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Abstract. We present a filtered backprojection algorithm for reconstructing the
Wigner function of a system of large angular momentum j from Stern–Gerlach-
type measurements. Our method is advantageous over the full determination of
the density matrix in that it is insensitive to experimental fluctuations in j , and
allows for a natural elimination of high-frequency noise in the Wigner function
by taking into account the experimental uncertainties in the determination of
j , its projection m and the quantization axis orientation. No data binning and
no arbitrary smoothing parameters are necessary in this reconstruction. Using
recently published data (Riedel et al 2010 Nature 464 1170), we reconstruct the
Wigner function of a spin-squeezed state of a Bose–Einstein condensate of about
1250 atoms, demonstrating that measurements along quantization axes lying in
a single plane are sufficient for performing this tomographic reconstruction. Our
method does not guarantee positivity of the reconstructed density matrix in the
presence of experimental noise, which is a general limitation of backprojection
algorithms.
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1. Introduction

The reconstruction of the quantum-mechanical state of a system from measurements is an
important topic in the emerging field of quantum technology [1]. Through partial or full
state reconstruction, we can estimate entanglement properties of multipartite quantum systems,
and judge their usefulness for further experimental progress in fields such as quantum
metrology [2–9], quantum simulation [10] and quantum computation [11–15].

Particularly in quantum metrology, experiments often involve large numbers of particles,
and single-particle resolution is unavailable in both control and measurement. Because
of this limitation, standard methods for reconstructing the quantum-mechanical density
matrix [13, 16, 17] cannot be applied. For instance, and central to this work, in a Bose–Einstein
condensate consisting of N atoms, with each atom representing a pseudo-spin-1/2 subsystem,
the total spin length j = N/2 can take on very large values and the known reconstruction
procedures become problematic. In a single Stern–Gerlach measurement on the atomic
ensemble, we measure the numbers of up and down spins N↑ and N↓, in terms of which the total
spin is j = (N↑ + N↓)/2 and the projection quantum number is m = (N↑ − N↓)/2. Since it is
very difficult to determine the populations N↑ and N↓ with atomic accuracy [18, 19], the density
matrix, which requires knowledge of j , becomes impossible to reconstruct in full. Further,
reconstructing the (2 j + 1)2 degrees of freedom of the density matrix [16, 17, 20] requires at
least as many uncorrelated measurements, and therefore the experimental uncertainty in m will
hinder this full determination. In the absence of reliable data, there will be significant uncertainty
and noise throughout the density matrix in its Dicke representation ρmm� = � jm|ρ̂| jm

��, which
severely limits its usefulness. We need a method for calculating those components of ρ̂ that are
significant even in the presence of noise and for very large values of j , and a way of determining
which components must remain unknown.
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The Wigner function [21] is ideal for such a controlled reconstruction. It is a real-value
function on a sphere of radius h̄

√
j ( j + 1), represented in terms of orthonormal Laplace

spherical harmonics as [22]

W (ϑ, ϕ) =
2 j�

k=0

k�

q=−k

ρkqYkq(ϑ, ϕ), (1)

where ϑ is the polar angle measured from the +z-axis, and ϕ is the azimuthal angle around the
z-axis. While this sphere is commonly called a generalized Bloch sphere [4], its surface actually
represents a two-dimensional (2D) phase space instead of a Hilbert space, as for the original
Bloch sphere. This Wigner function contains the same information as the density matrix for
any spin- j system. While the marginals of the better-known Wigner function in planar space
([21], [23–25]) are real-space or momentum-space probability distributions, the marginals
of the spherical Wigner function are the projection quantum number distributions along all
quantization axes (see (6) below); further, the expectation value of the angular momentum
vector is proportional to the ‘center of mass’ of the Wigner function, {� Ĵ x�, � Ĵ y�, � Ĵ z�} =�

j ( j+1)(2 j+1)

4π
×

� π

0 sin ϑ dϑ
� 2π

0 dϕ{sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ}W (ϑ, ϕ).
Most importantly, the Wigner function allows us to differentiate between more significant

components ρkq (with smaller values of k) and more noise-prone components (with larger
values of k) in a natural way. Further, if only components with k � 2 j are reconstructed, then
accurate knowledge of j is not necessary. As detailed in section 2, the transformation from
j-space (the Dicke representation ρmm� of the density matrix) to k-space (the spherical harmonic
decomposition ρkq of the Wigner function) proceeds through coupling coefficients that, at low
k, are smooth in both j and m; this significantly reduces the impact of uncertainties in the
experimental determination of ( j, m).

