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Prospects for storage and retrieval of a quantum-dot single photon in an ultracold 87Rb ensemble
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Epitaxially grown quantum dots (QDs) are promising sources of nonclassical states of light such as single
photons and entangled photons. However, in order for them to be used as a resource for long-distance quantum
communication, distributed quantum computation, or linear optics quantum computing, these photons must be
coupled efficiently to long-lived quantum memories as part of a quantum repeater network. Here, we theoretically
examine the prospects for efficient storage and retrieval of a QD-generated single photon with a 1-ns lifetime
in a multilevel atomic system. We calculate using an experimentally demonstrated optical depth of 150 that the
storage (total) efficiency can exceed 46% (28%) in a dense, ultracold ensemble of 87Rb atoms. Furthermore, we
find that the optimal control pulse required for storage and retrieval can be obtained using a diode laser and an
electro-optic modulator rather than a mode-locked, pulsed laser source. Increasing the optical depth, for example,
by using Bose-condensed ensembles or an optical cavity, can increase the efficiencies to near unity. Aside from
enabling a high-speed quantum network based on QDs, such an efficient optical interface between an atomic
ensemble and a QD can also lead to entanglement between collective spin-wave excitations of atoms and the spin
of an electron or hole confined in the QD.
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I. INTRODUCTION

Quantum communication and computation offer techno-
logical advances by performing information processing with
quantum mechanics [1,2]. In order to perform these tasks
over large distances, photons are the obvious choice to
carry quantum information. However, transmission over large
distances is dramatically hampered by attenuation in optical
fibers. Unlike classical fiber optic communication, amplifiers
placed periodically along the transmission channel cannot be
used to overcome this loss owing to the “no-cloning” theorem
[3]. Fortunately, quantum repeaters have been proposed to
resolve this issue by using entanglement shared between
adjacent nodes and joint measurements to create entanglement
between the start node and the terminal node [4–6]. A crucial
element in this scheme is the ability to efficiently store and
retrieve single photons using a quantum memory [7,8]. To date,
the essential ingredients of a photonic quantum memory have
been demonstrated using ensembles of ultracold alkali-metal
atoms [9–12], ensembles of ultracold atoms in cavities [13],
warm vapors of alkali-metal atoms [14–16], ultracold single
atoms in cavities [17], and solid-state systems composed of
rare-earth dopants in crystals [18,19]. Specifically, retrieval
efficiencies as high as 73% and storage times as long as 3.2 ms
have been simultaneously demonstrated using ultracold atoms
[20]. The combination of large optical depths and long ground-
state hyperfine coherence make ultracold atomic ensembles an
attractive platform for optical quantum memories.

While there are quantum memory schemes which use
probabilistically generated spin waves from spontaneous
Raman scattering in atomic ensembles, it has been shown
that schemes based on fast (rates approaching the GHz scale)
single photon or entangled photon sources can provide better
performance [6,21]. Thus, one would ideally like a source of
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quantum light states that is on-demand and bright, meaning it
can produce these photons on fast time scales (broadband) in a
triggered fashion. In addition, these broadband photons should
be indistinguishable so they bunch perfectly on a beamsplitter
[22]. A promising source of such on-demand, nonclassical
light states are epitaxially grown, GaAs-based semiconductor
quantum dots (QDs) [23]. The short spontaneous emission
lifetime of a QD, more than an order of magnitude shorter than
that of an alkali-metal atom, and the fact that it is embedded in
a robust optoelectronic material make it an attractive candidate
as a quantum light source. As an individual two-level system,
the QD naturally emits one photon when it is excited and col-
lection of this photon can be very efficient by proper design of
the surrounding dielectric [24–26]. Single-photon count rates
can in principle approach 1 GHz, with higher rates possible
by taking advantage of a Purcell enhancement. In addition,
QDs have been shown to emit polarization entangled photons
by means of a cascaded decay [27,28]. Finally, QD-generated
photons can have a high degree of indistinguishability [29,30].
Aside from these optical properties, the internal spin states of
charged quantum dots have received considerable attention
for quantum information processing [31–33]. Spin coherence
times as long as 1 μs have been measured [34] and because the
spin state can be entangled with the polarization of an emitted
photon [35–37], charged quantum dots are a natural candidate
for a solid-state qubit that interacts strongly with light.

While QDs are promising sources of single or entangled
photons, they must be coupled to a high quality quantum
memory in order to be a viable source for long distance
quantum information processing. Here, we investigate the
storage and retrieval of a broadband, QD-generated single
photon with a 1-ns lifetime in an ultracold, dense ensemble of
87Rb atoms. Taking previously measured experimental param-
eters, we find that the total efficiency (ηtot = ηsηr , where ηs

and ηr are the storage and retrieval efficiencies) can exceed
28% for storage and backwards retrieval of a photon with a 1-ns
lifetime in a 87Rb ensemble with an on-resonance optical depth
of 150. Because the bandwidth of the QD photon can approach
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the excited-state hyperfine splitting in 87Rb, this result was
obtained by extending the �-system theory of Gorshkov
et al. [38,39] to a four-level system. Using the gradient ascent
approach outlined in Ref. [40], we determine the maximum
efficiency as well as the optimal control pulse for photon
storage. We find that the control pulse can be easily generated
using a 12-mW laser diode in contrast to the broadband,
Raman-based scheme in Ref. [16] where a mode-locked laser
is required. Finally, we consider the effects of excess dephasing
and spectral wandering of the QD optical transition and show
that the memory efficiency remains fairly robust. These results
show that with existing technology, QD-generated photons can
be reliably interfaced with ultracold atomic ensembles, paving
the way for their future use in quantum information as well
as opening interesting avenues in the study of hybrid quantum
systems.

This paper is arranged as follows: In Sec. II, we briefly
review the physics of photon storage and retrieval in a
�-system following the treatment of Gorshkov et al. [38,39].
In Sec. III, we extend this treatment to a four-level atom, which
is relevant for broadband photon storage in atomic systems
with a non-negligible hyperfine structure in the excited state.
Section IV implements the model to study storage and retrieval
of a broadband single photon emitted by a quantum dot using
a 87Rb ensemble. In Sec. V, deleterious effects resulting from
imperfect indistinguishability of the quantum-dot photon are
discussed. In Sec. VI we investigate how the efficiencies
increase for very high optical depth. The work is concluded
and summarized in Sec. VII and details of the calculations and
numerical implementation are discussed in Appendixes A and
B. Appendix C discusses the role of four-wave mixing (FWM)
in the storage process.

II. REVIEW OF PHOTON STORAGE IN A � SYSTEM

Photon storage in a three-level, �-type system has been the
subject of many articles and reviews [6]. Here, we briefly touch
on the main points and restrict the discussion to those schemes
described by the theory of Gorshkov et al., namely those
based on electromagnetically induced transparency (EIT),
off-resonant Raman, or photon echo interactions [38,39]. In
that work, these three schemes were shown to yield similar
storage efficiencies for the same optical depth of the � medium
and are in this sense equivalent. However, there are tradeoffs
in the actual physical implementation for these schemes which
will be discussed later.

The basic picture of photon storage in such a system is
shown in Fig. 1. Each atom in the ensemble is composed of
two ground states |g〉 and |s〉 that can be optically coupled to
the excited state |1〉. These two transitions can be individually
addressed using a sufficient ground-state splitting or by
selection rules so as to avoid cross-coupling. The storage
procedure starts with all of the atoms initialized into |g〉.
Then a quantum field E(τ ) which is to be stored, addresses
the |g〉 − |1〉 transition while a classical control field �(τ )
addresses the |s〉 − |1〉 transition [see Fig. 1(a)]. The control
pulse facilitates the transfer of the quantum field to a spatially
dependent coherence of the two ground states (often called
a “spin wave”) S(z̃,τ ) as depicted in Fig. 1(b). The exact
physical mechanism that accomplishes this task depends on the
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FIG. 1. (Color online) Simple schematic of photon storage and
retrieval in a � system. (a) A quantum field E(τ ) and a classical
control field �(τ ) with a common excited state detuning δ impinge
on an ensemble of �-type atomic systems from the left. All atoms
are initialized into the state |g〉. (b) The quantum field is transformed
and stored into a ground-state coherence (spin wave) S(z̃,τ ). (c) The
spin wave is converted back into a photon by exciting the system with
another classical control field from the right. (d) The single photon
exits the ensemble propagating to the left.

scheme. In EIT storage, the control pulse dynamically creates a
transparency window in the absorption profile of the |g〉 − |1〉
transition while adiabatically reducing the group velocity of
the quantum field to 0 [41]. In Raman storage, the control
pulse enables the quantum field to be absorbed into |s〉 by a
two-photon Raman transition [42]. For photon echo storage,
the quantum field promotes an atom to the excited state |1〉 and
the control pulse transfers the excitation to |s〉 by performing
a fast π pulse. In all cases, the quantum field transfers one
atom from |g〉 to |s〉, however there is no knowledge of which
atom. Thus the excitation is coherently distributed over the
entire ensemble and it is this collective behavior that makes
the process efficient.

