. 4.6.

We typically work with two-photon Rabi frequencies in the range of
ΩR/2π = 0.2− 0.8 kHz for ∆int/2π = 1.2 MHz, while the single-photon Rabi
frequencies Ωmw/2π and Ωrf/2π are of the order of a few tens of kHz. In the
experiments described here, ΩR is limited by the available microwave power.
Microwave single-photon Rabi frequencies of a few MHz can be obtained if

100



4.6 Calibration of the trap-surface distance

 |1〉 ≡ |2,+1〉
 |0〉 ≡ |1,-1〉

N
or

m
al

iz
ed

 a
to

m
 n

um
be

r

MW + RF pulse duration τ [ms]

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Normalized atom numbers Ni/(N0 + N1) in state |i〉 obtained
by integrating the absorption images of Fig. 4.5.

the microwave is applied to waveguiding structures on the chip instead of
being radiated from outside the vacuum chamber, as explained in chapter 5.

Below we use Rabi oscillations for internal-state manipulation. With the
help of a resonant π-pulse (ΩRτ = π, ∆′ = 0), the atoms can be transferred
from |0〉 to |1〉. The measured transition probability is > 95%. With a π/2-
pulse (ΩRτ = π/2, ∆′ = 0), an equal superposition 1√

2
(|0〉+ eiϕ|1〉) can be

prepared, the relative phase ϕ depends on the phase offset of the two-photon
drive. Before we investigate trap and coherence lifetimes of such states near
the surface, we describe our calibration of the atom-surface distance.

4.6 Calibration of the trap-surface distance

An investigation of surface effects requires an accurate calibration of the
distance d between the chip surface and the center of the trap. The trap-
wire distance dw can be inferred from a simulation of the trapping potential,
but d = dw − he depends on the thickness he of the epoxy layer above the
wires, see Fig. 4.4(b), which was not well controlled during chip fabrication.
We therefore use two different methods to directly measure d.

Distance calibration by imaging with a reflected probe beam

In the first technique [147], the imaging beam is tilted by an angle of 2◦

towards the mirror on the chip surface, so that both a direct and a mirror
image of the atoms are simultaneously visible in the absorption image, see
Fig. 4.7. The distance between the cloud centers equals 2d. Due to the
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4 Coherence near the surface: an atomic clock on a chip

finite resolution of the imaging system, this technique is limited to d >
10 µm. We take images such as Fig. 4.7 at several values of d and determine
corresponding values of dw from a simulation of the trapping potentials. This
yields he = 25.2± 2.2 µm.

48 µm

D 0.
2

0.
1

0.
0

Figure 4.7: Absorption image taken with a tilted imaging beam. Pixel size
is 10.6 µm × 10.6 µm. A fit to the density distribution with two Gaussians
(not shown) gives d = 24± 1 µm for this picture.

Distance calibration from trap loss in the Casimir-Polder potential

In the second technique, the surface is located by measuring the loss of atoms
in the attractive Casimir-Polder surface potential, compare section 1.9.2 and
[44]. Starting with N atoms (all in state |0〉) in a trap at d = d0 sufficiently
far from the surface, we move the trap to a distance d < d0 by increasing
Bb,y. We hold the atoms there for a time th, then move back to the original
location, and determine the remaining number of atoms Nr. Figure 4.8(b)
shows the remaining atom fraction χ = Nr/N as a function of d.

We model the observed loss of atoms in the Casimir-Polder surface poten-
tial as a sudden truncation of the tail of the Boltzmann energy distribution
due to the finite trap depth Vb, see Fig. 4.8(a). The theoretical value for the
remaining fraction of atoms is χ = 1 − exp(−Vb/kBT ), where Vb is the trap
depth at d = dw−he. The model contains he as the only free parameter. The
temperature T = 200 nK of the cloud used for this measurement, the atom
number N = 1.48× 104, the trap frequencies (fx, fy, fz) = (37, 279, 332) Hz,
and the scaling dw(Bb,y) are determined independently. The chip surface is
modeled as a perfect conductor, Vb is determined using Eq. (1.45) for the
surface potential.

Because of the Casimir-Polder potential, the trap disappears at finite d.
The corresponding shift in d is 1.1 µm if one compares with a model where
the Casimir-Polder potential is neglected. If the optical method to determine
he described in the previous section was more accurate, we could use this for
a measurement of the Casimir-Polder potential, similar to [44]. Here, we
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Figure 4.8: Loss of atoms in the Casimir-Polder surface potential. (a) The
surface potential decreases the trap depth, atoms in the tail of the Boltzmann
distribution are lost. (b) Remaining fraction of atoms χ as a function of d
for a hold time th = 10 ms. Measured data (black dots) in comparison with
a fit to our model (blue line, see text). The red arrow indicates the trap with
smallest d in which coherence measurements were made.

turn the situation around and use the Casimir-Polder potential to calibrate
the trap-surface distance. From a fit of our model to the data, we determine
he = 27.1 µm with a statistical error of ±0.1 µm, consistent with the value
of he obtained from the absorption images. Figure 4.8(b) shows the fit and
the resulting calibration of d. Including errors in the other model parameters
and the trap simulations, we estimate an uncertainty in d of ±0.8 µm. The
arrow in Fig 4.8 corresponds to the trap at d = 4.9 µm, the smallest d at
which coherence measurements were performed.

A hold time of th = 10 ms is short enough to avoid systematic errors
in the calibration due to other surface-related loss mechanisms, which affect
the atoms only on a much longer time scale (see section 4.7 below). We also
neglect in our model the collisional rethermalization of the atoms during th
and the associated additional loss through evaporation [44]. In our case it is
reasonable to include only the sudden loss since th < γ−1

el = 40 ms, where γel

is the elastic collision rate in the trap. Note that for significantly longer th,
we do indeed observe surface evaporation, as expected (see section 4.7).

We also considered the possibility that the surface potential is dominated
by 87Rb adsorbates, as discussed in section 1.9.3. More than 108 adatoms
localized on the chip surface in an area corresponding to the size of the
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trapped atomic cloud would be required to shift the measured value of he

by 0.1 µm. This corresponds to 104 deposited atom clouds, while we have
intentionally deposited only 102 clouds in the course of the distance cali-
bration. Even more deposited adatoms would be required if we consider a
less localized adatom distribution, which is more realistic because of surface
diffusion [107]. This leads us to the conclusion that the surface potential is
not dominated by adsorbates, although some caution is in order because the
number and distribution of atoms deposited unintentionally on the surface
is not known.

With the atom-surface distance calibrated as described, we can search for
possible effects of the surface on trap and coherence lifetimes.

4.7 Trap lifetime measurements

To investigate surface-induced loss, we measure trap lifetimes as a function
of d. In every trap, we perform one measurement in which all atoms are
in state |0〉, and a separate measurement in which a π-pulse first transfers
the atoms to state |1〉. Because |0〉 and |1〉 have very different collisional
loss rates, a comparison of the two measurements allows us to determine the
initial density of the sample, and to discriminate between surface-induced
and collisional losses.

Fig. 4.9(a) shows such measurements in a trap at d = 130 µm, far away
from the surface. If all atoms are in state |0〉, we observe an exponential decay
of the atom number with a rate γ0 = (29 s)−1. The situation is different if the
atoms are prepared in |1〉. A non-exponential decay is observed, a signature
of inelastic collisions between the trapped atoms. The initial density 〈n(t =
0)〉 = 〈n0(t = 0)〉+ 〈n1(t = 0)〉 was similar in both measurements. The solid
lines in Fig. 4.9(a) are a numerical solution to the rate equations (1.33), which
include all relevant collisional loss mechanisms. As explained in section 1.8,
we use the rate constants for a thermal ensemble, and 〈n2

i 〉 = (8/
√

27)〈ni〉2
for a thermal distribution. The slightly lower initial atom number in |1〉 is
due to the finite efficiency of the π-pulse, the residual population in |0〉 is
included in the model. We use the same 〈n(t = 0)〉 and γbg for comparison
with both measurements and adjust their values to fit the data. This yields
〈n(t = 0)〉 = 2.7 × 1012 cm−3 and γbg = (29 s)−1. Assuming a higher
〈n(t = 0)〉 would be inconsistent with the measurement for |1〉. The model
confirms that loss due to collisions between the trapped atoms is negligible
if all atoms are in state |0〉. The decay of state |0〉 can thus be used to study
surface effects.

Fig. 4.9(b) shows a similar trap loss measurement at d = 9 µm. We
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Figure 4.9: Trap loss at different atom-surface distances: (a) d = 130 µm,
(b) d = 9 µm. Measurements are shown for different internal states prepared
in the trap and compared to a theoretical model (see text). Temperatures
and initial densities are similar in all cases.

observe a much faster decay, with a rate γ0 = (4.0 s)−1 for state |0〉. The
increased loss rate cannot be explained by an increase in γbg. Although the
background pressure in the vacuum chamber shows some variation depending
on the dispenser setting, we always have γbg < (10 s)−1 at large d in this ex-
periment. We account for the faster loss by adding a surface-induced loss rate
γs to Eqs. (1.33), which is identical for |0〉 and |1〉 and independent of den-
sity. As before, we compare a solution to Eqs. (1.33) with our measurements,
which allows us to determine 〈n(t = 0)〉 = 2.6 × 1012 cm−3, comparable to
Fig. 4.9(a), and γs = (4.6 s)−1. In principle, γs could be different for the two
states, e.g. because of the different matrix elements involved in spin-flip loss
due to thermal magnetic near-field noise. However, the similar decay rate of
|0〉 and |1〉 observed at long times shows that γs is comparable.

In this trap, we have also measured the trap lifetime of the superposition
state 1√

2
(|0〉+ eiϕ|1〉). The state is created by a π/2-pulse, ϕ is irrelevant

for the present purpose. After a variable hold time, the total population
N0 +N1 is detected in a phase-insensitive way, i.e. without applying a second
π/2-pulse before the absorption image is taken. As expected, the decay rate
lies between that of |0〉 and |1〉, see Fig. 4.9(b).

In Fig. 4.10 we show how the measured trap lifetime τ0 = γ−1
0 of state

|0〉 varies with d. The decrease for small d is a clear indication of surface
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Figure 4.10: Trap lifetime of state |0〉 as a function of d. Solid line: theo-
retical curve for spin-flip loss due to magnetic near-field noise and τbg = 20 s.

effects. In comparison with the data, we plot the theoretical curve τ0 =
[1/τs + 1/τbg]

−1, where τs takes into account spin flip loss due to magnetic
near-field noise, given by Eq. (1.38) adapted to the layer structure of our chip.
The thin silver mirror contributes a larger rate than the gold wires, because
it is closer to the atoms (Fig. 4.4). The trap lifetimes we observe at small d
are significantly lower than what is expected due to magnetic near-field noise
alone. This additional loss is caused by surface evaporation. Because of the
Casimir-Polder potential, see Fig. 4.8, the trap depth decreases from 12 µK
at d = 17 µm to 0.4 µK at d = 5 µm, which is comparable to the initial
temperature of the atoms. Indeed, for small d we observe that the sample
cools while the atoms are lost. Surface evaporation is not state-dependent,
which also explains why we observe similar decay rates for |0〉 and |1〉 at long
times. The loss due to surface evaporation could be reduced by increasing
the trap frequency and thus the Casimir-Polder limited trap depth at given
d, at the expense of stronger collisional losses in |1〉.

To parametrize loss in state |1〉 at short times, we use the measured initial
loss rate

γ1 ≡ −
1

N1

dN1

dt

∣∣∣∣
t=0

. (4.7)

It corresponds to a lifetime τ1 = γ−1
1 which is shown in Fig. 4.11 as a function

of 〈n1〉, for 〈n0〉 ≈ 0. We find that τ1 shows a stronger dependence on 〈n1〉
than on d. In the coherence measurements discussed below, we use low-
density ensembles to avoid strong losses in state |1〉.
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Figure 4.11: Time constant of the measured initial decay of state |1〉 as a
function of 〈n1〉. Data was taken in traps at different d and with 〈n0〉 ≈ 0.

Conclusion

We do observe increased trap loss close to the surface, but the lifetimes of
low-density ensembles are still > 1 s, even at d = 5 µm. This is sufficient for
most applications of atom chips. The lifetimes close to the thin silver layer
on our chip are much longer than what was observed at comparable distance
close to thick metal layers [32, 88], where thermal magnetic near-field noise
is stronger. This shows that it is advantageous to use chips with metal layers
which are as thin as the desired wire currents allow it. Similar results have
been obtained by [44].

4.8 Coherence measurements

Ramsey spectroscopy

To measure the coherence lifetime, we perform Ramsey spectroscopy [161]
with the pulse sequence shown in Fig. 4.12(a). We start with N atoms in
state |0〉 at t = 0. The atoms are held in the measurement trap for a time
TH before a first π/2-pulse of the two-photon drive transfers every atom into
an equal coherent superposition of |0〉 and |1〉. The atoms are then allowed
to evolve freely for a time TR � τ . During this time, the phase difference
between our local oscillator (i.e. the microwave and radio frequency) and the
atomic superposition state evolves at a rate ∆. After this time, a second
π/2-pulse is applied and the resulting state is probed. The Ramsey pulse
sequence can be thought of as an atom interferometer, with the two pulses
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corresponding to the beam splitters. The detected state depends on the
accumulated relative phase ∆TR between the local oscillator and the atomic
superposition. Time-domain interference fringes are recorded by varying TR

while keeping ∆ fixed. Alternatively, frequency-domain interference fringes
are recorded by scanning ∆ with constant TR.

Ramsey spectroscopy has the advantage over Rabi measurements that
it is most sensitive to the transition frequency during the time interval TR,
during which the two-photon drive is turned off. The signal is thus affected
very little by spatial inhomogeneities of ΩR or by the microwave level shifts
which arise only while the two-photon drive is on.

4.8.1 Time-domain Ramsey fringes

Figure 4.12(b) shows time-domain Ramsey fringes. The number of atoms
detected in state |1〉 oscillates at the frequency difference ∆/2π = 6.4 Hz,
while the interference contrast shows a weak decay with a time constant of
2.8± 1.6 s. The measurement of Fig. 4.12 was performed at d = 9 µm from
the room-temperature chip surface. In [84], similar coherence lifetimes are
reported for the same state pair, but with atoms in a macroscopic magnetic
trap, far away from any material objects. This suggests that atom-surface
interactions do not limit the coherence lifetime in our experiment.
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Figure 4.12: Ramsey spectroscopy of the |0〉 ↔ |1〉 transition with atoms
held at a distance d = 9 µm from the chip surface. (a) Ramsey pulse se-
quence. (b) Observed interference fringes. An exponentially damped sine fit
yields a 1/e decay time of the interference contrast of 2.8± 1.6 s. Each data
point corresponds to a single shot of the experiment.
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4.8 Coherence measurements

4.8.2 Analysis of the observed fringes

The Ramsey fringes obtained with our sequence can be described by

N1,0

N
=

1

4
e−γ0TH

[(
e−γ0TR + e−γ1TR

)
± 2e−γcTR cos(∆TR + φ0)

]
, (4.8)

where the + (−) sign is for N1 (N0). This expression is obtained from
Eqs. (4.4) by making the approximation that ∆ ≈ 0 and γi ≈ γc ≈ 0 during
the short times τ of the π/2-pulses. This is a good approximation for ΩR �
(∆, γi, γc). Loss, decoherence, and finite detuning are only considered during
the much longer times of free evolution (TR, TH) � τ , where ΩR = 0. The
phase offset φ0 is included to account for the details of the dynamics during
the pulses. It is influenced, among other things, by the detuning caused by
the microwave level shifts during the pulses.

To better distinguish the contributions of trap loss γi and pure dephasing
γφ to the decoherence rate γc, we keep TH + TR constant during the Ramsey
scan by appropriately adjusting the hold time TH for each value of TR. Thus,
the overall time the atoms spend close to the surface is independent of TR.
The overall atom number N0 + N1 at the time of detection then shows a
weaker dependence on TR in the presence of trap loss. The Ramsey fringe
signal for N1 obtained with this sequence is

N1 = A
[(

1 + e−γdTR
)

+ 2e−γdTR/2e−γφTR cos(∆TR + φ0)
]
, (4.9)

where A is a constant. This signal allows an easier determination of γφ

because it is sensitive only to the difference of the trap loss rates γd = γ1−γ0.
For γd ≈ 0, the decay of the Ramsey signal directly yields γφ. The γi can be
measured independently as described in section 4.7; here, the loss rates for
a superposition state are relevant. In Fig. 4.12(b), we have γ0 = (3.2 s)−1,
γ1 = (2.6 s)−1, and γφ = (3.1 s)−1. This yields a coherence lifetime of
τc = γ−1

c = 1.5 s.

4.8.3 Mechanisms of decoherence

Figure 4.13 shows how coherence is lost in our system at long times. The
data is fit with Eq. (4.9). Loss of coherence shows up in different ways:

A spatial variation of ν10 results in inhomogeneous dephasing. This leads
to the observed decay of the fringe contrast. It is caused by a combination of
the residual differential Zeeman shift and the density-dependent collisional
shift of ν10 across the magnetically trapped atomic ensemble [158, 84]. Con-
sequently, we observe a dependence of γφ on the temperature T and on the
mean density 〈n〉 of the atoms.
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Figure 4.13: Decay of the Ramsey fringes as a function of TR, for d = 17 µm,
〈n〉 = 3×1012 cm−3, and T = 0.5 µK. Each data point (connected by red lines
to guide the eye) corresponds to a single shot of the experiment. A fit (black
line) with Eq. (4.9) to the data yields γ−1

d = 2.6±0.7 s and γ−1
φ = 2.6±0.5 s.

Temporal fluctuations of ν10 cause homogeneous dephasing. Because of
the way the data in Fig. 4.13 was taken, with one shot of the experiment
per data point, this shows up as increasing phase noise on the interference
signal as TR is increased. The frequency of the fluctuations is of importance.
Low frequency fluctuations (∼ 1/TR) are most harmful to the coherence time
[162]. Faster fluctuations average out on the time scale TR of a single shot
of the experiment. The phase noise observed in our measurements can be
attributed to slow ambient magnetic field fluctuations, and to fluctuations of
the collisional shift due to shot-to-shot variations in N (see the atomic clock
measurement below). Note that the setup in which these experiments were
performed was not magnetically shielded. If we had used a magnetic-field
sensitive transition, the coherence would have been lost in < 1 ms.

We have also performed measurements with a π
2
-π-π

2
spin-echo pulse se-

quence. At very high 〈n〉, where the contrast in Ramsey-measurements de-
cays on a time scale � 1 s, we were able to recover the interference with
the spin-echo technique. This shows that inhomogeneous dephasing due to
collisional shifts is the main decoherence mechanism at high 〈n〉. In mea-
surements at low 〈n〉, such as in Fig. 4.13, where the coherence decays on a
timescale of seconds, we did not observe significantly longer coherence times
with the spin echo technique. This is a further indication that fluctuations
of ν10 in time are dominant at large TR.

4.8.4 Frequency-domain Ramsey fringes

Figure 4.14 shows frequency-domain Ramsey fringes for TR = 10 ms. The
width of the fringes in frequency space is given by 1/TR. For high resolution
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4.8 Coherence measurements

spectroscopy, narrow fringes and thus long TR is desired, necessitating long
trap and coherence lifetimes. For the atomic clock experiment in section 4.9
below, we use TR = 1 s. The finite width of the envelope in Fig. 4.14 is one
of the effects neglected in Eq. (4.8). It arises because the efficiency of the
Ramsey pulses decays for ∆ > ΩR. In the following we concentrate on the
fringes in the center of the envelope.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0
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15

detuning Δ/2π [kHz]

N1 [103]
TR = 10 ms

Figure 4.14: Frequency-domain Ramsey fringes in the microtrap.

4.8.5 Coherence lifetime vs. atom-surface distance

To further probe for surface effects, we study decoherence as a function of
atom-surface distance d. At each distance, we record frequency-domain Ram-
sey fringes for several values of TR and determine the contrast C(TR) of each
fringe set. The fringe contrast C(TR) = (Nmax −Nmin)/(Nmax +Nmin) is ob-
tained from a sinusoidal fit to the data, Nmax (Nmin) is the maximum (min-
imum) of the oscillation in N1. Figure 4.15 shows such measurements for
TR = 50 ms and TR = 1 s in the trap at d = 5 µm, the smallest atom-surface
distance at which coherence measurements were made. High contrast fringes
are observed even though the trap lifetimes in this trap are only τ0 = 1.4 s
and τ1 = 1.1 s, so that the atom number for TR = 1 s is already considerably
reduced by surface evaporation. The coherence of the atoms remaining in
the trap is not disturbed by this loss.

Figure. 4.16 shows the observed contrast as a function of d. Within
experimental error, the contrast does not show a dependence on atom-surface
distance in the range of d = 5 − 130 µm. For d < 5 µm, trap loss due to
surface evaporation prohibits coherence measurements with TR ∼ 1 s. To
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Figure 4.15: Frequency-domain Ramsey fringes in the trap at d = 5 µm. (a)

For TR = 50 ms the fringe contrast is C = 100+0
−10

%. (b) For TR = 1000 ms,
C = 69± 11%.

avoid systematic errors, we have checked that there is no systematic variation
of T and 〈n〉 as d is varied.
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Figure 4.16: Contrast C(TR) of the Ramsey fringes as a function of
atom-surface distance d for two values of TR. The data points for d =
(5, 9, 22, 54, 132) µm were measured with atomic ensembles of temperatures
T = (0.2, 0.6, 0.7, 0.6, 0.3) µK and mean densities 〈n〉 = (14, 10, 5, 5, 18) ×
1011 cm−3.