Methods for reconstructing planar Wigner functions by inverse Radon transform are well
established in the context of nonlinear optics [24, 25]. In the past, they have also been applied
to tomographic data on large-spin quantum systems, locally approximating the Bloch sphere by
a tangential plane and neglecting its curvature [6]. While this approximation is valid for spin
states that are very localized on the Bloch sphere and do not wrap around it, future experimental
progress is expected to produce ever more delocalized states (e.g. Schrödinger-cat states) whose
properties are strongly influenced by the spherical shape of the Bloch sphere. Previous work
on the reconstruction of the Wigner function on the full Bloch sphere has used the Husimi-Q

distribution as input [26], which is the convolution of the system’s Wigner function with that
of a coherent state (see section 3). This convolution washes out features of the Wigner function
that are smaller than a coherent state. Since the principal characteristic of spin-squeezed states
is that their Wigner function possesses a peak width smaller than that of a coherent state, such
a deconvolution-based reconstruction approach is ill-suited to studying spin-squeezed states,
which is the goal of much current research in atomic physics [2–9]. We therefore require a
new method for reconstructing the complex quantum-mechanical states of large-spin systems
from experimental data in the absence of simplifying circumstances, such as strong phase-space
localization and/or lack of spin squeezing.

This paper is organized as follows. In section 2, we present a novel filtered backprojection
algorithm for reconstructing the Wigner function from experimental Stern–Gerlach data.
Section 3 specializes this algorithm to data acquired with quantization axes lying in a single
plane. Finally, section 4 applies the latter algorithm to a data set acquired in our group [6].
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In what follows, a ‘single Stern–Gerlach measurement’ describes a single determination of the
projection quantum number m of a quantum system along a certain quantization axis. In our
case, this corresponds to a single run of state preparation and population determination of a
two-component Bose–Einstein condensate, yielding a single tuple ( jn, mn). The equivalent
for the original experiment [27] is sending a single silver atom through the experimental
apparatus and determining its deflection by the magnetic field gradient. On the other hand, a
‘Stern–Gerlach experiment’ is a series of many single Stern–Gerlach measurements with fixed
quantization axis, sufficient to determine the probability distribution {p− j , p− j+1, . . . , p j} while
j is presumed fixed.

2. Wigner function reconstruction by filtered backprojection

The density matrix ρ̂ of a system of total angular momentum j (assumed fixed here; this
condition will be relaxed in section 2.1) is usually expressed in one of the two forms

ρmm� = � jm|ρ̂| jm
�� =

2 j�

k=0

k�

q=−k

ρkq t
jmm

�

kq
, (2a)

ρkq =
j�

m=− j

j�

m�=− j

ρmm�t
jmm

�

kq
, (2b)

with the transformation coefficients (in the following, simply termed the Clebsch–Gordan
coefficients) [22]

t
jmm

�

kq
= (−1) j−m−q� j, m; j, −m

�|k, q�, (3)

nonzero only if q = m − m
�. Both forms contain the same information and are completely

interchangeable. While form (2a) is more common, form (2b) allows expressing the Wigner
function on the Bloch sphere (1). Since our goal is the reconstruction of the Wigner function
from experimental data, we focus on form (2b), in particular its low-k components.

To determine the unknown quantum-mechanical state of a system of total spin j , it is
necessary that many instances of this state can be generated experimentally [1], on which
destructive measurements are carried out. Further, projective Stern–Gerlach measurements must
be carried out along many different quantization axis orientations (ϑn, ϕn). For the correctness
of the following reconstruction method, it is crucial that these measured quantization axes are
distributed as evenly as possible over the hemisphere of orientations. Since this requirement
may be difficult to fulfill experimentally, we assign weights cn to the individual measurements
in order for the weighted measurement density to approximate a homogeneous distribution of
quantization axes as best possible. Note that these weights are independent of the outcomes mn

of the Stern–Gerlach measurements. In the ideal case of homogeneously distributed quantization
axis orientations (e.g. through the vertices of a geodesic hemisphere), all of these weights are
chosen equal and the data are used most efficiently.

In this way, the results from M single Stern–Gerlach measurements along various
quantization axis orientations are assembled into a data set of tuples (ϑn, ϕn, cn, mn) with
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n = 1 . . . M and
�

M

n=1 cn = 1. Our filtered backprojection algorithm for reconstructing the
Wigner function coefficients is then given by

ρ
(fbp)
kq

= (2k + 1)

