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Quantum state tomography of a single qubit: comparison of methods

Roman Schmied

Department of Physics, University of Basel, Basel, Switzerland

ABSTRACT
The tomographic reconstruction of the state of a quantum-mechanical system is an essential
component in the development of quantum technologies. We present an overview of different
tomographic methods for determining the quantum-mechanical density matrix of a single qubit:
(scaled) direct inversion, maximum likelihood estimation (MLE), minimum Fisher information
distance and Bayesian mean estimation (BME). We discuss the different prior densities in the space
of density matrices, on which both MLE and BME depend, as well as ways of including experimental
errors and of estimating tomography errors. As a measure of the accuracy of these methods, we
average the trace distance between a given density matrix and the tomographic density matrices
it can give rise to through experimental measurements. We find that the BME provides the most
accurate estimate of the density matrix, and suggest using either the pure-state prior, if the system
is known to be in a rather pure state, or the Bures prior if any state is possible. The MLE is found to be
slightly less accurate. We comment on the extrapolation of these results to larger systems.
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1. Introduction

Quantum state tomography is the attempt to discover
the quantum-mechanical state of a physical system, or
more precisely, of a finite set of systems prepared by
the same process [1]. The experimenter acquires a set
of measurements of different non-commuting observ-
ables and tries to estimate what the density matrix of the
systems must have been before the measurements were
made, with the goal of being able to predict the statistics
of future measurements generated by the same process.
In this sense, quantum state tomography characterizes a
state preparation process that is assumed to be stable over
time [2].

In the context of the generation and characterization
of non-classical states of Bose–Einstein condensates with
internal degrees of freedom [3], the system under study
is known to be in a totally symmetric state because of
its Bose symmetry. These states are usually described in
terms of total-spin observables, with the effective spin
length equal to half the atom number. In this restricted
framework, quantum-state reconstruction is much more
feasible than for general many-particle systems; for this
reason, the reconstruction of spin (or pseudo-spin) den-
sitymatrices is an important real-world case for quantum
state tomography. In practice, there are many different
mathematical methods for determining a density matrix
from a given experimental data-set, yielding sometimes
very different results, and it is not obvious which of these
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is objectively better, even when opinions and philosoph-
ical arguments are seemingly clear.

In order to see these methods more clearly and com-
pare them, we apply them to the simplest possible
quantum-mechanical problem of determining the den-
sity matrix of a two-level system (a qubit, or a spin of
length 1/2), and compare the obtained results. We find
that for qubits in general, Bayesian mean estimates
(Section 2.4) are most accurate at determining a density
matrix, in agreement with general statements of Refs.
[4,5]. We generally consider mixed qubit states; for a
review of pure qubit state estimation, see Ref. [6].

The quantum-mechanical state of any two-level sys-
tem can be expressed as a 2 × 2 density matrix

ρ̂ = 1
2
(
1+ xσ̂x + yσ̂y + zσ̂z

) = 1
2
(
1+ r · σ̂

)
(1)

in terms of the Pauli matrices

σ̂x =
(
0 1
1 0

)
σ̂y =

(
0 −i
i 0

)

σ̂z =
(
1 0
0 −1

)
1 =

(
1 0
0 1

)
(2)

and the vectors r = (x, y, z) ∈ R3 and σ̂ = (σ̂x , σ̂y , σ̂z).
Since the eigenvalues of ρ̂ are λ± = 1

2 (1±√x2 + y2 + z2)
and must both be nonnegative, a Bloch vector r only
represents a physical (positive semi-definite) state if

© 2016 Taylor & Francis
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2 R. SCHMIED

‖r‖2 = x2 + y2 + z2 ≤ 1. The three-dimensional unit
sphere of Bloch vectors, where every physically possible
qubit density matrix can be represented as a point in
space, is an appealing and convenient representation and
will be used throughout this paper.

An alternative representation of a qubit densitymatrix
is the spherical Wigner function [3,7]

W(ϑ ,ϕ) = 1 + √
3( sinϑ cosϕ, sinϑ sin ϕ, cosϑ) · r√

8π
(3)

defined as a pseudo-probability density on the surface of
the unit sphere. It encodes the direction of the vector
r in the angular distribution and the length of r in the
amplitude of the pseudo-probability density. This repre-
sentation is convenient for longer spins, where the Bloch
vector representation is unavailable.

Many characteristics of a qubit state ρ̂ canbe expressed
in terms of the length r = ‖r‖ of its Bloch vector alone,
for example the quantumFisher information [8] FQ(ρ̂) =
r2, the purity Tr (ρ̂2) = (1+ r2)/2, or the von Neumann
entropy

S(ρ̂) = −1 + r
2

ln
(
1 + r
2

)
− 1 − r

2
ln
(
1 − r
2

)
. (4)

In what follows we consider only Stern–Gerlach type
measurements on a single qubit: a projective measure-
ment along an axis n (with ‖n‖ = 1) is represented by
the observable σ̂n = n · σ̂ , and has an expectation value

〈σ̂n〉 = Tr (σ̂nρ̂) = n · r. (5)

The probabilities for detecting the qubit in the “up” state
|n↑〉 satisfying σ̂n|n↑〉 = +|n↑〉, or in the “down” state
|n↓〉 satisfying σ̂n|n↓〉 = −|n↓〉, are

p↑(n) = 1 + n · r
2

, p↓(n) = 1 − n · r
2

, (6)

respectively.
If we identically prepare Nn qubits and measure the

observable σ̂n on each one, we will find Nn↑ qubits in
the |n↑〉 state and Nn↓ qubits in the |n↓〉 state, giving an
estimate of the expectation value (sample mean)

〈〈σ̂n〉〉 = Nn↑ − Nn↓
Nn↑ + Nn↓

= Nn↑ − Nn↓
Nn

. (7)

A statistical estimate of the error of this expectation value
is given by the width of a binomial distribution with the
same expectation value,

�〈〈σ̂n〉〉 = 2
√
Nn↑Nn↓
N3/2

n

. (8)

This error measure will be justified below through Equa-
tion (17).

In the absence of prior knowledge about the experi-
mental system’s state, the precision of the tomographic
methods of Section 2 is highest if the measurement axes
are arranged uniformly on the sphere. As detailed in
Appendix 1, for a spin-1/2 system any angular distri-
bution is considered uniform if its quadrupolar compo-
nent vanishes. Examples of uniform sampling strategies
according to this criterion are equal sampling along the
three Cartesian axes, the four axes through the vertices of
a tetrahedron [9] or a completely uniform distribution
of measurement axes over the entire sphere. In what
follows, we assume that the experimenter performs the
samenumber of single-qubitmeasurements along eachof
the three Cartesian axes n = ex , ey , ez , which is the sim-
plest complete and uniform measurement strategy [10].
Using different axes or more than three axes generally
makes all of the following tomography schemes more
complicated, and if the measurements are not uniformly
distributed (for example by making more measurements
along ez than along ex or ey), the tomographic result
will generally be less precise or even biased. However, if
each measurement axis is adaptively chosen depending
on the previous measurement results, efficiency can be
improved over the Cartesian axes [11–13]. Also, multi-
qubit joint measurements may yield information faster
than sequential single-qubit measurements [14,15]. Such
adaptations are not considered in the present work.

