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Entanglement-based technologies, such as quantum information processing, quantum simulations,
and quantum-enhanced metrology, have the potential to revolutionize our way of computing and
measuring and help to clarify the puzzling concept of entanglement itself. Ultracold atoms on
atom chips are an attractive system for their implementation, as they provide control over quantum
systems in a compact, robust, and scalable setup. An enabling technology in this system is a
potential depending on the internal atomic state. Coherent dynamics in such a potential combined
with collisional interactions allows entanglement generation both for individual atoms and ensembles.
Here, we demonstrate coherent dynamics of Bose-condensed atoms in such a potential, generated in
a novel way with microwave near-fields on an atom chip. We entangle atomic internal and motional
states in a controlled and reversible way, realizing a trapped-atom interferometer with internal-state
labeling. Furthermore, our system provides control over collisions in mesoscopic condensates with
well-defined atom number, which paves the way for on-chip generation of many-particle entanglement
and quantum-enhanced metrology with spin-squeezed states.

Applications of ultracold neutral atoms in quantum in-
formation processing (QIP) [1, 2], quantum simulations
[3, 4], and quantum-enhanced metrology [5, 6] rely on the
coherent control of internal states, motional states, and
collisional interactions [7]. Atom chips [8] are particularly
attractive for the implementation of such entanglement-
based technologies, because they provide versatile mi-
cropotentials for ultracold atoms in a compact, robust,
and scalable physics package [9, 10, 11]. Coherent ma-
nipulation of internal [12] and motional [13, 14] states
on atom chips has been demonstrated in separate experi-
ments. However, the combined coherent manipulation of
internal and motional states with a state-dependent po-
tential has not yet been achieved. Such a manipulation is
required for trapped-atom interferometry with internal-
state labeling of the interferometer paths. In combina-
tion with collisional interactions, it is a crucial ingredient
for entanglement generation and at the heart of recently
proposed schemes for atom chip quantum gates [15, 16]
and spin-squeezing [17].

For coherent internal-state manipulation on atom
chips, the ground state hyperfine levels |0〉 ≡ |F =
1,mF = −1〉 and |1〉 ≡ |F = 2,mF = 1〉 of 87Rb are
an ideal choice (see Fig. 1). Both states are magneti-
cally trappable, have nearly identical magnetic moments,
and thus possess excellent coherence properties. This
makes them ideal “qubit” or “clock” states compatible
with magnetic traps. Internal-state manipulation of |0〉
and |1〉 with coherence lifetimes exceeding one second has
been demonstrated at micrometer distance from the chip
surface [12]. Atoms in a coherent superposition of |0〉
and |1〉 can be entangled with each other via collisional
interactions, provided that the interaction strength de-
pends on the internal state. For |0〉 and |1〉, the intra-
and inter-state scattering lengths are nearly equal and no

convenient Feshbach resonance exists which would allow
tuning of the scattering lengths [18]. Therefore, a state-
dependent potential is required, which allows one to con-
dition the interactions on the internal state by controlling
the wave function overlap in a state-dependent way [19].

Entanglement of atoms has been generated in this way
in state-dependent optical lattice potentials [20]. The ad-
vantage of our system is that it is scalable over a large
range of atom numbers, ranging from large ensembles (as
required for metrology with spin-squeezed states) over
mesoscopic atom numbers (e.g. for experiments on entan-
gled number states) in principle down to individual atoms
[21, 22, 23] (as required for QIP). This scalability de-
rives from the fact that in chip-based magnetic traps, the
atom number can be precisely adjusted through radio-
frequency evaporative cooling [24] and trap frequencies
and the trap aspect ratio can be easily tuned over a wide
range (as opposed to the 1D situation of [25]). Further-
more, the atoms can be detected with high resolution
both in space and in atom number for each internal state.

