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We address the question of assessing the number of particles sharing genuinely nonlocal correlations in a
multipartite system. While the interest in multipartite nonlocality has grown in recent years, its existence in
large quantum systems is difficult to confirm experimentally. This is mostly due to the inadequacy of standard
multipartite Bell inequalities to many-body systems: Such inequalities usually rely on expectation values
involving many parties, usually all, and require individual addressing of each party. In addition, known Bell
inequalities for genuine nonlocality are composed of a number of expectation values that scales exponentially
with the number of observers, which makes such inequalities impractical from the experimental point of view.
In a recent work [Tura et al., Science 344, 1256 (2014)], it was shown that it is possible to detect nonlocality
in multipartite systems using Bell inequalities with only two-body correlators. This opened the way for the
detection of Bell correlations with trusted collective measurements through Bell correlation witnesses [Schmied
et al., Science 352, 441 (2016)]. These witnesses were recently tested experimentally in many-body systems
such as Bose-Einstein condensate or thermal ensembles, hence demonstrating the presence of Bell correlations
with assumptions on the statistics. Here, we address the problem of detecting nonlocality depth, a notion
that quantifies the number of particles sharing nonlocal correlation in a multipartite system. We introduce a
general framework allowing us to derive Bell-like inequalities for nonlocality depth from symmetric two-body
correlators. We characterize all such Bell-like inequalities for a finite number of parties and we show that they
reveal Bell correlation depth k � 6 in arbitrarily large systems. We then show how Bell correlation depth can
be estimated using quantities that are within reach in current experiments. On one hand, we use the standard
multipartite Bell inequalities such the Mermin and Svetlichny ones to derive Bell correlations witnesses of any
depth that involves only two collective measurements, one of which being the parity measurement. On the other
hand, we show that our two-body Bell inequalities can be turned into witnesses of depth k � 6 that require
measuring total spin components in certain directions. Interestingly, such a witness is violated by existing data
from an ensemble of 480 atoms.
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I. INTRODUCTION

Local measurements on composite quantum systems may
lead to fascinating correlations that cannot be explained by
any local realistic theory such as classical physics. This
phenomenon, usually referred to as nonlocality (cf. Ref. [1]),
proves that the laws of physics at the microscale significantly
differ from those at the macroscale. More important, in recent
years it has been understood that nonlocality is a powerful
resource for device-independent applications that have no
classical analog, with the most prominent examples being
device-independent quantum key distribution [2,3], device-
independent entanglement detection [4,5], generation and am-
plification of randomness [6–8], and self-testing [9].

However, to be able to fully exploit nonlocality as a
resource, one first needs efficient methods to detect it in
the composite quantum systems that can exhibit it. Since
these systems can produce nonlocality upon measurement,
i.e., statistics violating a Bell inequality [10], we say that
their state is Bell correlated. Bell inequalities are naturally the

most common tool of revealing both nonlocal statistics and
Bell correlated states. These are inequalities constraining the
set of local realistic correlations, and their violation signals
nonlocality. A considerable amount of effort has been devoted
to introduce various constructions of Bell inequalities [11].
Still, the problem of nonlocality detection is much less ad-
vanced in the multipartite case than in the bipartite one, in
which recently loophole-free Bell tests have been performed
[12–15] and pushed to ever-higher standards [16–21]. There
are two main reasons for that: (i) The mathematical complex-
ity of finding all Bell inequalities grows double exponentially
with the number of parties and (ii) experimental verification
of nonlocality is much more demanding in the multipartite
case; in particular, individual settings assignments for each
party are needed to test a Bell inequality, and most of the
known multipartite Bell inequalities (such as, for instance, the
Mermin Bell inequality) involve a large number of measure-
ments and are constructed from correlation functions involv-
ing measurements by all parties (see Ref. [11]). Therefore,
such inequalities are not suited to detect nonlocal correlations
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in many-body systems in which only a few collective mea-
surements can be applied and one typically has access only to
two-body correlations.