The quantum field is now stored in this collective ground-
state coherence and is therefore sensitive to decoherence
processes. These processes, which can include magnetic field
fluctuations or atomic motion, set the limit for the spin-wave
coherence time, and hence, the duration the photon can
be stored. Notably, the spin wave is more robust against
decoherence than many other multiparticle entangled states
[41]. The spin wave can be re-converted into a photon by using
another control pulse [see Figs. 1(c) and 1(d)]. Gorshkov et al.
showed that the optimal retrieval is simply the time reverse
of storage, so-called “backwards retrieval” [38]. This process
creates a photon propagating in the opposite direction to its
initial propagation. Forwards retrieval is also possible, but will
not be treated here.

For all of these storage schemes, the dynamics of the
interaction between the two optical fields and the atoms is
described by treating the signal field on the |g〉 − |1〉 transition
quantum mechanically while treating the |s〉 − |1〉 control
field semiclassically. The atomic level structure with relevant
energy scales for photon storage in a three-level � system is
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FIG. 2. (Color online) Diagram of the level structure considered
for photon storage. The quantum field E(τ ) oscillates at frequency
νeg = ωeg + δg while the classical control field �(τ ) oscillates at
frequency νes = ωes + δs .

shown in Fig. 2. The ensemble of � systems is composed of N

atoms distributed over a volume of length L and cross-sectional
area A with linear density n(z). In this analysis, we ignore the
motion of the atoms and thereby restrict the discussion to
ultracold ensembles. As was shown in Ref. [39], the important
parameter governing the efficiency of the storage process is
the optical depth, defined as

d = g2NL

γ c
, (1)

where g is the single-photon coupling constant for the
transition and γ is the decay of the coherence of the excited
state (for a purely radiative decay with no additional dephasing
2γ = �, the spontaneous emission rate). Note that the d

used here and in Ref. [39] is equal to half of the optical
depth as usually defined (2d = dstd = σρL where σ is the
resonant absorption cross section of a single atom and ρ is
the number density). The classical control field is described
by a Rabi frequency envelope �(z,t) = �(z − t/c) centered
at frequency νes = ωes + δs . As also noted in Appendix A,
this Rabi frequency is defined to be 1/2 of the usually defined
Rabi frequency. The quantum field is described by a slowly
varying envelope operator Ê(z,t) centered at frequency νeg =
ωeg + δg . In addition to Ê(z,t), there are two other operators
required to describe the dynamics: the polarization operator
P̂1(z,t) = √

Nσ̂g1(z,t) and the spin-wave operator Ŝ(z,t) =√
Nσ̂gs(z,t) where σ̂αβ(z,t) are slowly varying collective

atomic operators defined in Appendix A. It was shown in
Ref. [43] that in order to determine normally ordered quantities
such as efficiencies, one can neglect quantum noise operators
and treat all dynamical variables as complex numbers.

The equations of motion governing E , P1, and S are
derived by calculating the Heisenberg equation of motion for
all dynamical variables using the dipole and rotating wave
approximations. Then, two further approximations are made
related to the fact that the quantum field is weak. First, it is
assumed that almost all of the atoms remain in the ground state
|g〉 during the whole process. Second, only terms to linear order
in E are retained. Under these approximations (see Ref. [39]
and Appendix A for details), the following equations of motion
are obtained:

∂z̃E = iμ̃1g

√
dγP1, (2)

∂τP1 = (iδg − γ )P1 + iμ̃1s�(τ )S + iμ̃1g

√
dγ E, (3)

∂τS = i(δg − δs)S + iμ̃1s�
∗(τ )P1. (4)

These equations of motion use a coordinate system (z̃,τ ),
where z̃ = (1/N )

∫ z

0 dz′ n(z′) is a dimensionless length pa-
rameter (z̃ ∈ [0,1]) and τ = t − z/c is the time in a co-
moving reference frame. Compared to the results of Ref. [39],
Eqs. (2)–(4) also include relative dipole moments μ̃αβ . These
are defined as dipole moments relative to that of the two-level,
cycling transition μcyc where a measurement of the optical
depth would take place. This sets the natural scale of the
atom’s dipole strength and allows for easy comparison between
different physical implementations of levels |g〉, |s〉, and |1〉
(see Appendix A for details).

For storage, we would like to take a quantum field with
initial envelope Ein(τ ) (nonzero on the interval τ ∈ [0,T ])
and map it into a spin wave S(z̃,T ) using a classical pulse
�(τ ). The boundary conditions for the dynamical variables are
E(0,τ ) = Ein(τ ) and S(z̃,0) = P1(z̃,0) = 0. We then want to
compute the efficiency of this mapping once Ein = 0 at τ = T .
If the envelope of the initial quantum field is normalized
(
∫ T

0 dτ |Ein(τ )|2 = 1), the storage efficiency ηs is given by [39]

ηs =
∫ 1

0
dz̃|S(z̃,T )|2. (5)

For a given input field and optical depth of the medium, one
would like to determine the optimal classical pulse shape so as
to maximize the storage efficiency. In Ref. [39] it was shown
that in the adiabatic limit, T dγ � 1, an analytic solution
for �(τ ) could be found and that the efficiency scaled as
ηs ∝ d/(1 + d). For broadband photon storage, the adiabatic
limit is not necessarily met and the optimal �(τ ) must be found
numerically. Gorshkov et al. used a gradient ascent algorithm
in Ref. [40] to numerically optimize ηs and found that the
results matched the analytical solution in the adiabatic limit.
In addition, it was shown that photons beyond the adiabatic
regime (1/T ≈ dγ ) could also be stored efficiently by using
this optimization technique. This is the approach we will use
in the following analysis and now briefly review. Because we
take a numerical approach, we now restrict the discussion
to near-resonant storage schemes and exclude off-resonant
Raman-based storage which would require a much larger
computational domain so as to capture the rapidly varying
detuning (δg,δs � √

dγ /T1). Gorshkov et al. mentioned in
Ref. [40] how one can obtain the optimal control pulse for
Raman-based storage from the optimal control pulse found
for resonant storage, but we do not pursue this here. We do,
however, note that the control pulse required for Raman storage
can be several orders of magnitude more intense than that
required for resonant schemes [16] for the same optical depth
d and hence the same efficiency.

A gradient ascent algorithm simply starts with a trial
solution and proceeds to the optimal solution by moving along
the gradient of the quantity to be maximized. At each step in
the algorithm, the gradient is determined and the control pulse
is updated. Mathematically, this replacement rule is

�(τ ) → �(τ ) + λ
δJ

δ�(τ )
, (6)
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where λ is the step size parameter and J is the quantity to be
maximized. In the case of photon storage, we want to maximize
the storage efficiency subject to the constraint that all of the
dynamical variables fulfill the equations of motion [Eqs. (2)–
(4)]. Thus, J takes the form,

J =
∫ 1

0
dz̃ S(z̃,T )S∗(z̃,T )

+
∫ T

0
dτ

∫ 1

0
dz̃ {Ē∗[−∂z̃E + iμ̃1g

√
dγP1] + c.c.}

+
∫ T

0
dτ

∫ 1

0
dz̃ {P̄ ∗

1 [(−∂τ + iδg − γ )P1 + iμ̃1s�(τ )S

+ iμ̃1g

√
dγ E] + c.c.}

+
∫ T

0
dτ

∫ 1

0
dz̃ {S̄∗[−∂τS + i(δg − δs)S

+ iμ̃1s�
∗(τ )P1] + c.c.}, (7)

where the first term is ηs and Lagrange multipliers Ē , P̄1, and S̄

have been introduced to include the equations of motion. The
maximum storage efficiency is found when J is stationary
with respect to variations in all dynamical variables and �(τ ).
Requiring stationarity with respect to variations in E , P1, and S

results in equations of motion and boundary conditions for the
Lagrange multipliers Ē , P̄1, and S̄. The equations of motion
are

∂z̃Ē = iμ̃1g

√
dγ P̄1, (8)

∂τ P̄1 = (iδg + γ )P̄1 + iμ̃1s�(τ )S̄ + iμ̃1g

√
dγ Ē, (9)

∂τ S̄ = i(δg − δs)S̄ + iμ̃1s�
∗(τ )P̄1, (10)

with boundary conditions S̄(z̃,T ) = S(z̃,T ) and Ē(1,τ ) =
P̄1(z̃,T ) = 0. As pointed out in Ref. [40], these are exactly the
equations of motion and boundary conditions for backwards
retrieval. Thus, solving these equations will yield the retrieval
efficiency, ηr , and the total efficiency ηtot = ηsηr for storage
followed by backwards retrieval. Explicitly, these quantities
can be determined using

ηr =
∫ T

0 dτ |Eout(τ )|2∫ 1
0 dz̃|S(z̃,T )|2

, (11)

ηtot =
∫ T

0
dτ |Eout(τ )|2, (12)

where Eout(τ ) = Ē(0,τ ) is the output quantum field.
The variation of J with respect to variations in �(τ ) (the

gradient) can be identified from Eq. (7) as

δJ

δ�(τ )
= −2μ̃1s

∫ 1

0
dz̃ Im

[
S̄∗P1 − P̄1S

∗]. (13)

Thus, the prescription for obtaining the maximum storage
efficiency and optimal control pulse for a given input quantum
field and optical depth is as follows. First, take a trial control
pulse and solve the equations of motion Eqs. (2)–(4) with
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FIG. 3. (Color online) Results of the numerical calculation using
gradient ascent for storage and retrieval of a quantum-dot photon
in an idealized Rb gas. The storage (total) efficiency is plotted as a
function of the optical depth d in blue (red). Solid curves are guides
to the eye.

the storage boundary conditions to obtain P1(z̃,τ ) and S(z̃,τ ).
Then, solve Eqs. (8)–(10) using the boundary conditions for
backwards retrieval (note that these equations run backwards
in time and space) to obtain P̄1(z̃,τ ) and S̄(z̃,τ ). Now the
gradient can be determined from Eq. (13) and the control
pulse can be updated using the replacement rule. This process
is then repeated until the desired tolerance of the storage (or
total) efficiency is obtained.