If our qubits are all in the state of Equation (1) and we
performNx measurements along the x-axis,Ny along the
y-axis and Nz along the z-axis, the probability of getting
a certain set of results is

P(Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓|ρ̂)

=
(
Nx

Nx↑

)(
1 + x
2

)Nx↑ (1 − x
2

)Nx↓

×
(
Ny

Ny↑

)(
1 + y
2

)Ny↑ (1 − y
2

)Ny↓

×
(
Nz

Nz↑

)(
1 + z
2

)Nz↑ (1 − z
2

)Nz↓
, (9)

where Nx = Nx↑ + Nx↓ etc. and we will assume Nx =
Ny = Nz below. In such a set-up, the problemof quantum
state tomography is to invert Equation (9): given a set of
experimental results, what can we say about the qubits’
densitymatrix that has given rise to these results? In what
follows, we first present several tomographic methods
and apply them to a single qubit (Section 2), make some
comments about experimental and tomographic errors
(Section 3) and then compare the accuracies of the dif-
ferent methods (Section 4).
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2. Tomographic methods

2.1. Direct inversion tomography

The simplest tomographic method, called a direct in-
version, assumes that the sample mean 〈〈σ̂n〉〉 is a good
and unbiased estimate of the population mean 〈σ̂n〉 [16].
Combining Equations (5) and (7) along the three Carte-
sian axes fully defines an estimate of the qubits’ Bloch
vector,

rd =
(
Nx↑ − Nx↓
Nx↑ + Nx↓

,
Ny↑ − Ny↓
Ny↑ + Ny↓

,
Nz↑ − Nz↓
Nz↑ + Nz↓

)
. (10)

We note that rd is the global maximum of Equation (9),
which is a definition of rd that is readily extensible to
different measurement schemes.

In Figures 1 and 2 this direct inversion Bloch vector is
shown as a blue dot for two sets of experimental results,
both found by performing 30 Stern–Gerlach measure-
ments along each Cartesian axis. While in Figure 2 the
Bloch vector is physically valid since ‖rd‖ ≤ 1, the Bloch
vector in Figure 1 is invalid and points out a fundamental
problemwith the direct inversionmethod. Equation (10)
can be seen as three individual parameter estimations for
the three Cartesian components of the Bloch vector, and
even though each parameter estimate is unconstrained
on its own, the three estimates must satisfy the joint con-
straint x2d+y2d+z2d ≤ 1. For any given state r of the qubit
and for any number of measurements (Nx ,Ny ,Nz), there
is a finite probability that direct inversion tomography
will find a physically invalid Bloch vector that violates
this joint constraint. For example, for the completely
mixed state ρ̂ = 1

21 with r = (0, 0, 0), measuring Nx =
Ny = Nz = 30 times along each Cartesian direction, the
probability of finding an unphysical rd is only 3 × 10−7;
but if we do the same measurements on the pure state
ρ̂ = |z↑〉〈z↑| with r = (0, 0, 1), the chance of finding an
unphysical rd is 98%. For higher dimensional quantum
systems, this problem becomes even more severe (see
Section 4.1). It has been argued recently [17] that the
direct inversion method provides more accurate results
because it is less biased than other methods (see Table 1
for an example of such biases); but we side with Ref. [18]
in preferring physically valid density matrices despite
their bias, and do not report direct inversion results in
our comparison of methods. Many interesting quantities
derived from the density matrix, particularly ones that
go beyond linear operator expectation values and involve
the entire density matrix, cannot be defined properly for
density matrices that are not positive semi-definite.

Nevertheless, rd is an important starting point for
many other tomographic techniques. In what follows,
we broadly distinguish between tomographic methods

that minimize some distance between rd and the space of
physically valid tomographic Bloch vectors (Sections 2.2
and 2.3), and methods not based on rd at all
(Section 2.4).

2.2. Distanceminimization to rd

In order to find a valid tomographic density matrix even
if ‖rd‖ > 1, we search for a modified Bloch vector r tomo
that (i) is physically valid, ‖r tomo‖ ≤ 1, and that (ii) lies
closest to rd in terms of a distance to be defined. In Figure
1 the three dashed lines emanating from the blue dot
indicate the locations of the points that minimize three
types of distances to rd on concentric spherical shells
around the origin (r = 0); their intersections with the
unit sphere surface (red circle), among others, provide
useable tomographic Bloch vectors and are discussed in
detail below.

2.2.1. Minimump-distance of the Bloch vectors
The simplest family of distances between two Bloch vec-
tors are the p-distances ‖r −r ′‖p = (|x−x′|p+|y−y′|p+
|z − z′|p)1/p for p ≥ 1. Even though the direct inversion
Bloch vector rd can be located anywhere in the unit cube,
the space of physically valid Bloch vectors has an intrinsic
spherical symmetry around the fully mixed state r = 0,
which suggests that only the Euclidean distance p = 2 is
to be used. In this case, the scaled direct inversion Bloch
vector minimizing the Euclidean distance to rd over the
space of physically valid Bloch vectors is

rsd =
{

rd if ‖rd‖ ≤ 1,
rd/‖rd‖ if ‖rd‖ > 1.

(11)

Radial scaling is shown in Figures 1 and 2 as a red line,
with rsd indicated as a red dot.

2.2.2. Minimum Schatten p-distance of the density
matrices
The simplest family of distances between two density
matrices are the Schatten p-distances ‖ρ̂ − ρ̂′‖p. They
include the trace distance (p = 1) and the Frobenius
or Hilbert–Schmidt distance (p = 2). The Schatten p-
distance between two qubit density matrices ρ̂ = 1

2 (1+
r · σ̂ ) and ρ̂′ = 1

2 (1+ r ′ · σ̂ ) is ‖ρ̂ − ρ̂′‖p = 21/p 12‖r −
r ′‖, proportional to the Euclidean distance between their
Bloch vectors. The minimum of any Schatten p-distance
between the direct inversion tomography and the space
of physically valid density matrices is therefore given by
Equation (11).
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4 R. SCHMIED

Figure 1. Example of a qubit tomography, assuming that 30 ideal measurements (η = 1, see Section 3.1) along each Cartesian
quantization axes have resulted in (Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓) = (29, 1, 25, 5, 15, 15). All quantities are restricted to the z = 0 plane.
The blue dot shows the zero of the Kullback–Leibler divergence (log-likelihood) at rd = ( 1415 ,

2
3 , 0) from Equation (10), which is outside

of the physically allowed region ‖r‖ ≤ 1 indicated by the red circle. The straight red line (Sections 2.2.1 and 2.2.2) connects rd with
the totally mixed state r = 0; the red dot shows the result of linear scaling rsd = (0.814, 0.581, 0) [Equation (11)]. The grey
contours of the Kullback–Leibler divergence are at DKL(rd|r) = 10n/4 for n = 1 . . . 10 (outward from the blue dot). The grey line
(Section 2.2.4) traces the constrained likelihood maximum, Equation (15), as a function of ‖r‖; the likelihood maximum must be
on this line if the prior depends only on ‖r‖ (Haar measure), such as the grey dot showing the maximum of the likelihood at
r1<k≤2
MLE = rChMLE = (0.848, 0.530, 0), or the black dots showing the maximum of the likelihood with entropy weight (24) for the

Hilbert–Schmidt prior (k = 2) at (0.800, 0.494, 0), the Bures prior (k = 3
2 ) at (0.827, 0.513, 0) and the Chernoff-information prior at

(0.832, 0.517, 0). The green contours of the Fisher information distance (Section 2.2.5) are at DF (r − rd) = 10n/4 for n = 1 . . . 11;
the green dot shows the point with minimum Fisher information distance at rFi = (0.866, 0.500, 0), located on the green line of
points tracing the minimum of the Fisher information distance as a function of ‖r‖. The orange ellipses show the Bayesian means and
variances of r weighted by the likelihood (Section 2.4): from left to right, they use radial priors with k = 2 (Hilbert–Schmidt measure),
k = 3

2 (Bures measure), the Chernoff-information measure (23) and k = 1 (pure states only); the cyan ellipses show the same with
entropy weight (24): from left to right, they use radial priors with k = 2 (Hilbert–Schmidt measure), k = 3

2 (Bures measure) and the
Chernoff-information measure. (The colour version of this figure is included in the online version of the journal.)