M�

n=1

cn D
k

q0(ϕn, ϑn, 0)t
jmnmn

k0 , (4)

with D
j

m�m(α, β, γ ) = � jm
�|e−iα Ĵz e−iβ Ĵy e−iγ Ĵz | jm� being a Wigner rotation matrix [28];

in particular, D
k

q0(ϕ, ϑ, 0) =
�

4π
2k+1Y

∗
kq

(ϑ, ϕ). This is formally equivalent to the filtered
backprojection algorithm used for planar inverse Radon transforms [29], with the factor 2k + 1
representing the ‘filter’, and the summand representing the backprojection. Our algorithm has
all of the typical properties of planar inverse Radon transforms by filtered backprojection: no
data binning is required, and there are no ad hoc parameters to be chosen or optimized. Further,
as the backprojection algorithm is a direct sum and does not include an inversion step (such as
a straight inversion of the Radon transform would require), the impact of experimental noise
is bounded in the result. It is this last property that makes backprojection algorithms fast and
reliable in practical applications such as x-ray computed tomography (CT) [29].

Our specific backprojection (4) can be interpreted in an intuitive way. The measured
values of mn in the coordinate frame attached to the quantization axis (ϑn, ϕn) are distributed
according to the diagonal elements ρmnmn

and are converted from j-space into k-space via the
Clebsch–Gordan coefficients t

jmnmn

kq
� with q

� = 0 (see appendix A for a numerical procedure).
They are then rotated into the laboratory frame through the rotation matrices D

k

qq �(ϕn, ϑn, χn)
with the value of χn irrelevant (set to zero) since q

� = 0.
In the following, we demonstrate that this algorithm (4) works in the limit of infinite data.

If all quantization axis orientations have been used with equal frequency and infinitely many
measurements have been carried out along each quantization axis, the sum over measurements�

M

n=1 cn can be replaced by a normalized integral 1
2π

� π/2
0 sin ϑ dϑ

� 2π

0 dϕ over the hemisphere
of axis orientations (by symmetry, the other hemisphere yields an identical result) and a sum
over the measurement outcomes m,

ρ
(fbp)
kq

= 2k + 1
2π

� π/2

0
sin ϑdϑ

� 2π

0
dϕ

j�

m=− j

pm(ϑ, ϕ)D
k

q0(ϕ, ϑ, 0)t
jmm

k0 , (5)

where the Stern–Gerlach probability distribution along a quantization axis (ϑ, ϕ) is given by the
diagonal elements ρmm of (2a) in the rotated frame,

pm(ϑ, ϕ) =
2 j�

k=0

k�

q=−k

[D
k

q0(ϕ, ϑ, 0)]∗ρkq t
jmm

k0 . (6)

Using the orthogonality relations of the Clebsch–Gordan coefficients,
j�

m=− j

t
jmm

k0 t
jmm

k�0 = δkk�, (7)

and spherical harmonics,
� π/2

0
sin ϑ dϑ

� 2π

0
dϕ[D

k

q �0(ϕ, ϑ, 0)]∗D
k

q0(ϕ, ϑ, 0) = 2π

2k + 1
δqq �, (8)
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it is easy to show that indeed ρ
(fbp)
kq

= ρkq , proving the validity of the reconstruction method in
the limit of infinitely many homogeneously distributed Stern–Gerlach experiments.

In the more experimentally relevant case of a finite data set, the literature on the 2D
inverse Radon transform by filtered backprojection [29] indicates that excellent results can
still be recovered, albeit with aliasing artifacts present to some degree. As a rough estimate,
if Stern–Gerlach experiments are performed only along certain quantization axes spaced by
an average angle �η, then the reconstructed partial waves of the Wigner function become
unreliable for k � kmax = π/�η. Further, if the number of measurements M is much less than
the number of degrees of freedom (kmax + 1)2, then the reconstructed coefficients ρkq will be
dominated by noise, in particular at large k. Both of these effects are mitigated in section 2.2 for
the present reconstruction scheme.

2.1. Accounting for fluctuations in the total angular momentum j

We recall that for systems composed of many spin-1/2 components, such as two-component
Bose–Einstein condensates, the total angular momentum j = (N↑ + N↓)/2 often varies between
single Stern–Gerlach measurements, as each such measurement requires the preparation of a
new condensate. Instead of constructing a separate Wigner function for each occurring value
of j , we note that for k � 2 j the Clebsch–Gordan coefficients t

jmm

k0 depend smoothly on the
total angular momentum j . This allows us to reconstruct the low-resolution part of the Wigner
function even if j varies slightly between single Stern–Gerlach measurements. To this end, we
include the measured values of j in the data tuples, extending them to (ϑn, ϕn, cn, jn, mn); the
filtered backprojection formula is modified to

ρ
(fbp)
kq

= (2k + 1)

M�

n=1

cn D
k

q0(ϕn, ϑn, 0)t
jnmnmn

k0 . (9)

Again, see appendix A for a numerical method for evaluating this expression.
The same smoothness of the Clebsch–Gordan coefficients at low k is used in section 2.2

to treat measurement uncertainties in both jn and mn in a perturbative manner in (9). This is
fundamentally different from a direct tomographic reconstruction of the Dicke matrix elements
ρmm� , where such uncertainties introduce large but correlated errors throughout the density
matrix and make such a perturbative treatment impossible.