As an example we consider the case of an idealized Rb gas
(μ̃1g = μ̃1s = 1, γ = 2π × 3.035 MHz) storing a quantum-
dot photon with Ein(τ ) = �(τ ) exp(−τ/2T1)/

√
T1 where �(τ )

is the Heaviside step function and T1 is the spontaneous
emission lifetime (taken to be 1 ns). We take both fields to
be exactly on resonance δg = δs = 0. As a function of d, the
storage and total efficiencies are determined by performing
gradient ascent for each value of d. Details and limitations of
the numerical implementation can be found in Appendix B.
The results of the numerical calculation are shown in Fig. 3
where the storage (blue) and total (red) efficiencies are plotted
as a function of d. Both curves reach an asymptotic value
of ≈96.0% for d ≈ 103 limited by the finite computational
domain and the instantaneous rise of the quantum field, which
is nonphysical but chosen for calculational simplicity (see
Appendix B).

In addition to determining the efficiencies, it is instructive
to see how the optimal control pulse �(τ ) changes as a
function of d. Figure 4 shows the optimal control pulse
for a few selected values of d and it can be seen that the
required peak Rabi frequency �m increases with d. For these
parameters, we find that �m ∝ d0.67. Furthermore, �(τ ) starts
to become much more heavily weighted at the start of the pulse.
Both of these observations can be understood as the optimal
storage scheme slowly changes from a photon-echo-type
storage towards an EIT-based storage as the adiabatic limit
is approached. Lastly, the widths of these control pulses are
not ultrafast, i.e., they do not require a mode-locked laser
but rather are achievable with more flexible techniques such
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FIG. 4. (Color online) Optimal control pulses for quantum-dot
photon storage with d = {10.0,26.4,78.0,230,678} determined using
gradient ascent. The Rabi frequencies are scaled by γ = 2π ×
3.035 MHz.

as direct intensity modulation. The combination of relatively
high total efficiencies and realistic control pulses make it seem
that storage of a quantum-dot photon in an atomic gas like Rb
is certainly feasible with current technology.

Importantly, the peak Rabi frequency �m of the control
pulse surpasses 50γ even for relatively low d. For such
large values of �m, the more complicated level structure of
the storage medium will begin to play a significant role in
the dynamics. For instance, the excited-state splittings of the
commonly used D2 transitions of 87Rb are around 100 MHz
(≈30γ ). As a result, the three-level � treatment is insufficient
to describe broadband, on-resonance storage and more levels
must be taken into account.

III. PHOTON STORAGE IN A FOUR-LEVEL SYSTEM

We now extend the treatment of Sec. II to include another
excited state that can couple to both the control field and the
input quantum field as shown in Fig. 5. Because the maximum
Rabi frequency of the control pulse can exceed the excited-

ωeg ωes

dg
ds

Δe

(t) W(t)

|s〉
|g〉

|1〉

|2〉

FIG. 5. (Color online) Diagram of the level structure considered
for photon storage in a four-level system. The structure is the same as
Fig. 2 except an additional excited state |2〉 is included at an energy
�e above |1〉.

state level splitting �e, an atom can go from |g〉 to |s〉 via |1〉
or |2〉. Depending on the dipole matrix elements μ̃αβ , these
paths can interfere constructively or destructively.

Following the same procedure as in Sec. II and adding
another polarization P̂2(z,t) = √

Nσ̂g2(z,t) results in the
following equations of motion (see Appendix A for details):

∂z̃E = i
√

dγ [μ̃1gP1 + μ̃2gP2], (14)

∂τP1 = (iδg − γ )P1 + iμ̃1s�(τ )S + iμ̃1g

√
dγ E, (15)

∂τP2 = (iδg − i�e − γ )P2 + iμ̃2s�(τ )S + iμ̃2g

√
dγ E,

(16)

∂τS = i(δg − δs)S + i�∗(τ )[μ̃1sP1 + μ̃2sP2], (17)

where new relative dipole moments μ̃2g and μ̃2s have been
introduced to represent the couplings to the additional excited
state. As the spin wave S(z̃,τ ) and the field E(z̃,τ ) are
unchanged, the definitions of the storage, retrieval, and total
efficiencies remain the same. Furthermore, the boundary
conditions for storage are the same as before except P2(z̃,0) =
0 is added.

We can also find the four-level version of J :

J =
∫ 1

0
dz̃ S(z̃,T )S∗(z̃,T ) +

∫ T

0
dτ

∫ 1

0
dz̃ {Ē∗[−∂z̃E

+ i
√

dγ (μ̃1gP1 + μ̃2gP2)] + c.c.}

+
∫ T

0
dτ

∫ 1

0
dz̃ {P̄ ∗

1 [(−∂τ + iδg − γ )P1 + iμ̃1s�(τ )S

+ iμ̃1g

√
dγ E] + c.c.}

+
∫ T

0
dτ

∫ 1

0
dz̃ {P̄ ∗

2 [(−∂τ + iδg − i�e − γ )P2

+ iμ̃2s�(τ )S + iμ̃2g

√
dγ E] + c.c.}

+
∫ T

0
dτ

∫ 1

0
dz̃ {S̄∗[−∂τS + i(δg − δs)S

+ i�∗(τ ) (μ̃1sP1 + μ̃2sP2)] + c.c.}, (18)

in order to obtain the optimal control and efficiencies. By
requiring that J is stationary with respect to variations in E ,
P1, P2, and S, we find the equations of motion:

∂z̃Ē = i
√

dγ (μ̃1gP̄1 + μ̃2gP̄2), (19)

∂τ P̄1 = (iδg + γ )P̄1 + iμ̃1s�(τ )S̄ + iμ̃1g

√
dγ Ē, (20)

∂τ P̄2 = (iδg − i�e + γ )P̄2 + iμ̃2s�(τ )S̄ + iμ̃2g

√
dγ Ē,

(21)

∂τ S̄ = i(δg − δs)S̄ + i�∗(τ )(μ̃1s P̄1 + μ̃2s P̄2), (22)

for the Lagrange multipliers and their boundary conditions
(S̄(z̃,T ) = S(z̃,T ) and Ē(1,τ ) = P̄1(z̃,T ) = P̄2(z̃,T ) = 0).
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The gradient along �(τ ) is now modified to

δJ

δ�(τ )
= −2

∫ 1

0
dz̃ Im[S̄∗ (μ̃1sP1 + μ̃2sP2)

− (μ̃1s P̄1 + μ̃2s P̄2)S∗]. (23)

It is clear that if μ̃2g = μ̃2s = 0, all of the expressions from
Sec. II are recovered. In the limit where �e � �m,

√
dγ /T1,

then P2 can be adiabatically eliminated and the results of Sec. II
are again recovered. Thus, the extension to a four-level system
reproduces the results of the three-level case in the appropriate
limits.

To gain some insight into the ramifications of including
a fourth level in an intermediate regime of �e, we directly
compare the results of the gradient ascent algorithm applied to
the three-level case to that for two scenarios of the four-level
case. For all calculations, we again store a resonant quantum-
dot photon with Ein(τ ) = �(τ ) exp(−τ/2T1)/

√
T1 using a

resonant control pulse (δg = δs = 0). For the parameters of
the storage medium we take γ = 2π × 3.035 MHz, d = 75,
and μ̃1g = μ̃1s = 1. The first four-level scenario (4L + ) we
consider is �e = 2π × 100 MHz and μ̃2g = μ̃2s = 1 while
the second scenario (4L−) has the same excited state energy
splitting but μ̃2g = −μ̃2s = 1. The optimal control pulses
resulting from the gradient ascent optimization are plotted
in Fig. 6 for each scenario. Not only does the inclusion of a
fourth level dramatically change the optimal control pulse, but
the sign of the relative dipole moment also has a large effect.
More importantly, the computed storage (total) efficiencies
are 73.6%, 77.6%, and 43.5% (63.4%, 65.7%, and 26.3%)
for the 3L, 4L + , and 4L− scenarios, respectively. If one
naively uses the optimal control for 3L in the 4L + case, the
storage (total) efficiency is only 56.5% (48.4%), while for
the 4L− case 20.8% (4.8%) is obtained. From this analysis
it is clear that additional excited states must be taken into
account and a careful choosing of those levels is required for
any implementation of broadband photon storage where the
peak Rabi frequency of the control pulse is comparable to the
excited state splitting.