2.2.3. Maximumfidelity

The fidelity F(ρ̂, ρ̂′) = Tr
(√√

ρ̂ · ρ̂′ ·√ρ̂

)
is a

frequently usedmeasure of the overlap between twoqubit
densitymatrices [17]. Since it does not break the spherical
symmetry of the space of Bloch vectors, maximizing the
fidelity between two density matrices necessarily reduces
to the purely radial scaling of Equation (11).

2.2.4. Kullback–Leibler divergence and theMLE
Bayes’ theorem states that if we are given a set of experi-
mental measurements (Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓),
the likelihood that a certain density matrix ρ̂ = 1

2 (1+ r ·
σ̂ ) was at the source of these data is

L(ρ̂|Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓)

∝ C(ρ̂) × P(Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓|ρ̂), (12)

where C(ρ̂) is a prior density in the space of density
matrices, vanishing whenever ‖r‖ > 1. Choosing a prior
density can be amatter of taste or actual prior knowledge;
however, in almost all cases the prior density will depend

only on ‖r‖ but not on the direction of r (i.e. it is a Haar
measure with respect to the spherical symmetry group).

In this section, we only use the Hilbert–Schmidt mea-
sure

CHS(r) =
{
const. if ‖r‖ ≤ 1,
0 if ‖r‖ > 1

(13)

as a prior density, which is uniform when viewed as
the density of Bloch vectors within the unit sphere (but
non-uniformwhenviewed in anyother parametrization).
While this is a simple and very common (often tacit)
choice, it is not the most natural prior density; in Section
2.3 we discuss different prior densities and their applica-
tion.

A popular tomography method is to search for the
maximum of the likelihood (12) with CHS(r) [19]. Since
the global maximum of the probability P , Equation (9),
is at rd, we see that whenever ‖rd‖ ≤ 1 the maximum-
likelihood estimate (MLE) of the Bloch vector is simply
rMLE = rd. If ‖rd‖ > 1, on the other hand, we define
the scaled log-likelihood, relative entropy or Kullback–
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Leibler divergence [19,20]

DKL(rd|r) = ln
[P(rd)

P(r)

]

= Nx↑ ln
(
1 + xd
1 + x

)
+ Nx↓ ln

(
1 − xd
1 − x

)

+ Ny↑ ln
(
1 + yd
1 + y

)
+ Ny↓ ln

(
1 − yd
1 − y

)

+ Nz↑ ln
(
1 + zd
1 + z

)
+ Nz↓ ln

(
1 − zd
1 − z

)
(14)

and minimize this distance over the space of physically
valid density matrices ‖r‖ ≤ 11. Especially for large
numbers of experimental data, the log-likelihood is easier
to calculate in practice than the likelihood, as its dynamic
range is much smaller; since the logarithm is mono-
tonic, maximizing P is equivalent to minimizing DKL.
In Figures 1 and 2, the grey contours show the Kullback–
Leibler divergence, and the gray dot in Figure 1 gives the
likelihood maximum within the unit sphere. The grey
line emanating from the blue dot is found bymaximizing
Equation (12), orminimizing Equation (14), for constant
‖r‖, assuming that the prior depends only on ‖r‖: we find
that these extrema are located at

rMLE(α) =
[
Jα/Nx (xd), Jα/Ny (yd), Jα/Nz (zd)

]
(15)

with the analytic function Ju(t) defined piecewise,

Ju(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sign (t) for u → −∞
2
√

u+1
3u sign (t) cos

[
1
3 cos

−1
(
3
2 |t|

√
3u

(u+1)3

)]
if u < −1 (branch cut at t = 0)

sign (t)|t|1/3 if u = −1

2
√

u+1
−3u sinh

[
1
3 sinh

−1
(
3
2 t
√ −3u

(u+1)3

)]
if − 1 < u < 0

t if u = 0

2
√

u+1
3u sin

[
1
3 sin

−1
(
3
2 t
√

3u
(u+1)3

)]
if u > 0

0 for u → +∞.

(16)

The grey line given by Equation (15) has the following
properties as a function of the Lagrange multiplier α:

• rMLE(α) maximizes P(Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,
Nz↓|ρ̂) and minimizes DKL(rd|r) under the con-
straint that ‖r‖ = ‖rMLE(α)‖,

• ‖rMLE(α)‖ decreases monotonically with α ∈ R,
• limα→−∞ rMLE(α) = (

sign[xd], sign[yd], sign[zd]
)
,

• rMLE(0) = rd,
• limα→∞ rMLE(α) = 0.

Since Ju(t) has a branch cut discontinuity at t = 0 for
u < −1, we must be careful when evaluating Equation
(15) if any of the (xd, yd, zd) are zero (see below).

Thus the maximum likelihood method for Cartesian-
axes qubit tomography is simpler than the R̂·ρ̂·R̂ iteration
used for larger systems [19], and consists of the following
steps:

(1) Calculate rd from Equation (10).
(2) If ‖rd‖ ≤ 1, set rMLE = rd.
(3) If ‖rd‖ > 1, find α > 0 such that ‖rMLE(α)‖ = 1.

2.2.5. Fisher information distance
When the direct inversion Bloch vector rd is only slightly
outside the unit sphere of physically valid states, it may be
sufficiently accurate to minimize the quadratic approxi-
mation of the Kullback–Leibler divergence (14),

DKL(rd|r) = 1
2

[(
x − xd
�〈〈σ̂x〉〉

)2
+
(
y − yd
�〈〈σ̂y〉〉

)2

+
(
z − zd
�〈〈σ̂z〉〉

)2
]

+ O[(r − rd)
3], (17)

given in terms of the error estimates of Equation (8).
This approximation, called the Fisher information dis-
tance [21], is easier to use than the Kullback–Leibler
divergence while mostly giving comparable results (see
Table 2). In Figures 1 and 2 the green lines show the

minima of the Fisher information distance on concentric
shells around theorigin r = 0, and the greendot inFigure
1 minimizes this distance between rd and the space of
physically valid states. In analogy to Equation (15), the
green line is given by

rFi(α) =(
xd

1 + α[�〈〈σ̂x〉〉]2 ,
yd

1 + α[�〈〈σ̂y〉〉]2 ,
zd

1 + α[�〈〈σ̂z〉〉]2
)

(18)
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6 R. SCHMIED

and has similar properties, so that the three-step recipe of
Section 2.2.4 can still be used. There are situations where
no α exists that satisfies ‖rFi(α)‖ = 1, but we have found
that they are very unlikely to occur in an experiment (see
Tables 1 and 2).

2.3. MLEwith radial prior

The Bayesian prior density C(ρ̂) used in Equation (12)
contains two components that are sometimes difficult to
distinguish.On the onehand, it contains ameasure on the
space of density matrices, which is a way of saying how
“finely grained” this space is in its different regions, or
from what distribution a purely random density matrix
should be drawn in the absence of concrete knowledge
about the system [22]. This first part is likely invariant un-
der unitary transformations (i.e. a Haarmeasure). On the
other hand, C(ρ̂) can contain prior knowledge about the
particular situation in which we are determining density
matrices, gained for example from previous experiments.
This second part need not be invariant under unitary
transformations. Expressed in a given parametrization,
which in our case is the Bloch vector r and Equation
(1), the prior density C(r) is the product of the measure
expressed in terms of r and the density gained from prior
knowledge. It is important to note that concrete prior
knowledge in the absence of a measure on the space of
density matrices is useless.