One of the ways to tackle these difficulties in the mul-
tipartite case, recently put forward in Refs. [22,23], is to
consider Bell inequality involving only two-body correlators.
This reduces the mathematical complexity of the problem and
allowed demonstration that these inequalities are powerful
enough to reveal nonlocality in composite quantum systems
with an arbitrary number of particles [24–27]. Moreover, these
inequalities can be used to derive Bell correlation witnesses
expressed in terms of just a small number of collective two-
body expectation values, which are routinely measured in
certain many-body quantum systems (see Refs. [28,29]). This
makes these witnesses very practical and allowed testing them
in two experiments recently reporting on Bell correlations in
Gaussian many-body states consisting of 480 atoms [23] in
a Bose-Einstein condensate and 5 × 105 particles [30] in a
thermal ensemble.

However, the violation of these Bell inequalities and
the corresponding witnesses only signals the presence of
some kind of Bell correlations. In fact, it is unable to provide
more quantitative information about it. This naturally raises
the question of how to reveal the depth of nonlocality in many-
body systems, that is, how many particles share genuine Bell
correlations. At first sight, the problem is challenging. Known
Bell inequalities for genuine nonlocality not only use expecta-
tion values involving all parties but also require the ability to
perform a different measurement on each party. Furthermore,
the number of measurement settings scales exponentially with
the number of parties.

The main aim of this work is to address this question.
We first introduce a general framework to study the problem
of revealing the nonlocality depth in multipartite systems
using two-body correlations only, hence guaranteeing that
no high-order moment will be necessary at the level of the
witness. The problem of detection of genuine nonlocality in
this context is fully characterized for a relatively small number
of parties, providing lists of Bell-like inequalities that do the
job. Moreover, we give a Bell-like inequality detecting the
nonlocality depth from 1 to 7 for any number of parties. We
then turn to the question of witnessing Bell correlations depth
in many-body systems. First, building on the Mermin and
Svetlichny inequalities, we show that the nonlocality depth
of any multipartite system can be tested via a Bell correlation
witness, using only two trusted collective measurements. This
gives access to genuine Bell correlations in many-body sys-
tems where one high-order measurement can be performed.
Lastly, we derive witnesses corresponding to the two-body
Bell inequalities we found and we apply them to detect the
Bell correlations depth of a Bose-Einstein condensate with
480 atoms.

This work is structured as follows: In Sec. II, we introduce
all the concepts relevant to make this work self-contained.
In particular, we discuss the Bell scenario and correlations
in Sec. II A and the concepts of k-producibility of correla-
tions in Sec. II B. In Sec. III, we formally state the main
results of our work. In Sec. IV, we characterize the sets
of k-producible correlations with two-body correlators. In
particular, in Sec. IV A, we characterize the vertices of the

polytope of k-producible two-body symmetric correlations,
and in Sec. IV B, we describe the procedure to project the
nonsignalling polytope. In Sec. V, we present classes of Bell-
like inequalities for nonlocality depth, built from two-body
correlations. In Sec. VI, we discuss the experimental aspects
of witnessing k-body Bell correlations. In particular, we show
how genuine nonlocality can be witnessed from Svetlichny
and Mermin inequalities in Sec. VI A, and in Sec. VI B,
we show how to construct the witness for Bell inequalities
that involve only two-body correlations. We conclude in
Sec. VII.

This work contains six technical appendices. In Appendix
A, we recall the basic definitions and properties of poly-
topes that are used in our work. In Appendix B, we de-
scribe in detail the projection of the vertices of k-producible
polytopes. In Appendix D, we present the vertices of the
projected nonsignalling polytopes for k = 2, 3, 4. In Ap-
pendix E, we provide a complete list of facets of two-
body symmetric polytopes that test for genuine nonlocality
up to five parties. In Appendix F, we present the technical
derivation of an inequality for k-nonlocality depth valid for
any number of parties. Finally, in Appendix G, we estimate
the Svetlichny and Mermin operators with collective spin
measurements.

II. PRELIMINARIES

In this section, we review the concepts and background in-
formation that are necessary to properly introduce our results
in Sec. III. We focus on the Bell scenario and correlations in
Sec. II A and on the notions of k-producibility of nonlocality,
nonlocality depth, and genuine nonlocality in Sec. II B.