Another question one could ask is if there is an optimal
choice of the optical detuning δ = δg = δs in the four-level

−2 0 2 4 6 8 10 12 14 16−20
−10

0
10
20
30
40
50
60
70
80

time (ns)

Ω
/γ

 

 

3L
4L+
4L−

FIG. 6. (Color online) Optimal control pulses for quantum-dot
photon storage in a three-level system (short-dotted green), the 4L +
four-level scenario (solid blue), and the 4L− four-level scenario
(long-dotted, red).
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FIG. 7. (Color online) The storage efficiency after gradient ascent
optimization as a function of detuning δ = δg = δs . The slight
asymmetry about δ/�e = 0.5 is due to the finite accuracy of the
numerics (see Appendix B).

system. To address this, we again apply the gradient ascent
optimization to the 4L + configuration described above, but
we vary the detuning δ from −2�e to 3�e in steps of �e/20.
The storage efficiency is plotted in Fig. 7 as a function of
δ. Surprisingly, the efficiencies are smallest near the midpoint
between |1〉 and |2〉 at δ = �e/2, while the maxima occur near
−�e and 2�e. Nonetheless, the change in storage efficiency
over the entire range is within ≈5%, and there is not much to
be gained or lost by changing the detuning at least for this set
of μ̃αβ . We have also verified that varying the detuning has a
small effect (�5% variation) when using the dipole moments
for the relevant 87Rb transitions. With these mathematical and
numerical tools in hand, we can address storage of a quantum-
dot photon using the actual atomic levels of 87Rb.

IV. STORAGE OF A QD-GENERATED PHOTON IN 87Rb

Because of the long hyperfine ground-state coherence time
and the ability to create cold, dense gases, 87Rb has proven to
be a natural choice for implementation of quantum memory
schemes. Indeed, both the 5 2P1/2 and 5 2P3/2 excited state
manifolds corresponding to the D1 and D2 optical transitions
have been used for quantum memory applications. Before
assigning 87Rb hyperfine states |F,mF 〉 to the various states
of the four-level model, the problem of frequency matching
of a QD transition to the D2 and D1 transitions at 780 nm
and 795 nm must be addressed. The most commonly studied
self-assembled QDs are composed of InxGa1−xAs islands
embedded in a GaAs matrix, which are made to emit light in the
900- to 1000-nm band. In such QDs, the so-called “wetting
layer” (a thin quantum well) defines a barrier near 850 nm,
below which no confined states exist in the dot. Therefore,
the photons produced by these QDs cannot be stored in
87Rb, but Cs transitions (852/895 nm) are close to within
reach and 171Yb+ (935 nm) has a transition compatible
with QDs [44]. Nonetheless, efficient quantum frequency
conversion techniques have been demonstrated using QDs
[45–47] such that the single photon produced by a QD
could be frequency translated to another wavelength without
destroying its quantum characteristics. Such techniques could
bridge the frequency gap between InxGa1−xAs QD transitions
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and those of 87Rb. In addition, there are QDs composed of
GaAs embedded in AlGaAs and InGaAs QDs embedded in
AlGaAs which have been shown to emit in the 780- to 795-nm
region [48–50]. The optical properties of these QDs are much
less well known compared to standard InGaAs/GaAs QDs
and detailed investigations are ongoing. Thus, either use of
quantum frequency conversion techniques or proper material
choices permit the study of broadband QD photon storage and
retrieval in 87Rb. Notably, photons from a QD have been made
to interact with 87Rb atoms in a recent experiment [51]. In this
case the atoms acted as a passive medium whose dispersion
near the D2 transition was used to reduce the group velocity
of the QD photons. In this present work, we are interested
in actively manipulating the atoms to controllably store and
retrieve the QD photon.

We proceed by determining which hyperfine states to assign
to the four levels of the model. There are two hyperfine ground-
state manifolds in 87Rb with total angular momentum F = 1
and F = 2 separated by 6.835 GHz. The choice of which
ground states within these manifolds to use is determined by
several factors. First, cross-coupling of the control field and
the quantum field can lead to unwanted processes such as
four-wave mixing (FWM), which is described in detail in
Appendix C. In order to mitigate cross-coupling, it is ad-
vantageous to use ground states that are widely separated in
energy and couple to the excited state through perpendicular
polarizations. This becomes especially important at high
optical depth and large control fields [52]. One can choose
ground states from the same F manifold, but then the energy
splitting is limited to what can be obtained by Zeeman shifting
the levels. For the purposes of QD photon storage, we choose
one ground state in F = 1 and one in F = 2. Furthermore,
since both states must be coupled to a common excited state,
the difference between the mF values must be between −2 and
2. This sets the first condition for choosing the ground states.

As discussed in Sec. I, the long coherence between the
hyperfine ground states of 87Rb make it very attractive as
a quantum memory. This long coherence is usually limited
experimentally by magnetic field fluctuations that cause small
Zeeman shifts of the mF levels. Therefore, choosing mF levels
that are common mode to magnetic field fluctuations for the
ground states |g〉 and |s〉 is crucial to achieving long storage
times. Notably, it is not possible to find two states in the

De

F=1

F=2

F’=1

F’=2

mF=-1 mF=0 mF=1

FIG. 8. (Color online) Optical transitions of 87Rb that are eligible
for implementation of a quantum memory.

TABLE I. Relative dipole moments μ̃αβ for 87Rb D2 transitions
with ground states |F = 1,mF = −1〉 and |F = 2,mF = 1〉 [53].

|F = 1,mF = −1〉 |F = 2,mF = 1〉

|F ′ = 1,m′
F = 0〉

√
5
12

√
1
20

|F ′ = 2,m′
F = 0〉

√
1
12 −

√
1
4

same F manifold that are common mode to magnetic field
fluctuations. However, there are two nondegenerate choices for
the ground states from different F manifolds that are common
mode to magnetic field fluctuations (to first order) and can be
coupled to the same excited state. These levels are the clock
states |F = 1,mF = 0〉 and |F = 2,mF = 0〉 and the states
|F = 1,mF = −1〉 and |F = 2,mF = 1〉 (|F = 1,mF = 1〉
and |F = 2,mF = −1〉 is a degenerate choice, but is not
magnetically trappable). For each pair of ground states, there
are two optical transitions that are of interest: the D2 transition
to the 5 2P3/2 states near 780 nm and the D1 transition to the
5 2P1/2 states near 795 nm. We will investigate these transitions
separately in the following sections.

A. Storage on the D2 transition

The excited states of the D2 transition of 87Rb are composed
of four hyperfine manifolds F ′ = 0, 1, 2, and 3. Because
the two ground states must share a common excited state,
only states in F ′ = 1 and F ′ = 2 are eligible. For the pair of
ground states |F = 1,mF = −1〉 and |F = 2,mF = 1〉, there
are then two possible excited states; |F ′ = 1,m′

F = 0〉 and
|F ′ = 2,m′

F = 0〉 as shown in blue in Fig. 8.
In the following, we always work on resonance with one

of the excited states (δg = δs = 0) and let the value of �e

change signs. That is to say, |g〉 and |s〉 couple resonantly
to |1〉 and are detuned to |2〉. Two choices to assign |g〉 and
two choices for |1〉 result in four unique configurations for
each set of four levels. To determine which configuration will
yield the highest storage efficiency, it is instructive to consider
the results of Sec. II. Because the storage efficiency depends
critically on the optical depth d, and the effective optical depth
on the |g〉 − |1〉 transition is μ̃2

1gd, it would seem optimal to
choose the configuration where this relative dipole moment is
the largest. A secondary concern is that μ̃1s should be large
to avoid extremely intense control pulses. The four relative
dipole moments are listed in Table I (see Appendix A for
details), where it can be seen that the largest moment is for the
|F = 1,mF = −1〉 − |F ′ = 1,m′

F = 0〉 transition.

TABLE II. Results of gradient ascent optimization for different
configurations of states for D2 using the ground states |F = 1,

mF = −1〉 and |F = 2,mF = 1〉. The labels |i,j〉 for states |g〉 and
|s〉 (|1〉 and |2〉) refer to |F = i,mF = j〉 (|F ′ = i,m′

F = j〉).

Config. |g〉 |s〉 |1〉 |2〉 ηs (%) ηtot (%) �m (γ )

1 |1,−1〉 |2,1〉 |1,0〉 |2,0〉 33.6 17.3 130.4
2 |1,−1〉 |2,1〉 |2,0〉 |1,0〉 30.1 12.5 58.5
3 |2,1〉 |1,−1〉 |1,0〉 |2,0〉 16.6 5.4 18.0
4 |2,1〉 |1,−1〉 |2,0〉 |1,0〉 30.1 17.4 130.0
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FIG. 9. (Color online) Optimized control pulses for the configu-
rations detailed in Table II.

Taking |g〉 = |F = 1,mF = −1〉, |s〉 = |F = 2,mF = 1〉,
|1〉 = |F ′ = 1,m′

F = 0〉, and |2〉 = |F ′ = 2,m′
F = 0〉, we can

perform gradient ascent to find the efficiencies and control
pulse for this configuration when storing a QD single photon
with T1 = 1 ns. In addition, we have �e = 2π × 156.95 MHz
[53] for the excited state hyperfine splitting and as mentioned
previously take both fields to be resonant δg = δs = 0. For the
sake of comparison, an optical depth d = 75 is chosen as this
has been demonstrated experimentally in ultracold ensembles
[54]. Note that this corresponds to a standardly defined optical
depth of 150 measured on the cycling transition |F = 2,mF =
±2〉 − |F ′ = 3,m′

F = ±3〉. The results of the optimization
yield a storage (total) efficiency of 33.6% (17.3%). The same
calculation was performed for all four configurations of these
states (remembering to change the sign of �e when necessary)
and the results for the efficiencies are summarized in Table II
along with the peak Rabi frequency of the control pulse �m.

