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Atom chips provide a versatile ‘quantum lab-
oratory on a microchip’ for experiments with
ultracold atomic gases [1]. They have been
used in experiments on diverse topics such as
low-dimensional quantum gases [2], cavity quan-
tum electrodynamics [3], atom-surface interac-
tions [4, 5], and chip-based atomic clocks [6] and
interferometers [7, 8]. A severe limitation of
atom chips, however, is that techniques to con-
trol atomic interactions and to generate entangle-
ment have not been experimentally available so
far. Such techniques enable chip-based studies of
entangled many-body systems and are a key pre-
requisite for atom chip applications in quantum
simulations [9], quantum information processing
[10], and quantum metrology [11]. Here we report
experiments where we generate multi-particle en-
tanglement on an atom chip by controlling elas-
tic collisional interactions with a state-dependent
potential [12]. We employ this technique to gen-
erate spin-squeezed states of a two-component
Bose-Einstein condensate [13] and show that they
are useful for quantum metrology. The observed
−3.7 ± 0.4 dB reduction in spin noise combined
with the spin coherence imply four-partite en-
tanglement between the condensate atoms [14]
and could be used to improve an interferometric
measurement by −2.5±0.6 dB over the standard
quantum limit [15]. Our data show good agree-
ment with a dynamical multi-mode simulation
[16] and allow us to reconstruct the Wigner func-
tion [17] of the spin-squeezed condensate. The
techniques demonstrated here could be directly
applied in chip-based atomic clocks which are cur-
rently being set up [18].

In the currently emerging field of quantum metrology
[11], multi-particle entangled states such as spin-squeezed
states [19–21] are investigated as a means to improve
measurement precision beyond the ‘standard quantum
limit’ [15]. This limit arises from the quantum noise
inherent in measurements on a finite number of uncor-
related particles and limits today’s best atomic clocks
[22]. Atom chips combine exquisite coherent control with
a compact and robust setup [23], suggesting their use

for quantum metrology with portable atomic clocks and
interferometers. Several techniques to create entangled
states on atom chips have been proposed [16, 24–27], but
none has been experimentally realized so far.

The ‘one-axis twisting’ scheme of [28] in principle al-
lows to create a huge amount of entanglement in a two-
component Bose-Einstein condensate (BEC) [13, 16, 29].
In this scheme, an initially separable (non-entangled)
state, where each atom is in a superposition of two in-
ternal states |0〉 and |1〉, dynamically evolves into a spin-
squeezed state in which the condensate atoms are entan-
gled. This is due to atomic interactions that provide a
nonlinear term in the Hamiltonian for the BEC inter-
nal state. In the experiments reported here, we realize
this scheme on an atom chip. A notable feature is that
we control the interactions through the wave function
overlap of the two states [16, 30] in a state-dependent
microwave potential [12]. This is a new and versatile
technique for tuning of interactions in a BEC which also
works in magnetic traps and for atomic state pairs where
no convenient Feshbach resonances exist. We use such a
pair, the hyperfine states |0〉 ≡ |F = 1,mF = −1〉 and
|1〉 ≡ |F = 2,mF = 1〉 of 87Rb, which is also employed
in chip-based atomic clocks with magnetically trapped
atoms [6, 18].

A two-mode model [16] provides a starting point to
understand how squeezing is created in our experiment.
The internal state of a BEC of N two-level atoms can be
described by a collective spin S =

∑N
i=1 si, the sum of

the individual spins 1/2 of each atom (see Fig. 1a). Its
component Sz = (N1−N0)/2 is half the atom number dif-
ference between the states and thus directly measurable.
A π/2-pulse applied to a BEC in |0〉⊗N prepares it in a
coherent spin state (|0〉 + |1〉)⊗N/2N/2 with mean spin
〈Sx〉 = N/2 and 〈Sy〉 = 〈Sz〉 = 0. This is a product state
in which the atoms are uncorrelated and the quantum
noise is evenly distributed among the spin components
orthogonal to the mean spin, ∆S2

y = ∆S2
z = N/4, sat-

isfying the Heisenberg uncertainty relation ∆Sy∆Sz =
|〈Sx〉|/2. This noise gives rise to the standard quantum
limit if the state is used in a Ramsey interferometer such
as an atomic clock [22].