A. Bell scenario and correlations

Consider N separated parties denoted A1, . . . , AN sharing
some N-partite physical system. Each party is allowed to
perform measurements on their share of this system and
each party will obtain the corresponding outcome. Here we
consider the simplest scenario in which party Ai has two
observables at their disposal, denoted M (i)

xi
with xi = 0, 1, and

each observable is assumed to yield one out of two possible
outcomes ai = ±1. Such a scenario is generally referred to
as the (N, 2, 2) scenario (i.e., N parties, 2 measurements, 2
outcomes). In a Bell experiment, measurements are repeated
many times, after which the parties estimate the conditional
probabilities p(a1, . . . , aN |x1, . . . , xN ) ≡ p(a|x) of obtaining
outcomes a1, . . . , aN =: a upon performing the measure-
ments labeled by x1, . . . , xN =: x. Therefore, the available
information is summarized in a collection of these probabil-
ities {p(a|x)}. Clearly, {p(a|x)} cannot be an arbitrary list of
numbers; the numbers p(a|x) need to be non-negative and
normalized for any choice of inputs x in order to be, at least,
mathematically consistent.

From a physical point of view, it is then natural to assume
that the probabilities p(a|x) must fulfill, in addition, the no-
signaling principle; i.e., the choice of measurement of the kth
party cannot influence the outcome of the remaining measure-
ments. Mathematically, this is represented by imposing the
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following conditions:∑
ai

[p(a1, . . . , ai, . . . , aN |x1, . . . , xi, . . . , xN )

− p(a1, . . . , ai, . . . , aN |x1, . . . , x′
i, . . . , xN )] = 0, (1)

for all xi, x′
i , a1, . . . , ai−1, ai+1, . . . , aN and

x1, . . . , xi−1, xi+1, . . . , xN and all i = 1, . . . , N . The
probabilities that obey the no-signaling principle are
commonly referred to as the no-signaling correlations.
Interestingly, these correlations form a polytope, that is, a
convex set defined by a finite amount of linear inequalities
(see Appendix A for more details). We denote such a polytope
NSN and we refer to it as the no-signaling polytope. Note
that NSN results from the intersection of the set satisfying
the inequalities p(a|x) � 0 with the normalization and
no-signaling constraints (1).

Consider now the correlations that arise by performing
local measurements on some quantum state ρN . The resulting
probabilities are expressed via the Born rule as

p(a1, . . . , aN |x1, . . . , xN ) = Tr
(
ρN Ma1

xi1
⊗ · · · ⊗ MaN

xiN

)
, (2)

where Mai
xii

� 0 denote the measurement operators,
represented by positive-operator valued measures (POVMs)
satisfying the normalisation condition

∑
ai

Mai
xii

= I (forming
a resolution of the identity). It turns out that the set of all
quantum correlations, denoted QN , is also convex if no
assumption on the local dimension of the state used in the
experiment is made.

Another relevant notion is the one of local correlations,
which consists of those probabilities that can be obtained
by the parties when the only resource they share is classical
information, represented by some random variable λ with a
probability distribution pλ. The most general form of such
correlations is (cf. also Refs. [1,31])

p(a1, . . . , aN |x1, . . . , xN ) =
∑

λ

pλ

N∏
i=1

p(ai|xi, λ). (3)

The set that correlations of the form (3) define is also a
polytope, which we denote as PN , and we refer to as the
local polytope. Recall that a polytope can be equivalently
represented by a finite number of vertices (see also Appendix
A for a more formal definition). The vertices of PN are of spe-
cial interest, as they correspond to the case that p(ai|xi, λ) =
D(ai|xi, λ), where for a given λ, D(ai|xi, λ) is a deterministic
function returning some ai with probability 1 for each xi.
Therefore, vertices of the local polytope correspond to local
deterministic strategies.

The corresponding linear inequalities enclosing the local
polytope are the so-called Bell inequalities. As first shown
by Bell [10], there are quantum correlations that violate Bell
inequalties and hence do not admit a decomposition of the
form (3). We call such correlations nonlocal and, in the case
that these correlations were obtained from a quantum state ρ,
we say that this state displays Bell correlations. Note that no-
signaling correlations can generally violate Bell inequalities
more than quantum correlations do, meaning that there are
probabilities satisfying the no-signaling principle that do not
have a quantum representation [32]. Therefore, the relations
between the three sets introduced above can be summarized
as PN ⊂ QN ⊂ NSN , where both inclusions are strict.