In addition, the optimized control pulses are shown in
Fig. 9. These results closely align with what is expected; the
configurations with the largest relative dipole moments for the
|g〉 − |1〉 transition have the largest efficiencies. Nonetheless,
these efficiencies are less than what was found in Sec. II
for d = 75 due to a reduction in the effective optical depth
(μ̃1g < 1) as well as negative effects of the additional excited
state |2〉. In fact, the relative dipole moments in Table I are
such that sgn(μ̃1gμ̃1s) = −sgn(μ̃2gμ̃2s) for all configurations,
the same asymmetry that caused a reduction of efficiency in the
4L− scenario studied in Sec. III due to destructive interference
of two-photon pathways. In order to achieve higher efficiency,
such asymmetric configurations should be avoided.

The other choice for the ground states are the clock states
|F = 1,mF = 0〉 and |F = 2,mF = 0〉. As shown in red in

TABLE III. Relative dipole moments μ̃αβ for 87Rb D2 transitions
with ground states |F = 1,mF = 0〉 and |F = 2,mF = 0〉 [53].

|F = 1,mF = 0〉 |F = 2,mF = 0〉

|F ′ = 1,m′
F = 1〉

√
5
12

√
1
60

|F ′ = 2,m′
F = 1〉

√
1
4

√
1
4

TABLE IV. Results of gradient ascent optimization for different
configurations of states for D2 using the ground states |F = 1,

mF = 0〉 and |F = 2,mF = 0〉. The labels |i,j〉 for states |g〉 and
|s〉 (|1〉 and |2〉) correspond to |F = i,mF = j〉 (|F ′ = i,m′

F = j〉).

Config. |g〉 |s〉 |1〉 |2〉 ηs (%) ηtot (%) �m (γ )

1 |1,0〉 |2,0〉 |1,1〉 |2,1〉 39.6 25.4 170.9
2 |1,0〉 |2,0〉 |2,1〉 |1,1〉 40.8 25.6 32.1
3 |2,0〉 |1,0〉 |1,1〉 |2,1〉 15.6 6.1 66.8
4 |2,0〉 |1,0〉 |2,1〉 |1,1〉 43.4 26.4 43.1

Fig. 8, there are two possible shared excited states: |F ′ =
1,m′

F = 1〉 and |F ′ = 2,m′
F = 1〉 (the pair |F ′ = 1,m′

F = −1〉
and |F ′ = 2,m′

F = −1〉 differ only by the photon polarization)
again resulting in four unique combinations of relative dipole
moments. The relative dipole moments of these transitions are
listed in Table III.

In contrast to the other set of ground states, these rel-
ative dipole moments are symmetric with sgn(μ̃1gμ̃1s) =
sgn(μ̃2gμ̃2s) indicating a constructive contribution of the
second excited state. However, because both ground states
have mF = 0 and couple to the excited states with the same
optical polarization, these configurations are sensitive to the
effects of four-wave mixing (FWM). FWM is discussed in
detail in Appendix C and is shown to be negligible for the
parameter regime discussed here.

We now perform gradient ascent for each possible config-
uration using the same set of parameters as before (d = 75,
δg = δs = 0, and T1 = 1 ns) and the results are detailed in
Table IV. These efficiencies more closely match those found
in Sec. II if the reduction in the optical depth is taken into
account. In fact, the best efficiency for storage on the D2

transition is found using configuration 4 where |g〉 = |F =
2,mF = 0〉, |s〉 = |F = 1,mF = 0〉, |1〉 = |F ′ = 2,m′

F = 1〉,
and |2〉 = |F ′ = 1,m′

F = 1〉. Storage and retrieval with this
configuration yields a storage (total) efficiency of 43.4%
(26.4%).

The optimized control pulses for each of these con-
figurations are shown in Fig. 10. The control pulse for
configuration 4 reaches a maximum value of �m = 43.12γ ,
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FIG. 10. (Color online) Optimized control pulses for the config-
urations detailed in Table IV.
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TABLE V. Relative dipole moments μ̃αβ for 87Rb D1 transitions
with ground states |F = 1,mF = −1〉 and |F = 2,mF = 1〉 [53].

|F = 1,mF = −1〉 |F = 2,mF = 1〉

|F ′ = 1,m′
F = 0〉 −

√
1
12

√
1
4

|F ′ = 2,m′
F = 0〉 −

√
1
12 −

√
1
4

which corresponds to a peak power of 12 mW (40 pJ pulse
energy) for a Gaussian beam with a 350-μm waist. This is
roughly three orders of magnitude lower pulse energy than
that required to store a photon of similar bandwidth using
an off-resonant Raman-based storage scheme [16] and is
achievable using a tunable diode laser and an electro-optic
modulator instead of a mode-locked, ultrafast laser. Thus,
reasonable storage and retrieval efficiencies of a quantum-dot-
generated, broadband photon are possible with demonstrated
experimental parameters of an ultracold gas of 87Rb atoms
using the appropriate combination of D2 states.

B. Storage on the D1 transition

We now turn our attention to storage and retrieval on the D1

transition of 87Rb. Unlike the D2 transition, the excited state
is composed of only two manifolds, F ′ = 1 and F ′ = 2. In
addition, the excited state splitting is quite large �e = 2π ×
814.5 MHz so one would anticipate that the state |2〉 would
only play a minor role in the dynamics. The possibilities for
the excited states have the same F ′ and m′

F values as for the
D2 transition, so the level diagram shown in Fig. 8 is also
valid. We proceed to analyze the feasibility of these states by
performing gradient ascent for each combination just as was
done for D2, taking care to use γ = π × 5.75 MHz and to
reference the μ̃αβ correctly [53]. First, we analyze the possible
configurations for the ground states |F = 1,mF = −1〉 and
|F = 2,mF = 1〉. The relative dipole moments are detailed in
Table V.

Notably, each of the D1 relative dipole moments includes
a factor of 1/

√
2 so they can be directly compared to those

for D2 (see Appendix A for details). Because of the simplicity
of the μ̃αβ in Table V, it is clear that one should obtain the
same efficiencies and control pulses if the excited states are in-
terchanged, leaving only two unique configurations. Gradient
ascent optimization is performed for each configuration using
the same optical depth and detunings as for D2. The results
are noted in Table VI.

It appears that while the efficiencies for configuration 2 are
comparable to those found for the best D2 configuration, the

TABLE VI. Results of gradient ascent optimization for different
configurations of states for D1 using the ground states |F = 1,mF =
−1〉 and |F = 2,mF = 1〉. The labels |i,j 〉 for states |g〉 and |s〉 (|1〉
and |2〉) correspond to |F = i,mF = j〉 (|F ′ = i,m′

F = j〉).

Config. |g〉 |s〉 |1〉 |2〉 ηs (%) ηtot (%) �m (γ )

1 |1,−1〉 |2,1〉 |1,0〉 |2,0〉 23.2 9.5 27.2
2 |2,1〉 |1,−1〉 |1,0〉 |2,0〉 44.8 28.6 77.4

TABLE VII. Relative dipole moments μ̃αβ for 87Rb D1 transitions
with ground states |F = 1,mF = 0〉 and |F = 2,mF = 0〉 [53].

|F = 1,mF = 0〉 |F = 2,mF = 0〉

|F ′ = 1,m′
F = 1〉 −

√
1
12

√
1
12

|F ′ = 2,m′
F = 1〉 −

√
1
4

√
1
4

smaller μ̃1s for the control transition requires an increase in
the peak Rabi frequency �m. Because the peak intensity (and
power) of the control pulse scales as the square of �m, it is
experimentally disadvantageous to use this D1 configuration.
In addition, it seems that the sign asymmetry of the μ̃αβ did
not play a significant role in reducing the efficiencies, a clear
indication that the larger excited state splitting dramatically
reduced the effect of an additional excited state.

With that in mind, we now consider the other pair of
ground states |F = 1,mF = 0〉 and |F = 2,mF = 0〉. As
stated before, the possible excited states have the same F ′
and m′

F as for D2 and the relative dipole moments are listed
in Table VII. Again, FWM is possible in these configurations
but is shown in Appendix C to be negligible in the parameter
regime considered here.

These μ̃αβ are symmetric under interchange of the ground
state, again leaving only two unique configurations. We
perform gradient ascent optimization for each configuration
and the results are displayed as configurations 1 and 2 in
Table VIII.

Configuration 2 yields comparable efficiencies to the best
configuration for D2, with only a minor increase. If we perform
gradient ascent for this configuration but neglect the additional
excited state (configuration 3), we obtain almost identical
efficiencies. Comparison of the two optimal control pulses
(Fig. 11) shows that they are almost exactly the same, except
the four-level control has a small modulation at the frequency
of the excited state splitting. If we use the three-level control
on the four-level system (configuration 4), we obtain almost
exactly the same efficiencies although the control pulse is
much simpler to generate. This analysis simply implies that
the large excited state splitting almost completely nullifies
the effects of the additional excited state, as anticipated
in Sec. III. Consequently, the efficiencies we find in this
case match well with those predicted by Fig. 3 if dμ̃2

1g =
18.75 is used as the effective optical depth of the storage
transition.