2.2. Measurement uncertainties and high-k damping

It is natural to assume that M uncorrelated experimental measurements can only serve to
reconstruct M coefficients ρkq , suggesting an upper limit kmax ≈

√
M (assuming again a

homogeneous distribution of quantization axis orientations). For larger values of k, the angular
power spectrum [30]

C
(fbp)
k

= 1
2k + 1

k�

q=−k

|ρ(fbp)
kq

|2 (10)

tends to acquire large fluctuations because of insufficient experimental data (see figure 3 for
an example). However, simply cutting the reconstruction off at kmax is unsatisfactory because
this disregards the fact that some useful information is still present in these high-k partial
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waves. A more natural cutoff is introduced through the k-dependent sensitivity to experi-
mental uncertainties. Assuming experimental variances of �N

2
↑� − �N↑�2 = �N

2
↓� − �N↓�2 = σ 2

N
,

we find that the uncertainties of � j
2� − � j�2 = �m2� − �m�2 = σ 2

N
/2 (with no covariance,

� jm� = � j��m�) yield a leading order damping of the Clebsch–Gordan coefficients,

�t jmm

k0 � ≈ t
jmm

k0 exp
�
− σ 2

N

2 j (2 j − 1)
k(k + 1)

�
. (11)

The rotation matrix elements are damped similarly: if the pointing direction of the quantization
axis � = (ϑ, ϕ) has an uncertainty of σ� � 1 (in terms of the expectation value of the angle
η��� between the ideal axis orientation � and its true experimental value ��, we define
σ 2

� = �sin2η��� � = �1 − [cos ϑcos ϑ � + sin ϑsin ϑ �cos(ϕ − ϕ�)]2�), then for large k we find the
rotation matrix elements to be damped as

�D
k

q0(ϕ, ϑ, 0)� ≈ D
k

q0(ϕ, ϑ, 0) exp
�
−σ 2

�

4
k(k + 1)

�
. (12)

If σN and σ� are constant for all measurements, the linearity of (9) yields a simple smoothing
ρ

(fbp)
kq

�→ ρ
(fbp)
kq

e−αk(k+1) with α = σ 2
N

2 j (2 j−1)
+ σ 2

�

4 . In this way, these two damping formulae (11) and
(12) cut off the reconstruction at large k in a natural and smooth way.

2.3. Assembling the Wigner function

Inserting the resulting coefficients (9) into the form of the Wigner function (1), we find the
tomographically reconstructed Wigner function,

W
(fbp)(ϑ, ϕ) =

M�

n=1

cn




2 j�

k=0

k�

q=−k

(2k + 1)D
k

q0(ϕn, ϑn, 0)Ykq(ϑ, ϕ)t
jnmnmn

k0





=
M�

n=1

cn� jn,mn
[cos ϑ cos ϑn + sin ϑ sin ϑn cos(ϕ − ϕn)], (13)

where the contributions can be simplified to

� jm(x) = 1√
4π

2 j�

k=0

(2k + 1)3/2
t

jmm

k0 Pk(x). (14)

As is to be expected in spherical symmetry, the contribution of an individual Stern–Gerlach
measurement (see figure 1) depends only on the relative angle cosη��n

= cos ϑcos ϑn +
sin ϑsin ϑncos(ϕ − ϕn) between the quantization axis orientation �n = (ϑn, ϕn) of the
measurement and the point � = (ϑ, ϕ) on the Bloch sphere (figure 2). Similar to technical
implementations of the planar inverse Radon transform [29], the Wigner function is thus
assembled from additive contributions due to the individual Stern–Gerlach measurements (see
figure 2 for an example). The constructive or destructive interference of these contributions
is what yields the reconstructed Wigner function (see figure 4). The spatial resolutions of the
� jm(cos η) ultimately determine the spatial resolution of the reconstructed Wigner function:
if the Wigner function is composed predominantly of contributions with mn ≈ ± jn, its angular
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  Ξ

jm
(c
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η)

Figure 1. Contributions � jm(cosη) to the Wigner function (14) for j = 20 and
m = −20 . . . + 20. All curves have been divided by 100 and offset vertically
by m. The bold curve for m = +16 is used in figure 2. Note that the m = ± j

contributions have lower spatial resolution (�η ∼ 1/
√

j) than those with m ≈ 0
(�η ∼ 1/j); see section 3.

resolution is limited by that of a coherent state, �η � 1/
√

� j�; if, on the other hand, the majority
of contributions have mn ≈ 0, the resolution can be significantly higher, �η � 1/� j�. We make
use of this observation in sections 3 and 4, where a spin-squeezed state is reconstructed and the
increased spatial resolution is critically important.