Quantum correlations between the atoms can reduce
the variance of one spin quadrature in the yz plane at
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FIG. 1: Spin squeezing and entanglement through controlled interactions on an atom chip. a, Evolution of the BEC
internal state on the Bloch sphere (δ = 0 for illustration). Starting with all atoms in |0〉, a π/2-pulse prepares a coherent spin
state with mean spin 〈S〉 along x and isotropic quantum noise in the yz-plane (fuzzy red circle). Subsequent nonlinear evolution
with χS2

z deforms the noise circle into an ellipse, creating a spin-squeezed state with reduced noise at an angle θmin. For state
tomography, a second pulse rotates the state around −x by a variable angle θ, followed by detection of Sz. b, Control of the
nonlinearity χ on the atom chip. χ depends on the difference of intra- and inter-state atomic interactions. Its dependence on
the normalized density overlap λ of the two BEC components is shown, calculated from stationary mode functions in potentials
of increasing separation. c, Experimental sequence and motion of the two BEC components corresponding to a. In between
the pulses for internal-state manipulation (green), a state-dependent microwave potential is turned on (blue; pulse durations
and microwave ramp times exaggerated for clarity). It dynamically splits and recombines the two BEC components, so that
χ > 0 during the time T . The simulated center-of-mass motion of the two states |0〉 (black) and |1〉 (red) is shown as a function
of time. A slightly asymmetric splitting of the potentials results in an asymmetric oscillation. Insets: corresponding BEC
mode functions φ0 and φ1 along the splitting direction at the beginning, in the middle, and at the end of the sequence. d,
Measured Ramsey fringes in the normalized population difference Nrel (here, θ = π/2). Between the pulses, δ is nonzero (see
Supplementary Information), resulting in spin precession. The splitting and recombination of the BEC modulates the fringe
contrast. Here, T is scanned beyond the duration of the sequence in a+c, so that up to ∼ 2.5 oscillations are induced. The
simulated contrast C (red) and density overlap λ (blue) are shown for comparison.

the cost of increasing the variance of the orthogonal one,
resulting in a spin-squeezed state [28]. To quantify its
usefulness for metrology, one introduces the squeezing
parameter [15] ξ2 = N∆S2

θ,min/〈Sx〉
2, where ∆S2

θ,min
is the minimal variance of the spin in the yz plane (see
Fig. 1a). The normalization by 〈Sx〉2 takes into account
that improving interferometric sensitivity requires not
only reducing noise but also maintaining high interfer-
ometer contrast C = 2|〈Sx〉|/N . A state with ξ2 < 1
allows one to overcome the standard quantum limit in
a Ramsey interferometer by a factor ξ with respect to
the use of an uncorrelated ensemble of atoms [15]. Fur-

thermore, ξ2 is an entanglement witness, with ξ2 < 1
indicating at least bipartite entanglement between the
condensate atoms [13].

We produce spin-squeezed states by means of time evo-
lution through the ‘one-axis twisting’ Hamiltonian [28]:

H/~ = δSz + ΩSϕ + χS2
z , (1)

which describes our BEC in good approximation [16].
The first term in (1) describes spin precession around z
at the detuning δ. The second term describes spin rota-
tions around an axis Sϕ = (cosϕ)Sx−(sinϕ)Sy due to a
coupling of |0〉 and |1〉 with Rabi frequency Ω and phase
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ϕ. The third, nonlinear term of strength χ arises due to
elastic collisional interactions in the BEC. It ‘twists’ the
state on the Bloch sphere (see Fig. 1a), resulting in spin
squeezing and entanglement.