TABLE VIII. Results of gradient ascent optimization for different
configurations of states for D1 using the ground states |F = 1,mF =
0〉 and |F = 2,mF = 0〉. The labels |i,j〉 for states |g〉 and |s〉 (|1〉
and |2〉) correspond to |F = i,mF = j〉 (|F ′ = i,m′

F = j〉).

Config. |g〉 |s〉 |1〉 |2〉 ηs (%) ηtot (%) �m (γ )

1 |1,0〉 |2,0〉 |1,1〉 |2,1〉 18.5 9.0 231.8
2 |1,0〉 |2,0〉 |2,1〉 |1,1〉 46.0 28.9 47.4
3 |1,0〉 |2,0〉 |2,1〉 45.7 28.5 45.0
4 |1,0〉 |2,0〉 |2,1〉 |1,1〉 45.7 28.4 45.0
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FIG. 11. (Color online) Optimized control pulses for configura-
tions 2 and 3 detailed in Table VIII.

V. IMPERFECT QD PHOTON SOURCES

Up to this point, our analysis has assumed that the photons
emitted by a QD are completely indistinguishable, which is
an important property in photon-based quantum information
processing [22]. However, due to their dynamic solid-state
environment the photons produced by excitons in quantum
dots may not have Fourier transform-limited spectra [55].
This leads to an imperfect photon indistinguishability between
subsequently emitted photons. Up to now, the highest mea-
sured two-photon visibility is ≈0.97 [30], corresponding to a
linewidth that is ≈1.03 times larger than the transform-limited
linewidth �ωFT = 1/T1. While it is possible to approach �ωFT

by careful sample selection and resonant excitation, in this
section the effect of excess linewidth broadening on the storage
efficiency is calculated.

The excess linewidth of quantum-dot-generated photons
can be caused by two distinct physical processes. The first,
sometimes referred to as spectral wandering, is a slow process
that causes changes in the carrier frequency of the photons from
shot to shot. This simply means that subsequent photons have
slightly different carrier frequencies due to changes in the QD
environment on time scales longer than the spontaneous emis-
sion lifetime T1. The second, referred to as pure dephasing, is
a perturbation of the QD’s energy levels on time scales shorter
than T1. This leads to a time-dependent phase within each shot.
In a time-averaged spectral measurement, these effects can
both produce a Lorentzian lineshape with a linewidth greater
than the Fourier limit. Here, we treat these cases separately but
show that they cause exactly the same effect on storage and
retrieval efficiencies in a quantum memory for a given amount
of added linewidth �ωadd.

In the case of spectral wandering, the wave form of
each photon remains Ein(τ ) = �(τ ) exp(−τ/2T1)/

√
T1 but the

carrier frequency νeg is drawn from a probability distribution
P (νeg). The time-averaged spectrum of these photons is then
an integral over all realizations of νeg ,

〈S(ω)〉 =
∫

dνegP (νeg)SFT(ω; νeg), (24)

where SFT(ω; νeg) is the transform-limited spectrum cen-
tered about νeg . If P (νeg) is a Lorentzian distribution with
linewidth �ωadd, the time-average spectrum is a Lorentzian
with linewidth �ωtot = �ωFT + �ωadd. The average storage
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FIG. 12. (Color online) Storage and total efficiencies for con-
figuration 4 of D2 storage with ground states |F = 2,mF = 0〉 and
|F = 1,mF = 0〉 as a function of δg . All other parameters are kept
fixed.

and total memory efficiencies can be calculated similarly by
determining how the efficiencies depend on δg = νeg − ωeg

and then integrating over all realizations. We numerically
calculate the storage and total efficiencies as a function of
δg using the optimal control pulse found for configuration 4 of
D2 storage with |g〉 = |F = 2,mF = 0〉. All other parameters
are kept fixed (δs = 0, d = 75, T1 = 1 ns) and the results are
plotted in Fig. 12.

Using ηs(δg) and ηtot(δg), the efficiencies as a function of
�ωadd can be obtained by

η(�ωadd) =
∫

dδg η(δg)P (δg), (25)

where P (δg) is taken to be a normalized Lorentzian distribution
of width �ωadd centered at δg = 0. Performing this integration
results in the plot shown in Fig. 13.

Notably, spectral wandering causing a factor of 2 increase
in the total linewidth (�ωadd = �ωFT) roughly leads to a factor
of 2 reduction in the storage and total efficiencies. While the
initial drop is steep, the total efficiency remains above 5%
even if the total linewidth is more than 7 times the transform
limit, showing that the storage process is relatively robust to
the effects of spectral wandering.

0 0.2 0.4 0.6 0.8 10
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Δωadd/2π (GHz)

η

ηtot
ηs

FIG. 13. (Color online) Storage and total efficiencies for config-
uration 4 of D2 storage with ground states |F = 2,mF = 0〉 and
|F = 1,mF = 0〉 as a function of �ωadd resulting from spectral
wandering.
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FIG. 14. (Color online) Average storage (a) and total (b) ef-
ficiencies for configuration 4 of D2 storage with ground states
|F = 2,mF = 0〉 and |F = 1,mF = 0〉 as a function of Dφ = �ωadd

resulting from pure dephasing (red, open circles). Uncertainties in η

are given by the standard deviation of the ensemble. For comparison,
results from spectral wandering (Fig. 13) are shown as blue lines.

The effects of fast, pure dephasing can also be calculated
numerically. In this case, the wave form remains at the carrier
frequency νeg but the slowly varying amplitude is modified to

Ein(τ ) = 1√
T1

�(τ )e−τ/2T1e−iφ(τ ), (26)

which includes a time-dependent phase φ(τ ). In the simplest
model of pure dephasing, φ(τ ) is driven by a Markovian
Langevin force fφ(τ ) characterized by 〈fφ(τ )〉 = 0 and
〈fφ(τ )fφ(τ ′)〉 = Dφδ(τ − τ ′) with diffusion constant Dφ . This
force will cause phase diffusion, resulting in a Lorentzian time-
averaged spectrum with total linewidth �ωtot = �ωFT + Dφ .
The effect on the storage and total efficiency can be determined
by calculating the efficiencies for several trajectories of φ(τ )
and averaging.

Using the same configuration as for the spectral wandering
investigation, we performed storage and retrieval calculations
for 100 phase trajectories for several values of Dφ = �ωadd.
The average storage and total efficiencies are plotted as red
circles in Fig. 14, with the uncertainties given by the standard
deviation. For comparison, results from spectral wandering
(Fig. 13) are shown as blue lines. Evidently, both spectral
wandering and pure dephasing lead to the same reduction in
efficiency for the same amount of �ωadd, indicating that the
efficiencies depend only on the time-averaged spectrum and
not on the physical mechanism causing an excess linewidth.

VI. ULTRAHIGH OPTICAL DEPTH

A recent experiment by Sparkes et al. has demonstrated an
optical depth of 1000 in an ultracold 87Rb gas [56] using spatial
and temporal dark spots. We therefore investigate how the
efficiencies increase for such high optical depth. If the optical
depth is increased to d = 500 in the optimization using the
clock ground states (|F = 1,mF = 0〉 and |F = 2,mF = 0〉)
and configuration 4 of D2 storage, the storage (total) efficiency
is increased to 51% (34%). If instead configuration 2 of D1

storage with clock ground states is used, the optimization
yields a storage (total) efficiency of 82% (76%). Notably, the
efficiencies are not dramatically increased for D2 storage while
D1 storage is much more promising. There are two factors
that contribute to the worse performance of D2; the small

excited-state splitting and the large relative dipole element
between the storage state |s〉 and the unwanted excited state |2〉.
Naively, one would expect an increase in efficiency according
to Fig. 3, but that is only true if the additional excited state
doesn’t play a large role in the storage process. However, as
the optical depth increases so does the required control pulse
amplitude and therefore the coupling to unwanted excited
states. For the case of D2 storage, the extra excited state cannot
be neglected and limits the achievable efficiencies even for
large optical depth. On the other hand, for D1 storage of a 1-ns
photon at d = 500 we find very high efficiencies, comparable
to the efficiency of 80% reported in Ref. [56] for much lower
bandwidth photons.