Additionally, we have analyzed the signal-to-noise ratio S/N of the inter-
ference signals, where S is the peak-to-peak amplitude of the sinusoidal fit
to the Ramsey oscillation and N is the standard deviation of the fit residuals
over one oscillation period. We typically observe S/N = 6 for TR = 1 s, in-
dependent of d within experimental error. This indicates that the processes
causing amplitude and phase fluctuations of the interference signal do not
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4.9 Atomic clock on a chip

depend on atom-surface distance on this time scale, suggesting that they are
of technical origin. In the quietest mode of operation, S/N = 30 can be
achieved, see Fig. 4.17 below.

Conclusion

Our measurements show that internal-state coherence on our chip is limited
by the same effects that limit internal-state coherence in macroscopic traps.
Coherence lifetimes > 1 s can be achieved. Coherence is maintained down
to atom-surface distances of a few micrometers where the trap vanishes due
to the Casimir-Polder potential and the atoms stick to the surface. Still
smaller d could be reached by using tighter traps, as shown in section 1.9,
at the expense of increasing density and thus losses in state |1〉. The long
coherence lifetimes are an extremely encouraging result for applications of
atom chips. In the next section, I describe the first such application in
precision measurement.

4.9 Atomic clock on a chip

One motivation for atom chip research is the perspective of creating minia-
turized cold-atom devices. Due to the long coherence lifetime, it is natural
to consider utilizing the |0〉 ↔ |1〉 transition in an atomic clock on the chip.
We demonstrate the principle of such a clock and measure its frequency sta-
bility relative to the quartz reference oscillator. This is a proof-of-principle
experiment, and several straightforward improvements are discussed at the
end.

4.9.1 Principle of the atomic clock

Figure 4.17(a) shows frequency-domain Ramsey fringes for TR = 1 s. We
set the two-photon drive to the slope of the Ramsey resonance and repeat
the experiment many times with a cycle period of 23 s. Any temporal drift
δν of ν10 with respect to the quartz reference oscillator will change ∆ and
therefore show up as a variation δN1 of N1. Figure 4.17(b) shows such data
for 1473 consecutive experiments with identical settings.

4.9.2 Allan variance

From repeated measurements of δN1 we determine δν = δN1/(πCTRN) and
the relative frequency fluctuations y = δν/ν10. The stability of an atomic
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Figure 4.17: Atomic clock in the microtrap. (a) Ramsey resonance for
TR = 1 s at d = 54 µm from the surface (solid circles). The line is a sinusoidal
fit to the data. On the slope of the resonance, frequency fluctuations δν lead
to fluctuations δN1 in the detected number of atoms. (b) Measurement of
the frequency stability. The experiment is set to the slope of the resonance
in (a) and N1 is measured repeatedly.

clock is characterized by the Allan standard deviation [163] of y,

σ(τ) =

√∑M−1
k=1 (ȳk − ȳk−1)

2

2(M − 1)
, ȳk =

1

τ

∫ tk+τ

tk

y(t)dt, (4.10)

where τ is the averaging time and tk+1 = tk + τ . In Fig. 4.18 we plot σ(τ) as
a function of τ . For short τ , the Allan deviation decreases as σ(τ) = 1.7 ×
10−11 (τ [s])−1/2, corresponding to shot-to-shot fluctuations of δν = 24 mHz
RMS. For τ > 6× 102 s, the long-term drift of the quartz reference leads to
a departure from the τ−1/2 line.

By performing measurements in which we alternate the setting of the
experiment between a positive and a negative slope of the Ramsey fringe
[163], we were able to separate random shot-to-shot fluctuations, most likely
attributable to the atoms in the chip trap, from a slow drift in frequency, most
likely caused by the quartz. In a practical implementation of our clock, such
a signal would be used to lock the quartz frequency to the atomic resonance.

4.9.3 Analysis of the observed stability

We have estimated the shot-to-shot frequency fluctuations and can account
for the observed value of δν. It is dominated by ambient magnetic field noise
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Figure 4.18: Measured Allan standard deviation σ(τ) of the atomic clock
in the microtrap compared to the quartz reference oscillator (open circles).
The solid line is a fit with σ(τ) ∝ τ−1/2 representing the performance of the
atomic clock. For τ > 6 × 102 s the drift of the quartz reference becomes
apparent. The manufacturers’ specification of the quartz stability is shown
in solid squares.

of δB = 6 mG RMS which we observe along the direction of B0. From
Eq. (4.3), we estimate the corresponding RMS frequency fluctuations to

δνB =
√

2 k(δB)2 = 22 mHz. (4.11)

A second contribution arises from the collisional frequency shift [84], which
is fluctuating due to fluctuations in the prepared atom number with δN/N =
0.04. At 〈n〉 = 4× 1011 cm−3, this leads to fluctuations of

δνc =
2~
m

(a11 − a00)〈n〉
δN

N
= −6 mHz, (4.12)

where aii are the scattering lengths given in appendix A.1. Furthermore,
imperfections of the detection system contribute. In a single shot of the
experiment, only N1 is detected. Any fluctuation of N affects N1 and will
therefore also be interpreted as being due to frequency fluctuations. This
contributes apparent fluctuations of

δνN =
1

2πCTR

δN

N
= 7 mHz. (4.13)

Note that δνN and δνc are correlated, the relative sign depends on which
slope of the Ramsey fringe is used. By detecting N1 and N0 (or N) in a
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4 Coherence near the surface: an atomic clock on a chip

single shot, it is possible to correct the data for atom number fluctuations.
The fundamental detection limit is δνN = 1/(2πCTR

√
N), given by quantum

projection noise [163].

4.9.4 Future improvements

We estimate that realistic improvements — magnetic shielding to δB <
0.5 mG RMS, operation with N = 105 atoms at T = 200 nK in a shallower
trap with (fx, fy, fz) = (5, 70, 70) Hz, projection-noise limited detection, and
a 6 s cycle (which is realistic in a chip trap [29]) — will lead to a frequency
stability of 2× 10−13 (τ [s])−1/2. While this does not reach the stability level
of atomic fountain clocks, an atom-chip based clock has the advantage of
a simple, compact and portable setup. Such a clock may find applications
as a secondary standard with a small, portable “physics package”. With a
short-term stability approaching 10−13 (τ [s])−1/2, it would outperform the
best commercially available portable standards4 by one order of magnitude.

In addition to stability, the accuracy of an atomic clock is of importance.
We have not performed a detailed analysis of the systematics which lead to
frequency shifts in our experiment. For a secondary standard, stability is the
main concern, since it can be calibrated from time to time against a primary
reference.

Motivated by the results reported here, an improved atom chip clock
experiment is currently being set up by a team headed by P. Rosenbusch at
l’Observatoire de Paris.

4.10 Conclusion

In conclusion, we have performed coherent internal-state manipulation in a
magnetic microchip trap, with coherence and trap lifetimes exceeding 1 s at
distances down to 5 µm from the chip surface. This paves the way for a
variety of atom chip applications, most notably chip-based quantum gates
and atomic clocks.

In chapter 6, an atom chip quantum gate is theoretically investigated
which makes use of our robust state pair. A key role in this proposal is
played by collisions of the qubit atoms in potentials which depend on the
internal state. In the next chapter, I describe how the required internal-state
selectivity can be added to our magnetic traps by microwave near-fields on
the atom chip.

4The 5071A (www.symmttm.com). P. Rosenbusch, l’Observatoire de Paris, private
communication.
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Chapter 5

Microwave near-fields on atom
chips

Microwave fields with large amplitudes and strong gradients arise in the near-
field of microwave guiding structures on a chip. In this chapter, I show how
such microwave near-fields can be used to manipulate atoms in chip traps.
Via microwave dressing of hyperfine states it is possible to generate potentials
for the atoms, in close analogy with the optical potentials used for optical
lattices. Microwave potentials allow one to overcome some of the restrictions
which apply to static magnetic traps. This makes microwave potentials a
useful tool for atom chip experiments, such as the quantum gate proposed in
chapter 6.

The chapter begins with the theory of microwave dressed-state potentials.
The benefits of using microwave near-fields instead of far-field radiation are
highlighted, and the resulting potentials are compared to static magnetic,
optical dipole, and radio-frequency potentials. Then, I show how microwave
guiding structures can be designed and integrated on a chip. An experimen-
tal characterization of such structures follows. An example for the use of
microwave near-field potentials which will guide our discussion is sketched in
Fig. 5.1. Microwave near-fields can be used to selectively remove the barrier
of a static magnetic double well potential for one of the qubit states |0〉 or |1〉.
Such a potential is required for the quantum gate in chapter 6. It can also be
employed for the state-selective manipulation of BECs in atom interferome-
try, studies of the Josephson effect, and investigations of BEC entanglement
(see chapter 8). A simulation of the potential concludes this chapter.

The theory of microwave near-field potentials on atom chips is also cov-
ered in our publications [87, 164, 165].
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Figure 5.1: State-dependent double well potential created in the near field
(d ≈ 10 µm � λmw) of a microwave coplanar waveguide (CPW). DC cur-
rents (IT , IL, IC , and IR) and bias fields (Bb,x and Bb,y) provide harmonic
confinement in the yz-plane and a static magnetic double well along x. The
barrier of the double well can be state-selectively removed by turning on the
microwave current I(t) = Re [Imwe

iωt] (see also Figs. 5.10 and 5.11).

5.1 Theory of microwave potentials

We consider the hyperfine states |F,mF 〉 of the 87Rb electronic ground state
in a static magnetic field B. The static field leads to a Zeeman shift of
the energy levels. In addition, the atom is exposed to a microwave with a
frequency ω/2π near the hyperfine splitting of 6.8 GHz. The atom interacts
with both the magnetic field and the electric field of the microwave. The
microwave magnetic field Bmw(t) couples the |F = 1,mF 〉 to the |F = 2,mF 〉
sublevels via magnetic dipole transitions. This leads to a “dressing” of the
states, giving rise to energy shifts that depend on F and mF , as shown
schematically in Fig. 5.2. These energy shifts, which can also be understood
as an AC Zeeman effect (the magnetic analog of the AC Stark effect which
gives rise to optical dipole potentials), are the main effect of the microwave.
In addition, the microwave electric field Emw(t) leads to an AC Stark shift,
which is identical for all states |F,mF 〉 and usually much smaller than the
effect of the microwave magnetic field.

In the following discussion, B ≡ B(r), Bmw(t) ≡ Bmw(r, t), and Emw(t) ≡
Emw(r, t) are the fields seen by the atom at a given point r in space. Our task
is to determine the eigenenergies of the atom at r. To calculate the potentials,
we will then make use of the adiabatic approximation by assuming that the

118



5.1 Theory of microwave potentials

F = 1

F = 2

-1 0 1 2-2

VZ

VZVmw

hω

|1〉

|0〉

mF =

h ⋅ 6.8 GHz

Vmw

Figure 5.2: Hyperfine levels in a static magnetic and microwave field (shown
here for a microwave with π-polarization and frequency ω detuned above
resonance). The static field causes a static Zeeman shift VZ , which is nearly
identical for |0〉 and |1〉, while the microwave magnetic field causes an AC
Zeeman shift Vmw, which has opposite sign for |0〉 and |1〉.

atom remains in a local energy eigenstate as it moves around (see section 5.1.3
below).

5.1.1 Effect of the microwave magnetic field

In this section we discuss in some detail how the eigenenergies of an atom in
the magnetic fields B and Bmw(t) can be calculated. This requires a diagonal-
ization of the atomic Hamiltonian in the presence of hyperfine coupling, static
Zeeman effect, and microwave coupling. We start from the most general case
and subsequently introduce several approximations. We employ the dressed-
state picture [166], treating the microwave field quantum-mechanically. Al-
though the microwave fields in our experiments are essentially classical, a
quantum description has the advantage that the Hamiltonian can be made
time-independent by choosing the Schrödinger representation [151].

The Hamiltonian of the coupled system

H = HA +HF +HAF (5.1)

consists of the Hamiltonian HA of the atom in the presence of the static field
only, the Hamiltonian HF of the microwave field, and the Hamiltonian HAF

of the atom-microwave interaction. The Hamiltonian of the atom

HA = AhfsI · J + µBB (gJJz + gIIz) (5.2)

is the Breit-Rabi Hamiltonian of Eq. (1.4), with eigenstates |F,mF 〉 and
eigenenergies EF,mF

given by Eq. (1.5). Defined in this way, the |F,mF 〉
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depend on B. We have chosen our quantization axis along the local direction
of the static field, so that B = Bez. The hyperfine splitting at B = 0 is
~ωhfs = 2Ahfs. The Hamiltonian of the quantized microwave field is

HF = ~ω(a+a+ 1
2
), (5.3)

where a+ (a) are the conventionally defined creation (annihilation) operators
of the microwave field mode of frequency ω. Eigenstates of HF are the
photon number states |n〉, with a+a|n〉 = n|n〉. Spontaneous emission is
negligible at microwave frequencies and the atom interacts only with the
macroscopically occupied mode at frequency ω. We define the microwave
detuning ∆0 = ω − ωhfs with respect to the resonance at B = 0.

The energy eigenstates of the uncoupled system HA +HF are the “bare”
states |F,mF 〉|n〉, with the corresponding eigenvalues

E(F,mF , n) = EF,mF
+ ~ω

(
n+ 1

2

)
. (5.4)

The E(F,mF , n) form a “ladder” of energy levels, sketched in Fig. 5.3, with
groups of 8 states separated by multiples of ~ω. The figure shows E(F,mF , n)
for µBB � ~ωhfs, |∆0| � ω, and ∆0 > 0. Note, however, that Eq. (5.4) is
completely general.

{2 {1 0 1 2
mF

jF = 1, mF ijni

!

¢0

¢0
jF = 2, mF ijn { 1i

jF = 1, mF ijn + 1i

jF = 2, mF ijni

Figure 5.3: “Ladder” of energy levels E(F,mF , n) of the uncoupled system
(Bmw = 0), sketched for ∆0 > 0 and weak static magnetic field.

The interaction Hamiltonian is given by the coupling of the microwave
magnetic field to the magnetic moment of the atom,

HAF = µB (gJJ + gII) · B̂mw. (5.5)
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In the Schrödinger picture, the quantized field operator is

B̂mw =

√
~ωµ0

2V

(
εa+ ε∗a+

)
, (5.6)

where ε is a unit polarization vector and V is the quantization volume. Note
that B̂mw is real but ε may be complex, e.g. to describe circular polarization.
A quasi-classical field is described by a coherent state

|α〉 = exp
(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!
|n〉, (5.7)

expressed in terms of photon number states |n〉. For a mean photon number
n̄ = |α|2 � 1, the uncertainty in photon number is ∆n =

√
n̄ � n̄, so that

only values of n near n̄ contribute significantly to |α〉. We will make use
of this property below. In the Schrödinger picture, the state |α〉 carries the
time dependence via α(t) = |α|e−iωt (we include the phase at t = 0 in the
complex ε). Classically, the magnetic field is described by

Bmw(t) =
Bmw

2

(
εe−iωt + ε∗eiωt

)
. (5.8)

Correspondence between the two descriptions requires 〈α(t)|B̂mw|α(t)〉 =
Bmw(t). This yields

Bmw = 2
√
n̄

√
~ωµ0

2V
, (5.9)

which allows us to eliminate V in favor of the classical field amplitude Bmw.
We thus obtain

HAF =
µBBmw

2
√
n̄

{
gJ

[
(ε · J)a+ (ε∗ · J)a+

]
+ gI

[
(ε · I)a+ (ε∗ · I)a+

]}
.

(5.10)
The Hamiltonian HAF couples the bare states |F,mF 〉|n〉. Only states which
differ in n by ±1 are coupled by the operators a and a+. When we take
the corresponding matrix elements, see below, we encounter terms of the
form 〈n − 1|a|n〉 =

√
n and 〈n + 1|a+|n〉 =

√
n+ 1. Because n ≈ n̄ � 1

for the relevant |n〉 contributing to the coherent state, we can approximate1

these matrix elements by
√
n̄, which cancels the factor 1/

√
n̄ in Eq. (5.10).

For our quasi-classical coherent field, the matrix elements of HAF are thus
approximately independent of n and n̄. The strength of the microwave field
enters only through the classical field amplitude Bmw.

1For Bmw = 1 G, Eq. (5.9) yields n̄/V ∼ 1021 m−3.
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The energy eigenstates of the coupled systemH are the so-called “dressed”
states [166], which we denote |K,n〉, with corresponding energy levelsE(K,n).
For experimentally relevant parameters (see below), the dressed states fall
into groups of 8 energy levels separated by multiples of ~ω, similar to the
bare states. We label the members of one group by K = 1 . . . 8, the different
groups are labeled by n. This does not imply that the |K,n〉 are eigenstates
of the photon number; the |K,n〉 are (in general complicated) superpositions
of bare states |F,mF 〉|n〉 with different n.

General solution

The dressed states can be obtained in the most general case by numerical
diagonalization of the full Hamiltonian H, Eqs. (5.2), (5.3), and (5.10). This
calculation is beyond the scope of the present discussion, but I briefly com-
ment on how I have done it. A convenient set of basis states to set up the
calculation is |mI ,mJ〉|n〉, using the eigenstates of Iz and Jz, |mI ,mJ〉 ≡
|I = 3

2
,mI〉|J = 1

2
,mJ〉 for the atom. The matrix elements of HAF are more

readily evaluated in this basis than in |F,mF 〉, which depend on B because
they are eigenstates of HA. For the microwave, we use a truncated Fock
space, including a few values of n around n̄ in order to allow for effects be-
yond the rotating-wave approximation. The only assumption which we have
made up to this point is that the microwave is in a coherent field state. With
this approximation, our formalism is equivalent to Floquet theory [167], and
the resulting E(K,n) are periodic in n. Since we are not interested in details
of the field state, we can take E(K) = E(K,n = n̄) − Eo to describe the
energy of the atom, where Eo is an energy offset, including the term n̄~ω.
The resulting E(K), which include effects of the nuclear spin and effects be-
yond the rotating-wave approximation, allow one to study subtle phenomena
such as the location of the “sweet spot” in the energy splitting of |0〉 and
|1〉 (cf. Fig. 1.2), which is shifted away from B = 3.229 G by the microwave.
For most other purposes, however, it is sufficient to use a simpler solution
for the dressed state energies, which is obtained by making the following
approximations.

Approximations

Our system is characterized by four energies: the zero-field hyperfine split-
ting ~ωhfs, the static Zeeman energy µBB, the microwave detuning ~∆0,
and the microwave coupling strength µBBmw. Typically, ~ωhfs is by far the
largest energy. The three other energies are widely tunable and may all be
of comparable magnitude.
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5.1 Theory of microwave potentials

For µBB � ~ωhfs and |∆0| � ωhfs (and therefore also |∆0| � ω), the bare
energy levels fall into sets of 8 nearly degenerate levels, see Fig. 5.3 above.
If furthermore µBBmw � ~ω, which is well satisfied in experiments, the
rotating wave approximation can be made. It consists in including only the
microwave couplings within a given set of levels, and neglecting the coupling
between different sets. We thus restrict our attention to the 8 states

S(n) = {|F = 1,mF = −1 . . . 1〉|n+ 1〉, |F = 2,mF = −2 . . . 2〉|n〉} , (5.11)

which form a basis of one of the sets.
Furthermore, we treat the static Zeeman effect perturbatively, which is a

good approximation for µBB � ~ωhfs, and neglect the coupling of I to B,
because |gI/gJ | ∼ 10−3. In this approximation, one neglects the dependence
of S(n) on B by taking |F,mF 〉 equal to the eigenstates of HA at B = 0,
given in appendix A.3. The energies to first order in B are

EF,mF
≈ δF,2 ~ωhfs +mF

gF

|gF |
~ωL + const., (5.12)

where δi,j is the Kronecker delta and ωL = µBB/2~ is the Larmor frequency
for |gF | = 1

2
. With these approximations, we can express the Hamiltonian of

the uncoupled system in the basis S(n) as

HA +HF =
∑
m2

(
−1

2
~∆0 + ~ωLm2

)
|2,m2〉|n〉〈n|〈2,m2|

+
∑
m1

(
1
2
~∆0 − ~ωLm1

)
|1,m1〉|n+ 1〉〈n+ 1|〈1,m1|.

(5.13)

We have dropped constant terms, including the term n~ω, which is a common
energy offset for the states in S(n).

The full expression for HAF , Eq. (5.10), includes couplings of the mi-
crowave magnetic field to J and I. Again, because |gI/gJ | ∼ 10−3, the
coupling to I is much weaker and can be neglected to a good approximation.
We now take matrix elements of HAF between the states in S(n), noting that
states with identical F do not couple because of the selection rules imposed
by a and a+. We define the Rabi frequencies Ω2,m2

1,m1
by

1
2
~Ω2,m2

1,m1
≡ 〈n|〈2,m2|HAF |1,m1〉|n+ 1〉

= 1
2
µBgJBmw

〈n|a|n+ 1〉√
n̄

〈2,m2|ε · J|1,m1〉

≈ µBBmw〈2,m2|ε · J|1,m1〉, (5.14)
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5 Microwave near-fields on atom chips

where we have used gJ ≈ 2 and 〈n|a|n+1〉 ≈
√
n̄ for the states |n〉 contribut-

ing to the coherent field state, as discussed above. The angular momentum
matrix elements 〈2,m2|ε · J|1,m1〉 are calculated in appendix A.3. The cou-
pling Hamiltonian becomes

HAF =
∑

m1,m2

[
1
2
~Ω2,m2

1,m1
|2,m2〉|n〉〈n+ 1|〈1,m1|+ c.c.