In the previous section, we have used the Hilbert–
Schmidt measure on the space of Bloch vectors (13) be-
cause of its simplicity, ubiquity and geometric appeal.
However, this prejudice is misleading, and the Hilbert–
Schmidt measure is neither the only nor the most natural
density of quantum states of a qubit. In this section, we
discuss different density-matrix measures, and then use
these to generalize the maximum-likelihood method to
non-trivial priors.

2.3.1. Radial prior densities of quantum states
There is much freedom in defining a measure on the
space of Bloch vectors. In order to focus on more natural
measures, we use a physical argument for defining such
a measure: a constructive procedure related to quantum
state purification [4,22,23].

We start from the observation that the density of pure
states of a d-dimensional quantum system is uniquely
defined as a Haar measure over the unitary group U(d);
that is, since every pure state is related to every other pure
state by a unitary transformation, and since all unitary
transformations can be parametrized as points on the
surface of a (d2 − 1)-dimensional hypersphere, we can
use the geometric measure on this hypersphere’s surface
as the natural measure in the space of pure states.

Next, we consider the joint tensor-product quantum
state of our two-dimensional qubit (D = 2) and a k-
dimensional ancillary system, for a total dimension d =
D + k. For every pure state of this (2 + k)-dimensional
system, we can trace out the ancillary dimensions to find
a reduced qubit density matrix (1). The reverse is also
true, called quantum state purification: for every qubit
density matrix (1) we can find a pure state of a system of
d ≥ 2D = 4 dimensions, of which our state is the partial
trace. This partial trace operation therefore constructs
a unique measure of qubit density matrices, depending
only on the ancillary dimension k. Expressed as a density
in the space of qubit Bloch vectors (the unit sphere), the
resulting density (measure) is

Ck(r) =
⎧⎨
⎩

�(k+ 1
2 )

π3/2�(k−1) (1 − ‖r‖2)k−2 if ‖r‖ < 1

0 if ‖r‖ > 1
(19)

for k > 1, where �(z) is the Euler gamma function. As
expected, this measure only depends on the length of the
Bloch vector but not on its direction. The mean squared
Bloch vector of this measure is 〈‖r‖2〉 = 3/(2k + 1): for
larger values of k, mixed states carry more weight than
pure states.

How canwe choose a value for the ancillary dimension
k? While the derivation of Equation (19) assumes that k
is an integer, we can use the resulting prior density for
any value of k. Not all values of k are equally natural; we
deem the following choices meaningful:

• k = 1 pure states In the limit k → 1+ the mea-
sure (19) becomes fully concentrated on the surface
of the unit sphere (‖r‖ = 1), meaning that only
pure states have a nonzero likelihood in Equation
(12). While this is not a natural choice, as (strictly
speaking) pure states do not exist in nature, it can be
of interest for theoretical considerations or in cases
where the state purity is known to be very high.

• k = 3
2 Bures measure In general, the Bures mea-

sure [22,24,25] is considered the most natural den-
sity of mixed states [22], as it is the Jeffreys prior
[26]. For qubits, its distribution is formally that of
tracing over k = 3

2 ancillary dimensions, and has
the radial density [27]2

CB(r) = C 3
2
(r) =

⎧⎨
⎩

1
π2

√
1−‖r‖2 if ‖r‖ < 1,

0 if ‖r‖ > 1,
(20)

shown as a solid blue line in Figure 3. If nothing at all
is known about the expected tomographic density
matrix, then this Jeffreys prior density should be
used.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

as
el

] 
at

 0
0:

40
 2

2 
A

pr
il 

20
16

 



JOURNAL OF MODERN OPTICS 7

Figure 2. Same as Figure 1 but for (Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓) = (26, 4, 23, 7, 15, 15). The global likelihood maximum
rd = (0.733, 0.533, 0) (blue dot) now lies inside the unit sphere and coincides with the red, grey and green dots of Figure 1. (The
colour version of this figure is included in the online version of the journal.)

Note that for systems with Hilbert space dimension
D > 2, the Bures measure cannot be constructed by
choosing a particular value of k.
In the sphere of Bloch vectors r , the Bures measure
assigns a higher density of states to purer states
(large r = ‖r‖) than to more mixed states (small r).
We can introduce a transformed radial coordinate
s =

[
2
π

(
sin−1 (r) − r

√
1 − r2

)]1/3
, in terms of

which the Bures measure is homogeneous:

CB(s) =
{

3
4π if ‖s‖ < 1,
0 if ‖s‖ > 1.

(21)

This shows that the flatness of the measure depends
on the chosen parametrization, and cannot be used
as a criterion to prefer one measure over another.

• k = 2 Hilbert–Schmidt measure The previously
used Hilbert–Schmidt measure of Equation (13) is
found by setting the ancillary dimension equal to
the system dimension, k = D = 2. It is equal to
the Euclidean measure in the unit sphere of Bloch
vectors, meaning that it gives every Bloch vector
equal a prioriweight in the simplest geometric sense
(solid red line in Figure 3). This prior is used very
frequently in practice, mainly due to its mathemat-
ical simplicity; but it must be noted that it does not
represent the natural density of qubit states [22].

• k � 2 highly mixed states For large ancillary
dimensions the density matrix measure becomes
Gaussian and peaked around the fully mixed state,

Ck(r) ≈
(
k + 1

2
π

) 3
2

e−(k+ 1
2 )‖r‖2 for k � 1 (22)

Figure 3. A few spherically symmetric prior densities of
Bloch vectors. Solid red line: the Hilbert–Schmidt measure
CHS(r) = C2(r), Equation (13). Solid blue line: the Bures
measure CB(r) = C 3

2
(r), Equation (20). Solid green line: the

Chernoff-informationmeasureCCh(r), Equation (23). The dashed
lines are the same measures weighted by the entropy as in
Equation (24), and normalized. (The colour version of this figure
is included in the online version of the journal.)

This measure can be used for tomographies where
the state is known to be highly mixed.

There are other ways of defining a measure on the
space of qubit density matrices. As an example, the
Chernoff-information measure [27]

CCh(r) =
⎧⎨
⎩

(1−‖r‖2)− 1
2 −1

2π(π−2)‖r‖2 if ‖r‖ < 1

0 if ‖r‖ > 1
(23)

follows from the experimental distinguishability of
density matrices, and is shown as a green line in
Figure 3.

Once a measure has been chosen for the space of
density matrices, the prior density in Equation (12) can
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8 R. SCHMIED

be taken directly from Equations (19) and (23), or other,
or it can be further multiplied by a weight of our choice,
for example representing concrete prior knowledge. As
an example, wemay use the entropy (4) as a radial weight,
in combination with an underlying state measure:

C(r) ∝ Ck(r) × S(r), (24)

biasing the likelihood (12) towards less pure states.
Figure 3 shows a few examples of prior densities, includ-
ing entropy weights.

2.3.2. MLEs with different priors
The MLE of Section 2.2.4 is easily adapted to any spher-
ically symmetric prior density C(ρ̂) = C(‖r‖). Since
Equation (15) maximizes the likelihood on each concen-
tric shell ‖r‖ = ‖rMLE(α)‖, maximizing the likelihood
globally thus means finding the value of α ∈ R that
maximizes the likelihoodL[rMLE(α)], Equation (12). For
this maximization we can distinguish different classes of
priors:

• pure or pure-peaked If the prior density is singular
at ‖r‖ = 1, for example Equation (19) with 1 ≤ k <
2 or Equation (23), it is sufficient to look for the
value of α for which ‖rMLE(α)‖ = 1. Two special
cases are important: if two or three components of
rd are zero, then the likelihood maximum is not
unique and the MLE should not return a value; the
same is true if only one component of rd is zero and
the determined value of ( − α) is larger than the
number of measurements along this axis.3

• monotonic pure-biased Wedistinguish three cases:

– ‖rd‖ > 1 find the value of α > 0 for which
‖rMLE(α)‖ = 1.