An essential feature of our experiment is the control of
this nonlinearity. Its coefficient

χ =
1

2~
(∂N0

µ0 + ∂N1
µ1 − ∂N1

µ0 − ∂N0
µ1)〈N0〉,〈N1〉 (2)

depends on derivatives of the chemical potentials

µj = 〈φj |hj |φj〉+
∑
k=0,1

gjkNk

∫
dr3|φj |2|φk|2 (3)

of the two BEC components evaluated at the mean atom
numbers 〈N0〉 = 〈N1〉 = N/2 after the π/2-pulse. Here,
hj is the single-particle Hamiltonian including kinetic en-
ergy and the trapping potential, and φj(r) is the spa-
tial mode function of state |j〉. The interaction strength
gjk = 4π~2ajk/m between atoms in |j〉 and |k〉 de-
pends on the corresponding s-wave scattering length ajk.
For our states, the three scattering lengths are close,
a00 : a01 : a11 = 100.4 : 97.7 : 95.0. If the two BEC
modes overlap spatially, φ1 = φ0, the crossed terms in
(2) with the minus sign compensate the direct terms
with the plus sign. Thus, by default, χ ≈ 0. In or-
der to increase χ, we control the overlap of φ0 and φ1

with a state-dependent trapping potential. By spatially
separating the two modes, the crossed terms ∂N1

µ0 and
∂N0µ1 are set to zero and thus χ > 0. In Fig. 1b, χ is
shown as a function of the normalized density overlap

λ =
∫
dr3|φ0|2|φ1|2/

√∫
dr3|φ0|4

∫
dr3|φ1|4, calculated

from stationary mode functions in traps of increasing sep-
aration for our experimental parameters (see below).

Our experimental setup is described in detail in [12]
(see also Supplementary Information). In short, we use
an atom chip to prepare pure BECs of N = 1250 ± 45
atoms in state |0〉 in a harmonic magnetic trap with lon-
gitudinal (axial) trap frequency flong = 109 Hz (fax =
500 Hz). We couple |0〉 and |1〉 with Ω/2π = 2.1 kHz us-
ing microwave+rf radiation. The trap minima for |0〉 and
|1〉 can be shifted with respect to each other along the
longitudinal direction using a chip-based state-dependent
microwave potential. For detection, we use state-selective
absorption imaging with a carefully calibrated imaging
system (see Supplementary Information). It allows us to
detect both N0 and N1 with good accuracy in a single
experimental run.

Our experimental sequence for squeezing (Fig. 1a+c)
starts with a resonant π/2-pulse of duration 120 µs
to prepare the coherent spin state. During the pulse,
Ω � χN so that the nonlinearity can be neglected. Af-
ter the pulse, we squeeze the state by turning on χ for
a well-defined time by spatially splitting and recombin-
ing the two components of the BEC in the following
way (see Fig. 1c). The microwave potential is turned

on within 50 µs resulting in an abrupt separation of
the trap minima for |0〉 and |1〉 by s = 0.52 µm. The
two components of the BEC start to perform one oscil-
lation in their respective potentials. During the oscilla-
tion, which is strongly influenced by mean-field effects,
the mode functions φ0 and φ1 almost completely sepa-
rate so that χ = 1.5 s−1 at maximum separation. After a
time T = 12.7 ms the states overlap again, the microwave
potential is switched off within 50 µs, and the squeezing
dynamics, as well as the relative atomic motion, stops.
This value of T nearly coincides with the ‘best squeezing
time’ expected from the two-mode model [16]. We ana-
lyze the produced state by performing state tomography.
With the mean spin along x, we measure the transverse
spin components Sθ = (cos θ)Sz − (sin θ)Sy along any
angle θ by rotating the state vector in the yz-plane by
that angle prior to detection of Sz = (N1−N0)/2. This is
done by applying a second pulse for a duration τθ = θ/Ω
and with a phase ϕ = π (ϕ = 0) for turning clockwise
(counterclockwise).