]
. (5.15)

With these approximations, H does not depend on the set of levels (i.e. the
value of n) we have chosen, and we might as well suppress the reference to
the field state completely,

H =
∑
m2

(
−1

2
~∆0 + ~ωLm2

)
|2,m2〉〈2,m2|

+
∑
m1

(
1
2
~∆0 − ~ωLm1

)
|1,m1〉〈1,m1|

+
∑

m1,m2

[
1
2
~Ω2,m2

1,m1
|2,m2〉〈1,m1|+ c.c.

]
.

(5.16)

In our simulations of microwave potentials, we usually work at this level
of approximation and obtain the dressed states |K〉 and corresponding en-
ergy levels E(K) by numerical diagonalization of the 8 × 8-matrix for H in
Eq. (5.16). Results are shown in Figs. 5.4 and 5.5. Within the figure resolu-
tion, the results are indistinguishable from the exact solution obtained using
Eqs. (5.2), (5.3), and (5.10).

Dressed-state energies

In Fig. 5.4, the E(K) are shown as a function of ∆0 for a weak microwave
field, Bmw � B, and all polarization components equally strong. The mi-
crowave coupling gives rise to 9 anticrossings, 3 for each microwave polariza-
tion. Each anticrossing is associated with one of the Ω2,m2

1,m1
. Since Bmw � B

and thus |Ω2,m2

1,m1
| � ωL, the anticrossings are well separated. By varying

∆0, it is possible to tune into the various anticrossings and selectively shift
the energy of the hyperfine states with the microwave. This leads to great
flexibility in the design of state-dependent potentials. The states |K〉 are
superpositions of the bare states |F,mF 〉. The line colors of the levels E(K)
in Fig. 5.4 indicate which of the |F,mF 〉 is the dominant contribution to
|K〉. Far away from the resonances, each |K〉 is nearly identical to one of
the |F,mF 〉, as labeled in the figure. For the well separated anticrossings of
Fig. 5.4, the situation is relatively simple. An anticrossing between the bare
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∆0, for B = 8 G, Bmw = 1 G, and ε = 1√

3
(1, 1, 1). The avoided crossings are

associated with the indicated microwave polarization components. The line
color indicates which bare state is dominant in the dressed state.

states |1,m1〉 and |2,m2〉 occurs if the detuning

∆2,m2

1,m1
= ∆0 − (m2 +m1)ωL (5.17)

vanishes but the corresponding Ω2,m2

1,m1
is non-vanishing.2 Near a given reso-

nance, only the two bare states which form the anticrossing contribute sig-
nificantly to the two dressed states. The energy splitting between the states
can then be approximately described with the usual formula for a two-state
system [166],

E+ − E− ≈ ~
√
|Ω2,m2

1,m1
|2 + |∆2,m2

1,m1
|2, (5.18)

2If both ∆2,m2
1,m1

= 0 and Ω2,m2
1,m1

= 0, the levels cross, as can be seen in Fig. 5.4. For
strong Bmw, additional anticrossings appear due to higher-order effects.
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5 Microwave near-fields on atom chips

where + (−) refers to the upper (lower) dressed state. The splitting on
resonance is ~|Ω2,m2

1,m1
|. The energy shift due to the microwave is

V ±
mw = ±~

2

[√
|Ω2,m2

1,m1
|2 + |∆2,m2

1,m1
|2 − |∆2,m2

1,m1
|
]
. (5.19)

Such a two-state description is also possible for strong Bmw if only one mi-
crowave polarization component is present, so that each bare state |1,m1〉
is only coupled to one bare state |2,m2〉. For strong Bmw and general mi-
crowave polarization, simple analytical formulae for E(K) do not exist and
the |K〉 are complicated superpositions of several bare states |F,mF 〉.

In Fig. 5.5, the E(K) are shown as a function of Bmw, for pure π-
polarization of the microwave, as in Fig. 5.2 at the beginning of this chapter.
The parameters ∆0 and B are fixed such that all ∆2,m2

1,m1
have the same sign.

In this case, the microwave shifts the levels of F = 1 and F = 2 in oppo-
site directions, leading to a differential potential for the qubit states |0〉 and
|1〉. The magnitude of the shift is not identical for |0〉 and |1〉, because the
relevant ∆2,m2

1,m1
are different. The levels |F = 2,mF = ±2〉 are not shifted

because they do not couple to π-polarization. In the trap simulations below,
the main contribution to the differential potential of |0〉 and |1〉 is due to
π-polarization, but other polarization components contribute as well.

Energy shifts in the regime of large detuning

If the microwave is far detuned from all transitions, |∆2,m2

1,m1
|2 � |Ω2,m2

1,m1
|2 for

all m1 and m2, the states |F,mF 〉 are only weakly coupled. The effect of HAF

can then be evaluated in time-independent perturbation theory [151]. Each
dressed state |K〉 is approximately equal to one of the bare states |F,mF 〉,
the amplitude of other states in |K〉 is only of order Ω2,m2

1,m1
/2∆2,m2

1,m1
. This is

the regime in which optical dipole potentials are usually operated in order to
avoid spontaneous emission. For microwaves, spontaneous emission is negli-
gible, but a large detuning has the advantage that the coherence properties
of the states |0〉 and |1〉 are only weakly modified by the “contamination”
with other states which have different magnetic moments.

In this regime, the energy of state |K〉 ≈ |F,mF 〉 is

E(K) ≈ EF
0 + V F,mF

Z + V F,mF
mw . (5.20)

The offset EF
0 = ±1

2
~∆0 with + (−) for F = 1 (F = 2) is spatially homoge-

neous and does not lead to a potential. The static Zeeman shift is

V F,mF

Z = µBgFmFB. (5.21)
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of Fig. 5.2, shown here in the dressed-state picture. Line colors as in Fig. 5.4.

The microwave gives rise to the AC Zeeman shift V F,mF
mw . For the sublevels

of F = 1, it is

V 1,m1
mw =

~
4

∑
m2

|Ω2,m2

1,m1
|2

∆2,m2

1,m1

, (5.22)

while for F = 2, it is

V 2,m2
mw = −~

4

∑
m1

|Ω2,m2

1,m1
|2

∆2,m2

1,m1

. (5.23)

The AC Zeeman shift of |F,mF 〉 in the limit or large detuning thus equals
the sum of the energy shifts due to the individual transitions connecting to
this level.

5.1.2 Effect of the microwave electric field

The microwave electric field

Emw(t) =
Emw

2

(
κe−iωt + κ∗eiωt

)
(5.24)

127



5 Microwave near-fields on atom chips

also gives rise to energy shifts. It polarizes the atoms, leading to a time-
averaged quadratic Stark shift

Vel = −α0

4
E2

mw, (5.25)

where α0 is the static polarizability of the 87Rb ground state. In (5.25),
we have averaged over the fast oscillation of the microwave at frequency ω,
which is much faster than the atomic motion. Because Vel depends only on
the field magnitude Emw, the polarization and phase of Emw(t) are irrelevant.
Equation (5.25) is actually the DC limit of optical dipole potentials [168],
for a frequency ω which is far below any transitions which can be driven by
Emw(t). Since all levels |F,mF 〉 belong to the electronic ground state, their
static polarizabilities are equal, and the energy shift Vel is the same for all
levels.

The field strengths Emw and Bmw are related. For microwave radiation
in free space, Emw = cBmw. Although this relation is not generally valid in
the near field (see below), we use it to roughly estimate how Vel compares
to Vmw. For typical microwave field strengths (Bmw a few Gauss), we find
Vel � Vmw. Since both Vel and VZ are (nearly) identical for |0〉 and |1〉, it
is furthermore possible to compensate for Vel by a corresponding adjustment
in VZ , if desired.

5.1.3 Adiabatic potentials

The dressed state energies E(K) turn into a state-dependent potential land-
scape if the fields B and Bmw(t) are position dependent. If the motion of the
atom is sufficiently slow, its internal state follows adiabatically the spatially
varying fields, and the atom always remains in the dressed state |K〉 in which
it was prepared. As a rough guideline, the adiabatic approximation is valid if
the trap frequency is much smaller than the frequency splitting between |K〉
and the closest other dressed state |K ′〉 to which a transition is allowed [169].
Then, motion-induced transitions are exponentially suppressed. The same
approximation is also made in static magnetic traps (cf. section 1.2). The
adiabatic approximation also applies to modulations in time of the microwave
power or detuning, if the modulation is sufficiently slow.

In calculating the adiabatic potentials, one has to be careful because
a position dependence of B implies that our quantization axis is position
dependent. To calculate the potentials at r, we choose coordinates in which
the quantization axis is along the local direction of B(r). We then determine
the microwave polarization ε(r) in this local coordinate system in order to
calculate the matrix elements for Ω2,m2

1,m1
(r) in Eq. (5.14). All other parameters,
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5.2 Advantages of using microwave near-fields

such as Bmw(r) or ∆2,m2

1,m1
(r), are scalar and do not depend on the orientation of

the quantization axis. The dressed-state potentials E(K, r) are then obtained
by numerical diagonalization of H(r), or, in the limit of large detuning, from
Eqs. (5.21), (5.22), and (5.23). This procedure is repeated at every point
r. The AC Stark potential Vel(r) is calculated from E2

mw(r), which does not
depend on the orientation of the coordinates. The overall potential for state
|K〉 used in our simulations is thus

UK(r) = E(K, r) + Vel(r) + Vo(r), (5.26)

where Vo(r) indicates additional terms, e.g. due to gravity or the Casimir-
Polder surface potential.

5.2 Advantages of using microwave near-fields

A trap for neutral atoms based on microwave potentials has already been
realized in the 1990s [170, 171]. This trap employed microwave radiation
in the far field of the source. Unlike in the case of optical radiation, which
can be tightly focussed due to its short wavelength, the long wavelength of
microwave radiation (λmw = 4.4 cm at 6.8 GHz) poses severe limitations on
far-field traps: field gradients are very weak, even at very high microwave
power, and structuring the potential on the micrometer scale is impossible.
In [171], a microwave power of 83 W was resonantly enhanced in a cavity to
a circulating power of 0.5 MW. Still, the microwave potential alone was too
weak to hold the atoms against gravity. We speculate that because of these
difficulties, the technique was abandoned after the initial experiment [171].

On atom chips, there is a natural solution to these problems [87]. The
atoms are trapped at distances d � λmw from the chip surface. Thus, they
can be manipulated with microwave near fields, generated by microwave sig-
nals in on-chip transmission lines [172], as illustrated in Fig. 5.1 above. In
the near field of the source currents and voltages, the microwave fields have
the same position dependence as the static fields created by equivalent sta-
tionary sources [68]. The maximum field gradients depend on the size of
the transmission line conductors and on the atom-wire distance d, not on
λmw. Already milliwatts of microwave power result in sufficiently strong gra-
dients, and state-dependent potentials varying on the micrometer scale can
be realized.

Consider a waveguide on a chip with a characteristic impedance of Zc =
50 Ω carrying a microwave signal of P = 10 mW, corresponding to a mi-
crowave current amplitude of Imw =

√
2P/Zc = 20 mA on the signal con-

ductor. At a distance of d = 10 µm from the conductor, the microwave
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magnetic field amplitude is of order Bmw ≈ µ0Imw/(2πd) = 4.0 G, and the
gradient is B′

mw ≈ Bmw/d = 4 × 103 G/cm. The microwave induces a cou-
pling with a Rabi frequency of the order of Ωmw/2π ≈ µBBmw/h = 5.6 MHz.
The order of magnitude of microwave potentials is given by ~Ωmw. The high
Ωmw, which varies on a micrometer scale, leads to strong potential gradients.

Microwave potentials may arise because of gradients in microwave field
strength Bmw(r), because of gradients in detuning caused by B(r), or because
of polarization gradients ε(r), i.e. a spatial dependence of the orientation of
Bmw(r, t) relative to B(r). This leads to great flexibility in trap design. Even
greater flexibility is possible if several microwave frequencies are combined
in the same waveguide.

Comparison with static magnetic potentials

Dressed-state potentials are not subject to the same restrictions that limit
static magnetic potentials. An interesting feature of the AC Zeeman shift
is that the sign of V F,mF

mw can be controlled via the detuning. Therefore, all
states |F,mF 〉 are trappable either in maxima or in minima of Bmw, includ-
ing those which cannot be trapped in static magnetic fields. As explained in
the context of Fig. 5.4, a suitable combination of microwave detuning, polar-
ization, and static Zeeman splitting allows one to shift only selected levels.
Furthermore, near-resonant state dressing allows one, in certain geometries,
to create features in the potentials which are significantly smaller than the
distance d of the atoms to the wires [43].

Comparison with optical potentials

The concept of microwave potentials is similar to the optical potentials cre-
ated by nonresonant laser beams, which have been used with enormous suc-
cess to generate potentials for the manipulation of ultracold atoms [16]. The
main difference is that spontaneous emission is negligible between ground
state sublevels, so that (near-)resonant coupling is possible in the case of mi-
crowaves. Interference effects, which lead to the periodic potentials of optical
lattices, cannot be used to the same extent with microwaves, because they
arise only on the centimeter scale of λmw. Instead, a suitable arrangement of
chip wires is necessary to structure the potential in the near-field, similar to
the case of static magnetic traps (cf. section 1.5).

Comparison with radio-frequency potentials

Similar to the microwave potentials considered here, which arise from cou-
pling hyperfine states with different F , radio-frequency potentials can be
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created by coupling mF -sublevels within a single hyperfine state with fixed
F . Adiabatic radio-frequency potentials have been investigated with great
success in recent experiments [173, 46, 43]. Microwave potentials are more
flexible than radio-frequency potentials, because the different transitions are
split by the Zeeman effect (cf. Fig. 5.4), which allows one to tune into specific
transitions and address hyperfine states selectively. With radio frequencies,
all mF sublevels are always simultaneously coupled. Furthermore, for the
purpose of creating a differential potential for |0〉 and |1〉, microwaves are the
natural choice, because the qubit states belong to different hyperfine states,
and all microwave polarization components provide a differential shift. With
radio-frequencies, a differential potential for these states can only be created
with circular polarization.

A significant advantage of radio-frequency potentials is that radio-fre-
quency currents can be readily coupled into the chip wires without techno-
logical difficulties. The wavelength is much longer than the size of the atom
chip, so that resonances cannot occur, propagation effects are irrelevant, and
losses are weak. To couple microwaves into the chip wires, on the other
hand, requires properly designed guiding structures, because λmw is compa-
rable to the atom chip dimensions. Furthermore, suitable chip materials have
to be chosen to avoid strong dielectric losses. Microwave design aspects are
discussed in the next section.

5.3 Microwave guiding structures

We have designed and fabricated an atom chip with microwave guiding struc-
tures. The chip fabrication is described in chapter 2, a picture of the whole
chip is shown in Fig. 2.15. In the chip center, there are “experiment regions”
with structures of the kind shown in Fig. 5.1. In order to calculate the mi-
crowave potentials, we have to determine the microwave field components
Bmw(r, t) and Emw(r, t) in the experiment regions by numerical simulations.
In addition, we have to design transmission lines which guide the microwaves
from the chip connectors into the experiment regions. In this section, I
describe these aspects of microwave design and show measurements of mi-
crowave transmission line characteristics.

5.3.1 Coplanar waveguides

The microwave transmission lines [172] on our chip are coplanar waveguides
(CPW) with finite ground planes [122, 174]. A cross section is shown in
Fig. 5.6. There are several advantages of CPWs for our purpose:
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• All CPW conductors lie in one plane of metallization so that it is pos-
sible to have additional DC wires crossing in a conductor plane below
the CPW without short circuiting the waveguide.

• CPWs can be easily tapered from millimeter dimensions at the con-
nectors to micrometer dimensions in the experiment regions, without
substantial change in impedance.

• CPWs integrate smoothly with the structures used for magnetostatic
traps, which frequently require several parallel wires. DC and radio
frequency currents can be superimposed on the microwave signal with
suitable bias injection circuits [175].
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Figure 5.6: Cross section of a CPW with finite ground planes employed on
our chip. The dielectric substrate consists of several layers of finite thickness.

Quasi-TEM fields

Because the characteristic transverse size s+2w of the CPW is much smaller
than λmw, only quasi-TEM modes can propagate [172]. Quasi-TEM waves
are similar to pure transverse electromagnetic (TEM) waves, except for small
longitudinal field components. These arise because of conductor losses and
at the boundary between the dielectrics. Electromagnetic waves traveling on
the CPW along y are of the form

Emw(r, t) = Re [E(x, z) exp(iωt− γy)] , (5.27)

Bmw(r, t) = Re [B(x, z) exp(iωt− γy)] , (5.28)

where γ is the complex propagation constant. The complex microwave
field amplitudes can be decomposed as E(x, z) = Et(x, z) + eyEy(x, z) and
B(x, z) = Bt(x, z) + eyBy(x, z). For quasi-TEM waves, the transverse field
components Et and Bt are much stronger than the longitudinal components
Ey(x, z) and By(x, z), respectively.
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Because a CPW is a three-conductor transmission line, it supports two
quasi-TEM modes of propagation. We excite primarily the symmetric (CPW)
mode by connecting both outer conductors to ground. The microwave cur-
rents and voltages corresponding to this mode are indicated in Fig. 5.6. Here
we use phasor notation [172], e.g. the microwave current on the signal con-
ductor is represented by the complex phasor Imw, the corresponding real and
time-dependent current is I(t) = Re [Imwe

iωt].

Equivalent circuit parameters

A piece of transmission line with uniform cross section can be described by
the equivalent circuit in Fig. 5.7 [172]. The inductance L, capacitance C,
series resistance R, and shunt conductance G are defined per unit length of
the transmission line. From these, the complex characteristic impedance

Zc =

√
R + iωL

G+ iωC
(5.29)

and the complex propagation constant

γ ≡ α+ iβ =
√

(R + iωL)(G+ iωC) (5.30)

can be calculated. α is the attenuation constant, β is the propagation con-
stant, λmw = 2π/β is the wavelength of the guided wave, and v = ω/β is
the phase velocity. Current Imw and voltage Vmw on the line are related by
Vmw = ZcImw. A complex Zc introduces a phase shift between Imw and Vmw,
however, the microwave potentials are independent of this phase.

R L

C G

Figure 5.7: Equivalent circuit model of a transmission line.

The equivalent circuit parameters are important for impedance matching
and to evaluate losses on the CPW. They are determined by integrals of the
fields E(x, z) and B(x, z) [172]. To minimize G (dielectric losses), one has
to choose a substrate material with a small dielectric loss tangent. We use
high-resistivity Si substrates, the two layers of gold wires are separated by
a thin layer of polyimide (see chapter 2). For typical parameters, we have
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G � ωC. The resistance R represents conductor losses. For micrometer-
sized CPWs, R may be comparable to ωL, even for the high conductivity σ
of gold conductors.

The impedance of an “ideal” CPW (which is lossless, has t→ 0, g →∞
(see Fig. 5.6), and a uniform dielectric filling the half space below the conduc-
tors), is a function of the effective dielectric constant εeff = (1 + εr)/2 and of
the ratio s/(s+2w) only [122]. Thus, Zc does not change if s and w are scaled
by a common factor. This greatly simplifies the design of tapered CPWs,
which guide the microwave into the experiment regions. A lossy CPW with
finite dimensions shows deviations from this ideal behavior. Analytical for-
mulae for Zc exist for various parameter regimes [122, 176]. A useful transmis-
sion line design tool is TXLINE from AWR (www.appwave.com). In parame-
ter regimes not covered by the design tools, in particular for micrometer-sized
CPWs, we employ quasistatic field simulations to determine the transmission
line parameters.

5.3.2 Simulation of microwave near-fields

Quasistatic simulations

For quasi-TEM waves on a transmission line with uniform cross-section, the
problem of solving the full Maxwell’s equations in three dimensions reduces to
a two-dimensional quasistatic problem in the transverse plane. The results of
this calculation are E(x, z) and B(x, z), which can then be used to calculate
the microwave potentials and to determine the equivalent circuit parameters
of the CPW.

In transmission lines with micrometer-sized wires, conductor losses play
an important role [176]. The finite conductivity σ not only leads to attenu-
ation, it also changes the electromagnetic field distribution in and around
the wires via a more or less pronounced skin effect. The skin depth is
δ =

√
2/ωµ0σ = 0.9 µm for gold conductors at ω/2π = 6.8 GHz. If the

wire dimensions are comparable to δ, the skin effect is not fully developed,
and standard calculations of transmission line parameters are inaccurate,
because they often assume that the interior of the conductors is field-free.
In this regime it is possible to obtain accurate fields and transmission line
parameters by an electrostatic and a magneto-quasistatic simulation, which
takes the skin effect properly into account [176, 177, 178]. The magneto-
quasistatic simulation yields Bt and Ey as a function of Imw, so that L and
R can be calculated. It is assumed that By = 0. The electrostatic simula-
tion determines Et from Vmw, so that C and G can be calculated. The two
simulations are then related by imposing the condition Vmw = ZcImw. The
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5.3 Microwave guiding structures

result of such a calculation is shown in Fig. 6.4 in chapter 6. It shows that
the magnetic field is not fully screened from the inside of the conductors, i.e.
the skin effect is not fully developed. Furthermore, Bt and Et have different
spatial dependence near the conductors, see Fig. 6.4(a). For sufficiently large
distance, the TEM result Et = −v ey × Bt is recovered approximately, see
Fig. 6.4(b).