To conclude, it is useful to notice that in the simplest
scenario of each party performing dichotomic measurements,
correlations can be equivalently described by a collection of
expectation values{〈

M (i1 )
xi1

. . . M (ik )
xik

〉}
i1,...,ik ;xi1 ,...,xik ;k, (4)

with i1 < · · · < ik = 1, . . . , N and k = 1, . . . , N (all possible
expectation values, ranging from the single-body to N-partite
ones are taken into account). The probability and correlator
representations are related through the formula

p(a|x) = 1

2N

[
1+

N∑
k=1

∑
1�i1<i2<...<ik�N

ai1 . . .aik

〈
M (i1 )

xi1
. . . M (ik )

xik

〉]
(5)

that holds for any a, x. The main advantage of the correlator
picture is that it automatically incorporates the no-signaling
constraints, thus reducing the number of variables that need
to be considered. In particular, this implies that the no-
signaling set can be simply described by the conditions of
non-negativity of probabilities p(a1, . . . , aN |x1, . . . , xN ) � 0,
expressed in terms of correlators through (5). Notice also
that although we stated all the above definitions in terms
of probabilities, everything can be reformulated in correlator
form, by directly applying the Fourier transform (5).

B. The concepts of k-producibility of nonlocality
and nonlocality depth

As already said, violation of standard Bell inequalities
signals nonlocality, i.e., the impossibility of representing the
observed statistics in the form of (3). However, in the multi-
partite scenario, this tells us nothing about how many parties
share genuine nonlocal correlations. To give an illustrative
example, imagine a tripartite distribution that factorizes in
the following form p(a1a2|x1x2)p(a3|x3): If the correlations
shared between the first two particles are nonlocal, clearly the
whole distribution is also classified as nonlocal. Nonetheless,
one can intuitively see that this is a “weak” form of nonlo-
cality for a tripartite scenario, given that the set of particles
sharing nonlocal correlations is only bipartite.

Several approaches have been proposed to describe the
types of nonlocality that can appear in such a scenario
[33,34]. Following Ref. [34], we choose here the notion of
k-producibility of nonlocality or nonlocality depth, which
goes along the lines developed to describe mutipartite en-
tanglement, although the nonlocality case entails much sub-
tler differences (see Refs. [35–37]). We are thus interested
in quantifying the number of parties that share genuinely
nonlocal correlations. To this end, we partition the set I =
{1, . . . , N} into L pairwise disjoint nonempty subsets Ai,
such that by joining them one recovers I and the size of
each Ai is at most k parties. We denote such a partition an
Lk partition of I . Consider now correlations that admit the
following decomposition:

p(a|x) =
∑

λ

p(λ)p1(aA1 |xA1 , λ) × · · · × pL(aAL |xAL , λ),

(6)
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where aAi and xAi are vectors encoding the outcomes and
measurement choices corresponding to the observers belong-
ing to Ai. We call such correlations k-producible with re-
spect to the above partition of I . One can see that this is a
natural generalization of the tripartite example given above,
where now the largest number of particles sharing nonlocal
correlations is defined by the size of the largest subset Ai,
hence k.

We choose the nonlocal resources shared by the parties to
be no-signalling correlations, that is, we require the distribu-
tions pi(aAi |xAi , λ) to satisfy the no-signalling conditions (1).
Apart from a physical motivation, this is done also in order
to avoid describing a self-contradicting model [36,37]. It is
worth noting that the choice of no-signaling resources is not
the only possibility that avoids inconsistencies: One could also
make the more restrictive assumption that all pi(aAi |xAi , λ)
are quantum correlations, which we have explored in a dif-
ferent work [38], yielding device-independent witnesses of
entanglement depth in this case.

Still, the form of correlations (6) is not yet the most general
one as by mixing correlations (6) that are k-producible with
respect to different Lk partitions of I , one cannot increase
the nonlocality depth of the resulting probability distribution.
To be more precise, denote by Sk the set of all possible
Lk-partitions of I , where the number L of subsets Ai is allowed
to vary but k is fixed. We then call correlations {p(a|x)}k-
producible if they can be written as the following convex
combination:

p(a|x) =
∑

Lk∈Sk

qLk pLk (a|x), (7)

where pLk (a|x) are correlations that admit the decomposition
(6) with respect to a given k partition Lk . The minimal k
for which a distribution can be expressed in the form (7) is
called the nonlocality depth.1 Equivalently, correlations whose
nonlocality depth is k are generally referred to as genuinely
k-partite nonlocal or, simply, k-nonlocal [39]. Generalizing
the notion introduced in the previous section, we also say that
a state capable of generating k-nonlocal correlations displays
a Bell correlations depth of k.