Figure 2a shows the noise in Sθ obtained from a large
number of such measurements as a function of θ. Data
for a squeezed state is shown in comparison with data
for a coherent spin state where the traps were not sepa-
rated during the sequence (reference measurement). We
plot the normalized variance ∆nS

2
θ = 4 ∆S2

θ/〈N〉, so
that ∆nS

2
θ = 0 dB corresponds to the standard quantum

limit. In the squeezed state, the spin noise ∆nS
2
θ falls sig-

nificantly below the standard quantum limit, reaching a
minimum of ∆S2

θ = −3.7±0.4 dB at θmin = 6◦. The cor-
responding interference contrast is C = (88± 3) %. This
results in a squeezing parameter of ξ2 = −2.5 ± 0.6 dB,
proving that the state is useful for quantum metrology
and that the condensate atoms are entangled. The refer-
ence measurement, by contrast, stays above the standard
quantum limit for all values of θ.

Entanglement in the BEC has been defined as the non-
separability of the N -particle density matrix [13, 14]. An
intriguing question concerns the depth of entanglement:
How large must the clusters of entangled atoms be at
least in order to produce the observed squeezing? In [14],
a procedure to determine the depth of entanglement from
the measured spin noise reduction and mean spin length
is described. Our data falls below the spin-3/2-curve in
Fig. 1 of [14], which is an experimental proof that the
condensate atoms are entangled in clusters of at least
4± 1 particles.

During the splitting, internal and motional states of
the atoms are entangled. This can lead to a decrease
of C and thus an increase of ξ2 if the recombination is
not perfect. To find the time of maximum contrast, we
perform a Ramsey measurement where the second pulse
area is θ = π/2 and T is scanned. Figure 1d shows the
resulting Ramsey fringes in the normalized population
difference Nrel = (N1 − N0)/N as a function of T . We
observe a high contrast of C = (88±3) % at T = 12.7 ms,



4

FIG. 2: Spin noise tomography and reconstructed
Wigner function of the spin-squeezed BEC. a, Ob-
served spin noise for the spin-squeezed state (solid circles) and
for a coherent spin state (reference measurement, open cir-
cles). The normalized variance ∆nS

2
θ = 4 ∆S2

θ/〈N〉 is shown
as a function of the turning angle θ in the yz-plane, with sta-
tistical error bars. For this graph, we remove photon shot
noise due to the imaging process as described in the Supple-
mentary Information. In the squeezed state, a spin-noise re-
duction of −3.7±0.4 dB is observed for θmin = 6◦, correspond-
ing to ξ2 = −2.5±0.6 dB of metrologically useful squeezing for
our Ramsey contrast of C = (88±3) %. Solid lines are results
from our dynamical simulation. Blue: squeezed state with
losses but without technical noise; red: squeezed state with
losses and technical noise; black: reference measurement with
losses and technical noise. b, Wigner function of the spin-
squeezed BEC reconstructed from our measurements. The
black contour line indicates where the Wigner function has
fallen to 1/

√
e of its maximum. Squeezed and ‘anti-squeezed’

quadratures are clearly visible. For comparison, the circular
1/
√
e contour of an ideal coherent spin state is shown. The

area of the contour line is larger than the area of the circle in-
dicating that the squeezed state is not a minimum uncertainty
state anymore.

indicating large spatial overlap and nearly vanishing rela-
tive motion of the two states. In the squeezing sequence,
we turn off the microwave potential at this time, preserv-
ing the large overlap for subsequent measurements. The
contrast could be further increased using optimal control
techniques [25]. In comparison with the data, we show C
and λ as obtained from a simulation for our experimental
parameters. For an accurate description of our system,
accounting for both the spatial and the spin dynamics,
we use the dynamical multi-mode theory developed in
[16]. It neglects initial thermal excitations and reduces to
the simple two-mode model described above for the case

of stationary condensates. The only adjustable parame-
ter in the simulation is the splitting distance s, which is
not resolved by our imaging system. The resulting value
s = 0.52 µm is consistent with a simulation of the poten-
tial. We observe very good agreement with the measure-
ment, indicating that the simulation correctly accounts
for the motion of the BEC in the trap. In Fig 1c, the
simulated dynamics of the mode functions φi is shown.