In the experiments reported here, acting on our pre-
vious proposal [12, 16], we use microwave near-fields on
an atom chip to generate state-dependent potentials for
|0〉 and |1〉. Microwave potentials derive from magnetic
dipole transitions between the hyperfine states of the
atomic ground state [26]. The states are dressed by the
microwave coupling, which gives rise to state-dependent
energy shifts, because the Rabi frequency and detuning of
the microwave are different for the different Zeeman sub-
levels. In a spatially varying microwave field, this results
in a state-dependent potential landscape. Microwave
potentials generated by far-field radiation were already
studied in the 1990s [26, 27]. Hundreds of kilowatts of
circulating microwave power inside a cavity were neces-
sary, because the centimeter wavelength of the microwave
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FIG. 1: Coherent internal-state manipulation and gen-
eration of state-dependent microwave potentials. Hy-
perfine structure of the 87Rb ground state in the static mag-
netic field of the microtrap. The “qubit” or “clock” states
|0〉 and |1〉 experience nearly identical Zeeman energy shifts
VZ . For internal-state manipulation of the atoms, the two-
photon transition |0〉 ↔ |1〉 is resonantly coupled, with de-
tuning δ from the intermediate state |F = 2,mF = 0〉. To
generate state-dependent potentials, a microwave near-field
is used, which couples |0〉 to the auxiliary state |2〉 with Rabi
frequency ΩR and detuning ∆. The resulting dressed state
|0̄〉 is shifted in energy by Vmw with respect to |0〉. State |1〉
is nearly unperturbed by the microwave near-field, because
all transitions connecting to |1〉 are far off resonance.

prevents tight focussing and thus limits the attainable
potential gradients. Using microwave near-fields gener-
ated by micrometer-sized waveguides on atom chips, it is
possible to realize much stronger gradients with only mil-
liwatts of power. This is because near-field gradients do
not depend on the wavelength, but instead on the trans-
verse waveguide dimensions and the distance from the
waveguide. In addition, this allows tailoring of the poten-
tials on the micrometer scale. Recently, radio-frequency
fields were used to generate potentials on atom chips [28].
By comparison, microwave potentials have the important
advantage that the different transitions are split by the
Zeeman effect, which we make use of to adjust the state-
dependence of the potentials simply via the microwave
frequency. Compared with optical potentials [29], mi-
crowave near-field potentials have the advantage of negli-
gible spontaneous emission, tailorability, and a compact,
chip-based setup.

Figure 1 indicates the ground state hyperfine levels
and transitions of 87Rb relevant to our experiments. A
static magnetic field B(r) is applied to generate a static
magnetic trapping potential VZ(r) = µBB(r)/2, where
µB is the Bohr magneton. The same potential VZ is
experienced by both states |0〉 and |1〉. The atoms
trapped in VZ(r) can be placed in any desired super-
position of |0〉 and |1〉 by resonantly coupling the two-
photon transition |0〉 ↔ |1〉 with microwave and radio-
frequency far-field radiation generated off-chip [12]. This
two-photon drive is turned on only for internal-state ma-
nipulation. In order to create the state-dependent poten-

tial, a second microwave with magnetic field Bmw(r, t) =
1
2 [Bmw(r)e−iωt + B∗mw(r)eiωt] is applied. This is a
microwave near-field with strong gradients, generated
by an on-chip waveguide. The frequency ω is chosen
such that it primarily couples |0〉 to the auxiliary state
|2〉 ≡ |F = 2,mF = −1〉, with position-dependent Rabi
frequency ΩR(r) = −

√
3/4(µB/~)B‖(r) and detuning

∆(r) = ω − ωhfs + µBB(r)/~. Here, B‖ = B · Bmw/B
is the microwave field component along the local direc-
tion of B and ωhfs is the hyperfine splitting for B = 0.
All transitions other than |0〉 ↔ |2〉 are much further
off resonance and therefore only have minor effects. The
coupling results in a dressed state |0̄〉 which is shifted
in energy by Vmw(r) with respect to |0〉, the overall po-
tential seen by |0̄〉 is thus V|0̄〉 = VZ + Vmw. By con-
trast, state |1〉 and its potential remain essentially un-
changed, |1̄〉 ≈ |1〉 and V|1̄〉 ≈ V|1〉 = VZ , because the
microwave is very far off resonance from all transitions
connecting to this state. In this way, the microwave
near-field adds internal-state dependence to the poten-
tial in a controlled way. In our experiments, we focus
on the regime |ΩR|2 � |∆|2, where |0̄〉 contains only a
small admixture of state |2〉. This is important because
|2〉 has opposite magnetic moment, and a large admix-
ture would spoil the good coherence properties of our
state pair. In this limit, Vmw(r) ≈ ~|ΩR(r)|2/4∆(r) and
|0̄〉 ≈ |0〉 + (ΩR(r)/2∆(r)) |2〉. In the general case, we
determine |0̄〉, |1̄〉, V|0̄〉, and V|1̄〉 using a numerical simu-
lation that takes all hyperfine transitions into account, is
valid for arbitrary detunings, and includes several other
contributions to the potential (see Supplementary Infor-
mation).