VII. CONCLUSION

In conclusion, we have calculated the efficiency with
which a quantum-dot-generated single photon can be stored
and retrieved from an optically thick 87Rb ensemble. Our
calculations take into account the multilevel structure of
87Rb by extending the standard three-level model of an
atomic ensemble quantum memory. Using an optical depth
of 150, the storage (total) efficiency can reach 46% (28%)
for a photon resulting from the 1-ns spontaneous excitonic
decay in a quantum dot. Importantly, this storage can be
performed using control pulses obtained from a diode laser
rather than requiring pulse energies only achievable with
ultrafast, mode-locked laser sources. Increasing the optical
depth, for example, by using Bose-condensed ensembles, an
optical cavity, or advanced trapping techniques, can increase
the efficiencies to near unity for storage on the D1 transition.
In addition, we have studied the effects of spectral diffusion
and pure dephasing of the quantum-dot-generated photons on
the storage efficiency and shown that a factor of 2 increase in
the time-averaged photon linewidth roughly leads to a factor
of 2 reduction in the efficiency. Thus, storage and retrieval
of single photons from a quantum dot in an 87Rb ensemble
is feasible with demonstrated experimental parameters even
in the presence of nonideal properties of the quantum dot.
Integration of quantum-dot sources with atomic ensemble
quantum memories may lead to high-speed quantum networks
for communication or distributed computation as well as
entanglement between collective atomic degrees of freedom
and the spin of an electron or hole confined in the quantum
dot.
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APPENDIX A: DERIVATION OF THE
EQUATIONS OF MOTION

The equations of motion Eqs. (14)–(17) [and by extension
Eqs. (2)–(4)] are derived by considering an ensemble of
N motionless, four-level atoms interacting with a quantum
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field and a classical field closely following the treatment of
Ref. [39], whose notation we also adopt for the most part.
The Hamiltonian of this system can be expressed as H =
Ho + Hint where

Ho =
N∑
i

(
Egσ̂

i
gg + Esσ̂

i
ss + E1σ̂

i
11 + E2σ̂

i
22

)

+
∫

dω h̄ωâ†
ωâω, (A1)

and the interaction between the light fields and the atoms in
the dipole approximation is

Hint = −
N∑
i

∑
αβ

σ̂ i
αβμαβ · Êtot(zi,t). (A2)

Here, the operators σ̂ i
αβ = |α〉〈β| change the internal state of

the ith atom from |β〉 to |α〉 and μαβ is the dipole moment of an
atom for the |β〉 − |α〉 transition. The total electric field Êtot is
composed of a classical field Ees and a quantum field Êeg . The
+z-propagating classical field with polarization orientation εes

can be written as

Ees(z,t) = εesEes(t − z/c)cos[νes(t − z/c)], (A3)

where Ees(t − z/c) is the envelope function and νes = ωes + δs

is the carrier frequency. We have assumed that the classical
pulse propagates with a group velocity of c, which is valid if
almost all of the atomic population remains in state |g〉. The
quantum field is taken to be a sum of modes âω centered
about frequency νeg = ωeg + δg with polarization εeg and
cross-sectional area A:

Êeg(z) = εeg

√
h̄νeg

4πcεoA

∫
dωâωeiωz/c + H.c., (A4)

where H.c. denotes the Hermitian conjugate. In this treatment,
the quantum field only drives the |g〉 − |1〉 and |g〉 − |2〉
transitions while the classical control field drives the |s〉 − |1〉
and |s〉 − |2〉 transitions. As shown in Appendix C, cross-
coupling of the control field leads to a four-wave mixing
process which can reduce the storage efficiency, but it is safe
to neglect for the parameter regime considered here. Applying
this assumption and making the rotating wave approximation
allows Eq. (A2) to be written as the sum of the interaction with
the classical field:

Hint,c = −h̄

N∑
i

{�1s(t − zi/c)σ̂ i
1se

−iνes (t−zi/c)

+�2s(t − zi/c)σ̂ i
2se

−iνes (t−zi/c) + H.c.}, (A5)

and the quantum field,

Hint,q = −h̄

√
L

2πc

N∑
i

∫
dω{g1gâωσ̂ i

1ge
iωzi/c

+ g2gâωσ̂ i
2ge

iωzi/c + H.c.}, (A6)

where �αβ(t − zi/c) = μαβ · εesEes(t − zi/c)/(2h̄) are the
Rabi frequencies associated with the classical field and gαβ =
μαβ · εeg

√
νeg

2h̄εoAL
are the couplings to the quantum field. Note

that the Rabi frequencies � are defined differently compared
to the standard definition such that � = �std/2.

In order to treat the ensemble as a continuous density
distribution, we divide the ensemble into thin slices of
thickness Lz such that the quantum field can be taken to be
constant over this range while also ensuring that the number
of atoms in a slice Nz �1. Then, we define slowly varying
operators:

σ̂αα(z,t) = 1

Nz

Nz∑
i=1

σ̂ i
αα(t), (A7)

σ̂12(z,t) = 1

Nz

Nz∑
i=1

σ̂ i
12(t), (A8)

σ̂1s(z,t) = 1

Nz

Nz∑
i=1

σ̂ i
1s(t)e

−iνes (t−zi/c), (A9)

σ̂2s(z,t) = 1

Nz

Nz∑
i=1

σ̂ i
2s(t)e

−iνes (t−zi/c), (A10)

σ̂1g(z,t) = 1

Nz

Nz∑
i=1

σ̂ i
1g(t)e−iνeg(t−zi/c), (A11)

σ̂2g(z,t) = 1

Nz

Nz∑
i=1

σ̂ i
2g(t)e−iνeg(t−zi/c), (A12)

σ̂sg(z,t) = 1

Nz

Nz∑
i=1

σ̂ i
sg(t)e−i(νeg−νes )(t−zi/c), (A13)

Ê(z,t) =
√

L

2πc
eiνeg (t−z/c)

∫
dω âω(t)eiωz/c. (A14)

Using these operators, we can rewrite Ho as

Ho =
∫ L

0
dz n(z)[Egσ̂gg(z,t) + Esσ̂ss(z,t)

+E1σ̂11(z,t) + E2σ̂22(z,t)] +
∫

dω h̄ωâ†
ωâω, (A15)

and the two parts of the interaction as

Hint,c = −h̄

∫ L

0
dz n(z)[�1s(t − z/c)σ̂1s(z,t)

+�2s(t − z/c)σ̂2s(z,t) + H.c.], (A16)

Hint,q = −h̄

∫ L

0
dz n(z){g1gÊ(z,t)σ̂1g(z,t)

+ g2g Ê(z,t)σ̂2g(z,t) + H.c.}, (A17)

where n(z) is the linear number density of atoms along the
length of the ensemble and we have assumed the cross-
sectional area of the field A matches that of the atomic cloud.

The dynamics are determined by finding the Heisenberg
equations of motion for the operators. Using the commutation
relations,

[âω,â
†
ω′ ] = δ(ω − ω′), (A18)

[σ̂αβ(z,t),σ̂λρ(z′,t)] = δ(z − z′)
n(z)

{δβλσ̂αρ − δαρσ̂λβ}, (A19)
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one obtains

(∂t + c∂z)Ê = inL[gg1σ̂g1 + gg2σ̂g2], (A20)

∂t σ̂g1 = iδgσ̂g1 + i�1s σ̂gs + iÊ[g1g(σ̂gg − σ̂11) − g2gσ̂21],

(A21)

∂t σ̂g2 = i(δg − �e)σ̂g2 + i�2s σ̂gs

+ iÊ[g2g(σ̂gg − σ̂22) − g1gσ̂12], (A22)

∂t σ̂s1 = iδs σ̂s1 + i�1s(σ̂ss − σ̂11) − i�2s σ̂21 + ig1gÊ σ̂sg,

(A23)

∂t σ̂s2 = i(δs − �e)σ̂s2 + i�2s(σ̂ss − σ̂22)

− i�1s σ̂12 + ig2gÊ σ̂sg, (A24)

∂t σ̂12 = −i�eσ̂12 + i(�2s σ̂1s − �s1σ̂s2)

+ i(g2gÊ σ̂1g − gg1Ê †σ̂g2), (A25)

∂t σ̂gs = i(δg − δs)σ̂gs + i(�s1σ̂g1 + �s2σ̂g2)

− iÊ(g1gσ̂1s + g2gσ̂2s), (A26)

∂t σ̂gg = i(gg1Ê †σ̂g1 − g1gÊ σ̂1g + gg2Ê †σ̂g2 − g2gÊ σ̂2g),

(A27)

∂t σ̂ss = i(�s1σ̂s1 − �1s σ̂1s + �s2σ̂s2 − �2s σ̂2s), (A28)

∂t σ̂11 = i(�1s σ̂1s − �s1σ̂s1) + i(g1gÊ σ̂1g − gg1Ê †σ̂g1),

(A29)

∂t σ̂22 = i(�2s σ̂2s − �s2σ̂s2) + i(g2gÊ σ̂2g − gg2Ê †σ̂g2),

(A30)

where the time and spatial dependencies have been neglected
for brevity.