– ‖rd‖ = 1 the likelihood maximum is at
rd.

– ‖rd‖ < 1 find the value of α < 0, with
‖rMLE(α)‖ ≤ 1, that maximizes the likeli-
hood L[rMLE(α)].

• uniform (Hilbert–Schmidt) see Section 2.2.4 for
an extended discussion.

• monotonic mixed-biased find the value α > 0 for
which rMLE(α) maximizes Equation (12).

• non-monotonic find the valueα, with‖rMLE(α)‖ ≤
1, for which rMLE(α) globally maximizes
Equation (12).

In Figures 1 and 2 the likelihood maxima are shown
for several different prior densities. We can see that for
many priors and experimental results, the MLE is rank-
deficient (‖rMLE‖ = 1), which is a serious drawback of
this method [4].

2.4. Bayesianmean estimate

Instead of reporting only the maximum of the likelihood
(12), we can interpret the likelihood as a density in the
state space and use it to calculate a weighted mean state.
This Bayesian mean estimate [4] is

ρ̂BME =
∫

ρ̂ L(ρ̂) Dρ̂∫ L(ρ̂) Dρ̂
, (25)

where Dρ̂ represents the chosen measure on the space
of density matrices, and L(ρ̂) contains the experimental
knowledge including prior knowledge (see the discussion
of Section 2.3 on the two components of the prior den-
sity). In practice this integral is done by averaging the
components of the Bloch vector,

rBME =
∫
‖r‖≤1 rL(r)d3r∫
‖r‖≤1 L(r)d3r

, (26)

where the measure on the space of density matrices is
now included in the definition of the likelihood (12) and
expressed in terms of the geometric Bloch vectormeasure
d3r , as in Equation (19). The Bayesian mean is generally
more plausible than the likelihoodmaximum [4] because
it is never rank-deficient.

This method can be naturally extended to higher mo-
ments of the density matrix, from which we can calculate
a covariance matrix: for example, with

x2BME =
∫
‖r‖≤1 x

2L(r)d3r∫
‖r‖≤1 L(r)d3r

(27)

we can define the variance (�xBME)
2 = x2BME − x2BME,

and similarly the entire covariancematrix for the compo-
nents of rBME. In Figures 1 and 2 we show these covari-
ances as orange and cyan ellipses around the Bayesian
mean estimates for different choices of the prior density
C(r).

At this point we need to distinguish between two kinds
of uncertainty: firstly, there is the quantum-mechanical
uncertainty within a single densitymatrix (Bloch vector),
which is typically a statistical mixture of pure states,
and leads to the well-known stochastic outcomes of obs-
ervables through Born’s rule; and secondly, there is the
uncertainty in the density matrix (Bloch vector) para-
metrization coming from tomographic uncertainties,
given above by the covariance matrix of the components
of the Bloch vector.

When we calculate the linear expectation value and
variance of an operator Â, these two types of uncertainty
cannot be distinguished, and the expectation value and
variance are estimated with
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〈Â〉 =
∫
‖r‖≤1 Tr[ρ̂(r)Â]L(r)d3r∫

‖r‖≤1 L(r)d3r
= Tr[ρ̂BMEÂ],

(28a)

(�A)2 = 〈Â2〉 − 〈Â〉2
= Tr[ρ̂BMEÂ

2] − Tr[ρ̂BMEÂ]2, (28b)

where the average density matrix is given in Equations
(25) and (26). In this sense, the mean density matrix
ρ̂BME = ρ̂(rBME) represents the statistical mixture con-
taining both the quantum uncertainty in each Bloch vec-
tor and the uncertainty of the parametrization of the
Bloch vector itself.

The situation is differentwhenweestimate theBayesian
mean value of a non-linear quantity such as the mean
purity 〈Tr (ρ̂2)〉 or the mean entropy 〈S(ρ̂)〉: in these
cases, the covariance of the Bloch vector, Equation (27),
becomes important. For example,

〈S(ρ̂)〉 =
∫
‖r‖≤1 S[ρ̂(r)]L(r)d3r∫

‖r‖≤1 L(r)d3r
�= S(ρ̂BME),

(29a)

[�S(ρ̂)]2 =
∫
‖r‖≤1 S

2[ρ̂(r)]L(r)d3r∫
‖r‖≤1 L(r)d3r

− 〈S(ρ̂)〉2 (29b)

must be calculated by taking the uncertainty in the Bloch
vector parametrization, given by L(r), into account.

3. Error considerations

3.1. Including experimental errors

In a real experiment, the outcomes of Stern–Gerlachmea-
surements are never perfect. For simplicity, we assume
that independently of the measurement direction, every
measurement has a probability η of giving the correct
result and a probability 1 − η of giving a random result
(i.e. passing through a depolarizing channel [28]), or
equivalently, a probability of (1 + η)/2 of giving the
correct result and (1 − η)/2 of giving the wrong result.

Many sources of experimental errors can be expressed
in this form, apart from simple detection errors. For
example, if the experimental Stern–Gerlach axes fluctuate
around their respective mean directions with a variance
4〈sin2 (χ/2)〉 (with χ the angle between the desired axis
and the true experimental axis), the experimental error
can be described by η = 〈cos (χ)〉 = 1 − 2〈sin2 (χ/2)〉.
If several independent sources of errors η1, η2, . . . are
present, the total error is described by their product η =
η1η2 . . ..

In the presence of such experimental errors, the prob-
ability of measuring a certain data-set is modified from

Equation (9) to

Pη(Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓|ρ̂)

=
(
Nx

Nx↑

)(
1 + ηx

2

)Nx↑ (1 − ηx
2

)Nx↓

×
(
Ny

Ny↑

)(
1 + ηy

2

)Ny↑ (1 − ηy
2

)Ny↓

×
(
Nz

Nz↑

)(
1 + ηz

2

)Nz↑ (1 − ηz
2

)Nz↓
(30)

with η ∈ [0, 1]. For η = 1 the measurements are perfect
andwe recover Equation (9); forη = 0 themeasurements
contain no information about ρ̂.

The form of Equation (30) is strictly that of Equation
(9) where the Bloch vector r is replaced by ηr . All the
tomographic methods of Section 2 can therefore be used
to determine the vector ηr , with the caveat that the prior
density depends on r and not on ηr . The direct inversion
Bloch vector (10), which does not depend on the prior
density, is now rd(η) = rd/η: it containsmore structure
than rd, since ‖rd(η)‖ ≥ ‖rd‖, in order to compen-
sate for the loss of information during the measurement.
This observation remains true for the more complicated
tomographic methods discussed above, and invites the
following distinction:

• For η < 1 we can interpret any tomographic r(η) as
a platonic state representing the ideal of the system,
which is poorly measured in our experiment using
Equation (30). If we could perform a more accurate
measurement, we would find a state more closely
resembling this r(η).

• We can define a positivist state r̃(η) = ηr(η) that
already includes the effects of imprecise measure-
ments; experimental outcomes can be predicted in
termsof perfectmeasurements of this positivist state,
using Equation (9).

The author believes that platonic ideals such as r(η)

should be discouraged in quantum mechanics, as they
do not represent what can currently be measured, but
instead hypothesize knowledge that may forever remain
out of experimental reach. Instead, we suggest using the
state r̃(η) as a fair representation of the experimenter’s
current and actual knowledge about the system.