We have built a novel type of multi-layer atom chip,
see Fig. 2a, with integrated coplanar waveguides (CPWs)
for the generation of microwave near-fields in addition to
wires for static magnetic fields [30]. The CPWs are ta-
pered from millimeter size at the connectors to a few
micrometers in the chip center, with only small changes
in impedance. This ensures high microwave transmission
to the experiment region. In the present work, we use the
waveguide which is shown schematically in the close-up
of Fig. 2b. We have simulated microwave propagation on
this structure, including both layers of metallization and
dielectrics (see Methods). We find that at the position
of the atoms, Bmw(r) can be well approximated by the
quasistatic field of the currents indicated in Fig. 2b. This
corresponds to assuming an idealized CPW mode with
transverse electromagnetic fields [31] and neglecting ef-
fects of the other wires. The relative error in the spatial
dependence of Bmw(r) introduced by this approximation
is about 10%, comparable to other uncertainties in the
microwave current distribution due to the wire bonds,
CPW tapers, and chip connectors.

The experiments are performed in the following way.
Using a combination of stationary currents and exter-
nal fields, we prepare a Bose-Einstein condensate (BEC)
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FIG. 2: Atom chip with microwave coplanar waveg-
uides (CPWs). a, Photograph of the chip assembly. The
Si experiment chip has two layers of gold wires separated by
a thin polyimide layer, with CPWs on the upper layer. It
is glued and wire bonded to an AlN carrier chip with a sin-
gle gold layer, providing four microwave and 44 DC ports.
b, Schematic close-up of the experiment region. The three
central wires (red, cross section 6 µm × 1 µm each) form a
CPW. All wires (including the CPW) can carry stationary
currents for the generation of static magnetic traps. The po-
sition rm = (xm, ym, zm) = (−12, 0, 44) µm of the minimum
of the static trap VZ(r) is indicated by the black cross (r = 0
corresponds to the top surface of the wire in the center of
the CPW). An ideal CPW mode has microwave current am-
plitudes Is = Imw and Ig1 = Ig2 = −Imw/2 as indicated.
The quasistatic field of these currents is used to calculate
ΩR(r). Equipotential lines of |ΩR(x, ym, z)|/2π are shown
for Imw = 76 mA (line spacing 70 kHz). The asymmetry in
|ΩR(r)| with respect to x = 0 is due to the spatial dependence
of B(r) which gives rise to VZ(r).

[24] in state |0〉 in a static magnetic microtrap. Very
stable current sources and magnetic shielding allow us
to reproducibly prepare BECs with small atom number,
typically N = 400 ± 21 (see Methods). The BEC can
be precisely positioned in the near-field of the CPW by
ramping appropriate wire currents and fields. For the
experiments presented here, the BEC is transferred into
a cigar-shaped harmonic trap VZ(r), with long axis along
x, measured trap frequency fx = 109 Hz (f⊥ = 500 Hz)
in the axial (radial) direction, and measured static field
in the trap center B(rm) = 3.23 G, pointing along x.
The position rm of the minimum of VZ(r) is indicated
in Fig. 2b. If the microwave on the CPW is turned on
while the atoms are trapped in VZ(r), they see a strongly
position-dependent Rabi frequency ΩR(r), as shown in
Fig. 2b. We now describe two experiments in which we
use the resulting microwave potential Vmw(r) for state-
dependent manipulation.

In the first experiment, we show state-selective adia-

batic splitting of the BEC (Fig. 3). Before we turn on
the microwave potential, we prepare the atoms in VZ in
the coherent superposition of internal states 1√

2
(|0〉+ |1〉)

by applying a π
2 -pulse of 170 µs duration on the two-

photon transition. Right after this pulse, which is fast
compared with the trap oscillation periods, the motional
wave functions of |0〉 and |1〉 overlap completely. Then,
within 150 ms, we smoothly ramp up the microwave
power launched into the CPW to a final value of Pmw =
120 mW, at fixed detuning ∆m ≡ ∆(rm) = 2π×150 kHz.
This corresponds to a ramp of Vmw which is adiabatic
with respect to the dynamics of the internal state, en-
suring population of only state |0〉 but not |2〉, as well
as to the dynamics of the motional state, allowing the
BEC wave function to follow the potential. At the end
of the ramp, we switch off the combined static and mi-
crowave potentials within 0.3 ms and image the atomic
density distributions quasi in-situ, using state-selective
absorption imaging [32] to discriminate between |0〉 and
|1〉. Figure 3a shows images taken in this way. We ob-
serve that the BEC is state-selectively split along x by
a distance s = 9.4 µm, which is 3.9 times the radius of
each of the two trapped clouds [33].