The spin noise reduction obtained from this simulation
is shown in Fig. 2a along with the data. We add the effect
of particle loss (1,2,3-body) as determined from the two-
mode Hamiltonian (1) in a Master Equation approach
[16, 29], as well as several technical noise sources. The
blue line shows the expected squeezing taking into ac-
count atom loss but no technical noise. The maximal re-
duction in variance is −12.8 dB, significantly larger than
observed. The red line, which describes our data well,
additionally includes the fluctuations of N , fluctuations
of the pulse power of 0.5 % r.m.s., a fluctuating detun-
ing of 2π × 40 Hz r.m.s. during the pulses, and phase
noise of ∆ϕ = 8◦ r.m.s. (see Supplementary Informa-
tion). All fluctuations are consistent with independent
measurements. The fluctuating detuning is due to fluc-
tuating microwave level shifts during the pulses. It is the
cause for ∆nS

2
θ > 0 dB at θ = 180◦. The phase noise

is the main reason why the maximum achieved squeez-
ing is smaller than the theoretically predicted value. It
is consistent with technical fluctuations of the magnetic
trap position in the inhomogeneous microwave near-field.
Consequently, the phase noise in the reference sequence
is smaller (∆ϕ = 3◦, black line).

The measured histograms of Sθ for different angles θ
are tomographic data that allow us to reconstruct the
Wigner function W (Sy, Sz) of the squeezed BEC [17] us-
ing the inverse Radon transform (see Supplementary In-
formation). Figure 2b shows the reconstruction. The
two contour lines indicate where the Wigner functions of
our squeezed state and of an ideal coherent spin state
(with the same N and with added imaging noise) have
fallen to 1/

√
e of their maximum. The squeezing along

the direction θmin as well as the ‘anti-squeezing’ in the
perpendicular direction can be clearly seen.

In conclusion, using a novel method to control interac-
tions with a state-dependent potential, we have demon-
strated for the first time spin squeezing and multi-particle
entanglement on an atom chip. We envisage the imple-
mentation of this technique in portable atomic clocks and
interferometers operating beyond the standard quantum
limit. Furthermore, it is a valuable tool for experiments
on many-body quantum physics and could enable quan-
tum information processing on atom chips [25].

The group around M. Oberthaler has independently
and simultaneously realized spin squeezing through Fesh-
bach control of interactions in an optical trap.
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ATOM CHIP BASED GENERATION OF ENTANGLEMENT FOR QUANTUM METROLOGY:
SUPPLEMENTARY INFORMATION

Experimental setup

The core of our experiment is an atom chip with inte-
grated microwave guiding structures. It allows us to gen-
erate state-dependent microwave near-field potentials in
addition to static magnetic traps. The chip, the prepa-
ration of Bose-Einstein condensates (BECs), and the use
of microwave near-field potentials for state-dependent co-
herent manipulation of ultracold atoms is described in
detail in [1]. We briefly summarize it in the following,
highlighting the differences to [1].

Our experimental sequence starts by preparing a BEC
in state |0〉 without a discernible thermal component in a
static magnetic trap on the atom chip. Magnetic shield-
ing and the use of stable current sources ensure stable
magnetic potentials which allows us to prepare BECs
with well-defined total atom number N = 1250 ± 45
through radio-frequency evaporative cooling. The exper-
iment is performed in a cigar-shaped magnetic trap at a
distance of 44 µm from the atom chip surface with lon-
gitudinal (axial) trapping frequency of flong = 109 Hz
(fax = 500 Hz) and a magnetic field in the trap center of
B0 = 3.36 G.

The BEC internal state is manipulated by coherently
coupling the two-photon transition |0〉 ↔ |1〉 with radio
frequency and microwave radiation from an off-chip an-
tenna and horn, respectively. The microwave is tuned
2π × 360 kHz above the transition to the intermediate
state |F = 2,mF = 0〉, resulting in a two-photon Rabi
frequency of Ω = 2π×2.1 kHz. Fig. 3 shows the resulting
Rabi oscillations for a detuning δ = 0 from two-photon
resonance. The efficiency of a π-pulse is (96± 1) %.