3.2. Estimating the tomographic uncertainty

For every tomographic reconstruction, it is important
to be able to give an estimate of the uncertainty of the
resulting density matrix [29]. While the Bayesian mean
of Section 2.4 gives such an estimate via Equation (27),
shown as orange and cyan ellipses in Figures 1 and 2, the
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10 R. SCHMIED

Figure 4. Bootstrapping (Section 3.2) the state r = (13/15, 0, 0)
(yellow dot) via scaled direct inversion tomography (Section
2.2.1). To generate this graphic, all 29,791 possible experimental
outcomes (Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓) of performing Nx =
Ny = Nz = 30 Stern–Gerlach measurements on the state
ρ̂(r) were subjected to a tomographic state reconstruction,
and the resulting Bloch vectors (projected into the xy plane)
were plotted in a 2D histogram using weights from Equation
(9), in 31 × 31 bins. The mean reconstructed state vector is at
(0.862±0.086, 0±0.180, 0±0.180), as listed in Table 1. The rms
trace distance to r , Equation (31), is 0.135. (The colour version of
this figure is included in the online version of the journal.)

other methods presented here do not give natural error
estimates.

A widely usedmethod for nonetheless finding such an
error bar, called bootstrapping [30] or case resampling,
goes as follows: once we have tomographically deter-
mined a density matrix from experimental data, we can
use this density matrix to generate new “fake” data-sets
using the same measurement operators and the prob-
abilities of Equation (9) or (30); the argumentation is
that in principle, each one of these fake data-sets could
have beenmeasured, instead of the set we have measured
in reality. For each such fake data-set we can then do
a tomography, and finally average any observables (or
just the density matrix) over these tomographies. As is
shown in Figure 4 andTable 1, this procedure can be used
to calculate the covariance matrix of the components of
the tomographic Bloch vector. While these covariances
correctly estimate the uncertainty we are looking for [30],
the bootstrap method contains systematic biases for the
different tomographic methods, as shown in Table 1.
Ideally, the weighted mean of all fake-data tomographies
would be equal to the input state, such that we can use
this technique to extract a covariance matrix without
introducing a bias; however, this is not the case [17].
Nevertheless, the covariancematrix found in this way can
still be used in order to get an idea of the tomographic
uncertainty.

Wefind that the bootstrapped covariances of theBloch
vector components are slightly smaller than the covari-
ances estimated with the Bayesian mean (Section 2.4) for
a single experimental data-set. The similar magnitudes
of these two sets of error estimates lead us to the con-
clusion that the bootstrap method can be a valid tool for
estimating tomographic uncertainties. We believe that
the cautionary footnote of Ref. [4] concerning the absurd
results of bootstrapping for, e.g. (Nx ,Ny ,Nz) = (0, 0, 1)
do not apply when several non-commuting observables
are measured, as we do in this text with Nx = Ny = Nz
≥ 1.

Concerning the choice of input state r for the gen-
eration of fake data-sets, the non-parametric bootstrap
method (direct re-sampling of measured data) requires
us to use the direct-inversion Bloch vector rd, Equation
(10), even if ‖rd‖ > 1 is unphysical. While this rd-based
non-parametric bootstrap is closest to the experimental
data and may therefore be expected to be least biased,
it is unrealistic in the case ‖rd‖ > 1 because it neglects
the physical condition that any density matrix used for
predicting experimental outcomes, including generating
fake data-sets, must be positive semi-definite. If we use
a different Bloch vector, for example rMLE, the method
is called a parametric bootstrap and is physically better
justified, albeit biased.

4. Comparison of tomographymethods

In this section, we quantify the performance of the differ-
ent tomographic methods discussed above. We use the
following procedure, similar to suggestions in Refs. [4,5,
19], to calculate an accuracy measure for each method:

(1) For a given input state r and a desired number
of measurements along the Cartesian axes, in our
case Nx = Ny = Nz = 30, we enumerate all
313 = 29, 791 possible experimental outcomes
N = (Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓) of Stern–
Gerlach measurements, together with their prob-
abilities P(N |r) from Equation (9).

(2) For each possible experimental outcomeN we re-
construct the tomographicBlochvector r tomo(N ).
This step is done differently for the various meth-
ods discussed in Section 2. As an example, Figure
4 shows a 2D histogram of the Bloch vectors re-
constructed with scaled direct inversion, binned
with their weight given in Equation (9). Table 1
compares the performance of the different tomo-
graphic methods when applied to the example of
Figure 4.

(3) For each possible experimental outcome N we
quantify the tomographic error through the trace
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Table 1. The bootstrapping covariance ellipses of Figure 4 for the different tomography methods, using the exemplary input state
r = (13/15, 0, 0) and Nx = Ny = Nz = 30 measurements. For each method, the corresponding color in Figure 1 is indicated. The
ellipses are centered at 〈r tomo〉 = {〈xtomo〉, 0, 0} and have the given radii {�x ,�y,�z} in the Cartesian directions. �tomo gives the
mean accuracy in terms of the rms trace distance to r , Equation (31). The most accurate methods (and up to 5% higher) are highlighted
in green, and poorly performing methods are highlighted in red. The last column gives the failure rate for methods that do not always
give a well-defined result.

Method and prior density 〈xtomo〉 �x �y, z �tomo Pfail

Scaled direct inversion (Section 2.2.1) • 0.862 0.086 0.180 0.135
Fisher information distance (Section 2.2.5) • 0.866 0.091 0.168 0.127 5 × 10−10

MLE: 1 ≤ k < 2 and Chernoff measure • 0.924 0.045 0.269 0.193 3%
(Section 2.3) k = 2 (Hilbert–Schmidt) • 0.864 0.088 0.174 0.131

Chernoff with entropy weight • 0.853 0.084 0.165 0.124
k = 3

2 with entropy weight • 0.844 0.085 0.160 0.122
k = 2 with entropy weight • 0.816 0.083 0.149 0.116

BME: k = 1 (pure states) © 0.907 0.044 0.224 0.161
(Section 2.4) Chernoff measure © 0.842 0.101 0.167 0.129

k = 3
2 (Bures measure) © 0.830 0.077 0.162 0.122

k = 2 (Hilbert–Schmidt measure) © 0.797 0.077 0.148 0.117
Chernoff with entropy weight © 0.790 0.084 0.146 0.118
k = 3

2 with entropy weight © 0.781 0.076 0.142 0.116
k = 2 with entropy weight © 0.756 0.075 0.136 0.117

Table 2. Comparison of the accuracies �tomo(r) of various tomography methods, Equation (31). For each method, the corresponding
color in Figure 1 is indicated. For a given input state (Bloch vector r), Nx = Ny = Nz = 30 measurements are simulated along
each Cartesian quantization axis, and all 29,791 possible experimental outcomes N = (Nx↑,Nx↓,Ny↑,Ny↓,Nz↑,Nz↓) are fed into each
tomography method (see Figure 4 for an example), in the same way as bootstrapping (Section 3.2 and Table 1); finally, the root-mean-
square (rms) of the trace distances 1

2‖r − r tomo‖ of the results (see Section 2.2.1) are computed with weights from Equation (9). Smaller
values indicate better accuracy of the tomography method; the most accurate methods for each input state (and up to 5% higher) are
highlighted in green, and poor methods are highlighted in red. We show exemplary results for six input states r , as in Table 1, and
the last column gives the rms of these accuracies averaged over all possible input states r with the given method’s prior density using
Equation (32). (∗) The probability for these methods to give an ill-defined result was at most 0.2%, except where noted; the given mean
values only include well-defined results. The strongly mixed states with large failure rates only contribute minimally to �̄tomo due to the
given prior density weighting. (§) For the six pure states along the Cartesian axes, this method always gives exactly the correct result. (†)
Averages were done with the Hilbert–Schmidt measure.