2.4. Positivity of the density matrix

It is well known that only positive semi-definite density matrices represent valid quantum-
mechanical states of a system [1]. Unfortunately, the filtered backprojection method (9) does
not ensure that the reconstructed ρ̂ is positive semi-definite when used with a finite and noisy
data set. For the purpose of displaying the Wigner function graphically, this is of no concern
(see figure 4); however, when the tomographically reconstructed coefficients ρ

(fbp)
kq

are used in
quantitative calculations (see section 4), positivity can be crucial. This is a similar problem to
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Figure 2. Contribution to the Wigner function (14) for jn = 20 and mn = 16 (see
figure 1); colors are as in figure 4 but scaled to the maximum value of +163. The
contribution �20,16(cosη) depends only on the angle η between the quantization
axis �n and the direction � in which the Wigner function is measured.

1 10 100
k

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

C k
(f

bp
,P

)

undamped
damped

Figure 3. Angular power spectrum (10) of the reconstructed Wigner function
of figure 4. Without damping ( ), the power in modes k � 70 is too large and
dominated by noise and aliasing effects; experimental uncertainties damp the
angular power at large k in a natural way (•, see sections 2.2 and 3.1). Odd-k
modes contain less power than even-k modes because of the approximate point
symmetry of the Wigner function (see figure 4).

the requirement of a positive absorption density in medical CT imaging [29]. It is also present in
many quantum-state reconstruction schemes, and has been discussed extensively in the quantum
tomography literature [1].
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Figure 4. Reconstructed Wigner function using the data set described in
section 4. The Wigner function takes values from −0.93 to +3.54. The coordinate
system is rotated from [6] (see text).

We do not offer a solution for ensuring the positivity of the reconstructed density matrix.
Here we merely point out that in other reconstruction schemes, such as maximum-likelihood
estimates [31], the ansatz ρ̂ = T̂

†
T̂ forces the density matrix ρ̂ to be positive semi-definite, but

a direct tomographic reconstruction of T̂ similar to (9) is currently lacking.

3. Quantization axes lying in a single plane

When the spin- j system’s quantum-mechanical state is fairly localized on the Bloch sphere, not
every choice of quantization axis orientation has the same potential for extracting information
about the state. When the axis is close to parallel to the state, most Stern–Gerlach measurements
will yield |m| ≈ j , with a limited angular resolution ∼ 1/

√
j given by the size of a coherent state

on the Bloch sphere [26]. If the axis is close to perpendicular to the state, on the other hand, the
distribution of measured values m represents the structure of the state’s Wigner function much
more accurately, with an angular resolution ∼1/j . This difference in scaling of the angular
resolution, visible in figure 1, suggests that for large j it may be advantageous to focus on
performing Stern–Gerlach measurements with quantization axes in a plane perpendicular to the
quantum state, instead of covering the entire hemisphere of axis orientations. As a consequence,
far fewer measurements are needed, and we can get much more rapid convergence of the
reconstruction in practice. But it is not a priori clear that this restriction of the quantization
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axes to a single plane has the potential for reconstructing the full quantum-mechanical state of
the system.

As it turns out, a modification to the ‘filter’ function in (9) results in a full reconstruction
of the mirror-symmetric part of the Wigner function. Defining the coordinate system such that
the state is localized near the +z-axis and all quantization axes lie in the xy-plane, the in-plane

filtered backprojection formula is

ρ
(fbp,P)
kq

=
�

k − q + 1
2

�

1/2

�
k + q + 1

2

�

1/2

π

M�

n=1

cn D
k

q0

�
ϕn,

π

2
, 0

�
t

jnmnmn

k0 , (15)

where (a)n = �(a + n)/�(a) is a Pochhammer symbol and (a)1/2 ≈
√

a − 1/(8
√

a).
We again prove this reconstruction in the infinite-data limit. In the case of a homogeneous

distribution of all azimuthal axis orientation angles ϕ, we use the relationship

1
π

� π

0
dϕ

�
D

k

q �0

�
ϕ,

π

2
, 0

��∗
D

k

q0

�
ϕ,

π

2
, 0

�

=






δqq �

( k−q+1
2 )1/2(

k+q+1
2 )1/2π

, if k + q even,

0, if k + q odd,

(16)

which remains true in the experimentally more relevant case of a finite number A of equally
spaced axis orientations (replacing 1

π

� π

0 dϕ �→ 1
A

�
A−1
a=0 with ϕ = aπ/A) as long as k < A.