The splitting is due to the strong near-field gradient
in |ΩR(r)| around r = rm. By comparison, the spatial
dependence of ∆(r) is weak. Although |ΩR(r)| has gra-
dients of similar magnitude along the x and z axes (cf.
Fig. 2b), the spatial splitting is nearly one-dimensional
because f2

⊥ � f2
x . Figure 3b shows the measured s as

a function of Pmw/∆m for different values of ∆m. The
data points lie on top of each other as expected from
the scaling Vmw ∼ |ΩR|2/∆ ∼ Pmw/∆m in the regime
|ΩR|2 � |∆|2. The maximally applied Pmw = 120 mW
corresponds to ΩR(rm) = 2π × 122 kHz, which we mea-
sure independently by driving resonant Rabi oscillations
with the microwave near-field. Note that for ∆ > 0, the
repulsive microwave potential pushes state |0̄〉 into re-
gions where ΩR(r) � ΩR(rm) so that |ΩR|2 � |∆|2 is
satisfied.

The observed splitting is reproduced by our simulation
of V|0̄〉 and V|1̄〉, where the microwave current amplitude
Imw is calibrated using the measured ΩR(rm) (see Meth-
ods). Figure 3c shows a slice through the simulated po-
tentials along the splitting direction, assuming an ideal
CPW mode. In agreement with the experiment, the sim-
ulation shows that we can selectively displace the wave
function of state |0̄〉 with the microwave potential gradi-
ent, while state |1̄〉 is nearly unaffected. Figure 3b shows
that the observed dependence of s on Pmw/∆m can be
reproduced even better by assuming a slightly asymmet-
ric CPW mode, which can arise due to asymmetries of
the tapers and wire bonds.

In the second experiment, we demonstrate fully coher-
ent control of the atoms by performing trapped-BEC in-
terferometry with internal-state labeling of the interfer-
ometer arms. Our interferometer consists of a Ramsey
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FIG. 3: State-selective splitting of the BEC. a, Absorp-
tion images of the adiabatically split BEC (Pmw = 120 mW,
∆m ≡ ∆(rm) = 2π × 150 kHz). By imaging both hyperfine
states simultaneously (top), only F = 1 (middle), or only
F = 2 (bottom), the state-selectivity of the splitting is es-
tablished. b, Measured splitting distance s as a function of
Pmw/∆m for different values of ∆m as indicated. The solid
line is the result of a simulation assuming an ideal CPW mode
(Ig1 = Ig2 = −0.5 Is), the dashed line assumes a slightly
asymmetric mode (Ig1 = −0.45 Is, Ig2 = −0.55 Is). The re-
maining discrepancy can be attributed to our simple simu-
lation not reproducing the actual microwave near-field dis-
tribution perfectly. c, Simulated potentials along the split-
ting direction (see dotted line in Fig. 2b), for an ideal CPW
mode and Imw = 76 mA, corresponding to the parameters
of (a). The potential minimum of V|0̄〉 is shifted by the mi-
crowave, while V|1̄〉 ≈ VZ . The full microwave potential Vmw

(dashed blue) and the approximation Vmw ≈ ~|ΩR|2/4∆ for
|ΩR|2 � |∆|2 (dash dotted green) are shown in comparison.

π
2 -π2 sequence on the |0〉 ↔ |1〉 transition in combina-
tion with state-dependent splitting and recombination of
the motional wave functions. We use a non-adiabatic
splitting and recombination scheme, see Fig. 4a, which is
motivated by the sequence required for the atom chip
quantum gate proposed in [15]. By choosing ∆m =
2π×600 kHz we ensure that the admixture of state |2〉 is
small enough so that decoherence due to magnetic field
noise is not a problem on the time scale of our experi-
ment. After the first π