Method and prior density r = (0, 0, 0) (0, 0, 12 ) (0, 0, 0.9) (0, 0, 1) (1, 1, 0)/
√
2 (1, 1, 1)/

√
3 �̄tomo

Scaled direct inversion (Section 2.2.1) • 0.158 0.151 0.132 0.123 0.116 0.114 0.137†

Fisher information distance (Section 2.2.5)∗ • 0.158 0.151 0.119 0§ 0.126 0.123 0.139†
MLE: k = 1 (pure states)∗ • 37% failure 19% failure 3% failure 2% failure 0.113 0.107 0.111
(Section 2.3) Chernoff measure∗ (23) • 37% failure 19% failure 3% failure 2% failure 0.113 0.107 0.167

k = 3
2 (Bures measure)∗ (20) • 37% failure 19% failure 3% failure 2% failure 0.113 0.107 0.179

k = 2 (Hilbert–Schmidt) (13) • 0.158 0.151 0.125 0.087 0.117 0.118 0.137
Chernoff with entropy weight • 0.158 0.150 0.118 0.087 0.118 0.121 0.135
k = 3

2 with entropy weight • 0.156 0.148 0.116 0.087 0.120 0.124 0.135
k = 2 with entropy weight • 0.150 0.142 0.112 0.090 0.127 0.133 0.135

BME: k = 1 (pure states) © 0.443 0.306 0.145 0.086 0.111 0.109 0.110
(Section 2.4) Chernoff measure © 0.316 0.634 0.118 0.089 0.124 0.133 0.274

k = 3
2 (Bures measure) © 0.154 0.149 0.116 0.090 0.121 0.125 0.126

k = 2 (Hilbert–Schmidt) © 0.148 0.141 0.112 0.095 0.131 0.136 0.131
Chernoff with entropy weight © 1.65 1.53 0.112 0.097 0.139 0.161 1.08
k = 3

2 with entropy weight © 0.146 0.139 0.112 0.099 0.136 0.142 0.132
k = 2 with entropy weight © 0.141 0.134 0.115 0.106 0.144 0.151 0.133

distance 1
2‖r − r tomo‖ (see Section 2.2.2). We

choose the trace distance here because it quanti-
fies the experimental distinguishability of the two
involved density matrices; but since all Schatten
p-distances are equivalent for qubits, this is the
same as theHilbert–Schmidt distance quantifier of
Ref. [19].

(4) Wecalculate theweighted root-mean-square (rms)
trace distance of all possible experimental out-
comes N with

�tomo(r) = 1
2

[∑
N

P(N |r) × ‖r tomo(N ) − r‖2
]1/2

.

(31)
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12 R. SCHMIED

In Table 2 these accuracies are shown for several
tomographic methods and for several input states
r .

(5) These r-dependent accuracies are further aver-
aged using the prior density appropriate for each
method,

�̄tomo =
[∫

‖r‖≤1
C(r)�2

tomo(r)d3r
]1/2

. (32)

This is a single number characterizing a given
combination of a tomographicmethod and a prior
density, without any further parameters. In the
last column of Table 2 we show these averaged
accuracies for themethods considered here, where
for methods with no inherent prior we use the
Hilbert–Schmidt prior CHS(r), Equation (13).

These tomographic accuracy quantifiers contain vari-
ance contributions from both the tomographic method
in question and the randomness of the measurement
process (quantum projection noise). However, as the lat-
ter is independent of the tomographic method, we can
nonetheless use Equations (31) and (32) to compare the
accuracies of different tomography methods with each
other. Even though the differences in the accuracies are
sometimes small, we therefore compare them carefully
andhope to extrapolate thefindings tohigher-dimensional
quantum state tomographies.

We make the following observations for the different
tomographic methods:

• Scaled direct inversion While this method never
gives the most accurate results, it is very simple,
never fails, and provides a baseline against which
we can compare the more complex methods. The
overall performance of this method is comparable
to that of theMLEwithHilbert–Schmidt prior, since
their results are very often the same.

• Fisher information distance This method gives
good results for mixed states, but for pure states
its results are worse than those of the scaled direct
inversion, except on the Cartesian axes where the
results are perfect. This inconsistent behaviour leads
us to discourage the use of this method.

• MLE The maximum likelihood method fails for
priors that are singular for pure states (k = 1, the
Bures prior, and the Chernoff information prior)
by not giving unique results. The frequently used
Hilbert–Schmidt prior, on the other hand, performs
well, comparable to the scaleddirect inversion.When
mixed states are known to predominate, adding an
entropy weight gives even slightly more accurate
results.

It is often argued that the maximum likelihood
method with Hilbert–Schmidt prior (Section 2.2.4)
is the “best” method since we cannot gain by giving
an answer that is less likely, such as we do when
giving a Bayesian mean estimate [19]. This argu-
ment is misleading, however. Firstly, the question
of which prior density C(ρ̂) to use in the definition
of the likelihood (12) is not answered to our sat-
isfaction by tacitly using the Hilbert–Schmidt prior
(13), especially in situationswhere the experimenter
knows a priori that the generated states are nearly
pure. The argument that the flatness of the Hilbert–
Schmidt prior makes it most natural is contingent
on the chosen parametrization, see Equation 21 and
Ref. [31]. While the more natural Bures prior (20)
fails to give satisfactory results, see Table 2, other
priors are possible, and this degree of freedom casts
at least some uncertainty on the optimality of the
MLE method with HS prior. Secondly, as discussed
below, othermethods give on averagemore accurate
tomographic results according to our quantifiers
(31) and (32).

• BME The BME is not only more plausible than
the MLE because it is of full rank [4], but according
to our overall quantifier (32) the BME is the most
accurate method studied here (except when using
the Chernoff information measure, see below). As
we can see in Figures 1 and 2, the BME is strongly
influenced by the choice of the prior density C(ρ̂):
in general, theMLE is not even containedwithin the
corresponding BME uncertainty ellipsoid. In Table
2 we see that in experiments where pure states are
expected, using a pure-state (k = 1) prior gives the
best results of our study; if the purity of the state
is not known a priori, using a Bures or Hilbert–
Schmidt prior is the optimal choice.

It may be surprising that we find the Bayesian mean
estimate to be more accurate on average than the like-
lihood maximum, even though the former suffers from
rather strong prior-dependent biases and the latter has
been shown to be the most efficient estimation strategy
[19]. This discrepancy comes from the observation, seen
in Table 2, that while the BME is generally more accurate
for mixed states, the MLE method is more accurate for
pure states; however, in our averaging procedure, Equa-
tion (32), mixed states carry much more weight than
the pure states near the surface of the sphere of Bloch
vectors. In real experiments, the experimenter often tries
to generate rather pure quantum states, and for these the
MLEmethod indeeddoes givemore accurate results if the
Hilbert–Schmidt prior is assumed. However, we argue
that in this case the Hilbert–Schmidt prior is not the cor-
rect one to use, but either the pure-state prior C1(r) or the
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Bures prior CB(r), which correctly prioritize pure states;
and in these cases, the BME does out-perform the MLE
method [4], quantitatively for C1(r) and qualitatively for
CB(r) (since in this case the MLE method always returns
a pure state, which is not justified a priori).

We make the following observations for the different
prior densities:

• k = 1 pure states If we can be sure a priori that the
experimental data have been generated bymeasure-
ments on a pure state, then the BME method with
priorC1(ρ̂) is slightlymore accurate on average than
the MLE; also, the MLE method has a small proba-
bility of not giving a unique result at all. Therefore,
the BME is preferred in this case, keeping in mind
that the BME is never a pure state.