Figure 4a shows Ramsey interference fringes between
|0〉 and |1〉 as a function of the delay T between two π/2-
pulses. This is a reference measurement taken in a static
magnetic trap without splitting the condensate, i.e. with
the BEC in a coherent spin state. The Ramsey contrast
at T = 12.7 ms is C = (96 ± 1) %. While the pulses are
applied, the two-photon resonance frequency is shifted by
∆mw = 2π×7.6 kHz with respect to the undriven system.
This is due to differential AC Zeeman level shifts of |0〉
and |1〉 caused by the detuned microwave radiation of the
two-photon drive [2]. We always adjust the frequency of
the two-photon drive such that the detuning from two-
photon resonance is δ = 0 while the pulse is applied. In
between the pulses, the phase of the atomic superposition
state thus evolves at a rate −∆mw with respect to the
two photon drive. This determines the frequency of the
Ramsey oscillations in Fig. 4a.

For state-selective spatial splitting and recombination
of the two BEC components, we use a microwave near-
field potential created with an on-chip waveguide. Com-
pared with [1], the detuning of the microwave near-field

FIG. 3: Rabi oscillations. Resonant Rabi oscillations of the
relative atom number Nrel = (N1 −N0)/(N1 + N0) recorded
by varying the duration of the state preparation pulse. The
efficiency of a π-pulse is (96 ± 1) %. The decay with a time
constant of 15 ms is due to gradients in Ω near the structured
metallic chip surface which imposes boundary conditions on
the electromagnetic field.

from the transition |F = 1,mF = 0〉 ↔ |F = 2,mF = 0〉
is much larger, 2π×12 MHz, so that admixtures of other
states to |0〉 and |1〉 are smaller and the states are more
robust against magnetic field noise. In this configuration,
both states experience a microwave potential of opposite
sign, and with different magnitude due to the different
hyperfine transition strengths. At a microwave power of
Pmw = 120 mW launched into the chip, a splitting of
the potential minima for the two states of s = 0.52 µm
results.

Figure 4b shows Ramsey fringes measured in the
squeezing sequence, i.e. the BEC is split and recombined
during the time T between the π/2-pulses as in Fig. 1 of
the main text. Turning on the microwave near-field po-
tential has two effects: The oscillation frequency of the
Ramsey fringes slightly decreases because of the differ-
ential energy shift experienced by the two states in the
potential. More importantly, the fringe contrast is mod-
ulated by the overlap of the BEC mode functions φ0 and
φ1. The contrast at T = 12.7 ms, the time at which the
squeezed state is analyzed in the experiment, determines
the length of the mean collective spin: C = 2|〈Sx〉|/N .
We observe a contrast of C = (88± 3) %, smaller than in
the reference because the overlap of the BEC mode func-
tions after splitting and recombination is less than unity.
The difference to the contrast predicted by the dynamical
simulation of 94 % can most likely be explained by small
motion in the transverse direction which is excited in the
experiment but not modeled. The contrast could be in-
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FIG. 4: Ramsey interference fringes. Ramsey interfer-
ence fringes in the relative atom number Nrel recorded by
varying the delay T between two π/2-pulses. a, Ramsey
fringes in the reference sequence in a static magnetic trap.
The contrast obtained from a sinusoidal fit is C = (96± 1) %.
b, Ramsey fringes in the squeezing sequence with state-
selective splitting and recombination of the BEC embedded
between the π/2-pulses, as in Fig. 1d of the main text. The
contrast is C = (88± 3) %.

creased by optimal control of the atomic motion rather
than abrupt switching of the potentials, as described in
[25].

Imaging system

Compared with [1], we use an improved detection sys-
tem which allows us to take absorption images of both
states and determine N0 and N1 in a single shot of the
experiment. We use a back-illuminated deep-depletion
CCD camera with a quantum efficiency of 90 % at 780 nm
and fast line transfer. After the squeezing sequence
described in the main text, the atoms are transferred
within 30 ms into a relaxed trap with flong = 40 Hz and