2 -pulse, the microwave on the CPW
is switched on within 50 µs to Pmw = 120 mW, which
corresponds to a sudden displacement of the potential
minimum for state |0̄〉 by 4.3 µm. After a variable de-
lay, we switch off the microwave within 50 µs, followed by

the second π
2 -pulse and state-selective detection to deter-

mine the number of atoms N0 (N1) in state |0〉 (|1〉). The
time between the π

2 -pulses, TR, corresponds to the overall
time the microwave was turned on. In this scheme, the
switching of Vmw is adiabatic with respect to the internal-
state dynamics, but fast compared to the trap oscillation
periods. The wave function of state |0̄〉 is thus set into
oscillation in the shifted potential V|0̄〉. We can record
these oscillations by varying TR and imaging the atoms
without applying the second π

2 -pulse, see Fig. 4b. The
wave function of |0̄〉 oscillates with a peak-to-peak ampli-
tude of 8.5 µm and a frequency of f̄x = 116 Hz, which is
the trap frequency of V|0̄〉 along x. Periodically, it comes
back to its initial position, approximately when TR is an
integer multiple of f̄−1

x = 8.6 ms. At these times, it over-
laps with the wave function of state |1〉. Note that due
to collisions, state |1〉 starts to oscillate as well.

FIG. 4: Dynamical splitting and recombination
scheme used for BEC interferometry. a, Timing se-
quence of the interferometer. In between the two π

2
-pulses of

a Ramsey sequence on the |0〉 ↔ |1〉 transition, the microwave
on the CPW is pulsed on for a duration TR, resulting in a sud-
den displacement of the potential minimum of V|0̄〉. This sets
the wave function of state |0̄〉 into oscillation. b, Oscillation
of the atoms, recorded with the sequence of (a), but with the
second π

2
-pulse omitted. The center-of-mass position of the

atoms at the end of the sequence is shown as a function of
TR. State |0〉 oscillates while state |1〉 remains initially at rest.
Each time the wave functions overlap in the trap, energy is
transferred between the states.

If we apply both π
2 -pulses and vary TR, we observe

Ramsey interference fringes, see Fig. 5. The interference
contrast is modulated by the wave function overlap of the
two states and thus periodically vanishes and reappears
again due to the oscillation of state |0̄〉. As a measure for
the wave function overlap we plot σ(N1)/N̄1 as a function
of TR, where σ(N1) is the standard deviation and N̄1 the
mean of N1 obtained from a running average over one
period of the Ramsey fringes, see Fig. 5a. Corresponding
Ramsey fringe data and in-situ images of the atoms at
specific times TR are shown in Figure 5b+c. A sharp
recurrence of the contrast is observed precisely at the
time when state |0̄〉 has performed a full oscillation in
V|0̄〉, which proves that the combined dynamics of internal
and motional state is coherent. The high contrast of
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the first recurrence shows that the collisional interactions
between the atoms observable in Fig. 4b lead only to a
small distortion of the wave functions. Wave function
distortion can be reduced to negligible levels by optimal
control of the splitting process as discussed in [16].

For the second (and subsequent) recurrences we ob-
serve substantial noise on the Ramsey fringe data. By
contrast, when we take Ramsey fringes without splitting
the BEC, comparable noise is visible only for TR beyond
several hundred milliseconds. We have analyzed techni-
cal fluctuations of the potentials, however, we find that
they can account only for about 30% of the observed
noise level (see Methods). The additional noise could be
due to spin squeezing in the BEC, as suggested in [17],
which in the present π

2 -π2 sequence would show up as
increased phase noise. This effect will be studied in fu-
ture experiments. It suggests that our system can be
used to tune interactions in a state-dependent way for
atoms such as 87Rb that do not have convenient Feshbach
resonances. This could lead to the realization of many-
particle entangled states such as spin-squeezed states [17]
or Schrödinger cat states [34, 35].

Internal-state labeling of the interferometer paths
[36, 37], as demonstrated here, offers several advantages
for trapped-atom interferometry. Compared with state-
insensitive beam splitters which operate by ramping up a
barrier in the potential, the splitting and recombination
can be controlled much more accurately by driving the
internal-state transition. The interferometer paths can
be closed inside the trap without additional heating as in
[38]. Furthermore, readout is greatly simplified, because
it does not require spatially resolving interference pat-
terns. Instead, only N0 and N1 have to be determined,
which can be done with high accuracy. Many-body ef-
fects in the interferometer could either be suppressed by
adjusting the trap frequencies for operation at lower den-
sity, or used beneficially to increase measurement preci-
sion with spin-squeezed states.