These two-dimensional simulations apply to CPWs with a uniform cross
section only. To analyze the effect of the transverse wire on the lower gold
layer, we perform three-dimensional simulations of the microwave fields.

Full wave simulations

We use the software packages Sonnet and AWR Microwave Office for the sim-
ulation of three-dimensional, mostly planar conductor layouts. In addition,
F. Perretti and G. Csaba from the group of Prof. Lugli at TU Munich have
performed a 3D full wave simulation of one of our CPW structures, using
the software package HFSS from Ansoft Corporation. The layout of this test
structure is shown in Fig. 5.8(a). The two layers of gold wires are separated
by a 4 µm thick layer of polyimide. The substrate material is high-resistivity
Si. The CPW is on the upper gold layer, it is tapered from a size of about
1 mm at the chip edge to a size of a few micrometers in the chip center, where
it crosses a 50 µm wide DC wire on the lower gold layer. The impedance of
the CPW changes from |Zc| = 50 Ω at the edge to |Zc| = 80 Ω in the center.
Figure 5.8(b) shows the fabricated structure in the chip center, where the
CPW crosses the DC wire. The simulated magnetic and electric fields in a
cross section of the CPW above the DC wire are shown in Fig. 5.8(c). We find
that the distortion of the microwave fields caused by the wire on the lower
layer is small if the CPW size s + 2w is not much larger than the thickness
of the polyimide layer. The fields obtained from quasi-static and full wave
simulations agree well in this case. The fields are used to calculate scattering
parameters for the structure, which we have compared with measurements.

5.3.3 S-parameter measurements

In our experiment, the atoms can be used as a scanning probe to map out
the microwave field distribution in the near-field of micrometer-sized CPWs.
However, we are not able to directly measure the field distribution before we
attach the chip to the vacuum chamber. To confirm that the microwave guid-
ing structures work, we measure the scattering parameters (S-parameters)
[172] with a network analyzer connected to a microwave probe station, and
compare with the simulation. Microwave transmission from port i to port j
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Figure 5.8: Tapered CPW crossing a DC wire on the lower gold layer. (a)
Layout of the structure. (b) Center region of the fabricated structure. (c)
Simulated microwave magnetic and electric fields in a cross-section of the
CPW in the chip center.

is characterized by a complex S-parameter Sji = V −
j /V

+
i , where V −

j is the
voltage wave scattered out of port j if V +

i is incident at port i. In Fig. 5.9,
a comparison of the measured and simulated S-parameters is shown for the
structure of Fig. 5.8, at a system impedance of 50 Ω. Because of symmetry,
S12 = S21 and S11 = S22. In view of the micrometer dimensions and the
extreme tapering of the CPW, the magnitude of the measured transmission
coefficient |S12| is fairly high. This shows that the microwave signal is effec-
tively guided by the structure. The simulation underestimates transmission
loss. The magnitude of the reflection coefficient |S11|, on the other hand,
agrees remarkably well with measurement. A resonance is visible in |S11|
near 7 GHz, where λmw matches the length of the whole structure. Note
that the corresponding relative modulation of |S12| is small, as expected if
reflections at the ports and at the crossing wire are weak.

Similar characteristics are measured for the structures on the chip in
Fig. 2.15. Because the CPW tapers work well, the microwave field strength
in the experiment region is limited by the maximum current the small CPW
wires can sustain, and not by the available microwave power at the input
port. We have performed measurements of the microwave current at which
the signal wire of the small CPW fails, and compared the result with the DC
current tests described in section 2.4. A microwave pulse was launched into
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Figure 5.9: Comparison of measured and simulated S-parameters for the
structure in Fig. 5.8.

the CPW from one port and the power transmitted to the other port was
measured. Because resonances are weak, and making use of symmetry, the
microwave power in the chip center and the corresponding RMS current can
be inferred. The maximum RMS current the micrometer-sized signal conduc-
tor could support was comparable to the maximum DC current we measured
for this conductor. This confirms that conductor losses are the dominant dis-
sipation effect in micrometer-sized CPWs, and that the skin effect is not fully
developed, so that there is only a small difference between microwave and
DC current distributions inside the signal conductor. Dielectric losses in the
substrate are only relevant for larger structures. On a test chip, we increased
the injected microwave power until the CPW failed. We observed that the
signal conductor was destroyed right in the chip center where the conduc-
tor cross-section is smallest. This shows that the microwave signal is indeed
successfully guided to where it will be needed for the atom manipulation.

5.4 A state-dependent double well potential

The structure shown in Fig. 5.1 at the beginning of this chapter can be used
to generate a state-dependent double well potential for the qubit states |0〉
and |1〉. The potential arises from a combination of static magnetic and
microwave near-field potentials as illustrated in Fig. 5.10.

Figure 5.11 shows a simulation of the potential. The CPW dimensions are
s = g = 2.5 µm, w = 2.0 µm, and t = 1.0 µm, the cross section of the trans-
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Figure 5.10: The barrier of a static magnetic double well can be selectively
removed for state |1〉 with microwave near-field potentials. VZ is identical for
|0〉 and |1〉, while Vmw has opposite sign, as in Fig. 5.5.

verse wire is 11 µm× 5 µm, and the gold layers are spaced by 6 µm of poly-
imide. These dimensions correspond to a structure which we have fabricated
on the microwave atom chip for experiments with BECs. The simulation is
based on numerical diagonalization of the Hamiltonian in Eq. (5.16), using
microwave fields calculated in the quasistatic approximation. We operate
the trap in the conceptually simplest regime by choosing a large microwave
detuning and making use of the gradients in Bmw(r) in the near-field of
the CPW. The trap parameters are (IT , IL, IC , IR) = (100,−2, 1.2,−2) mA,
Bb = (3.4, 11, 0) G, Imw = 30 mA, and ∆0/2π = 20 MHz (cf. Fig. 5.1).
For these parameters, the microwave coupling is weak, µBBmw/~∆0 = 0.1 in
the trap center, and we can identify each dressed state |K〉 with one of the
|F,mF 〉. The potentials U1 (U0) for state |1〉 (|0〉) include the effect of the sta-
tic magnetic field, the microwave magnetic and electric fields, gravity, and the
surface potential, see Eq. (5.26). The minimum of U0 is at d = 8.1 µm from
the CPW surface, the trap frequencies are (fx, fy, fz) = (0.80, 3.13, 3.20) kHz.
The minimum of U1 is at d = 7.7 µm, and (fx, fy, fz) = (0.73, 3.22, 3.00) kHz.
The static field in the trap center is B = 2.9 G, pointing along x. In the
figure we have set Ui = 0 in the potential minimum of each state.

By modulating Imw and IC , it is possible to state-selectively split and
recombine small BECs in this potential. The chemical potential µc,i of a
BEC of N = 500 atoms in state |i〉 is indicated. It is calculated using
Eq. (1.25); for the calculation of µc,0 it is assumed that all atoms are in one
potential well.

In the next chapter, I discuss an application of microwave near-fields in
quantum information processing with single atoms, where atom-atom entan-
glement is generated via state-dependent collisions in a potential similar to
that in Fig. 5.11.
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Figure 5.11: State-dependent double well potential. (a) Potential Ui(x) for
atoms in state |i〉. The potential in the yz-plane is harmonic. The chemical
potential µc,i of a BEC of 500 atoms in state |i〉 is indicated, see text. (b)
Chip layout and isopotential surfaces Ui(r) = µc,i.
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Chapter 6

Proposal for a robust quantum
gate on an atom chip

A two-qubit collisional phase gate on an atom chip is proposed, and its per-
formance is theoretically analyzed. The gate is based on earlier phase gate
schemes, but uses the qubit state pair {|0〉, |1〉} whose robustness against de-
coherence is experimentally demonstrated in chapter 4. Microwave near-fields
(see chapter 5) play a key role in our implementation as a means to realize
the state-dependent potentials required for conditional dynamics. Quantum
control algorithms are used to optimize gate performance. We employ an
atom chip wire layout that can be built with current fabrication processes,
and extensively discuss the impact of technical noise and imperfections that
characterize an actual atom chip. We find an overall infidelity compatible
with requirements for fault-tolerant quantum computation.

This chapter, which was published in [165], is the result of a collaboration
with A. Negretti and M. Cirone from the group of T. Calarco.

6.1 Quantum information processing on atom

chips

The physical implementation of scalable quantum computing unquestionably
poses huge challenges. Many proposals exist, most of which in principle sat-
isfy all requirements for scalability [8]. One might be tempted to claim that
their realization is simply a matter of technological improvement. Yet, we
can fairly say that to date nobody knows how to build a scalable quantum
computer. Understanding and overcoming each of the sources of imperfec-
tion, specific to a given physical scenario, becomes thus crucial on the way
to a possible actual implementation.
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6 Proposal for a robust quantum gate on an atom chip

Atom chips [23, 22] combine many important features of a scalable archi-
tecture for quantum information processing (QIP) [8]: The long coherence
lifetimes of qubits based on hyperfine states of neutral atoms [87], accurate
control of the coherent evolution of the atoms in tailored micropotentials
[42, 46], scalability of the technology through microfabrication [111, 115],
which allows the integration of many qubits in parallel on the same device
while maintaining individual addressability, and the exciting perspective of
interfacing quantum optical qubits with solid-state systems for QIP located
on the chip surface [179] (see also chapter 7). However, the experimental
demonstration of a fundamental two-qubit quantum gate on an atom chip is
an important milestone which still has to be reached.

A first proposal for a quantum phase gate based on collisional interac-
tions between atoms on a chip was put forward in [34]. While it demon-
strates the working principle of such a gate, there are problems which could
prevent a successful experimental realization: 1) The qubit is encoded in two
states with a magnetic-field sensitive energy difference, such that it is hard
to maintain the qubit coherence over a long time in a noisy experimental
environment. 2) The fidelity is strongly reduced by wave packet distortion
due to undesired collisions in some of the qubit basis states. 3) An idealized
situation with accurately harmonic potentials for the atoms was considered
[34], which is hard to realize experimentally, and deviations from harmonicity
spoil the gate performance [180]. 4) Furthermore, transverse excitations of
the atoms were not considered in detail. For a successful experimental im-
plementation, however, a scheme is needed which allows for high fidelity gate
operations under realistic conditions. A gate infidelity (error rate) below
a certain threshold is needed in order to allow for a fault-tolerant imple-
mentation of quantum computing. Depending on error models and recovery
schemes, estimates of such threshold vary from a few 10−3 for active error
correcting codes [181] up to well above 10% for error detection schemes [182].

Here we present a substantially improved version of the phase gate of
[34] for the robust qubit states |0〉 and |1〉 investigated in chapter 4, and
give a detailed prescription for its implementation. The decoherence rates
of the qubits due to magnetic-field noise are suppressed by a factor of 10−3

compared to [34]. In our proposal, a key role is played by microwave near-
field potentials, which allow to create the required state-selective potentials
for a successful gate operation with the states considered here (cf. chap-
ter 5). Using microwave potentials, the same robust qubit states can be used
for information processing and storage. At the same time, the microwave
potentials avoid the unwanted collisions limiting the fidelity in the original
proposal, by appropriately displacing the potential minima for qubit states
|0〉 and |1〉. We simulate the gate dynamics in a potential created by a real-
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6.2 Principle of the gate operation

istic atom chip, which we specify in detail, and which can be fabricated with
today’s technology. Furthermore, we consider many sources of infidelity in
detail, such as loss and decoherence effects due to the proximity of the chip
surface, and we find a total infidelity of the order of a few 10−3.

6.2 Principle of the gate operation

To complete the toolbox for quantum information processing on atom chips
[164], a fundamental two-qubit quantum gate is needed. Each qubit is rep-
resented by an atom in a superposition of the qubit states |0〉 and |1〉. Our
goal is to realize a phase gate, with the truth table

|00〉 → |00〉,
|01〉 → |01〉,
|10〉 → |10〉,
|11〉 → eiφg |11〉, (6.1)

for the four two-qubit basis states. φg is the gate phase, which is to be
adjusted to φg = π. As proposed in [34], the phase gate can be implemented
by modulating the trapping potential state-selectively, such that the two
atoms interact and pick up a collisional phase shift φg if and only if both are
in internal state |1〉. In the following, we briefly sketch the working principle
of the gate, highlighting the differences between the present approach and
[34].

In Figure 6.1, the principle of the gate operation is shown. The atoms
are placed in a state-dependent potential

Ui(r, t) = uc(r) + λ(t) · ui(r), (6.2)

which can be split into a common part uc(r) and a state-dependent part ui(r),
where i = {0, 1} denotes the states |0〉 and |1〉 and r = (x, y, z). The common
part of the potential is time-independent, while the state-dependent part is
modulated with a function λ(t), 0 ≤ λ(t) ≤ 1, during the gate operation.
At times t < 0, when the gate is in its initial state, we have λ(t) = 0 and
the atoms are subject to uc(r) only, see Fig. 6.1(a). The potential uc(r)
provides a tight confinement in the transverse dimensions y and z, such that
the dynamics of the atoms is effectively one-dimensional. In the longitudinal
dimension x, uc(r) is a double well with a sufficiently high barrier to prevent
tunneling between the wells. Each of the qubit atoms is prepared in the
motional ground state of one potential well. The gate operates during the
time 0 ≤ t ≤ τg, where τg is the gate time. During this time, λ(t) 6= 0,
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6 Proposal for a robust quantum gate on an atom chip

and the potential is state-dependent as sketched in Fig. 6.1(b). The effect
of ui(r) is twofold: u1(r) removes the barrier of the double well for state |1〉,
leaving only a single, approximately (but not exactly) harmonic potential
well in which atoms in state |1〉 start to oscillate. u0(r) shifts the minima
of the double well for state |0〉 further apart in the x-direction. The effect
of ui(r) on the tight transverse confinement is very small. In this way, the
truth table (6.1) is implemented: In state |11〉, both atoms will oscillate and
collide each time they pass the center of the trap, which leads to the desired
collisional phase shift of the state |11〉. In states |00〉, |01〉, and |10〉, the
atoms do not collide, since atoms in state |0〉 are shifted out of the way of
the oscillating state |1〉. When the desired phase shift φg is accumulated
after an integer number of oscillations N of the state |1〉, the gate operation
is terminated by returning to λ(t) = 0 for t > τg, recapturing each atom in
one of the potential wells of uc(r) (see again Fig. 6.1(a)).

®j0i+¯j1i

¯j1i®j0i °j0i±j1i

a)

b)

uc(x)

uc(x)+u1(x) uc(x)+u0(x)

°j0i+±j1i jª(0)i

jª(t)i

Figure 6.1: State-selective potential, atomic wave functions, and principle
of the gate operation. (a) The state-independent potential uc(x) along x for
t < 0 and t > τg, before and after the gate operation, when λ(t) = 0. The
initial state wave function of the two atoms in this potential is shown. (b)
The state-dependent potential uc(x) + ui(x) (here λ(t) = 1) for 0 ≤ t ≤ τg,
during the gate operation. The atomic wave functions after half an oscillation
period are shown. The state-independent part uc(x) is shown for comparison.

The gate operation described here is different from the original proposal
in [34]. There, only the potential for state |1〉 is switched during the gate
operation. This leads to unwanted collisions of atoms in state |01〉, which are
a major source of infidelity and would require an additional transverse shift
in the potential minimum [34]. Using microwave potentials, we are able to
create a state-dependent potential in which the state |0〉 is shifted out of the
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way of the oscillating state |1〉 in the longitudinal dimension. This is essential
to avoid the unwanted collisions and to achieve high fidelity gate performance.
A second difference is that we choose a smooth modulating function λ(t) for
the state-selective part of the potential instead of instantaneous switching as
in [34]. Roughly speaking, λ(t) is ramped from λ(t) = 0 to λ(t) = 1 during
the first half of each oscillation, while it is ramped back to λ(t) = 0 with the
inverse temporal profile during the second half. This smooth ramping allows
for much better control over the gate dynamics than instantaneous switching
of the potential. This is necessary to avoid strong excitations of the atoms
in |0〉 during the shift of the potential well. It also decreases the oscillation
amplitude of state |1〉, thereby further suppressing collisions in the states
|01〉 and |10〉. The exact time dependence of the function λ(t) is determined
by an optimal control algorithm which optimizes the fidelity of the quantum
gate, as discussed in section 6.5.

6.3 Chip layout and potentials

The state-dependent potential (6.2) which is needed for the gate operation
can be realized by a combination of static magnetic and microwave fields on
the atom chip, as described in chapter 5. The use of microwaves to create the
state-selective potential is essential for our proposal, since a combination of
static magnetic and electric fields, as considered in [34, 51], does not provide
state-selective potentials for our robust qubit state pair, whose magnetic mo-
ments and electrostatic polarizabilities are equal. Optical potentials created
by focussed laser beams with a frequency close to the D1 or D2 transition of
87Rb are impractical as well: if the detuning of the laser from the atomic res-
onance is much larger than the hyperfine splitting of the 87Rb ground state,
the resulting optical potentials are again nearly identical for the states |0〉
and |1〉. If, on the other hand, a detuning comparable to the hyperfine split-
ting is used, a differential optical potential could be created, but problems
with decoherence due to spontaneous scattering of photons would arise.

The common potential in Eq. (6.2) is generated by the static Zeeman
effect, which is identical for |0〉 and |1〉 (see Fig. 6.2):

uc(r) = V 2,+1
Z (r) = V 1,−1

Z (r) =
µB

2
B(r). (6.3)

The state-dependent part of the potential in Eq. (6.2) is generated by the
microwave. The trap is operated in the limit of large detuning |∆2,m2

1,m1
|2 �

|Ω2,m2

1,m1
|2, which allows for long coherence lifetimes of the qubit states in the
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Figure 6.2: Energy-level diagram of the hyperfine structure of the 87Rb

ground state in a combined static magnetic and microwave field. V F,mF

Z

indicates the energy shift due to the static Zeeman effect, which is (nearly)
identical for |0〉 and |1〉. Due to the magnetic field of the microwave, the level
|F,mF 〉 is shifted in energy by V F,mF

mw . This shift has opposite sign for |0〉
and |1〉, as indicated in the figure (the shift of the other levels is not shown).
The microwave transitions contributing to the shift of |0〉 and |1〉 are shown
for ∆2,m2

1,m1
> 0 (blue detuning).

microwave potential (see section 6.6). The potential u0(r) is given by

u0(r) = Vel(r) + V 1,−1
mw (r) (6.4)

= −α0

4
E2

mw(r) +
~
4

0∑
m2=−2

|Ω2,m2

1,−1(r)|2

∆2,m2

1,−1(r)
,

while the potential u1(r) is

u1(r) = Vel(r) + V 2,+1
mw (r) (6.5)

= −α0

4
E2

mw(r)− ~
4

+1∑
m1=0

|Ω2,+1
1,m1

(r)|2

∆2,+1
1,m1

(r)
.

As desired, a differential potential for |0〉 and |1〉 can be generated via Vmw.
In Fig. 6.2, the relevant transitions contributing to the potentials for |0〉 and
|1〉 are shown for a general microwave field with all polarization components
present. From Fig. 6.2 it is evident that the microwave potentials for the two
states will not have exactly the same position dependence (in addition to the
difference in sign), since only two polarization components contribute to the
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potential for |1〉, while all three components contribute to the potential for
|0〉. Furthermore, by reversing the sign of the detuning ∆2,m2

1,m1
for all levels,

the overall sign of the microwave potentials and therefore the role of the
states during the gate operation can be interchanged, i.e. either |0〉 or |1〉
can be chosen as the oscillating state. We choose ∆2,m2

1,m1
> 0, resulting in |1〉

as the oscillating state, since the potential for |1〉 is closer to harmonic in our
actual trap design.

Chip layout

We propose to use a microwave atom chip with a wire layout as shown in
Fig. 6.3. A double well potential with a state-dependent barrier can be gener-
ated with this structure, as explained in chapter 5. The structures considered
here are smaller than those in section 5.4 to achieve tighter confinement and
thus faster gate dynamics.

Static magnetic trap

For the phase gate with three oscillations (N = 3, see section 6.5), an initial
static trap with DC currents IT = 348.440 mA, IC = −0.813 mA, and IL =
IR = 1.204 mA is used (see Fig. 6.3). The components of the homogeneous
bias field Bb = (Bb,x, Bb,y, Bb,z) are Bb,x = −4.464 G, Bb,y = 103.717 G,
and Bb,z = 0.000 G. For assumptions about the stability and accuracy of
the currents and magnetic fields, see section 6.6. For the parameters given
above, uc(r) is a Ioffe-type double well potential [23] along an axis x′ in
the xy-plane, which is tilted by a small angle θ = 0.02 with respect to x.
The distance of the double well from the wire surface is d = 1.80 µm. The
magnetic field in the trap center is |B0| = 3.230 G, which maximizes the
coherence time in the absence of microwave coupling, see chapter 4. B0

is directed approximately along −x. The distance between the minima of
the double well is dx = 1.32 µm. In the transverse dimensions, the trap
provides a tight harmonic confinement with almost identical trap frequencies
ωy/2π = ωz/2π = ω⊥/2π = 77.46 kHz. For the simulation, we determine
ω⊥(x) as a function of the longitudinal coordinate x, although the relative
variation along x is only ≤ 1×10−3. The axial trap frequency of the potential
wells is ωx/2π = 4.432 kHz. All traps considered in our gate simulation
satisfy ωx � ω⊥.