• k = 3
2 Buresmeasure Onaverage, theBMEmethod

gives much more accurate results than the MLE
method, and it never fails. For pure states, however,
the MLE is more accurate than the BME; but in this
case the pure-state prior is more appropriate.

• k = 2 Hilbert–Schmidt measure On average, the
BME method gives slightly more accurate results
than the MLE method. Again, for pure states the
MLE ismore accurate than the BME; but in this case
the Hilbert–Schmidt measure is an inappropriate
choice.

• Chernoff information measure While the Cher-
noff information measure gives good results for the
MLE, comparable to those of the Bures measure, it
gives very poor results for the BME of mixed states.
The reason for this is that the Chernoff information
measure is strongly peaked at pure states; but even
for the BMEof pure states its results are less accurate
than those obtained with the Bures measure. For
this reason, we discourage the use of the Chernoff
information measure.

• Entropy weights In general, both theMLE and the
BME give very good results with entropy-weighted
prior densities.Anexception is the entropy-weighted
Chernoff information measure, which gives very
poor results for mixed states.

We conclude that the Bayesian mean estimate is the
preferred method for single-qubit quantum state tomog-
raphy. The instances where the maximum-likelihood
method performs better, namely when pure states are
reconstructed with the Hilbert–Schmidt or Bures prior,
are not well justified since these priors are ill adapted to
the experimental situation concerning pure states.

4.1. Extrapolation to larger systems

For systems with larger Hilbert spaces (dimension D �
2), the direct inversion result is very likely to be non-

physical. The reason for this is that experimental quan-
tum states are mostly of very low rank, and the tomo-
graphic estimates of the zero eigenvalues of the density
matrix are statistically scattered around zero [32], with
the probability of all of them being positive becoming
exponentially small with the system dimension.

For this reason, the MLE becomes independent of the
choice of prior, since any measure Ck for k ≤ D, as well
as the Bures measure, will yield the same rank-deficient
result (the equivalent of a Bloch vector on the surface of
the unit sphere for the single-qubit case, the grey dot in
Figure 1). In this sense, the usual choice of the Hilbert–
Schmidt measure k = D [19] is valid.

For D � 2, the BME becomes computationally dif-
ficult to evaluate and must be calculated with a Monte
Carlo algorithm. While in principle the BME is still the
preferred method [4], such practical difficulties may dis-
courage its use in large systems.

In our experimental practice with two-component
Bose–Einstein condensates [3,33,34], we apply these in-
sights and use the MLE with Hilbert–Schmidt prior for
quantum state reconstruction, as is done in other groups
[35].We have found that this is the only computationally
feasible and physically validmethod for systems compris-
ing hundreds or even thousands of particles, and consider
it fortuitous that the present comparative study deems it
appropriate. The problem of its general rank-deficiency
is considered acceptable.

Notes

1. Even though the Kullback–Leibler divergence is not a
distance because it is not symmetric in its arguments, we
can still minimize it with respect to one of its arguments
since it is a premetric.

2. TheBuresmeasure for qubits (20) is the spherical equiv-
alent of the Jeffreys prior of the Bernoulli trial, C(p) =
1/[π√p(1 − p)].

3. Ju(t) has a branch cut discontinuity at t = 0 for u < −1,
and any results based on these values are ill-defined.
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Appendix 1. Choice of measurement axes

In this section, we motivate the set of Cartesian measurement axes
used for spin-1/2 tomography in this work (see Section 1).We find
the conditions under which a set of measurement axes can be used
for efficient and accurate quantum state tomography.

A.1. Direct inversion (filtered backprojection)

The direct inversion (filtered backprojection) technique of Ref.
[3] is the simplest general tomographic method for quantum-
mechanical spins of arbitrary length j. Given a true density matrix
with spherical tensor coefficients ρkq and a set of M measure-
ment axes (ϑn,ϕn) with measurement weights cn, the average
tomographically reconstructed spherical coefficients of the density
matrix (averaged over all possible measurement results) are found
by inserting Equations (6) into (4) of Ref. [3],

〈ρ(fbp)kq 〉 = (2k + 1)
M∑
n=1

cnDk
q0(ϕn,ϑn, 0)

j∑
m=−j

pm(ϑn,ϕn)t
jmm
k0

=
k∑

q′=−k
ρkq′ × 4π

M∑
n=1

cn
[
Yq
k (ϑn,ϕn)

]∗
Yq′
k (ϑn,ϕn). (A1)

This is the correct result 〈ρ(fbp)kq 〉 = ρkq if the measurement axis
orientations (ϑn,ϕn) and their weights cn satisfy

4π
M∑
n=1

cn
[
Yq
k (ϑn,ϕn)

]∗
Yq′
k (ϑn,ϕn) = δqq′ (A2)

for all k = 0, 1, . . . , 2j and q, q′ = −k,−k + 1, . . . ,+k. If we
decompose the angular density of measurement axes into a sum of
spherical harmonicswith coefficients

skq =
M∑
n=1

cn
[
Yq
k (ϑn,ϕn)

]∗
, (A3)

then Equation (A2) is satisfied whenever skq = 0 for all k =
2, 4, 6, . . . , 4j.

For j = 1/2, as used in this work, this implies that direct
inversion tomography [3] is correct on average if the distribution of
measurement axes satisfies s2,−2 = s2,−1 = s2,0 = s2,1 = s2,2 =
0, i.e. if there is no quadrupolar anisotropy in the distribution
of measurement axes. The smallest set of measurement axes that
satisfies these conditions is the Cartesian-axes tomography set with
equal numbers of measurements along each axis, as used in this
text.
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A.2. Maximum likelihood estimation

In contrast to direct inversion (Section A.1), maximum likeli-
hood estimation is intrinsically biased due to the physicality con-
straint on the density matrix (see Table 1). We can nonetheless
ask: what conditions must a set of measurement axes fulfil so
that the mean tomographic estimate is closest to the true density
matrix?

For the tomographic reconstruction of a completely mixed
spin-1/2 state (Bloch vector r = 0), we can quantify this ques-
tion by calculating the variance 〈‖rMLE‖2〉 of the resulting Bloch
vector, averaged over all possible sets of experimental results. We
find numerically that 〈‖rMLE‖2〉 is smallest if the distribution of
measurement axes has s2,−2 = s2,−1 = s2,0 = s2,1 = s2,2 = 0,
which is the same vanishing-quadrupole condition as found in
Section A.1.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

as
el

] 
at

 0
0:

40
 2

2 
A

pr
il 

20
16

 


	1. Introduction
	2. Tomographic methods
	2.1. Direct inversion tomography
	2.2. Distance minimization to rd
	2.2.1. Minimum p-distance of the Bloch vectors
	2.2.2. Minimum Schatten p-distance of the density matrices
	2.2.3. Maximum fidelity
	2.2.4. Kullback–Leibler divergence and the MLE
	2.2.5. Fisher information distance

	2.3. MLE with radial prior
	2.3.1. Radial prior densities of quantum states
	2.3.2. MLEs with different priors

	2.4. Bayesian mean estimate

	3. Error considerations
	3.1. Including experimental errors
	3.2. Estimating the tomographic uncertainty

	4. Comparison of tomography methods
	4.1. Extrapolation to larger systems

	Notes
	Acknowledgements
	Disclosure statement
	References
	Appendix 1. Choice of measurement axes
	Appendix A.1. Direct inversion (filtered backprojection)
	Appendix A.2. Maximum likelihood estimation