The oscillation of state |0̄〉 results in periodic entan-
glement and disentanglement of internal and motional
states of the atoms. This mechanism is at the heart of
the quantum phase gate proposed in [15, 16]. The gate
can be viewed as two state-selective interferometers next
to each other, each containing a single atom, where the
oscillating states collide and pick up a phase shift, re-
sulting in entanglement between the two atoms. We en-
visage that the gate can be realized by combining the
microwave potentials demonstrated here with techniques
for single atom control [21, 22] based on the recently
demonstrated optical fiber cavities on atom chips [23].
As an alternative to single-atom operation, it is interest-
ing to study whether two BEC interferometers next to
each other could be used in a similar way to generate
many-particle entanglement, and whether this entangle-
ment could be used for QIP.

Beyond QIP, many-particle entanglement, and atom

interferometry, microwave near-fields are a useful new
tool for a variety of experiments. Chip-based atomic
clocks that benefit from the large Rabi frequencies, tai-
lored field configurations, and temporal stability of mi-
crowave near-fields are currently being set up [39]. Mi-
crowave near-field potentials could be utilized to trap
neutral atoms in internal states which cannot be trapped
with static fields [26, 27], or to realize electrodynamic
traps for ultracold molecules or electrons. An extension
to multiple microwave frequencies seems promising and
is technically straightforward.

Methods

Experimental Setup

Our compact atom chip setup is surrounded by a µ-metal
shield which reduces ambient magnetic field fluctuations to
0.2 mG r.m.s. This, together with the use of very stable cur-
rent sources, results in a high stability of the potentials allow-
ing the preparation of BECs with mesoscopic atom number.

We start our experiments with a mirror-magneto-optical
trap [40] followed by optical molasses to precool about 107

87Rb atoms to a temperature of 10µK. After optical pump-
ing to the |0〉 ≡ |F = 1,mF = −1〉 state the atoms are mag-
netically trapped, gradually moved closer to the chip surface
and evaporatively cooled by applying three radio-frequency
(RF) ramps which leads to BECs containing about N = 3000
atoms. We then cut further into the condensate with the RF
knife in order to prepare small, pure BECs with well defined
atom number, and transfer the BEC into the experiment trap
(see main text).

For internal-state manipulation we use microwave radiation
from an off-chip horn and RF radiation from an off-chip an-
tenna. The microwave is blue detuned by δ/2π = 280 kHz
from the transition |1,−1〉 ↔ |2, 0〉. The duration of a π

2
-

pulse between |0〉 and |1〉 is 170 µs. In the static magnetic
trap VZ , we observe Ramsey fringes with a contrast > 90%
and a coherence lifetime of ≈ 1 s.

We detect the atoms state-selectively by absorption imag-
ing [32], after a time-of-flight (TOF) of either 0.1 ms or 4.0 ms.
The short TOF allows for a quasi-in-situ determination of the
BEC position but diffraction of the imaging beam on the chip
wires prevents an accurate determination of N . After the
longer TOF, on the other hand, the atoms are sufficiently far
from the chip surface so that they can be imaged with the
imaging beam aligned parallel to the chip. This results in a
more accurate determination of N . We calibrate the detected
atom number following [41].

Microwave field simulation

We simulate the microwave current distribution in the
center region of the chip using the software package Son-
net. For the simulation, we assume that an ideal copla-
nar waveguide mode is injected into the CPW, with currents
Is(t) = Imw cos(ωt) on the center wire and Ig1(t) = Ig2(t) =
−(Imw/2) cos(ωt) on the ground wires (Fig. 2b). The simu-
lation result shows induced currents in the additional wires
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FIG. 5: Periodic recurrences of Ramsey interference contrast in the BEC interferometer. The contrast of the
Ramsey fringes on the |0〉 ↔ |1〉 transition is modulated due to the periodic splitting and recombination of the motional wave
functions. a, As a measure for the wave function overlap, we show σ(N1)/N̄1 as a function of TR, where σ(N1) is the standard
deviation and N̄1 the mean of N1 obtained from a running average over a time interval [TR − 75 µs, TR + 75 µs], corresponding
to one period of the Ramsey fringes. The width of the recurrence is influenced by nonlinear wavefunction dynamics due to
mean-field interactions. b, Corresponding Ramsey fringe data for selected values of TR. Each data point is determined from
two consecutive runs of the experiment, in which either N1 or N0 is detected. The surplus of atoms in state |1〉 at times when
the contrast has vanished (second and fourth graph) is probably due to small intensity gradients of the microwave used to
drive the two-photon transition, caused by near-field effects due to the microstructured surface. c, In-situ images of the atomic
density distribution of |0〉 and |1〉, for TR corresponding to the center of the windows in (b).