Microwave fields

We determine the microwave fields with a quasi-static simulation, as de-
scribed in section 5.3.2. The results of this simulation are shown in Fig. 6.4.
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Figure 6.3: Chip layout for the microwave collisional phase gate. (a) Cut
through substrate. (b) Top view of wire layout. Wire parameters: s = g =
0.8 µm, w = 0.1 µm, t = 0.2 µm, dT = 4.2 µm, wT = 1.5 µm, tT = 1.0 µm.
The lower wire (current IT ) is fabricated into a groove which was etched into
the substrate, and covered by an insulating layer. The DC currents IT , IC ,
IL, and IR and the orientation of the magnetic bias field Bb used to create
the state-independent potential uc(r) are shown. The atomic wave functions
in this potential are indicated. The three upper wires form a microwave
coplanar waveguide (CPW), compare Fig. 6.4.

From the fields, we determine the characteristic impedance of the CPW,
Zc = 130 Ω · e−i·0.24 π. The microwave propagation constant βmw = 2π/λmw

and the attenuation constant αmw are of comparable magnitude, βmw ∼
αmw ∼ 1 × 103 m−1 at 6.8 GHz. However, on the micrometer scale on
which the atomic dynamics takes place, microwave damping and propaga-
tion effects are negligible. The influence of the lower wire on the microwave
propagation characteristics of the CPW is negligible, since dT � (s + 2w).
To estimate the effect of the lower wire, we have included a homogeneous
gold layer in the plane of the lower wire in our two-dimensional simulation.
This leads to a small relative change in |Zc| of 1× 10−2.

In the simulation of the gate dynamics and in Fig. 6.4, the microwave
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Figure 6.4: Transverse (xz-plane) magnetic and electric fields of the mi-
crowave on the coplanar waveguide. The fields were obtained by a quasi-static
simulation including conductor-loss effects. The longitudinal (y-direction)
electric field, which is several orders of magnitude smaller than the trans-
verse electric field, is not shown in the plots. (a) Magnitude of the fields
for λ = 1 shown in a cross section of the CPW. (b) Transverse microwave
field components as a function of x at a distance d = 1.80 µm from the wire
surface, corresponding to the line z = z0 = 1.90 µm in (a), which indicates
the z-position of the static trap minimum. For the size of the conductors,
see Fig. 6.3.

voltage and current amplitudes on the CPW are

|Vmw| =
√
λ(t) · 1.9895 V (6.6)

|Imw| =
|Vmw|
|Zc|

=
√
λ(t) · 15.343 mA (6.7)

Here, λ(t) is the modulating function of the microwave potential during the
gate operation, which will be optimized by optimal control techniques as de-
scribed in section 6.5. The detuning of the microwave from the transition
|F = 1,mF = 0〉 → |F = 2,mF = 0〉 is ∆0 = 2π · 29.4 MHz. For these para-
meters, the ratio between the electric and the magnetic microwave potential
is Vel ∼ 0.2Vmw, i.e. the state-selective magnetic part of the microwave po-
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6 Proposal for a robust quantum gate on an atom chip

tential is dominating. This is important since Vel reduces the barrier of the
double well also for state |0〉. It is possible to avoid this unwanted effect
of Vel by a small adjustment of the magnetostatic potential during the gate
operation. To compensate Vel, we modulate

Bb,x(t) = (−4.464 + λ0(t) · 0.036) G (6.8)

IC(t) = (−0.813− λ0(t) · 0.039) mA, (6.9)

where λ0(t) ' λ(t). The function λ0(t) consists of simple linear ramps, as
explained below (section 6.5.1).

If the microwave is turned on to full power (λ = 1 and λ0 = 1), the
barrier of the static double well trap is removed for state |1〉, leaving a single
potential well of longitudinal trap frequency ω|1〉/2π = 5.448 kHz, as shown in
Fig. 6.1. For state |0〉, the two potential wells are shifted apart and the trap
frequency in each of the wells changes to ω|0〉/2π = 4.775 kHz. The transverse
confinement of the static trap is unchanged, both d and ω⊥ change by less
than 10−3. Although we include the full position dependence of ui(r) in
the simulation, it would be sufficient to consider the state-selective potential
ui(x, y0, z0) at the transverse position of the static trap minimum (y0, z0).

Chip fabrication

The fabrication of the chip relies on electron beam lithography, which pro-
vides sub-micron resolution, in combination with lift-off metallization tech-
niques and anisotropic etching of the Si substrate. The lower gold wire is
fabricated as follows: prior to the metal deposition, a groove is etched into a
high-resistivity Si substrate by anisotropic reactive ion etching, using litho-
graphically patterned photoresist as etch mask. The gold wire is subsequently
fabricated into this groove using the same photoresist for lift-off. The remain-
ing groove is filled and the wire is insulated by depositing a dielectric layer,
such as SiO2 or polyimide. Since the lower wire is contained in the groove,
this insulating layer can be very thin and still provide good planarization of
the surface. In this way, good thermal contact of the wires to the substrate
is guaranteed. On top of the insulating layer, the CPW is fabricated using
standard electron-beam lithography and lift-off.

6.4 Simulation of the gate operation

The gate operation is simulated numerically by solving a time-dependent
Schrödinger equation of the two-particle dynamics along the direction of the
double well x′ (in the following, we write x instead of x′ to simplify notation).
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6.4 Simulation of the gate operation

We assume that the atoms remain in the transverse ground state of the trap
throughout the gate operation; this assumption is justified in section 6.5.2
and section 6.6. The initial state of the two atomic qubits in an arbitrary
superposition of internal states |ij〉 is

|Ψ(t = 0)〉 =

 ∑
i,j∈{0,1}

αij|ij〉

⊗ |ψ(x1, x2, t = 0)〉, (6.10)

where |ψ(x1, x2, t = 0)〉 describes the initial motional state of the two atoms,
which is independent of the internal state, with one atom in each well of
the potential uc(x) (see Fig. 6.1(a)). During the gate operation, the internal
and motional states of the atoms are entangled due to the dynamics in the
state-selective potential:

|Ψ(t)〉 =
∑

i,j∈{0,1}

αij|ij〉 ⊗ |ψij(x1, x2, t)〉. (6.11)

The dynamics of |ψij(x1, x2, t)〉 (see Fig. 6.1(b)) is governed by the time-
dependent Hamiltonian

Hij(t) = Tx1 + Tx2 + Ui(x1, t) + Uj(x2, t) + V ij
int(|x2 − x1|, t), (6.12)

where Txi
denotes the kinetic energy operators and

V ij
int(|x2 − x1|, t) =

2~ω⊥(x1, t)a
ij
s

1− 1.46aij
s /a⊥(x1, t)

δ(|x2 − x1|) (6.13)

is the effective one-dimensional interaction potential between the atoms [183],
aij

s ' 5.4 nm is the s-wave scattering length for collisions of 87Rb atoms in
state |ij〉, and a⊥(x1, t) =

√
2~/mω⊥(x1, t) is the size of the ground state

in the transverse direction. The transverse trap frequency ω⊥(x1, t) can be
used as a control parameter to optimize the dynamics and is therefore time-
dependent. The numerical simulation of the dynamics is performed using a
Fast Fourier Transform method.

The entanglement between the motional and internal states of the atoms
is crucial for establishing the collisional phase shift in state |11〉. However,
at the end of the gate operation, the motional and internal states have to
factorize again, so that the truth table (6.1) is implemented. Any residual
entanglement between the motional and internal states leads to a reduction
of the gate fidelity. To avoid this, the wave function of the atoms has to show
a revival at t = τg and regain its initial form, apart from the phase factor in
state |11〉. To quantify this, we define the overlaps

Oij(t) = 〈ψij(x1, x2, t)|ψ(x1, x2, 0)〉, (6.14)
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6 Proposal for a robust quantum gate on an atom chip

from which the overlap fidelities

Fij(t) = |Oij(t)|2 (6.15)

are calculated. The evolution of the gate phase is given by [34, 184]

φg(t) = φ11(t) + φ00(t)− φ01(t)− φ10(t), (6.16)

where we have defined the collisional phases

φij(t) = arg
[
〈ψij(x1, x2, t)|ψ0

ij(x1, x2, t)〉
]
. (6.17)

Here, |ψ0
ij(x1, x2, t)〉 is the motional state evolved from |ψ(x1, x2, 0)〉 in the

absence of collisions [34]. φij(t) is well defined even for times t where Oij(t) '
0. Optimal gate performance corresponds to Fij(τg) = 1,∀i,j, i.e. a complete
revival of the wave function, and a gate phase φg(τg) = π. In a realistic non-
harmonic potential, however, the revival of the atomic wave function will be
incomplete, and the collisions between the atoms will lead to an additional
distortion of the wave function. Both effects will lead to a reduction of the
gate fidelity, and have to be avoided as much as possible by an optimization
of the gate dynamics.

6.5 Optimization of the gate

We apply optimal control techniques [185, 186] to optimize the gate perfor-
mance. This is performed in two steps. First, the dynamics without atom-
atom interactions is optimized using λ(t) as control parameter. In this way,
we optimize the revival of the wave function in the non-harmonic potential.
In a second step, the dynamics in the presence of interactions is optimized
further using ω⊥(t) as control parameter. This reduces wave packet distortion
due to collisions. The two steps are discussed in the following subsections for
a gate with N = 3 oscillations.

6.5.1 Optimal control of λ(t)

In the first stage of optimization, λ(t) is used as control parameter. Experi-
mentally, this corresponds to controlling the microwave power. We start with
a trial function λ0(t) which consists of linear ramps, as shown in Fig. 6.5(a).
This choice represents a compromise between a sudden removal of the barrier
for state |1〉 and an adiabatic shift of the potential wells for state |0〉. We
optimize τg and the slope of the linear ramps of λ0(t) by hand to achieve an
initial gate fidelity > 0.95. Starting with λ(t) = λ0(t), the function λ(t) is
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6.5 Optimization of the gate

then adjusted by an optimal control algorithm, which neglects atom-atom in-
teractions in order to provide faster convergence. This corresponds to setting
as = 0 in (6.13). In the absence of interactions, it is sufficient to optimize
the single-particle overlaps Oi = |〈ψi(x, τg)|ψ(x, 0)〉|, which are optimized si-
multaneously for i ∈ {0, 1} by the algorithm using the Krotov method [187].
After the optimization has converged, the resulting optimized λ(t) is used in
a simulation of the two-particle dynamics with interactions (as 6= 0), in order
to determine the two-particle overlap fidelities Fij(τg). The strength of the
interaction (6.13) was adjusted by setting the transverse trap frequency ω⊥
to a value constant in time such that the gate phase is φg ' π. The result of
this first stage of optimal control is the microwave power modulation function
λ(t) shown in Fig. 6.5(a), which deviates from λ0(t) by small modulations,
and the fidelities shown in the left part of Table 6.1.

The trial function λ0(t) is also used to modulate the magnetostatic po-
tential in order to compensate the effect of the microwave electric field, as
explained in section 6.3. We choose λ0(t) instead of λ(t) for this modulation
in order to keep the number of experimental parameters which are subject
to optimal control as small as possible.

Our simulation shows that collisional interactions between the atoms are
negligible in basis states other than |11〉, with φ00(τg) = 0 and φ01(τg) =
φ10(τg) ∼ 10−3 φ11(τg). In Fig. 6.5(d), the phase evolution during the gate
operation is shown. The main effect of the interaction is to provide the phase
shift in state |11〉, corresponding to the steps in φg(t) each time a collision
in this state takes place. An undesired effect of the collision is to decrease
the fidelity F11(τg) compared to the non-interacting case due to wave packet
distortion during the collision. We have performed the optimization of the
gate for different numbers of oscillations N . For each value of N , a different
value of ω⊥ was chosen to adjust the gate phase to φg ' π. For smaller N , the
gate phase has to be acquired in a smaller number of oscillations, therefore
the interactions need to be stronger and the phase shift per collision is larger.
Correspondingly, the collisional distortion of the wave function is also larger,
and F11 is smaller. This general tendency can be seen in the left part of
Table 6.1 by comparing the values of F11 for different N . The best gate
performance was achieved for N = 5, with F11 = 0.991 and a gate time of
τg = 1.838 ms.

6.5.2 Optimal control of ω⊥(t)

After optimization of λ(t), the fidelity of the gate is limited by collisional
distortion of the wave function in state |11〉. To overcome this limitation, we
have implemented a second stage of optimization, in which the interaction
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Figure 6.5: Dynamics during the gate operation, shown for N = 3 oscil-
lations, the gate time is τg = 1.110 ms. Both λ(t) and ω⊥(t) are used as
control parameters. (a) Optimal control of the microwave power. Upper
plot: Initial trial function λ0(t) (dashed) and optimized control parameter
λ(t) (solid line). Each triangular ramp of λ(t) corresponds to a full oscil-
lation of state |1〉. Lower plot: the difference δλ(t) = λ(t) − λ0(t) shows
small modulations. (b) Optimal control of the effective one-dimensional in-
teraction strength via modulation of the transverse trap frequency ω⊥(t). (c)
Evolution of the overlap fidelities during the gate operation: F00(t) (dashed),
F01(t) = F10(t) (dotted), F11(t) (solid line). (d) Evolution of the gate phase
φg(t). The phase shift steps are due to the six collisions in state |11〉.

potential (6.13) is controlled during the gate operation with the transverse
trap frequency ω⊥(t) as control parameter. Experimentally, this corresponds
to controlling the bias field component Bb,y(t) and the DC current IT (t) pro-
portional to the desired modulation of ω⊥(t). Since the collisions in internal
states other than |11〉 are negligible, this optimization affects only state |11〉.
We optimize the overlap fidelity F11(τg) and the phase φ11(τg) simultane-
ously, using again the Krotov method. For the microwave power we use the
optimized λ(t) determined in the previous section.

Care has to be taken that the modulation of ω⊥(t) does not create ex-
citations of the transverse state of the atoms. Since it is not possible to
put constraints on the time derivative of the control parameter in the Kro-
tov method of optimization, we have chosen the following strategy to avoid
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6.5 Optimization of the gate

Optimal control of λ(t) O. c. of λ(t) and ω⊥(t)
N τg [ms] O0 O1 F00 F01 F11 φg/π F00 F01 F11 φg/π

2 0.696 0.996 0.996 0.993 0.993 0.960 0.996 0.993 0.993 0.987 0.998
3 1.110 0.998 0.997 0.996 0.996 0.986 0.999 0.996 0.996 0.995 0.997
4 1.389 0.996 0.995 0.991 0.991 0.991 0.991
5 1.838 0.999 0.997 0.997 0.997 0.991 0.995
6 2.219 0.996 0.998 0.992 0.993 0.985 0.993

Table 6.1: Optimized gate performance for different numbers of oscillations
N and correspondingly different gate times τg. All two-particle fidelities Fij,
single-particle overlaps Oi, and the gate phase φg are evaluated at t = τg.
Either only λ(t) (left part of the table) or both λ(t) and ω⊥(t) (right part of
the table) were chosen as control parameters. The optimization of ω⊥(t) was
performed only for N ≤ 3, which is particularly interesting due to the short
gate times τg ≤ 10−3 τt.

transverse excitations. We parameterize the transverse trap frequency

ω⊥(t) = ω⊥(0)[A tanhα(t) + 1], (6.18)

with α(t) being the dimensionless optimal control parameter, and ω⊥(0) is
determined for a givenN as in the previous section. In this way, the optimiza-
tion is constrained to a maximum modulation amplitude set by A. After the
optimization on α(t) has converged, we remove high-frequency components
from the resulting modulation of ω⊥(t) by filtering with a cutoff frequency
ωc. We choose ωc < 2ω⊥(0) in order to avoid parametric excitation of the
transverse degrees of freedom. By performing the gate simulation again with
the filtered modulation ω⊥(t), we determine the overlap fidelities and the
gate phase. We have seen that the filtering does not significantly decrease
the fidelity if ωc � ωx. This shows that the high frequency components
with ω > ωc were artifacts of the optimization algorithm without physical
significance. The modulation of ω⊥(t) after filtering is shown in Fig. 6.5(b).
For this modulation, A = 0.2 and ωc = 0.8ω⊥(0). To quantify the trans-
verse excitation probability pm

⊥ (t) during the gate operation, we simulate
the transverse dynamics using a harmonic oscillator model, where the fre-
quency is modulated according to the filtered ω⊥(t). This simulation yields
pm
⊥ (t) < 7 × 10−4, therefore transverse excitations due to the modulation of
ω⊥(t) do not limit the gate performance.

Fig. 6.5 is the main result of our simulation. It shows the gate dynamics
for N = 3 after optimization of both λ(t) and ω⊥(t). Corresponding numbers
for the overlap fidelities Fij and the gate phase φg are shown in the right part
of Table 6.1. The improvement compared to optimal control of λ(t) alone
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6 Proposal for a robust quantum gate on an atom chip

(left part of Table 6.1) is an increase of F11 from F11 = 0.986 to F11 = 0.995,
which is now comparable to the overlap fidelities in the other states. The
gate time is τg = 1.110 ms.

6.5.3 Gate fidelity

In order to provide an estimate of the overall gate performance, we use the
definition given in [34] for the gate fidelity:

F = minχ

{
Trext

[
〈χ̃|U S (|χ〉〈χ| ⊗ ρ0)S†U †|χ̃〉

]}
. (6.19)

Here, |χ〉 is an arbitrary internal state of both atoms, and |χ̃〉 is the state
resulting from |χ〉 using the actual transformation. U and S are the op-
erators for time evolution and symmetrization under particle interchange,
respectively. The density matrix ρ0 is the initial two-particle motional state.
According to this definition, the gate fidelity is

F = 0.997 for N = 3, τg = 1.110 ms (6.20)

after optimization of both λ(t) and ω⊥(t). Even after the optimization, wave
packet distortion still contributes the largest error reducing the fidelity. The
error sources discussed in the next section lead to an additional error of the
order of 1× 10−3, mainly due to the finite trap lifetime, which is limited by
surface effects. If we include this error in the calculation of the fidelity, we
get F = 0.996. By comparison, with trap and coherence lifetimes τt ∼ τc ∼
103 τg, the maximum achievable fidelity of the gate with N = 3 would be
F = 0.999, if wave packet distortion due to interaction dynamics could be
reduced to negligible values.

6.6 Error sources

In this section, we discuss several effects which could possibly limit the fidelity
of the phase gate proposed here, and justify the assumptions made in the
description of the gate dynamics.

Finite temperature

The result for the fidelity (6.20) is obtained for zero temperature (T = 0)
of the atoms. This corresponds to an initial motional state with one atom
in the ground state |n1 = 0〉 of the left potential well and the other atom
in the ground state |n2 = 0〉 of the right potential well of uc(r). To study
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6.6 Error sources

the effect of finite temperature T on the gate performance, we start with an
initial density operator for the motional degrees of freedom

ρ0 =
∞∑

n1,n2=0

Pn1,n2(T )|n1〉〈n1| ⊗ |n2〉〈n2|, (6.21)

where Pn1,n2(T ) is the probability for the occupation of the motional state
|n1〉 for atom 1 and |n2〉 for atom 2 in the initial double well trap. The
probabilities Pn1,n2(T ) are calculated assuming a thermal distribution corre-
sponding to a temperature T in the canonical ensemble. We have evaluated
the fidelity F = F (T ) of our gate with N = 3 as a function of T , see Fig. 6.6.
The results show that high fidelity gate operations are only possible if the two
atoms can be prepared in the motional ground state of the trap, with very
low occupation probability of excited states. We assume that kBT/~ωx ≤ 0.1
can be reached, corresponding to a temperature T ≤ 20 nK in the initial dou-
ble well trap. In this case, the fidelity is not reduced significantly due to the
finite temperature.
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Figure 6.6: Gate infidelity 1 − F (T ) as a function of temperature for the
gate with N = 3.

Condition for quasi-1D dynamics

To ensure one-dimensional dynamics of the atoms in the experiment and to
justify the one-dimensional simulation of the gate presented above, trans-
verse excitations due to the collisions in state |11〉 have to be avoided. This
mechanism could limit the fidelity even if transverse excitations due to the
modulation of the transverse trap frequency ω⊥(t) are suppressed (cf. sec-
tion 6.5.2).

157



6 Proposal for a robust quantum gate on an atom chip

We calculate the probability pc
⊥(t) of transverse excitations due to colli-

sions using a simple model. We consider two interacting atoms in a three-
dimensional anisotropic harmonic oscillator potential, with ωx � ωy = ωz ≡
ω⊥. Exact solutions for this model are known [188]. The atoms are initially
in the transverse ground state of the trap, but separated in two harmonic
potential wells with separation dx along the x direction, similar to the initial
state of our phase gate. At time t = 0, the initial double well is switched off
and the atoms evolve in the single anisotropic harmonic oscillator potential.
The dynamics is obtained by expanding the initial three-dimensional two-
atom state on the interacting basis given in [188]. For each evolution time t,
we compute the reduced density matrix of the transverse motion by tracing
out the axial degrees of freedom. In this way we compute the probability
pc
⊥(t) as a function of time. We have performed this calculation for differ-

ent dx, corresponding to different kinetic energies Ekin of one atom at the
time of the collision. In Fig. 6.7 we show pc

⊥(τg) for N = 3 as a function of
2Ekin/~ω⊥. We find that transverse excitations are energetically suppressed
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Figure 6.7: Transverse excitation probability pc
⊥(τg) due to collisions of the

atoms for N = 3. pc
⊥(τg) is shown as a function of the kinetic energy Ekin of

one atom in state |1〉 at the time of the collision.

if

2Ekin < ~ω⊥, (6.22)

For all trapping geometries used in our simulation of the phase gate, 2Ekin/~ω⊥ ≤
0.7, and the transverse excitation probability is suppressed to negligible val-
ues.