Together with (6) and (7), we thus find that

ρ
(fbp,P)
kq

=
�

k − q + 1
2

�

1/2

�
k + q + 1

2

�

1/2

� π

0
dϕ pm

�π

2
, ϕ

�
D

k

q0

�
ϕ,

π

2
, 0

�
t

jnmnmn

k0

=






ρkq, if k + q even,

0, if k + q odd.
(17)

Thus in the infinite-data limit, such an in-plane reconstruction exactly determines the
coefficients ρkq for which k + q is even, while giving no information about the coefficients for
which k + q is odd. Since the parity of k + q is the z ↔ −z reflection parity of the spherical
harmonics Ykq(ϑ, ϕ), the in-plane formula (15) reconstructs the positive-parity component
W

+(ϑ, ϕ) of the Wigner function W (ϑ, ϕ) = W
+(ϑ, ϕ) + W

−(ϑ, ϕ), with W
±(π − ϑ, ϕ) =

±W
±(ϑ, ϕ). If we know from other measurements that the state is fully localized on the

‘northern’ Bloch hemisphere (z > 0), then the correct Wigner function is

W (ϑ, ϕ) =






2W
+(ϑ, ϕ), if 0� ϑ < π

2 ,

0, if π
2 < ϑ � π,

(18)

which has the decomposition

ρ
(fbp,P,N)
kq

=
� π

0
sin ϑdϑ

� 2π

0
dϕ Y

∗
kq

(ϑ, ϕ)W (ϑ, ϕ) =
2 j�

k�=0

ϒ
q

kk�ρ
(fbp,P)
k�q (19)
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in terms of the overlap integrals ϒ
q

kk
� given in appendix B. We conclude that the data acquired by

Stern–Gerlach measurements with quantization axes lying solely within a plane are sufficient
for an exact reconstruction of the Wigner function.

3.1. Measurement uncertainties and high-k damping

Measurement uncertainties can be introduced in (15) in the same way as in section 2.2.
However, in an in-plane measurement series, we can additionally separate out the azimuthal
axis orientation uncertainty: since the rotation matrix elements D

k

q0(ϕ, ϑ, 0) are proportional to
e−iqϕ , a variance �ϕ2� − �ϕ�2 = σ 2

ϕ leads to a damping

�D
k

q0(ϕ, π
2 , 0)� = D

k

q0(ϕ, π
2 , 0) exp(−1

2q
2σ 2

ϕ ). (20)

4. Demonstration with experimental data

In this section, we reconstruct the Wigner function from a data set describing ensembles of
N = 1250(45) atoms acquired in our group [6]. In contrast to [6], we rotate the coordinate
system such that all quantization axes lie in the xy-plane and the state is localized around the
+z-axis; in this way the procedure of section 3 can be employed directly. The data set consists of
three experimental runs spanning different ranges of ϕ with different angular resolutions, owing
to the fact that the need for homogeneity in ϕ for the filtered backprojection algorithm (15) was
not known at the time of data acquisition. We use weights cn adjusted such that the weighted
density of Stern–Gerlach measurements is as close to homogeneous as possible over the range
ϕ = 0 . . . π of azimuthal quantization axis orientations. As discussed in section 3, the planar
arrangement of quantization axis orientations leads to a Wigner function that is peaked along
both the +z and −z directions, featuring two identical copies of the quantum state. An additional
Ramsey experiment [6] was used to experimentally determine the correct location of the state
on the northern (z > 0) Bloch hemisphere.

High-k damping (section 3.1) is achieved with an experimental uncertainty of σN ≈
11 atoms (11) and with an experimental error model dominated by phase noise: σϕ ≈
σ 2

ph sin(|ϕ|)/
√

2 in (20), with phase noise amplitude σph = 8.2◦ [6]. In figure 3, the effect of
this damping is shown to be crucial for partial waves k � 70.

The resulting reconstructed Wigner function is shown in figure 4. The high-frequency
artifacts in the Wigner function far from the central peak are due to incomplete destructive
interference of the contributions from the individual Stern–Gerlach measurements (see
section 2.3). We expect that a more complete data set, including more quantization axis
orientations, will lead to a smoother Wigner function at large angles ϑ .