next to the CPW grounds with an amplitude of 2.3% of Imw,
in-phase with Is(t), and induced currents in the lower wire
layer which essentially mirror the currents in the CPW, with
≈ 20% amplitude. For distances from the chip much larger
than the CPW wire dimensions, such as our typical trap po-
sitions (zm ≈ 40µm), we find that neglecting all induced cur-
rents not on the CPW and assuming a homogeneous current
distribution in the cross section of the three CPW wires, the
splitting distance s as a function of Pmw/∆m changes by less
than 10% compared with the full simulation. This error is of
the same order of magnitude as uncertainties in the CPW ex-
citation. For simplicity, we therefore neglect induced currents
and approximate Bmw with the quasistatic field of the ideal
CPW mode.

Comparing simulations and measurements of the splitting
distance s as a function of Pmw, we find that the observed
characteristics can be best understood by assuming that the
CPW is excited with a non-symmetric microwave current dis-
tribution on the two ground wires, with Ig1 = −0.45 Imw and
Ig2 = −0.55 Imw. The asymmetry can be understood as a
partial coupling from the even coplanar microwave mode to
the odd one [42]. It could arise due to asymmetries in the
bond wires and the curves of the CPW on the chip.

We calibrate the microwave current amplitude in the chip
center used in the simulation, Imw, to the microwave power
launched into the chip in the experiment, Pmw, by comparing
the simulated and measured Rabi frequencies ΩR(rm) at the

position of the static trap minimum.

Noise on the Ramsey fringes

While states |0〉 and |1〉 have identical magnetic moments
at B = 3.23 G, the magnetic moment of state |0̄〉 is different
from that of |1〉 because of the admixture of state |2〉. This
makes the dressed qubit state pair sensitive to magnetic field
fluctuations. We directly measure the magnetic field sensi-
tivity of the Ramsey fringes in Fig. 5 by scanning B(rm) in
the experiment, and find that a static magnetic field change
of 16 mG leads to a phase shift of 2π at the time of the first
recurrence (TR = 8.4 ms). Inside the magnetic shielding, we
measure r.m.s. fluctuations of δB = 0.2 mG, corresponding
to r.m.s. phase fluctuations of δφB = 0.03π at TR = 8.4 ms.
Similarly, we measure the sensitivity of the phase of the Ram-
sey signal on changes of Pmw, and use it to estimate that the
measured r.m.s. fluctuations of δPmw = 20 µW result in phase
fluctuations of δφP = 0.01π at TR = 8.4 ms. We furthermore
include the quantum projection noise, δφS = 1/

√
N = 0.02π,

and the measured r.m.s. fluctuations in total atom number,
δN = 21. Taken together, these effects can explain only about
30% of the noise level on the Ramsey fringes observed in the
experiment.
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Supplementary Information

Simulation of microwave dressed-state potentials

Here we describe our simulation of the trapping potential
[30], which extends the theory of [26] to multi-level atoms.
Consider a 87Rb atom in the 5S1/2 ground state at a fixed
position r. The atom interacts with the local static mag-
netic field B and the microwave magnetic field Bmw(t) =
1
2
[Bmwe

−iωt + B∗mwe
iωt]. The atomic hyperfine states are de-

scribed by the Hamiltonian

H = (~ωhfs/2)I · J + µB (gJJ + gII) · (B + Bmw(t)) .

The first term describes the hyperfine coupling between elec-
tron spin J and nuclear spin I (J = 1/2, I = 3/2, and
ωhfs/2π = 6.834 682 611 GHz). The second term is the
coupling to the static and microwave magnetic fields, with
gJ = 2.002 331 (gI = −0.000 995) the electron (nuclear)
Landé g-factor. If high accuracy of the simulation is required,
e.g. for comparison with spectroscopic measurements, we nu-
merically determine the eigenstates and -energies of the full
Hamiltonian H. However, in most cases, a number of approx-
imations can be made: (1) We neglect the coupling of I to the
external fields because gI � gJ . (2) We treat the coupling of
J to B perturbatively because µBB � ~ωhfs. (3) We transfer
to a frame rotating at frequency ω and make the rotating-wave
approximation, valid because µBBmw, ~|∆0| � ~ω, where
∆0 = ω − ωhfs. With these approximations, we express H
in the basis |F,mF 〉 of the eigenstates of the hyperfine spin
F = J + I, with the quantization axis chosen along the local
direction of B:

H ≈
X
m2

`
− 1

2
~∆0 + ~ωLm2

´
|2,m2〉〈2,m2|

+
X
m1

`
1
2
~∆0 − ~ωLm1

´
|1,m1〉〈1,m1|

+
X

m1,m2

ˆ
1
2
~Ω2,m2

1,m1
|2,m2〉〈1,m1|+ c.c.