158



6.6 Error sources

Microwave coupling and qubit dephasing

In contrast to optical dipole transitions, spontaneous emission is negligible for
microwave transitions between ground state sublevels. Therefore microwaves
can also be used to create adiabatic potentials with the microwave frequency
tuned to resonance with a particular hyperfine transition. However, resonant
coupling results in strong mixing of the hyperfine levels connected by the
microwave. This is undesirable for our qubit state pair, since it would destroy
the excellent coherence properties of the qubit by admixtures of other states
with different magnetic moments. For this reason, we concentrate on the
limit of large microwave detuning. The large detuning also ensures that the
modulation of the microwave power during the gate operation is adiabatic
with respect to the internal-state dynamics of the atoms.

For the trap parameters considered here,

max
Ω2

R

∆2
≤ 10−2, (6.23)

where we have set ΩR ≡ Ω2,m2

1,m1
and ∆ ≡ ∆2,m2

1,m1
to shorten notation in this

section. In the absence of the microwave coupling, the differential magnetic
moment δµ = ∂E|1〉/∂B − ∂E|0〉/∂B of the qubit states |1〉 and |0〉 can
be calculated from the Breit-Rabi formula Eq. (1.5). For magnetic fields
B0 < 6 G, we get |δµ| < 2 × 10−3 µB, with δµ = 0, i.e. a vanishing first-
order differential Zeeman shift, for B0 = 3.229 G [84], as in the center of our
static trap. In the presence of the microwave coupling, δµ changes due to
the admixture of other magnetic sublevels, whose magnetic moments differ
by multiples of µB/2 from the magnetic moment of the qubit states. For
Ω2

R � ∆2, the order of magnitude of this change can be estimated to

δµ ' Ω2
R

4∆2
µB ≤ 2.5× 10−3µB, (6.24)

where we have used (6.23).
The differential magnetic moment determines the coherence time τc of

the qubit in the presence of longitudinal magnetic field fluctuations (pure
dephasing of the qubit). The frequency spectrum of the fluctuations plays
an important role in this context: Low frequency fluctuations of the magnetic
field are most harmful to the coherence time [162], since they do not average
out on the time scale τg of a single gate operation. In contrast to magnetic
near-field noise arising from the chip surface (see section 6.6), which has a flat
spectrum in the relevant frequency range [31], technical magnetic field noise
typically increases towards low frequencies and dominates in the frequency
range 0 < ω < 10/τg considered here.
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6 Proposal for a robust quantum gate on an atom chip

The atom chip is surrounded by magnetic shielding, so that the residual
fluctuations of the magnetic field are limited by the stability of the current
sources used for the wires and bias magnetic field coils. We assume that
fluctuations in the frequency range 0 < ω < 10/τg can be reduced to an
r.m.s. amplitude of δB ≤ 0.01 mG, consistent with the stability of the
current sources in our experiments. Under this assumption, we expect a
coherence time of the order of

τc ∼
~

δµ δB
∼ 5 s, (6.25)

where we have used (6.24). Comparing this value of τc with the trap and
coherence lifetimes due to surface effects calculated in section 6.6, we find
that pure dephasing of the qubit does not limit the fidelity of the gate.

Trap loss and decoherence due to the chip surface

A fundamental source of trap loss, heating, spin- and motional decoherence
on atom chips is magnetic near-field noise originating from thermal currents
in the chip wires, see section 1.9. For our state pair, pure spin dephasing aris-
ing from longitudinal magnetic near-field noise is negligible. The dominating
surface effect is trap loss due to spin-flips induced by transverse magnetic
field noise. For the chip layout shown in Fig. 6.3 and a distance d = 1.80 µm
from the chip surface, we estimate an average spin-flip rate of γs = 0.9 s−1,
taking the finite thickness and width of the wires [189] and the different ma-
trix elements for spin flips of state |0〉 and |1〉 into account. This corresponds
to a trap lifetime of

τt = γ−1
s = 1.1 s. (6.26)

Compared with surface effects, loss rates due to collisions with background
gas atoms are negligible. The rates for heating and motional decoherence
due to magnetic near-field noise are comparable to γs, see section 1.9, so
that we expect an overall coherence lifetime τc ∼ τt. For N = 3, the gate
operation time is τg = 1.110 ms. The mentioned surface effects introduce
an error of 1 − exp(−γsτg) = 1 × 10−3 in the gate operation. This error
is smaller than the error due to wave packet distortion, and therefore does
not significantly decrease the gate fidelity (6.20). The error could be further
reduced by reducing the wire thickness or using a trap at a slightly higher
atom-surface distance.

Two-photon transitions

Another potential source of infidelities are two-photon transitions induced by
the microwave. These can arise if more than one polarization component of
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the microwave is present, as it is in general the case in microwave near-fields.
For Ω2

Ri � ∆2, the two-photon coupling is characterized by an effective Rabi
frequency Ω2ph = ΩR1ΩR2/(2∆), where ΩRi, i ∈ {1, 2}, are the single-photon
Rabi frequencies of the transitions involved [151]. The detuning from two-
photon resonance ∆2ph = µBB0/(2~) is given by the Zeeman splitting due to
the static magnetic field B0 in the trap center. For our trap parameters

max
Ω2

2ph

∆2
2ph

≤ 2× 10−3, (6.27)

and two-photon transitions are suppressed by the large two-photon detuning.

Technical limitations

In our simulation, we assume total (microwave + DC) current densities jtot ≤
1× 1011 Am−2 in the wires forming the coplanar strip line. The DC current
density in the lower wire is jtot = 2 × 1011 Am−2. Comparable current
densities have been realized experimentally in [115] on Si substrates with a
20 nm SiO2 insulating layer.

We have checked that the potentials used in our simulation are robust
against current and magnetic field fluctuations. We assume a relative sta-
bility on the level of 10−5 for the static currents and fields. With available
current sources and magnetic shielding, such a stability can be reached in
experiments. The accuracy of the currents (magnetic fields) specified in sec-
tion 6.3 is assumed to be better than 1 µA (1 mG).

In order to study the robustness of the gate against noise on the time-
dependent control parameters, we have simulated the gate with white noise
on λ(t) and ω⊥(t). The gate fidelity is reduced by ∼ 10−4 for relative r.m.s.
noise amplitudes na < 10−3 on the control parameters. For these values of
na, the small modulations of the experimental parameters used for optimal
control are well above the noise level, see Fig. 6.5.

6.7 Conclusion

In conclusion, we have made a realistic proposal for a collisional phase gate
using microwave potentials on an atom chip. The gate is implemented for
a robust qubit state pair with experimentally demonstrated coherence and
trap lifetimes τc ∼ τt ∼ 1 s at micrometer distance from the chip. We
have simulated and optimized the gate dynamics for a chip layout which we
specify in detail and which can be fabricated with today’s technology. We
found a gate fidelity of F = 0.996 at a gate operation time of τg = 1.1 ms,
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6 Proposal for a robust quantum gate on an atom chip

taking many error sources into account. With a total infidelity of the order
of a few 10−3, our gate meets the requirements for fault-tolerant quantum
computation [181, 182]. The gate fidelity of the present proposal is limited
by wave packet distortion due to collisions and the dynamics of the atoms in
a non-harmonic potential. We believe that these effects can be reduced by
further optimization of the potential and better control of the gate dynamics,
at the expense of introducing more control parameters. The ultimate limit
to the fidelity will then be given by exp(−τg/τt) ∼ 0.999 for the chip layout
discussed here.

The major experimental challenge in the realization of the gate proposed
here is the deterministic preparation of single neutral atoms in the motional
ground state of chip traps with very low occupation probability of excited
states. Proposals for single atom preparation have been put forward in [190,
77]. An important prerequisite for single atom preparation is a single atom
detector on the atom chip. Such detectors have recently been realized, using
either macroscopic optical cavities surrounding the chip [57], or miniaturized
optical fiber cavities integrated on the chip [55, 164, 56].

162



Chapter 7

BEC coupled to a
nanomechanical resonator: a
proposal

In this chapter, the coupling of Bose-Einstein condensed atoms to the me-
chanical oscillations of a nanoscale cantilever with a magnetic tip is theoret-
ically investigated. This is an experimentally viable hybrid quantum system
which allows one to explore the interface of quantum optics and condensed
matter physics. An experiment is proposed where easily detectable atomic
spin-flips are induced by the cantilever motion. This can be used to probe
thermal oscillations of the cantilever with the atoms. At low cantilever tem-
peratures, as realized in recent experiments, the backaction of the atoms onto
the cantilever is significant and the system represents a mechanical analog of
cavity quantum electrodynamics. With high but realistic cantilever quality
factors, the strong coupling regime can be reached, either with single atoms
or collectively with Bose-Einstein condensates.

This chapter was published in [191]. Experimental work towards a real-
ization of the system proposed here is carried out in collaboration with the
group of Prof. Kotthaus at LMU Munich.

7.1 Quantum optics meets condensed matter

Quantum optics and condensed matter physics presently show a strong con-
vergence. On the one hand, quantum optical systems, most notably neutral
atoms in optical lattices, have been used to experimentally investigate con-
cepts of condensed matter physics such as Bloch oscillations and Fermi sur-
faces [16]. On the other hand, micro- and nanostructured condensed matter
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7 BEC coupled to a nanomechanical resonator: a proposal

systems enter a regime described by concepts of quantum optics, as exempli-
fied by circuit cavity quantum electrodynamics [192], laser-cooling of mechan-
ical resonators [193, 194, 195, 196, 197, 198], and measurement backaction
effects in cryogenic mechanical resonators [199]. A new exciting possibility
beyond this successful conceptual interaction is to physically couple a quan-
tum optical system to a condensed matter system. Such a hybrid quantum
system can be used to study fundamental questions of decoherence at the
transition between quantum and classical physics and has possible applica-
tions in precision measurement [200] and quantum information processing
[201].

Atom chips are ideally suited for the implementation of hybrid quantum
systems. Neutral atoms can be positioned with nanometer precision [42] and
trapped at distances below 1 µm from the chip surface [44]. Coherent control
of internal states (see chapter 4) and motional states [43] of atoms in chip
traps is a reality. Atom-surface interactions are sufficiently understood (see
chapter 1) so that undesired effects can be mitigated by choice of materials
and fabrication techniques. This is an advantage over systems such as ions
or polar molecules on a chip, which have recently been considered in this
context [201, 202]. A first milestone in this new field of atom chip research
is to realize a controlled interaction between atoms and a nanodevice on the
chip surface.

As an example of such an interaction, we investigate magnetic coupling
between the spin of atoms in a BEC and a single vibrational mode of a
nanomechanical resonator [203] on an atom chip. We find that the BEC
can be used as a sensitive quantum probe which allows one to detect the
thermal motion of the resonator at room temperature. At lower resonator
temperatures, the backaction of the atoms onto the resonator is significant
and the coupled system realizes a mechanical analog of cavity quantum elec-
trodynamics (cQED) in the strong coupling regime. We specify in detail a
realistic setup for the experiment, which can be performed with available
atom chip technology, and thus allows one to explore this fascinating field
already today.

7.2 Coupling mechanism

The physical situation is illustrated in Fig. 7.1(a). 87Rb atoms are trapped
in a magnetic microtrap at a distance y0 above a cantilever resonator, which
is nanofabricated on the atom chip surface. The cantilever tip carries a
single-domain ferromagnet which creates a magnetic field with a strong gra-
dient Gm. The magnet transduces out-of-plane mechanical oscillations a(t) =
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Figure 7.1: BEC-resonator coupling mechanism. (a) Atom chip with
a BEC of 87Rb atoms (red: BEC wave function) at a distance y0 from a
nanomechanical resonator. The free-standing structure (dark blue) is sup-
ported at one end to form a cantilever-type resonator that performs out-of-
plane mechanical oscillations a(t). The single-domain ferromagnet (purple)
on the resonator tip creates a magnetic field with oscillatory component Br(t)
which couples to the atomic spin F. (b) Hyperfine structure of 87Rb in the
magnetic field B0. Hyperfine levels |F,mF 〉 are coupled (blue or green arrows,
depending on experiment) if the Larmor frequency ωL is tuned to the oscil-
lation frequency of the resonator. Magnetically trappable states indicated in
red.

a cos(ωrt + ϕ) of the cantilever tip of amplitude a � y0 into an oscillatory
magnetic field Br(t) = Gma(t)ex in the center of the microtrap. The orien-
tation of the magnet is chosen such that Br is perpendicular to the static
magnetic field B0 = B0ez in the trap center. The atomic spin F interacts
with Br(t) via the Zeeman Hamiltonian

HZ = −µ ·Br(t) = µBgFFxGma(t), (7.1)

where µ = −µBgFF is the operator of the magnetic moment. In this way,
the ferromagnet establishes a coupling between the spin and the resonator
mechanical motion.

The ground state hyperfine spin levels |F,mF 〉 of 87Rb are shown in
Fig. 7.1(b). The energy splitting between adjacent mF -levels is given by
the Larmor frequency ωL = µB|gF |B0/~. Note that ωL is widely tunable by
adjusting B0. This allows one to control the detuning δ = ωr−ωL between a
given resonator mode of frequency ωr and the atomic resonance in the trap
center. Quickly changing δ switches the coupling on and off. Near resonance
(δ ≈ 0), the coupling leads to spin flips.

In a magnetic trap, only weak-field seeking states are trapped, as indi-
cated in Fig. 7.1(b). This can be exploited in a simple way to detect the spin

165



7 BEC coupled to a nanomechanical resonator: a proposal

flips induced by the coupling: atoms initially trapped in state |1,−1〉 are cou-
pled by the nanoresonator to |1, 0〉, where they are quickly lost from the trap.
This is analogous to a cw atom laser experiment [204], with the mechanical
resonator inducing the radio-frequency magnetic field for output coupling.
The rate Γr at which atoms are coupled out of the BEC is a sensitive probe
revealing the temporal dynamics of the resonator motion.

To derive Γr, we follow the theory of [205], which includes effects of
interatomic interactions, but neglects gravity. This is justified here due to
the high trap frequencies. The trapped BEC in |1,−1〉 is assumed to be in
the Thomas-Fermi (TF) regime (see section 1.7). It is coupled with Rabi
frequency ΩR = µBGma/

√
8~ to |1, 0〉, where a continuum of untrapped

motional states is available to the atoms. The energy width of this continuum
is given by the BEC chemical potential µc. For typical parameters (see
below), ~ΩR � µc, and only a fraction ' ~ΩR/µc of the BEC atoms is
resonantly coupled. In this limit [205],

Γr =
15π

8

~Ω2
R

µc

(
rc − r3

c

)
, (7.2)

where rc =
√

~δ/µc. Output coupling takes place on a thin ellipsoidal shell
of resonance with main axes ri = rcRi, where Ri are the TF radii of the
BEC.

7.3 Chip layout

Figure 7.2(a) shows an implementation which we envisage in collaboration
with the Kotthaus group at CeNS, LMU Munich [206]. The atom chip is
fabricated by several steps of e-beam lithography on a Si-on-insulator wafer
in combination with lift-off metallization and selective etching of the oxide
to create free-standing Si structures. Atoms are trapped in a Ioffe-type trap
created by currents in the chip wires [24]. Our numerical simulation of the
trapping potential (Fig. 7.2(b)) includes the magnetic fields of the wires,
the Co magnets, the homogeneous field Bb, gravity, and the Casimir-Polder
surface potential Eq. (1.45). Trap frequencies are adjustable in the kHz-
range, the aspect ratio is ωz/ωx,y ≈ 0.1. The trap loss rate γ = γ3b +γs +γbg

in the absence of the coupling to the resonator is dominated by three-body
collisions, with a rate γ3b = 2.2 × 10−12 s7/5 × ω

12/5
ho N4/5 for state |1,−1〉 in

the TF-regime, see Eq. (1.32), where ωho = (ωxωyωz)
1/3. Background gas

collisions (γbg) and atom-surface interactions (γs) contribute much smaller
rates, γs + γbg � γ3b.
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Figure 7.2: (a) Atom chip layout. The trapping potential is created
by gold wires (width 2 µm, current 4.4 mA) and a homogeneous field
Bb = (−0.1,−4.2,−1.6) G. The wire color indicates the current density
obtained from a finite elements simulation. The Co coupling magnet on
the tip of the Si cantilever is located directly below the center of the atom
trap. Compensation magnets on each side of the tip reduce distortion of the
trapping potential due to the static field of the coupling magnet. (b) Trap-
ping potential in the yz-plane intersecting the resonator. Trap minimum at
(y0, z0) = (1.5, 0.0) µm, trap frequencies ωx,y,z/2π = (8.9, 9.7, 1.2) kHz for
|1,−1〉. The static field of the magnets causes a repulsive potential around
y = z = 0. The attractive Casimir-Polder surface potential is visible for
y → 0. The orange area in the trap center shows the extension of the BEC.

The ferromagnet is a single magnetic domain whose magnetic moment
µm is spontaneously oriented along its long axis due to the shape anisotropy.
For Co nanobars, a switching field > 500 G [207] ensures that the magne-
tization of the bar is nearly unaffected by the fields applied for magnetic
trapping, which are < 100 G. Approximating the bar by a magnetic dipole,
we have Gm = 3µ0|µm|/4πy4

0. By changing y0 and the magnet dimensions,
Gm can be adjusted. Equation (7.1) suggests that the strength of the atom-
nanoresonator coupling can be maximized by increasing Gm as much as pos-
sible. However, the atoms experience a force in this field gradient, and an
excessively large Gm would strongly distort the trapping potential. To mit-
igate distortion, two compensation magnets are placed next to the coupling
magnet with identical direction of magnetization. This reduces the static
field gradient at the location of the atoms, while the oscillatory field Br(t)
remains unaffected as the compensation magnets do not oscillate.

Nanomechanical resonators have a complex spectrum of vibrational modes.
Due to their high quality factors Q = 103 − 105 [203, 199], the modes are
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7 BEC coupled to a nanomechanical resonator: a proposal

well resolved. The BEC is coupled to the fundamental out-of-plane flexural
oscillation at frequency ωr/2π ≈ 0.16

√
E/%(1 + c) (t/l2). Here, t ≤ w � l

are the dimensions, E is Young’s modulus, and % is the mass density of the
cantilever, while c = m/0.24%lwt accounts for the additional mass m of the
magnet and the Si paddle at the cantilever tip. The force acting on the cou-
pling magnet in the magnetic field of the compensation magnets leads to an
additional shift of ωr which is determined numerically and included in the
numbers given below.1 We model the cantilever tip as a harmonic oscillator
of frequency ωr with an effective mass meff ≈ 0.24%lwt + m, obtained by
integrating over the mode function.

7.4 Thermal motion of the cantilever

In contrast to the BEC, which is a prime example of quantum-mechanical
coherence, dissipation and thermal effects play an important role in the can-
tilever dynamics. In thermal equilibrium with its environment at temper-
ature T , the cantilever performs oscillations at frequency ωr with random
amplitude a and phase ϕ [208]. Both a and ϕ change on a timescale κ−1,
where κ = ωr/2Q is the damping rate. For a high-Q cantilever, however, this
timescale is longer than the time scale Γ−1

r of coupling to the BEC, as we will
show below. This allows one to use the BEC as a probe to directly monitor
the thermal fluctuations. In a single shot of such an experiment, the can-
tilever performs simple harmonic motion with constant a and ϕ. The BEC
in |1,−1〉 is coupled to the cantilever for a time τ � κ−1 and the remaining
number of atoms N(a, τ) = N exp[−Γr(a) τ ] is measured. Repeating the ex-
periment, one observes fluctuations of N(a, τ) due to the fluctuations of a.
Figure 7.3 shows a simulated histogram of N(a, τ)/N . Since Γr ∝ a2 ∝ n, the
histogram reflects the exponential distribution of phonon numbers n in the
thermal state of the resonator, with 〈Γr〉 given by the mean phonon number
nth = [exp(~ωr/kBT )− 1]−1.

As a realistic example, we take a Si cantilever with (l, w, t) = (7.0, 0.2, 0.1) µm,
meff = 3 × 10−16 kg, and ωr/2π = 1.12 MHz. It carries a Co magnet of di-
mensions (lm, wm, tm) = (1.3, 0.2, 0.08) µm; the two compensation magnets
have the same cross section and 5 µm length, the gap between magnets is
d = 200 nm. Trap parameters optimizing 〈Γr〉/γ for a BEC of N = 103

atoms are given in Fig. (7.2). For given ωho, we adjust Gm to the maximum
value allowed by trap distortion.2 The mean coupling rate for rc = 1/

√
3 is

1We have estimated that cantilever damping due to this interaction as well as due to
eddy currents induced in the gold wires is negligible in our geometry.

2In calculating Gm, we use the formula of [209].
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Figure 7.3: Coupling of the BEC to a thermally driven cantilever at T =
300 K. Simulated histogram of the fraction of atoms remaining in the trap
after a time τ , including background loss. For comparison, the atom number
distribution without coupling is shown. We have assumed 5% fluctuations in
atom number due to technical noise.

〈Γr〉 = 2.1 kHz. Background losses are much smaller, γ = 0.01 〈Γr〉. Taking a
moderate Q = 5×103 and τ = 0.2/〈Γr〉, we have κτ = 0.07. This shows that
coupling the BEC to the thermal motion of the resonator is easily achieved
with parameters which are based on fabrication results at CeNS.