fax = 130 Hz at a distance of 200 µm from the chip sur-
face. The trap is switched off and states |1〉 and |0〉 are
imaged after times-of-flight of 4.6 ms and 6.1 ms, respec-
tively. State |1〉 is directly imaged with a σ−-polarized
resonant laser beam on the F = 2 → F ′ = 3 cycling
transition. After the image is taken, atoms in |1〉 fly out
of the depth of focus of the imaging system due to the
photon recoil momentum transferred during the imag-
ing pulse. Subsequently, state |0〉 is optically pumped
into the F = 2 manifold of the ground state using a
F = 1 → F ′ = 2 pumping laser [3] and imaged on the
F = 2 → F ′ = 3 transition. For both states, the imag-
ing pulse duration is 40 µs and the imaging intensity is
I = 0.8 Isat, where Isat is the saturation intensity on the
cycling transition. The FWHM diameters of the imaged
atom clouds are 15 µm in the vertical and 10 µm in the
horizontal direction, both larger than the optical reso-
lution of our imaging system of 4 µm. The maximum
optical densities in the cloud centers for 600 atoms in
each state are 1.2 and 1.4, respectively. The good agree-
ment of the observed Rabi oscillations with the expected
sinusoidal behavior proves the linearity of our imaging
system.

For the correct determination of the fluctuations of Sθ
it is crucial to know the total atom number N = N0 +N1

accurately. We calibrate our imaging system by two in-
dependent methods. First, following the method of [4],
we adjust the effective scattering cross section σeff which
is used to calculate the atom number from the optical
density of the cloud such that the measured atom num-
ber is independent of the imaging light intensity. We find
σeff = 0.9σ0, where σ0 is the theoretically expected scat-
tering cross section on the |F = 2,mF = −2〉 ↔ |F ′ =
3,m′F = −3〉 cycling transition. This is plausible tak-
ing into account optical pumping in the beginning of the
imaging pulse and imperfect imaging light polarization.

An independent test of this calibration can be obtained
by observing the scaling of projection noise with total
atom number for a coherent spin state. Figure 5 shows
the variance ∆S2

z measured directly after a π/2-pulse as
a function of the total atom number N . The constant
offset due to imaging noise is subtracted as described
below. The observed linear behavior confirms that pro-
jection noise ∆S2

z ∝ N dominates over technical noise
which generically scales as ∆S2

z ∝ N2. If we use the
first method to calibrate N , a fit to the data in Fig. 5
with a straight line through the origin yields a slope of
0.22 ± 0.01. This agrees with the theoretically expected
slope of 1/4 to better than 15 %. The difference lies
within the error bar of our atom number calibration ac-
cording to the first method. As the dependence of ∆S2

z

on N can be very accurately determined from Fig. 5, we
use it to calibrate the total atom number by rescaling N
so that the slope of the linear fit is 1/4.
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FIG. 5: Projection noise as a function of atom number.
A measurement of the variance ∆S2

z directly after a π/2-pulse
is shown as a function of total atom number N , where N is
independently calibrated with the method of [4]. The dashed
line shows the expected linear scaling with a slope of 1/4,
the blue line is a linear fit to the data which yields a slope
of 0.22 ± 0.01. The red line is a quadratic fit with ∆S2

z =
aN+bN2. It yields a = 0.22±0.02 and b = (0.06±1)×10−5,
confirming the linear scaling expected for projection noise.

Data evaluation

Our experiment runs very stable and we can usually let
it record data overnight without supervision. The data
shown in Fig. 2 of the main text is gathered during 7
measurement nights with between 80 (for 20 < θ < 90)
and 370 (for 0 < θ < 20) experimental realizations per
point. The error bars are statistical errors assuming a
normal distribution.

We analyze the recorded images by counting atoms in
the two states within two small rectangular regions with a
typical size of 30 µm×30 µm. This yields N0 and N1 and
thus Sz = (N1−N0)/2. Only shots where the total atom
number N differs by no more than 150 from the mean
N = 1250 are used for the analysis and we check that
a tighter (75 atoms) or wider (250 atoms) post-selection
does not significantly change the data quality. In the data
for 90◦ < θ < 360◦ a slow drift of N1−N0 is observed. We
correct for this technical drift by subtracting a filtered
data set from the respective raw data, using a second
order Savitzky-Golay filter [5] over 300 shots.