˜
.

(1)

We have approximated gJ ≈ 2 and introduced the Larmor fre-
quency ωL = µBB/2~. The microwave couples the transition
|1,m1〉 ↔ |2,m2〉 with Rabi frequency

Ω2,m2
1,m1

= (2µB/~)〈2,m2|Bmw · J|1,m1〉

and detuning

∆2,m2
1,m1

= ∆0 − (m2 +m1)ωL.

We numerically diagonalize H in equation (1) to determine
the local dressed states |n̄〉 and dressed state energies E(n)
of the atom at position r, where n = 0 . . . 7 is a suitable la-
beling of the states. For position-dependent fields B(r) and
Bmw(r, t), an energy landscape E(n, r) is calculated in this
way. In our experiment, the microwave dressing field is al-
ways turned on adiabatically with respect to the internal-
state dynamics. The bare qubit states |0〉 and |1〉 smoothly
transform into the dressed states |0̄〉 and |1̄〉 with potentials
V|0̄〉(r) = E(0, r) − 1

2
~∆0 and V|1̄〉(r) = E(1, r) + 1

2
~∆0, re-

spectively. If the motion of the atomic wave function in these
potentials is sufficiently slow, as in our experiments, the in-
ternal state follows the spatially varying fields adiabatically,
and motion-induced transitions between different states |n̄〉
are suppressed.

If the microwave is far detuned from all transitions,
|∆2,m2

1,m1
|2 � |Ω2,m2

1,m1
|2, the microwave coupling can be

treated perturbatively. Each dressed state |n̄〉 can then
be identified with one of the bare states |F,mF 〉, and
each transition connecting to |F,mF 〉 contributes a poten-
tial ±~|Ω2,m2

1,m1
|2/4∆2,m2

1,m1
, where the + (−) sign is for F = 1

(F = 2) [16]. This is the regime relevant to our experiment.
In the main text of our paper, ΩR ≡ Ω2,−1

1,−1 and ∆ ≡ ∆2,−1
1,−1.

In addition to V|n̄〉(r), our simulation includes several con-
tributions to the potential which are identical for all states of
the ground state hyperfine manifold: the quasi-electrostatic
potential Ve(r) = −(α0/4)|E(r)|2 due to the electric field of
the microwave [43], where E(r) is the electric field amplitude
and α0 is the ground state polarizability, the potential due to
gravity, and the Casimir-Polder surface potential relevant at
atom-surface distances below a few micrometers [44].

Characterization of on-chip microwave propagation

We generate the microwave for the on-chip waveguide using
an Agilent 8257D microwave generator whose output is am-
plified and amplitude stabilized using a feedback loop with
a directional coupler and an Agilent 8471E detector directly
in front of the chip. We measure a relative long-term drift in
Pmw of < 5·10−4 peak-to-peak. The relative drift of the power
launched into the chip is the same as that of the transmitted
power. This indicates that there is no significant long-term
drift of the CPW’s transmission properties. The chip temper-
ature is stabilized by water cooling of the carrier chip.

The characteristic impedance of the CPW, obtained from
quasistatic simulations including conductor and dielectric
losses [30], smoothly changes from 50 Ω at the ports to 70 Ω
at the chip center. The measured power transmission through
the chip is -6 dB. Because of symmetry of the CPW, we ex-
pect that approximately -3 dB of the injected power reach
the chip center. Simulations suggest that the observed loss
is dominated by conductor loss in the chip center where the
lateral extent of the CPW is only a few micrometers. The
absence of resonances in the transmission spectrum in the
investigated frequency range (≤ 8.5 GHz) suggests that the
bond wires and other discontinuities do not lead to strong
standing waves on the chip. In any case, the atoms would ex-
perience only very small microwave potential gradients due to
standing waves, because the size of the atomic wave function
is much smaller than the microwave wavelength.
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treutlein@lmu.de
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