7.5 A mechanical cavity QED system

At room temperature, the thermal equilibrium state of the resonator has
an average phonon number nth � N , and the coupling does not signifi-
cantly perturb the state of the resonator. By cooling a resonator in a di-
lution refrigerator, phonon numbers as low as nth = 25 have been observed
[199]. Recently, laser cooling of mechanical oscillations was demonstrated
[193, 194, 195, 196, 197, 198], which opens the exciting perspective of prepar-
ing a single mode of the resonator with very low nth or even reaching the
quantum mechanical ground state (nth � 1) without a cryostat. At low mode
temperatures, nth ∼ N and the backaction of the BEC onto the resonator
cannot be neglected. Every atom changing its state changes the number of
phonons in the resonator mode by one. In this regime, it is possible to use
the BEC as an actuator for the mechanical oscillations. The two systems
exchange energy coherently, increasing or decreasing the number of phonons
depending on the initial state of the BEC.

In analogy with cQED, we derive a fully quantum-mechanical theory for
the dynamics of the coupled system. We now consider a transition between
two trapped atomic states |0〉 ↔ |1〉. In a magnetic trap, |0〉 ≡ |2, 1〉 and
|1〉 ≡ |2, 2〉 can be used (see Fig. 7.1(b)). However, the different trap fre-
quencies lead to entanglement between internal and motional atomic degrees

169



7 BEC coupled to a nanomechanical resonator: a proposal

of freedom. Here, we discuss the simpler situation of an optical or electro-
dynamic microtrap [52], which provides identical trapping potentials for all
hyperfine states. In such a trap, all atoms in the BEC couple simultane-
ously to the resonator. Since collisional losses are lower in F = 1, we choose
|0〉 ≡ |1, 0〉 and |1〉 ≡ |1,−1〉. The transition |0〉 ↔ |1〉 can be decoupled
from other mF -levels by making use of the quadratic Zeeman effect or by
using microwaves to induce mF -dependent energy shifts, see chapter 5.

A BEC of N two-level atoms with level spacing ~ωL can be described by
a collective spin S = N/2 with Hamiltonian HBEC = ~ωLSz and eigenstates
|S,mS〉, |mS| ≤ S [210]. The Hamiltonian of the quantized resonator is Hr =
~ωra

+a, where a (a+) is the annihilation (creation) operator for phonons in
the fundamental mechanical mode. The coupling Hamiltonian is obtained
by replacing

√
2 gFFx → Sx and a(t) → aqm(a+ + a) in Eq. (7.1), where

aqm =
√

~/2meffωr is the r.m.s. amplitude of the quantum mechanical zero-
point motion. For the coupled system, H = Hr + HBEC + HZ . With S± =
Sx± iSy and applying the rotating-wave approximation, we obtain the Tavis-
Cummings Hamiltonian [210],

H = ~ωra
+a+ ~ωLSz + ~g(S+a+ S−a+), (7.3)

where g = µBGmaqm/
√

8~ is the single-atom single-phonon coupling con-
stant. In cQED, Eq. (7.3) usually describes the coupling of atoms to the
electromagnetic field of a single mode of an optical or microwave cavity [210].
Here, it describes the coupling to the phonon field of a mode of mechanical
oscillations. In this sense, this is a mechanical cQED system.

We now investigate whether the strong coupling regime of cQED [211] can
be reached, where coherent dynamics occurs at a faster rate than dissipative
dynamics. For a single atom (N = 1), this requires g > (κ, γ). We maximize
g/(κ + γ) by optimizing resonator, magnet, and trap parameters. We take
a Si cantilever with (l, w, t) = (8.0, 0.3, 0.05) µm and assume Q = 105 as in
recent experiments at low T [199]. It carries a Co magnet with (lm, wm, tm) =
(250, 50, 80) nm and d = 40 nm, resulting in ωr/2π = 2.8 MHz. For N = 1
there is not collisional loss; therefore, higher ωho is possible. In a trap with
ωho/2π = 250 kHz and y0 = 250 nm, realistic on atom chips [212], we obtain
strong coupling with (g, κ, γ) = 2π × (62, 14, 0.3) Hz. A related quantity is
the cooperativity parameter, C = g2/2κγ. For C > 1, mechanical analogs
of optical bistability and squeezing can be observed. We obtain C = 430.
To prepare the resonator with nth < 1, T < 0.1 mK is required. Such low
temperatures could perhaps be achieved by laser cooling.

For N atoms identically coupled to the resonator, the coupling is col-
lectively enhanced. Coherent dynamics now occurs if the weaker condition
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g
√
N > (κ, γ) is met [211]. This is still true for a resonator in a thermal

state as long as nth � N , putting less stringent limits on T . For resonator
dimensions as above, (lm, wm, tm) = (2.0, 0.06, 0.12) µm, and d = 100 nm
we obtain ωr/2π = 1.1 MHz. Maximizing g

√
N/(κ + γ) for a BEC with

N = 104 atoms, we find a trap with ωho/2π = 2.9 kHz and y0 = 2.0 µm. At
T = 50 mK (typical in a dilution refrigerator), nth ≈ 980 � N . Collective
strong coupling is reached with (g

√
N, κ, γ) = 2π × (21, 5, 10) Hz and the

N -atom cooperativity is CN = 4.
In a quantum Monte Carlo simulation, we couple a BEC in state |S =

N/2,mS = N/2〉 (i.e. all atoms in state |1〉) to a resonator with nth � N .
The coupling drives the resonator out of thermal equilibrium into a state
with a mean phonon number 〈n〉 � nth. Conversely, if the BEC is prepared
in state |S = N/2,mS = −N/2〉 (all atoms in state |0〉), excitations are
initially transferred from the resonator to the BEC, creating a state with
〈n〉 � nth. The time scale for both processes is π/2g

√
N . Depending on

the initial conditions, the BEC can therefore be used to drive or cool the
resonator mode. In a similar way, Rydberg atoms have been used to either
reduce or increase the number of photons inside a microwave cavity in a
controlled way [213].

7.6 Conclusion

We have shown that a BEC on an atom chip can be used as a sensitive probe,
as a coolant, and as a coherent actuator for a nanomechanical resonator.
The coupling could be used to transfer nonclassical states of the BEC to the
mechanical system. Due to the dissipative coupling of the resonator to its
environment, interesting questions of decoherence arise and can be studied
with this system. Instead of coupling different spin levels, it is also possible to
couple the resonator to the motional degrees of freedom of either a BEC or a
single atom, similar to the coupling mechanism proposed for a nanoscale ion
trap in [201]. In a recent experiment, a spin resonance transition in a thermal
atomic vapor was excited by an externally driven mechanical resonator with a
magnetic tip [200]. Compared to this experiment, our system requires a much
smaller resonator and much better control over the atoms. This is crucial for
observing backaction effects of the atoms onto the resonator. In collaboration
with the Kotthaus group, we are currently working towards an experimental
realization of our system. Figure 7.4 shows a first chip prototype which we
have fabricated according to the design in Fig. 7.2.
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Figure 7.4: SEM image of a prototype of the BEC-nanoresonator chip.
Color highlights the chip components, position of BEC is sketched. Chip
fabricated by S. Camerer in collaboration with D. König in the cleanroom
facilities of the Kotthaus group at CeNS, LMU Munich.
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Chapter 8

Outlook

The experiments reported in this thesis show that atoms can be manipulated
coherently on an atom chip, despite the close proximity of the atoms to the
room-temperature chip surface. This is crucial for the use of atom chips in
quantum engineering and enables new experiments at the boundary between
quantum optics and condensed matter physics.

The proposals for an atom chip quantum gate and a Bose-Einstein con-
densate coupled to a nanomechanical resonator described in chapters 6 and
7 of this thesis, respectively, represent a detailed outlook on two specific
experiments. Further ideas are briefly outlined in the following.

Further applications of microwave near-fields

The microwave near-fields investigated in chapter 5 are a useful new tool for
atom chip experiments. Recently, we have succeeded in performing internal-
state manipulation of atoms with the help of the waveguides on our new chip.
We observed Rabi-frequencies of ∼ 1 MHz at only ∼ 10 mW of microwave
power, and strong microwave field gradients as a function of distance from
the waveguide.

Chip-based atomic clocks will benefit from the large Rabi frequencies, tai-
lored field configurations, and temporal stability of microwave near-fields, as
well as the small size of the field-generating structures. Microwave near-field
potentials could be utilized to trap atoms in internal states which cannot be
trapped with static magnetic fields [170, 171]. State-dependent potentials
can be employed for trapped-atom interferometry with internal-state label-
ing of the interferometer paths. The advantage is that the interferometer
signal can be read out by state-selective detection without the need for spa-
tially resolving the interference fringes [214, 4, 215]. Many more potential
geometries are conceivable beyond the double well considered in chapters 5
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8 Outlook

and 6. Furthermore, an extension to multiple microwave frequencies seems
promising and is technically straightforward.

Josephson effect and BEC entanglement

A BEC in a double well potential has been used in experiments on the
Josephson effect and related phenomena [216, 217]. With a two-state BEC
in a state-dependent potential, not only the “external-state” but also the
“internal-state” variant of the Josephson effect is accessible [218, 69]. This
allows for greater flexibility in tuning the system parameters “tunneling cou-
pling” (adjustable via the two-photon Rabi frequency) and “on-site interac-
tion” (adjustable via the potential for each state separately). In a number of
theoretical papers it has been proposed that such a system could be used to
create entangled number states of small BECs [219, 220, 76, 221]. Enhanced
tunability might facilitate the generation of entangled number states, in par-
ticular if optimal control techniques are used to optimize the time dependence
of the parameters. Moreover, it would be interesting to study whether BECs
can be entangled via internal-state selective collisions, similar to the entangle-
ment between single atoms created during the operation of the quantum gate
proposed in chapter 6. For such experiments, the reproducible preparation
of BECs with a few tens to a few hundreds of atoms is important.

Miniaturized cold-atom devices: portable atomic clocks and inter-
ferometers

Another perspective is the creation of miniaturized cold atom devices. The
atomic clock on a chip which we have realized in a proof-of-principle exper-
iment indicates that the first “real-world” applications of atom chips may
lie in precision measurement. As mentioned in chapter 4, an improved ver-
sion of the atomic clock is currently being set up in Paris. This clock uses
the microwave near-field technology developed in this thesis, and the chip
was fabricated with our fabrication process. The clock could outperform
today’s best commercial atomic clocks by a factor of 10, while being much
smaller than the atomic fountain primary standards. This combination of
features opens a clear perspective for applications as a secondary standard
and in satellite navigation.1 In addition to atom chip clocks, portable in-
ertial sensors are conceivable, based on the spatial splitting of BECs on an
atom chip, as demonstrated in [45, 46, 60]. Further miniaturization of the
atom chip experimental apparatus is currently pursued in the context of

1P. Rosenbusch, l’Observatoire de Paris, private communication.
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a BEC experiment for a space mission [145], and a first commercial com-
pany has been founded which sells miniaturized atom chip vacuum systems
(www.coldquanta.com).

Coupling of atoms to solid-state systems on the chip

Hybrid quantum systems composed of neutral atoms, ions, or polar mole-
cules which are coupled to solid-state systems have recently attracted great
theoretical interest [179, 201, 202, 191]. This is partly motivated by quan-
tum information processing, where hybrid approaches promise to combine
the long coherence times of isolated particles with the fast dynamics charac-
teristic of solid-state implementations. Experiments with neutral atoms will
benefit from the exquisite control over the atoms and the interface to solid
state systems provided by atom chips.

For the coupling of ultracold atoms to nanomechanical systems, several
alternatives to the Si resonator investigated in chapter 7 come to mind. Car-
bon nanotubes or graphene sheets [222, 223, 224, 225] are interesting because
of their small effective mass, but at present clamping losses limit the attain-
able quality factors to Q ∼ 103. GaN nanowires could be an alternative,
where Q = 6×104 has been observed near room temperature [226]. Different
coupling mechanisms, e.g. via the surface potential, deserve further inves-
tigation. Carbon nanotubes have also been considered as current-carrying
wires on an atom chip [227].

Atoms could also be coupled to superconducting systems2 such as Joseph-
son junction circuits [229, 230, 231, 19] or coplanar microwave cavities [192,
20]. In these solid-state systems, quantum behavior such as Rabi oscillations
and entanglement has been demonstrated. The coupling could be magnetic,
or the atoms could be excited to Rydberg states, whose large electric dipole
moments would provide strong coupling [179, 232].

BECs on an atom chip can be used as a “scanning probe tip” for measure-
ments of small electric and magnetic fields as well as surface forces [44, 233].
The BEC is different from probe tips used in atomic force microscopy (AFM)
in that all degrees of freedom of the BEC are controlled on the quantum level.
Similar to an AFM tip, which can be used for detection and manipulation, a
sufficiently strong coupling could be used to manipulate the quantum state of
the condensed matter system with the atoms. This would be an interesting
approach to investigate whether the peculiar features of quantum mechan-
ics such as coherent superpositions of quantum states, quantum interference,
and entanglement can be preserved as the systems become more macroscopic.

2See [228] for an early experiment on atom detection with a SQUID.
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Appendix A

Useful data and formulae

A.1 Fundamental constants and important 87Rb

data

Planck’s constant
h 6.626 068 76(52)× 10−34 J s

~ = h/2π 1.054 571 596(82)× 10−34 J s

Bohr magneton µB
9.274 008 99(37)× 10−24 J/T
h · 1.399 624 624(56) MHz/G

Speed of light c 2.997 924 58× 108 m/s (exact)
Permeability of vacuum µ0 4π × 10−7 N/A2 (exact)
Permittivity of vacuum ε0 = (µ0c

2)−1 8.854 187 817 . . .× 10−12 F/m
Bohr radius a0 0.529 177 208 3(19)× 10−10 m

Table A.1: Selected fundamental constants, taken from [64] if no other
source is specified.
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A Useful data and formulae

General properties
Atomic mass m 1.443 160 60(11)× 10−25 kg
Nuclear spin I 3/2
Relative natural abundance 27.83(2)%

D2 transition (52S1/2 ↔ 52P3/2) optical properties
Wavelength (vacuum) λ 780.241 209 686(13) nm
Natural line width Γ 2π · 6.065(9) MHz
Saturation intensity

Is 1.669(2) mW/cm2|F = 2, mF = ±2〉 ↔ |F ′ = 3, mF
′ = ±3〉

cycling transition (σ±-polarized light)

52S1/2 ground state properties
Hyperfine structure constant Ahfs h · 3.417 341 305 452 15(5) GHz

Zero-field hyperfine splitting
Ehfs h · 6.834 682 610 904 29(9) GHz

= 2Ahfs

Electron spin g-factor gJ 2.002 331 13(20)
Nuclear spin g-factor gI −0.000 995 141 4(10)
Static polarizability α0 h · 0.0794(16) Hz/(V/cm)2

S-wave scattering lengths values from [80]
|1,−1〉 – |1,−1〉 a00 100.40 a0 = 5.3129 nm
|2, 1〉 – |1,−1〉 a10 97.66 a0 = 5.1679 nm
|2, 1〉 – |2, 1〉 a11 95.00 a0 = 5.0272 nm

Table A.2: Selected properties of 87Rb, taken from [64] if no other source
is specified.
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A.2 Magnetic field of a rectangular wire of finite length

A.2 Magnetic field of a rectangular wire of

finite length

The magnetic field of a straight rectangular wire extending over x0 ≤ x ≤ x1,
y0 ≤ y ≤ y1, z0 ≤ z ≤ z1 and carrying a homogeneous current density j = jex

can be obtained by integration of the Biot-Savart law [68]

B(r) =
µ0

4π

∫ x1

x0

dx′
∫ y1

y0

dy′
∫ z1

z0

dz′
j× (r− r′)

|r− r′|3
. (A.1)

With the definitions

f(x, y, z) ≡ z arctan

[
xy

z
√
x2 + y2 + z2

]
− x ln

[
y +

√
x2 + y2 + z2

]
− y ln

[
x+

√
x2 + y2 + z2

]
,

(A.2)

and x̃k = x− xk, ỹl = y − yl, z̃m = z − zm, we obtain

Bx = 0, (A.3)

By = −µ0j

4π

1∑
k,l,m=0

(−1)k+l+mf(x̃k, ỹl, z̃m), (A.4)

Bz =
µ0j

4π

1∑
k,l,m=0

(−1)k+l+mf(x̃k, z̃m, ỹl). (A.5)

Note that ∇ ·B 6= 0 since for a single isolated wire of finite length, ∇ · j 6= 0
at the wire ends, thus violating the continuity equation. A real wire carrying
a stationary current is always connected to leads and a current source, which
ensure that the continuity equation is valid and thus ∇·B = 0. For practical
calculations, the wire ends have to be sufficiently far away from the region
of interest where the field is calculated.
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A.3 Angular momentum matrix elements

The strength of magnetic dipole transitions between hyperfine states

|F,mF 〉 ≡ |J, I, F,mF 〉 (A.6)

is related to the corresponding angular momentum matrix elements. The
total angular momentum is F = J + I, where J is the electron angular
momentum and I is the nuclear spin. Within the ground state hyperfine
manifold of 87Rb, J = 1/2 and I = 3/2 have fixed values, which can be
combined to F = 1 and F = 2. In terms of the cartesian components of
F = (Fx, Fy, Fz), we define F± ≡ Fx ± iFy. Similar definitions are used for
I± and J±.

In this appendix, |F,mF 〉 refers to the eigenstates of the operators F2

and Fz. Note that in the main text of this thesis, we let |F,mF 〉 refer more
generally to the eigenstates of the full Breit-Rabi Hamiltonian, Eq. (1.4),
which are a function of the external magnetic field B. Both definitions are
equivalent for B → 0. The difference is neglected if the Zeeman effect is
treated perturbatively.

The matrix elements 〈F ′,mF
′|Fq|F,mF 〉, (q = +,−, z) between states

with F ′ = F are

〈F,mF
′|Fz|F,mF 〉 = mF δmF

′,mF

〈F,mF
′|F±|F,mF 〉 =

√
(F ∓mF )(F ±mF + 1) δmF

′,mF±1.
(A.7)

Matrix elements of F between states with F ′ 6= F vanish,

〈F ′ 6= F,mF
′|Fq|F,mF 〉 = 0. (A.8)

Using Fq = Iq + Jq, we find

〈F ′,mF
′|Iq|F,mF 〉 = −〈F ′,mF

′|Jq|F,mF 〉 for F ′ 6= F. (A.9)

The matrix elements of Iq and Jq are most easily calculated by decomposing
the states |F,mF 〉 into states |I,mI〉|J,mJ〉 using the appropriate Clebsch-
Gordan coefficients 〈ImIJmJ |FmF 〉. Using the sign convention of [234] for
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A.3 Angular momentum matrix elements

the Clebsch-Gordan coefficients, we obtain for the states:

|F,mF 〉 =
+I∑

mI=−I

+J∑
mJ=−J

|I,mI〉|J,mJ〉〈ImIJmJ |FmF 〉 (A.10)
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The matrix elements 〈F ′,mF
′|Jq|F,mF 〉 (and similarly 〈F ′,mF

′|Iq|F,mF 〉)
can now be easily evaluated, using the formulae for 〈J,mJ

′|Jq|J,mJ〉 and
〈I,mI

′|Iq|I,mI〉, which are formally identical to Eq. (A.7).

In the calculation of the microwave potentials (chapter 5), we encounter
the matrix elements

〈2,m2|ε · J|1,m1〉 ≡ 〈F ′ = 2,mF
′ = m2|ε · J|F = 1,mF = m1〉, (A.11)

where ε = (εx, εy, εz) is a unit polarization vector, whose components may be
complex. Using Jx = 1

2
(J+ + J−) and Jy = − i

2
(J+ − J−), we express ε · J as

ε · J = εxJx + εyJy + εzJz = 1
2
(εx − iεy)J+ + 1

2
(εx + iεy)J− + εzJz. (A.12)

The matrix elements 〈2,m2|Jq|1,m1〉, (q = +,−, z) can be calculated as
described above. The result is (listing only the non-vanishing elements):

〈2, 2|J+|1, 1〉 =
√

3
4

〈2, 1|J+|1, 0〉 =
√

3
8

(A.13)

〈2, 0|J+|1,−1〉 =
√

1
8
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A Useful data and formulae

〈2, 0|J−|1, 1〉 = −
√

1
8

〈2,−1|J−|1, 0〉 = −
√

3
8

(A.14)

〈2,−2|J−|1,−1〉 = −
√

3
4

〈2, 1|Jz|1, 1〉 = −
√

3
16

〈2, 0|Jz|1, 0〉 = −
√

1
4

(A.15)

〈2,−1|Jz|1,−1〉 = −
√

3
16
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Appendix B

Cigar-shaped vs.
pancake-shaped dimple traps

In some experiments it is desirable to have nearly isotropic or pancake-
shaped traps. Examples are tunneling experiments and experiments with
two-dimensional or rotating quantum gases. The magnetic microtraps demon-
strated up to now are in the cigar-shaped regime. Here I revisit the dimple
trap (Fig. 1.4) in detail in order to investigate whether it is possible to tune
the trap aspect ratio similar to the ideal Ioffe trap of Eq. (1.10).

In the limit of infinitely thin wires and with the wire intersection placed
at the origin, the magnetic field components in Fig. 1.4 are

Bx = −A1 +
µ0I1
2π

· z

x2 + z2
,

By = A0 −
µ0I0
2π

· z

y2 + z2
, and

Bz =
µ0I0
2π

· y

y2 + z2
− µ0I1

2π
· x

x2 + z2
.