In Fig. 2a of the main text, we additionally correct ∆S2
z

for noise in our imaging system. Photon shot noise from
the imaging beam contributes to the measured fluctua-
tions of N0 and N1 with a standard deviation of ∆N0,psn

and ∆N1,psn, respectively. We determine this noise either
by measuring the apparent atom number fluctuations in
regions of the image where no atoms are present, by tak-
ing ‘reference shots’ where no atoms are prepared in the
first place, or by calculating the expected shot noise from

the observed imaging light intensity. All methods yield
similar results. We correct the variance of Sz as

∆S2
z,corr = ∆S2

z − (∆N2
0,psn + ∆N2

1,psn)/4.

The applied correction due to imaging noise corresponds
to typically (∆N2

0,psn+∆N2
1,psn)1/2/2 ≈ 7 atoms. Finally,

we normalize the variance to the expected variance for a
coherent spin state with 〈N0〉 = 〈N1〉 = 〈N〉/2, obtaining
∆nS

2
z = 4 ∆S2

z,corr/〈N〉. Without subtraction of imaging
noise, we still observe a reduction in the spin fluctuations
of −2.3 dB.

Phase noise

In our experiment, phase noise is the main reason why
we do not reach the theoretically predicted spin noise
reduction. It is therefore important to identify and elim-
inate the main technical sources for this noise. In the
squeezing sequence with θ = 6◦, where we observe the
minimum of ∆S2

θ , we measure the dependence of Sθ on
various experimental parameters. From this we can cal-
culate the sensitivity of the relative phase between the
atomic state and our two-photon drive on these param-
eters. We independently determine the technical fluctu-
ations of these parameters and estimate their contribu-
tion to the total phase noise of ∆ϕ = 8◦. Timing jitter
of our experiment control (≈ 100 ps), fluctuations of the
external magnetic field (reduced by a µ-metal shield to
≈ 0.3 mG), power fluctuations (≈ 5×10−3) and phase in-
stabilities (≈ 0.3◦) of the radio frequency and microwave
generators and amplifiers for the two-photon drive, and
fluctuations of the on-chip currents together contribute a
phase noise of about 1◦. The microwave power coupled
into the on-chip waveguide for creating the near-field po-
tential fluctuates by 60 µW (5×10−4) leading to a phase
noise of 2◦. The remaining phase noise is consistent with
fluctuations of a current source used to create a magnetic
field for the static magnetic trap. Its effect on the phase
is not due to the small differential magnetic moment be-
tween |0〉 and |1〉 but due to a shift of the magnetic trap
position in the highly inhomogeneous microwave near-
field which leads to fluctuating microwave level shifts.

Wigner Function reconstruction

We reconstruct the Wigner function of the spin-
squeezed condensate in the following way: For each mea-
sured θ ∈ [−90◦, 90◦] we create a histogram of Sθ and
fit it with a cubic spline to obtain a smooth curve. We
then use a filtered back-projection algorithm [6] to per-
form an inverse Radon transform [7]. The inverse Radon
transform is derived for classical image reconstruction in
a plane. In [8], it has been used to reconstruct the Wigner
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function of squeezed states of the electromagnetic field.
However, it is generally not suited to reconstruct an arbi-
trary spin state on the curved Bloch sphere. In our case
the spin-squeezed state does not ‘wrap around’ the Bloch
sphere so that we can locally approximate the Bloch
sphere by a plane and use the inverse Radon transform.
We furthermore make a continuum approximation to the
measured values of Sz, which is reasonable as our imag-
ing system does not have single atom resolution. With
the experimental method presented here but with a more
sophisticated analysis [9], the density matrix of arbitrary
spin states that spread over the whole Bloch sphere can
be reconstructed. Quantum state tomography is of inter-
est as it gives access to measures of entanglement such
as the quantum Fisher information [10, 11], which char-
acterizes a more general class of states (including states
with ξ2 > 1) that can be used to overcome the standard
quantum limit [11].
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[7] Radon, J. Über die Bestimmung von Funktionen durch
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