These equations can be reduced considerably by making
one simplifying assumption; the quantum field is weak. The
first consequence of this assumption is that almost all atoms
remain in |g〉 for the duration of the dynamics. Secondly,
we keep only terms that are linear in Ê [39]. Under these
assumptions, the equations of motion are reduced to

(∂t + c∂z)Ê = inL[gg1σ̂g1 + gg2σ̂g2], (A31)

∂t σ̂g1 = iδgσ̂g1 + i�1s σ̂gs + ig1gÊ, (A32)

∂t σ̂g2 = i(δg − �e)σ̂g2 + i�2s σ̂gs + ig2gÊ, (A33)

∂t σ̂gs = i(δg − δs)σ̂gs + i(�s1σ̂g1 + �s2σ̂g2). (A34)

We now introduce the polarization operators P̂1(z,t) =√
Nσ̂g1(z,t) and P̂2(z,t) = √

Nσ̂g2(z,t) as well as the spin-
wave operator Ŝ(z,t) = √

Nσ̂gs(z,t). In addition, we move to
a new coordinate system (z̃,τ ) where τ = t − z/c is the time
in a co-moving reference frame and z̃ = (1/N)

∫ z

0 dz′ n(z′)
is a dimensionless length. Inserting these definitions into the

equations of motion yields

∂z̃Ê = i
√

dg1γ P̂1 + i
√

dg2γ P̂2, (A35)

∂τ P̂1 = (iδg − γ )P̂1 + i�1s Ŝ + i
√

dg1γ Ê, (A36)

∂τ P̂2 = (iδg − i�e − γ )P̂2 + i�2s Ŝ + i
√

dg2γ Ê, (A37)

∂τ Ŝ = i(δg − δs)Ŝ + i�∗
1s P̂1 + +i�∗

2s P̂2, (A38)

where a factor of
√

c/L has been absorbed into Ê and we
introduced the optical depths dαβ = g2

αβNL/(γ c). We have
also assumed that both polarizations decay at the same rate γ

and that gαβ is real.
Finally, for notational convenience we compare all tran-

sition dipole moments μαβ to that of the two-level cycling
transition (μαβ = μ̃αβ μcyc). In this way, we make the substi-
tutions �αβ → μ̃αβ� and

√
dαβ → μ̃αβ

√
d in the equations

of motion. This enables easy comparison between different
state configurations and also sets d = g2

cycNL/(γ c) to where
it will be measured experimentally. It also enables � to be
connected to a light intensity through the two-level relation
I/Is = 2(�/γ )2, where Is is the saturation intensity. Using
the value of Is for the cycling transition [53], the peak power
can be related to the peak Rabi frequency �m by

Pm = 4π3h̄cγ

3λ3
w2

o

(
�m

γ

)2

(A39)

= [52.47 Wm−2]w2
o(�m/γ )2, (A40)

where λ is the wavelength of the transition and wo is the
1/e2 waist of a Gaussian beam. The relevant values for the
87Rb cycling transition |F = 2,mF = ±2〉 − |F ′ = 3,m′

F =
±3〉 of the D2 line have been inserted to obtain Eq. (A40).
Similarly, the pulse energy can be determined by U =
[52.47 Wm−2]w2

o

∫ T

0 dτ |�(τ )/γ |2. From Ref. [53], we have

μcyc =
√

1/2〈J = 1/2||er||J ′ = 3/2〉 (A41)

= 2.989eao, (A42)

where 〈J = 1/2||er||J ′ = 3/2〉 is the reduced dipole moment
for the D2 transition. To put the D1 relative dipole moments
μ̃αβ in units of μcyc, the values in Tables V and VII have been
multiplied by the factor [53],

r = 〈J = 1/2||er||J ′ = 1/2〉
〈J = 1/2||er||J ′ = 3/2〉 (A43)

= 1/
√

2. (A44)

Further, as discussed in Sec. II of the main text, the operators
can be treated as complex numbers and their associated
quantum noise can be neglected because we are interested
in computing the expectation values of normally ordered
operators. Making the substitutions and dropping the operator
notation yields the equations of motion as found in Secs. II
and III,

∂z̃E = i
√

dγ
[
μ̃1gP1 + μ̃2gP2

]
, (A45)

∂τP1 = (iδg − γ )P1 + iμ̃1s�(τ )S + iμ̃1g

√
dγ E, (A46)
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∂τP2 = (iδg − i�e − γ )P2 + iμ̃2s�(τ )S + iμ̃2g

√
dγ E,

(A47)

∂τS = i(δg − δs)S + i�∗(τ )[μ̃1sP1 + μ̃2sP2]. (A48)

APPENDIX B: NUMERICAL IMPLEMENTATION

Numerical solutions of the equations of motion are obtained
using the method of finite differences. The time-space grid is
composed of 9×106 (3000 by 3000) points and the domain of τ

is chosen such that the optimized control pulses tend toward 0
at T . This ensures that the drop toEin = 0 outside of the domain
is smooth. The gradient ascent algorithm is implemented using
a dynamic step size λ to guarantee quick convergence. The step
size is determined using an inexact line search such that λ is
initialized to a large value (1000γ ) at each step of the ascent
and the increase of ηtot and its gradient are calculated at the
next step. If this step does not meet the Wolfe conditions [57],
the step size is reduced geometrically until they are satisfied.
The optimization proceeds until ηtot has not been increased
by more than 0.001ηtot compared to the average of the three
previous values. This tolerance was estimated by considering
the errors resulting from the numerical integration. Errors in
the reported efficiencies are ≈ ±1% which was determined
by examining the variation in efficiencies for perturbations of
the time-space grid. For the parameter set δg = δs = 0, d =
75, �e = 2π × 156.95 MHz, the gradient ascent optimization
took approximately 20 min on a standard computer.

The pure dephasing process was simulated by first obtaining
fφ(τ ) on a finite grid using (pseudo-)random numbers drawn
from a normal distribution. Then, φ(τ ) was calculated using
φ(τi+1) = φ(τi) + fφ(τi). Averaging over many trajectories
yielded the correct diffusion behavior 〈[φ(τ ) − φ(0)]2〉 =
Dφτ . The extracted ηs and ηtot shown in Fig. 14 were obtained
by averaging the results of 100 different phase trajectories for
each value of Dφ .

The slowly varying photon wave form Ein(τ ) =
�(τ ) exp(−τ/2T1)/

√
T1 is not physical due to the infinitely

sharp rise of �(τ ). A more realistic model might include the
nonzero temporal width of the excitation pulse or fast loading
of the QD from another excited state. For the latter,

Ein(τ ) = �(τ )

√
e−τ/T1 − e−τ/TL

T1 − TL

, (B1)

for a three-level model with instantaneous excitation of an
ancillary excited state that loads the QD with rate 1/TL.
For comparison, we have implemented this form of Ein

with TL = 10 ps [58] using configuration 4 of D2 storage
with |g〉 = |F = 2,mF = 0〉. We obtain roughly the same
efficiencies (ηs = 43.6%, ηtot = 26.5%) and peak control Rabi
frequency (�m = 43.2γ ) as found in Table IV. Both input
photons and control pulses are plotted in Fig. 15. Because the
curves and efficiencies are extremely similar, we conclude that
the infinitely sharp rise of �(τ ) in the simple photon wave form
does not dramatically influence the results and is therefore a
sufficiently representative choice.
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FIG. 15. (Color online) Optimized control pulses and Ein for the
Heaviside model and for the three-level (3L) model (TL = 10 ps) of
the QD photon.

APPENDIX C: FOUR-WAVE MIXING

In the preceding analysis, cross-coupling of the control
field �(τ ) to the |g〉 − |1〉 transition was neglected due to
the large ground-state hyperfine splitting of �HF = 2π×
6.835 GHz. Because the control field can be quite strong
and the optical depth quite large, this cross-coupling can lead
to detrimental effects that reduce the storage and retrieval
efficiencies in practice [59,60]. Of course, a proper choice of
ground states and optical polarizations can eliminate cross-
coupling completely. For example, choosing ground states
whose mF values differ like |g〉 = |F = 1,mF = −1〉 and
|s〉 = |F = 2,mF = 1〉 and using circularly polarized light
allows cross-coupling to be neglected. On the other hand,
configurations such as |g〉 = |F = 1,mF = 0〉 and |s〉 = |F =
2,mF = 0〉 are coupled to the excited state by light of the same
polarization. In this case, the control beam can off-resonantly
drive the |g〉 − |1〉 transition as shown in Fig. 16 and coherently
generate a Stokes field E ′ in a four-wave mixing (FWM) type
of process [52]. The Stokes field can interfere with the spin
wave created from storage of the quantum field E and lead to
reduced storage and retrieval efficiencies.

In Ref. [52], the Stokes field was taken into account
theoretically and was shown to match experimental results
quite well. Following the same approach here, we obtain
the Stokes-modified equations of motion for a three-level

|s〉
|g〉

|1〉

W(t)

DHF

W´(t)

FIG. 16. (Color online) Three-level system including cross-
coupling for four-wave mixing (FWM).
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system,

∂z̃E = iμ̃1g

√
dγP1, (C1)

∂z̃E ′ = −iμ̃1gμ̃1s

√
dγ

�

�HF

S, (C2)

∂τP1 = (iδg − γ − 2iδls)P1 + iμ̃1s�S + iμ̃1g

√
dγ E, (C3)

∂τS = i(δg − δs − δls)S + iμ̃1s�
∗P1

+ iμ̃1gμ̃1s

√
dγ

�

�HF

E ′∗, (C4)

where E ′ is the Stokes field and the off-resonant interaction
�′(τ ) has been adiabatically eliminated, leaving an effective
coupling between E ′ and S. In addition, this interaction
induces time-dependent light shifts of +δls = μ̃2

1g|�|2/�HF

and -δls for states |1〉 and |g〉, respectively. Using these
equations of motion with the optimized control field for
on-resonance storage of a QD-generated photon with con-
figuration 3 of D1 storage with ground states |F = 1,

mF = 0〉 and |F = 2,mF = 0〉 (Fig. 11), one obtains the
same storage and total efficiencies as in Table VIII. This
result indicates that the effect of FWM in this storage
scheme is negligible.

Another way to determine the relative effect of FWM is
to consider the ratio of the last two terms in Eq. (C4). The
ratio of the FWM term to the normal �∗P1 term should
roughly scale as dγ 2/�2

HF, which is approximately 2×10−5

for typical parameters considered here. Compared to typical
parameters found in Ref. [52] where the onset of FWM effects
was measured, this ratio is about three orders of magnitude
smaller so FWM can be safely neglected.
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