(B.1)

We have defined A0 ≡ Bb,y and A1 ≡ −Bb,x so that one of the valid Ioffe-type
dimple trap configurations corresponds to all parameters I0, I1, A0, and A1

being positive. The trap minimum must be a stationary point of the field
modulus B(r) =

√
B2

x +B2
y +B2

z . We find a stationary point at x = 0,
y = 0, and z = zm, with

zm =
µ0

2π
· I2

A0I0 + A1I1
and Bm =

|A1I0 − A0I1|
|I|

, (B.2)

where Bm ≡ B(x = 0, y = 0, z = zm) is the field modulus in the trap center
and I2 ≡ I2

0 +I2
1 . Expanding B(r) to second order in the displacements from
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B Cigar-shaped vs. pancake-shaped dimple traps

the trap center, we obtain

B(r) ≈ Bm +
k

4
(1− q)x2 − kp

2
xy +

k

4
(1 + q) y2 +

k

2
(z − zm)2, (B.3)

where we have defined

k ≡ µ2
0I

2

4π2z4
mBm

,

p ≡ 2I0I1
I2

, and

q ≡ I2
0

I2
− I2

1

I2
− 4I0I1

I2
· A1I0 − A0I1
A0I0 + A1I1

.

(B.4)

Indeed, the first-order terms vanish in Eq. (B.3), but the main axes of vibra-
tion in the xy-plane do not coincide with the coordinate axes. We therefore
rotate the coordinate system around the z-axis by an angle

θ =
1

2
arctan

(
p

q

)
(B.5)

in order to eliminate the mixed term. This yields

B(r) = Bm +
k

4

(
1−

√
p2 + q2

)
x̃2

+
k

4

(
1 +

√
p2 + q2

)
ỹ2 +

k

2
(z − zm)2

(B.6)

in the rotated coordinates x̃ = x cos θ + y sin θ, ỹ = −x sin θ + y cos θ. The
trap frequencies are

ωx̃ =

[
µ

m
· k
2

(
1−

√
p2 + q2

)]1/2

,

ωỹ =

[
µ

m
· k
2

(
1 +

√
p2 + q2

)]1/2

, and

ωz =
[ µ
m
· k

]1/2

.

(B.7)

The stationary point corresponds to a Ioffe-type trap minimum if all trap
frequencies are real and Bm > 0. This implies p2 + q2 < 1, which leads to the
condition |I1/I0| < min (|A1/A0|, |A0/A1|) for the currents. We have chosen
|I1/I0| < 1 by convention, an analogous solution exists for |I0/I1| < 1 with
the role of the two wires interchanged.
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a) b)

Figure B.1: Parameter space of the dimple trap. (a) The value of
√
p2 + q2

in the parameter space spanned by I1/I0 and A1/A0. In the white area no
trap forms since

√
p2 + q2 > 1 (see text). Contours spaced by 0.1. (b) The

angle θ by which the x̃-axis of vibration is rotated in the xy-plane. Contours
spaced by 0.05.

According to Eqs. (B.7), the trap frequencies satisfy ω2
x̃ + ω2

ỹ = ω2
z . Un-

like in the case of the ideal Ioffe trap, Eq. (1.10), it is therefore not possible
to create a completely isotropic dimple trap. The shape of the trap is de-
termined by

√
p2 + q2 = (ω2

ỹ − ω2
x̃)/ω

2
z , see Eq. (B.7). In Fig. B.1, we plot√

p2 + q2 and θ as a function of the current and magnetic field ratios I1/I0
and A1/A0. For

√
p2 + q2 → 1 the trap is cigar-shaped, see Fig. B.2(a),

with ωx̃ � ωỹ ≈ ωz. For
√
p2 + q2 → 0, which corresponds to |A1/A0| � 1

and I1 ≈ I0A0/3A1, a slightly pancake-shaped trap is formed, as shown in
Fig. B.2(b), with ωx̃ ≈ ωỹ ≈ ωz/

√
2. In such a trap, Bm ≈ A1 is large and

the trap frequencies are relatively low.
This shows that the trap aspect ratio of a dimple trap can be tuned from

(extremely) cigar-shaped to slightly pancake-shaped. In the intermediate
region, the trap frequencies are different along all three axes. Compared
with the ideal Ioffe trap, Eq. (1.10), the tuning range is reduced. This is due
to the additional unnecessary field components and gradients introduced by
the wires. Simulations show that the effects of finite wire width improve the
situation. The transverse confinement becomes closer to an ideal quadrupole
field if the width of the wire carrying the current I0 is comparable to the trap-
surface distance. This enables aspect ratios further into the pancake-shaped
regime, furthermore it is possible to orient the tightly confining direction
parallel to the chip surface. Pancake-shaped traps can also be realized by
reflecting a laser beam from the chip surface to create a one-dimensional
optical lattice.
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a) b)

Figure B.2: Dimple traps with different trap aspect ratios at zm = 25 µm.
(a) Cigar-shaped trap with I0 = 0.2 A, I1/I0 = 0.01, A0 = 16 G, and
A1/A0 = 0.4. The simulation yields (ωx̃, ωỹ, ωz)/2π = (0.29, 3.27, 3.28) kHz,
taking finite wire size and gravity into account. The red isopotential surface
corresponds to the chemical potential of a BEC of 105 atoms in the Thomas-
Fermi limit. The main axes of vibration are indicated. (b) I0 = 0.2 A,
I1/I0 = 0.023, A0 = 12.2 G, and A1/A0 = 15. A slightly pancake-shaped
trap is formed with (ωx̃, ωỹ, ωz)/2π = (0.43, 0.45, 0.58) kHz.
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Appendix C

Chip fabrication recipe

In the following I describe in detail the recipe used to fabricate the microwave
atom chip. The fabrication steps appear in the exact order in which they
were carried out in the clean room. At the end, a list of microfabrication
company web pages is given. For a general discussion and results of the
fabrication process, see chapter 2.

C.1 Chemicals, processes, and equipment

Recipes of frequently used chemicals and processes

Ac. Acetone, VLSI selectipur.

Aqua regia Mix water, hydrochloric acid, and nitric acid in this order and in
volume ratio (water):(32% HCl):(65% HNO3) = 1:3:1. Stir once and wait
before use until solution turns yellow. Use fresh aqua regia each time.

Blow dry with nitrogen gun.

IPA Isopropanol, VLSI selectipur.

Plasma cleaner Oxygen plasma cleaner parameters are (duration, RF power,
O2 pressure).

Piranha A:B Piranha etch: mix sulphuric acid and hydrogen peroxide in an
open beaker in this order and in volume ratio (96% H2SO4):(33% H2O2)
= A:B. Stir once and wait 1 min before use. For high concentration of
hydrogen peroxide (e.g. A:B = 4:1), the solution heats up and comes to a
boil. CAUTION! Never increase hydrogen peroxide concentration beyond
A:B = 3:1 and never bring piranha in contact with organic solvents, this
would result in an explosion. Piranha etch can be used for about 10 min
after mixing (until cooled off). Use fresh piranha etch each time.
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C Chip fabrication recipe

USB Place beaker in ultrasound cleaner and clean with given (duration, power,
temperature).

Water All water used is deionized water.

Clean room equipment

AFM Atomic force microscope (Digital Instruments Dimension 3000 AFM).

Ellipsometer (Plasmos).

Evaporator Metal deposition system with ultra-high vacuum chamber and electron-
beam evaporation (BesTec).

Hot plate for temperatures up to 200 ◦C with temperature stability of ±1 ◦C.

Mask aligner (Karl Suss MJB3) for optical lithography with UV light (Hg i-line
at 365 nm and h-line at 405 nm).

Optical microscope equipped for dark field microscopy.

GERO oven for baking of chips at temperatures up to 400 ◦C in nitrogen at-
mosphere.

Plasma cleaner for oxygen plasma (RF Applications Lab-Ash 100).

RTP oven for rapid temperature processing up to 1100 ◦C in oxygen and nitrogen
atmospheres (A.S.T. elektronik SHS 10).

SEM Scanning electron microscope (LEO 982 Digital Scanning Microscope).

Spin coater (Convac 1001S).

Ultrasound cleaner (Bandelin Sonorex Super).

C.2 Microwave atom chip

Substrate preparation

Wafer used: high resistivity silicon (Topsil, float-zone Si, (100) orientation, resis-
tivity ρ > 104 Ω cm), 100 mm diameter wafer, thickness 525 µm, polished on one
side, native oxide.

1. Cleave substrate

(a) Cleave chip substrate to square shape (35 mm × 35 mm) with diamond
scorer.

188



C.2 Microwave atom chip

(b) Wipe off surface, clean in Ac. USB (5 min, 100%, 55 ◦C), rinse in IPA,
blow dry.

2. Oxidize Si substrate
Heat substrate in RTP oven in oxygen atmosphere to form a 20 nm thick
insulating SiO2 layer.
Temperature ramp:

(a) ramp from room temperature to 400 ◦C in ≈ 5 min, gas flow 8 slm N2,

(b) keep at 400 ◦C for 4 min, switch to 5 slm O2,

(c) ramp from 400 ◦C to 1100 ◦C in 10 min, 5 slm O2,

(d) keep at 1100 ◦C for 6 min, 4 slm O2,

(e) ramp down to 400 ◦C in 5 min, 4 slm O2,

(f) switch to 10 slm N2, let cool to room temperature.

Oxide thickness may be determined with the ellipsometer.

3. Bevel edges of substrate

(a) Spin on photoresist (e.g. micro resist ma-P 1240) for protection (5 s
at 800 rpm, then 40 s at 1500 rpm), soft bake 8 min at 104 ◦C on hot
plate.

(b) Bevel edges of substrate on wet diamond whetstone. Rinse substrate
with water.

4. Clean substrate

(a) Clean in Ac. USB (5 min, 100%, 55 ◦C), rinse in IPA, blow dry.

(b) Clean in piranha (4:1) for 5 min, rinse well with water! Do not let dry.

(c) Clean in Ac. USB (3 min, 100%, 55 ◦C), rinse in IPA, blow dry.

Lower gold layer

1. Deposit gold seed layer

(a) Clean chip in oxygen plasma (5 min, 60 W, 2.0 torr).

(b) Mount chip in UHV evaporation chamber without delay.

(c) Heat Ti with e-beam, shutter closed in front of chip. Wait until pres-
sure in chamber drops by about one order of magnitude due to Ti
gettering (typical pressure 5× 10−9 mbar after 3 min).

(d) Open shutter and deposit 20 Å thick Ti adhesion layer at 0.5 Å/s.
Close shutter and continue with next step without delay.
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C Chip fabrication recipe

(e) Heat Au with e-beam, shutter closed in front of chip. Wait until Au
melts completely (approx. 3 min).

(f) Open shutter and deposit 50 nm thick Au seed layer at 1 Å/s.

2. Spin on photoresist

(a) Heat chip on hot plate, > 5 min at 102 ◦C. Place on spin-coater without
delay, blow off surface.

(b) Dispense photoresist (micro resist ma-P 1240) onto chip until surface
is completely covered, avoid (or remove) air bubbles.

(c) Spin 5 s at 800 rpm, then 40 s at 1500 rpm, resulting film thickness:
6.5 µm.

(d) Soft bake resist on hot plate, 5 min at 102 ◦C.

3. Resist exposure and development
Note: wait a few minutes between soft bake, exposure, and development.

(a) Use mask aligner to press chip against photomask (Cr mask from Delta
Mask), supporting the chip with a rubber ring below its center. De-
pending on design, Newton’s rings may be visible in mask aligner mi-
croscope if chip is in flush contact with mask.

(b) Expose for 120 s. Exposure time may need adjustment from time to
time. Slight overexposure might be desirable.

(c) Develop resist for 150 s in developer (micro resist ma-D 336:water =
3:7), agitate chip while developing. Development time and developer
concentration may need adjustment from time to time. Slight overde-
veloping might be desirable.

(d) Stop development in beaker with water, rinse thoroughly with running
water, blow dry.

(e) Inspect structure under microscope. If not fully developed, rinse with
water, then continue developing. May be repeated several times.

(f) Rinse photomask with Ac. and IPA, blow dry.

4. Electroplating

(a) Heat electroplating solution (Metakem ammonium gold sulfite solution,
1 liter with 15 g of gold) in water bath to 57± 1 ◦C.

(b) Wipe off photoresist with Ac. and IPA in chip corners to form contact
pads for electroplating.

(c) Remove residual photoresist in developed areas by plasma cleaning
(5 min, 50 W, 2.0 torr).
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(d) Mount chip on chip holder without delay. Connect contact pads. Rinse
with water.

(e) Connect chip and anode to power supply, with 1 kΩ resistor in series.
Switch on power supply first (output voltage set to 0 V) and then
submerge chip in electroplating solution. Make sure no uncontrolled
voltage changes occur (e.g. during switching).

(f) Set output voltage to 8.0 V. Due to the 1 kΩ series resistor, the plating
current should be 8 mA. This corresponds to a current density of ≈
3 mA/cm2 in our chip design.

(g) Electroplate gold in 40 min to a thickness of 6 µm. While plating, stir
solution with stirring magnet at 100 rpm, in addition agitate chip with
motor (set to 3 V) and from time to time by hand.

(h) Rinse chip thoroughly with running water, blow dry. Do not let solu-
tion dry on chip.

(i) Rinse equipment with water and filter electroplating solution with pa-
per filter.

5. Remove photoresist and etch seed layer

(a) Remove resist in Ac. USB (5 min, 10%, 55 ◦C), rinse in IPA, blow dry.

(b) Remove residual resist in narrow gaps between wires: Submerge chip
for 1 min in piranha (4:1), rinse with water, blow dry.

(c) Etch gold seed layer and Ti adhesion layer: Immerse and agitate chip
in aqua regia for typically 40 s (about twice the time needed to remove
Au and Ti), rinse with water, blow dry.

(d) Inspect lower gold layer and determine approximate thickness under
microscope.

Polyimide insulation

1. First polyimide layer

(a) Let polyimide bottle warm up to room temperature.

(b) Clean chip in Ac., rinse in IPA, blow dry.

(c) Clean chip in oxygen plasma (5 min, 60 W, 2.0 torr).

(d) Prepare adhesion promoter (one drop of HD MicroSystems VM651 in
10 ml water corresponds to the recommended dilution of 1:1000).

(e) Spin on adhesion promoter 5 s at 800 rpm, then 30 s at 3000 rpm.

(f) Soft bake 1 min at 120 ◦C on hot plate.
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(g) Dispense polyimide (HD MicroSystems PI2562) on chip until surface
is completely covered, using plastic pipette with thick opening. Avoid
(or remove) air bubbles.

(h) Spin on polyimide 5 s at 500 rpm, then 40 s at 2200 rpm, resulting film
thickness: 2.0 µm.

(i) Soft bake on hot plate: ramp in 30 min from 100 ◦C to 200 ◦C, then
keep 30 min at 200 ◦C.

(j) Hard bake polyimide in GERO oven, N2 flow 200 l/h.
Temperature ramp:

i. keep 0.3 h at 200 ◦C,
ii. ramp with 150 ◦C/h to 350 ◦C,
iii. bake 2 h at 350 ◦C,
iv. ramp with −400 ◦C/h to 200 ◦C,
v. let cool to room temperature.

(k) Planarization results may be determined with AFM.

2. Second and third polyimide layer

Note: no adhesion promoter required.

(a) Clean chip in Ac., rinse in IPA, blow dry.

(b) Heat chip on hot plate, 5 min at 120 ◦C.

(c) Dispense and spin on polyimide as for first layer.

(d) Soft bake on hot plate: ramp in 20 min from 120 ◦C to 180 ◦C.

(e) Hard bake polyimide in GERO oven, parameters as for first layer.

Upper gold layer

1. Spin on photoresist

(a) Clean chip in Ac., rinse in IPA, blow dry.

(b) Clean chip in oxygen plasma (2 min, 50 W, 2.0 torr).

(c) Heat chip on hot plate, 3 min at 110 ◦C. Place on spin-coater without
delay, blow off surface.

(d) Dispense photoresist (Clariant AZ 5214 E) onto chip until surface is
completely covered, avoid (or remove) air bubbles.

(e) Spin 3 s at 800 rpm, then 30 s at 3000 rpm, resulting film thickness:
1.6 µm.

(f) Soft bake resist on hot plate, 1 min at 110 ◦C.
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2. Resist exposure, image reversal, and development
Note: wait a few minutes between steps.

(a) Use mask aligner to press chip against photomask, supporting the chip
with a rubber ring below its center. Make sure mask is properly aligned
with lower gold layer.

(b) Expose for 3.5 s. Avoid overexposure.

(c) Image reversal bake on hot plate, 120 s at 120± 1 ◦C.

(d) Flood UV exposure of chip without mask, 40 s.

(e) Develop resist for 17 s in developer (AZ 351 B:water = 1:4), agitate
chip while developing. Development time may need adjustment from
time to time.

(f) Stop development in beaker with water, rinse thoroughly with running
water, blow dry.

(g) Inspect structure under microscope. A strong undercut can be seen as
a bright outline of the resist edges. However, for very small structures,
resist mechanical stability requires that development be stopped before
bright outline is visible.

(h) If resist structure needs further development, rinse with water, then
continue developing for a few seconds. May be repeated several times.

(i) Remove residual resist in developed areas by gentle plasma cleaning
(10 s, 40 W, 2.0 torr).

(j) Post bake resist on hot plate, 50 s at 120 ◦C.

(k) Rinse photomask with Ac. and IPA, blow dry.

3. Evaporate gold

(a) Mount chip in UHV evaporation chamber without delay.

(b) Heat Ti with e-beam, shutter closed in front of chip. Wait until pres-
sure in chamber drops by about one order of magnitude due to Ti
gettering (typical pressure 5× 10−9 mbar after 3 min).

(c) Open shutter and deposit 30 Å thick Ti adhesion layer at 0.5 Å/s.
Close shutter and continue with next step without delay.

(d) Heat Au with e-beam, shutter closed in front of chip. Wait until Au
melts completely (approx. 3 min).

(e) Open shutter and deposit 1000 nm thick Au layer at ≤ 1.0 Å/s.

4. Lift-off

(a) Place chip in beaker with hot Ac. Agitate chip from time to time.
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(b) Wait until resist structure comes off (may take 30 min). Lift-off may
be forced with USB (5 min, 10%, 55 ◦C).

(c) Remove chip from Ac. only after lift-off is fully completed, rinse with
IPA, blow dry.

Chip dicing

1. Spin on photoresist (e.g. micro resist ma-P 1240) for protection (5 s at
800 rpm, then 40 s at 1500 rpm), soft bake 5 min at 100 ◦C on hot plate.

2. Cut chip to size with diamond blade at 20000 rpm.

3. Clean chip in Ac. USB (5 min, 10%, 55 ◦C), rinse with IPA, blow dry.

C.3 Base chip

Wafer used: aluminum nitride (Anceram AlN 180, thermal conductivity 180 W/(m K)),
100 mm × 100 mm square wafer, thickness 800 µm, polished on one side (Ra <
40 nm).

The fabrication process for this chip is similar to the lower layer of the ex-
periment chip. The main difference are the lithography parameters. To fabricate
thicker gold wires, a 8 µm thick layer of photoresist (ma-P 1240) is used. A
printed overhead transparency mask is used for lithography. Because of defects
in the mask, the thicker resist layer, and resist edge beads, the exposure time
is increased to 9 min and the development time is 8 min. The wires are electro-
plated to a thickness of 12 µm. This slight “overplating” is uncritical for the larger
structures (≥ 90 µm) on the base chip.

C.4 Microfabrication company web pages

A.L.L. Lasertechnik www.all-laser.de
Anceram www.anceram.com
Clariant Photoresist www.microchemicals.com
Delta Mask www.deltamask.nl
Epo-Tek www.epotek.com
HD MicroSystems www.hdmicrosystems.com
Indium Corporation www.indium.com
Metakem www.metakem.com
MicroChemicals www.microchemicals.com
micro resist technology www.microresist.com
Topsil www.topsil.com
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Hertzberg, K. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger,
Self-cooling of a micro-mirror by radiation pressure, Nature 444, 67
(2006).

[196] D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a mi-
cromechanical resonator, Nature 444, 75 (2006).

XVII



BIBLIOGRAPHY

[197] A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kip-
penberg, Radiation Pressure Cooling of a Micromechanical Oscillator
Using Dynamical Backaction, Phys. Rev. Lett. 97, 243905 (2006).

[198] I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus,
and K. Karrai, Optical cooling of a micromirror of wavelength size,
Appl. Phys. Lett. 90, 104101 (2007).

[199] A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P.
Blencowe, and K. C. Schwab, Cooling a nanomechanical resonator with
quantum back-action, Nature 443, 193 (2006).

[200] Y.-J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and
J. Kitching, Magnetic Resonance in an Atomic Vapor Excited by a
Mechanical Resonator, Phys. Rev. Lett. 97, 227602 (2006).

[201] L. Tian and P. Zoller, Coupled Ion-Nanomechanical Systems, Phys.
Rev. Lett. 93, 266403 (2004).

[202] A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell,
P. Rabl, R. J. Schoelkopf, and P. Zoller, A coherent all-electrical
interface between polar molecules andmesoscopic superconducting res-
onators, Nat. Phys. 2, 636 (2006).

[203] K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Rev.
Sci. Instrum. 76, 061101 (2005).
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[214] C. J. Bordé, Atomic interferometry with internal state labelling, Phys.
Lett. A 140, 10 (1989).

[215] A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Atom Interfer-
ometers, preprint arXiv:0712.3703 [quant-ph] (2007).
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nischer Teile. Gabriele Gschwendtner und der leider vor kurzem verstorbenen
Rosemarie Lechner danke ich für die Unterstützung in administrativen und
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