4.1. Spin-squeezing measurement

We demonstrate the quantitative use of the reconstructed Wigner function by estimating
the amount of spin squeezing in the system. Given a set of reconstructed Wigner function
coefficients ρkq , we can calculate the probability distribution for the angular momentum
projection quantum number onto any quantization axis orientation (ϑ, ϕ) from (6). In principle,
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Figure 5. Normalized variance V = �m2� − �m�2 as a function of the azimuthal
quantization axis orientation ϕ. Open circles show variances calculated directly
from Stern–Gerlach experiments along a given quantization axis [6]. The dashed
line was calculated directly from the coefficients ρ

(fbp,P)
kq

through (21). The solid
line shows the results of Gaussian fits (figure 6) to the probability distributions
pm(π

2 , ϕ) given in (6). As in [6], we first subtract the experimental noise (σ 2
N
/2

with σN = 11) from the calculated variances and then divide by the variance of a
coherent state, Vcoh = � j�/2 with � j� = 630 (see (22)). A spin-squeezed state is
characterized by negative values (in dB).

the variance V (ϑ, ϕ) = �m2�(ϑ, ϕ)− [�m�(ϑ, ϕ)]2 measures the amount of spin noise obtained
experimentally. The expectation values of small integer powers of the projection quantum
number m depend only on the low-k components of the Wigner function, which are particularly
insensitive to experimental noise ((11), (12) and (20)); in particular,

�m�(ϑ, ϕ) =
j�

m=− j

m pm(ϑ, ϕ) =
�

(2 j)3

12

1�

q=−1

[D
1
q0(ϕ, ϑ, 0)]∗ρ1q,

�m2�(ϑ, ϕ) =
j�

m=− j

m
2
pm(ϑ, ϕ) (21)

= j ( j + 1)
√

2 j + 1
3

ρ00 +

�
(2 j − 1)5

180

2�

q=−2

[D
2
q0(ϕ, ϑ, 0)]∗ρ2q .

In figure 5, we plot the resulting variances for quantization axes in the xy-plane, and compare
them to a coherent state centered on the +z-axis. In the presence of imaging noise, the variance
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Figure 6. Probability distributions pm of the projection quantum number m

along the minimum-variance axis (ϕs = 6.7◦) and the maximum-variance axis
(ϕ = −88.0◦) of figure 5, assuming j = 629 (found from ρ00 = �(2 j + 1)−1/2� ≈
0.02818). Negative values of pm indicate that the reconstructed density matrix
(as shown in figure 4) is not positive semi-definite and therefore does not strictly
represent a physical state (see section 2.4). Gaussian fits used for figure 5 are
shown as continuous lines.

of such a coherent state is given by (21) with ρ
(coh)
kq

= t
j j j

kq
e−k(k+1)σ N

2/(2 j (2 j−1)),

�m2�(coh) = j ( j + 1)

3
− j (2 j − 1)

6
e−6σ 2

N
/(2 j (2 j−1)) = j + σ 2

N

2
+O(σ 4

N
/j

2). (22)

In figure 5, the experimental variance and the coherent-state variance are compared without

imaging noise, i.e. the leading-order imaging noise contribution σ 2
N
/2 is subtracted from the

experimental variance before comparison with the variance of a noise-free coherent state. We
note that the resulting variance of the reconstructed state (dashed line in figure 5) is much
larger than what was determined directly from the variances of the Stern–Gerlach data sets
along the different quantization axes (open circles). We believe that this is a result of the
lack of positivity of the density matrix (see section 2.4), owing to the finite and noisy data
set used for its tomographic reconstruction. In fact, the probability distributions in figure 6
clearly show negative values, which strictly speaking render the reconstructed density matrix
unphysical.

As an alternative extraction method, we calculate the probability distribution pm(ϑ, ϕ)
along a given quantization axis through (6) and fit it with a Gaussian curve (see figure 6);
the variance of this fit then serves as an estimate of V (ϑ, ϕ). In such a fit, the positivity
of the pm is no longer a crucial ingredient. In figure 5, we show that this produces results
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that are very close to the variances calculated directly from Stern–Gerlach experiments along
the various quantization axes. The deviations close to the squeezing maximum (ϕs ≈ 6.7◦)
result from the fact that the reconstructed Wigner function contains contributions from all

measurements and therefore the extracted variance along a given quantization axis may
be contaminated. Nonetheless, the reconstructed Wigner function delivers a very concise
picture of the structure of the multiparticle state, even for a data set with a nonuniform
distribution over quantization axis orientations and with fluctuating values of jn. Further,
with our method, the variance V (ϑ, ϕ) can be calculated along any quantization axis
orientation.

In practice, any proof of spin squeezing will not proceed through the reconstruction of
the Wigner function followed by either a fit to the projection (6) or a direct study of the
projection noise (21). Instead, once the direction of squeezing ϕs has been determined, a full
Stern–Gerlach experiment will be performed along this axis in order to directly estimate the
probability distribution pm(ϕs), as in [6] and figure 5 (circles). In this way, problems associated
with the positivity of the reconstruction (section 2.4) and with the influence of experimental
data and noise from directions ϕ �= ϕs are strictly eliminated.

In future experiments providing data for the present tomographic reconstruction method,
we plan to carry out Stern–Gerlach measurements along many more quantization axes, but with
as little as a single measurement per axis. Further, we will pay attention to cover the entire range
of quantization axes uniformly (either the entire equator for (15) or the entire sphere for (9)) in
each experimental run. In this way, we expect to need only minimal data preprocessing before
reconstructing the Wigner function, and will be able to use the acquired data in the most efficient
way by using equal weights cn = 1/M for all data points. We also expect that for such an
improved data set, the variance of the simple estimate given by (21) will be closer to that of the
quantum-mechanical state.

5. Conclusions

We have presented a simple method for a tomographic reconstruction of the Wigner function of
a spin- j system, applicable even to experimental settings where j is large and fluctuates between
measurements. While the general procedure (9) requires Stern–Gerlach-type measurements
spread uniformly over all possible quantization axis orientations, a more specialized and faster
procedure (15) determines the Wigner function using only a single plane of quantization
axis orientations. We have shown that this latter procedure is capable of reconstructing
the Wigner function of a spin-squeezed state from a recently published experimental
data set [6].
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Appendix A. Numerically evaluating Clebsch–Gordan coefficients

We have used a recursion relation [32] to evaluate the Clebsch–Gordan coefficients τ
j,m

k
=

t
jmm

k0 = (−1) j−m� j, m; j, −m|k, 0� from (3),

τ
j, j

k
= π 1/4

√
2k + 1

22 j+1/2

�����

�
4 j + 1
2 j − k

�

(2 j + 1)1/2

τ
j, j−1

k
=

�
1 − k(k + 1)

2 j

�
τ

j, j

k
,

(A.1)

τ
j,m

k
= 2 j ( j + 1) − 2(m + 1)2 − k(k + 1)

j ( j + 1) − m(m + 1)
τ

j,m+1
k

− j ( j + 1) − (m + 1)(m + 2)

j ( j + 1) − m(m + 1)
τ

j,m+2
k

,

τ
j,−m

k
= (−1)kτ

j,m
k

.

This procedure is numerically stable even at very large values of j and k.

Appendix B. Hemispherical overlap integrals of spherical harmonics

The hemispherical overlap integrals of the spherical harmonics are [33]

ϒ
q

kk� = 2
� π/2

0
sin ϑ dϑ

� 2π

0
dϕ Y

∗
kq

(ϑ, ϕ)Yk�q(ϑ, ϕ),

=






1, if k = k
�,

(−1)(k−k
�−1)/22q−(k+k

�−1)/2

√
(2k + 1)(2k � + 1)

(k − k �)(k + k � + 1)

×

�
(k − q)!(k � − q)!
(k + q)!(k � + q)!

(k � + q)!!(k + q − 1)!!
((k � − q − 1)/2)!((k − q)/2)!

,

if k − q even and k
� − q odd,

(−1)(k−k
�−1)/22q−(k+k

�−1)/2

√
(2k + 1)(2k � + 1)

(k − k �)(k + k � + 1)

×

�
(k − q)!(k � − q)!
(k + q)!(k � + q)!

(k + q)!!(k � + q − 1)!!
((k − q − 1)/2)!((k � − q)/2)!

,

if k
� − q even and k − q odd,

0, otherwise.

(B.1)
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[1] Paris M and Řeháček J (ed) 2004 Quantum State Estimation (Lecture Notes in Physics vol 649) (Berlin:
Springer) doi:10.1007/b98673

[2] Treutlein P, Hommelhoff P, Steinmetz T, Hänsch T W and Reichel J 2004 Coherence in microchip traps Phys.

Rev. Lett. 92 203005
[3] Estève J, Gross C, Weller A, Giovanazzi S and Oberthaler M K 2008 Squeezing and entanglement in a

Bose–Einstein condensate Nature 455 1216–9
[4] Appel J, Windpassinger P J, Oblak D, Hoff U B, Kjærgaard N and Polzik E S 2010 Mesoscopic atomic

entanglement for precision measurements beyond the standard quantum limit Proc. Natl Acad. Sci. USA

106 10960–5
[5] Gross C, Zibold T, Nicklas E, Estève J and Oberthaler M K 2010 Nonlinear atom interferometer surpasses

classical precision limit Nature 464 1165–9
[6] Riedel M F, Böhi P, Li Y, Hänsch T W, Sinatra A and Treutlein P 2010 Atom-chip-based generation of

entanglement for quantum metrology Nature 464 1170–3
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