Let us also notice that in the particular case of k = 1, where
each party forms a singleton Ai = {Ai} (i = 1, . . . , N ), one
recovers the above introduced definition of local correlations
(3). Then, on the other extreme k = N , we have correlations
in which all parties share nonlocality and are thus called
genuinely multipartite nonlocal (GMNL).

Geometrically, as in the case of fully local models (3), k-
producible correlations form polytopes, denoted PN,k . Similar
to the local polytope, vertices of these polytopes are product
probability distributions of the form

p(a|x) = p1(aA1 |xA1 ) × · · · × pL(aAL |xAL ), (8)

1A more adequate terminology would be nonlocality depth with
respect to nonsignaling resources or simply NS nonlocality depth
as in the definition of k-producibility we assume the probabilities
pi(aAi |xAi , λ) to be nonsignaling, whereas according to Refs. [36,37]
other types of resources can also be considered.

with each pi(aAi |xAi ) being a vertex of the corresponding
|Ai|-partite nonsignaling polytope (or, when |Ai| = 1, a de-
terministic vertex D(ai|xi ) of the local polytope). One then
needs to consider all Lk partitions in order to construct all
vertices of PN,k: Different elements S ∈ Sk yield different fac-
torizations (8) and, therefore, different sets of vertices. It thus
follows that the necessary ingredient in order to construct all
vertices of PN,k are the vertices of the p-partite nonsignaling
polytopes NS p for all p � k.

Let us also notice that, with the aid of the formula (5), all
the above definitions can be equivalently formulated in terms
of correlators (4); in particular, for a vertex (8) the corre-
lators (4) factorize whenever the parties belong to different
groups Ai.

The facets constraining the PN,k polytopes can also be
interpreted as Bell-like inequalities. In this case, the violation
of such inequalities implies that a given distribution cannot
be described by any k-producible model. Hence, it certifies
that the observed correlations are at least (k + 1) nonlocal. In
order to quantify the nonlocality depth of corrleations, these
are the families of inequalities that we are interested in char-
acterizing. In the following section, we start by summarizing
the techniques we use and our main results.

III. STATEMENT OF THE MAIN RESULTS

The main objective of this work is to provide efficient tools
to assess the nonlocality depth of multipartite systems. As we
explained in Sec. II, to study nonlocality depth in full gener-
ality one needs to characterize the polytopes of k-producible
correlations, denoted PN,k , for any number of particles N and
nonlocality depth k. However, to successfully address this
problem, one needs to overcome two major obstacles.

First, despite the general form of the vertices of PN,k [cf.
(8)], constructing them in practice requires previous knowl-
edge about all the vertices of the no-signaling polytopes NSp

for p � k, whose determination is already a formidable task.
Indeed, while the facets of the no-signaling polytopes are easy
to enumerate for any number of particles, its complete list of
vertices has been derived only in the simplest scenarios of
N = 2, 3 [40]. It should also be mentioned that in Ref. [41] a
polyhedral duality between Bell inequalities and the vertices
of the nonsignaling polytope in the (N, 2, 2) scenario was
established, thus proving that finding all vertices of NSp

is equivalent to find all tight Bell inequalities in Pp. The
difficulty in finding all Bell inequalities in a given scenario
was already observed by Pitowsky [42], and it was later
proven to be NP hard even in a bipartite setting [43].

Second, suppose one could actually list all the extremal
points of PN,k . The size of this list would grow exponentially
as a function of N : Simply consider the Lk partition consisting
of the maximal amount of subsets of size k (plus a smaller
subset if k does not divide N). Then, by denoting vk as the
number of vertices of NSk , we see from (8) that the number
of vertices of PN,k will grow as O(v�N/k	

k ). This exponential
growth with N already renders any effort to derive a complete
list of Bell inequalities for nonlocality depth for large values
of N futile.

To overcome these difficulties, we restrict our analysis
to the scenario of symmetric two-body correlations, first
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introduced in Ref. [22]. Hence, instead of working with
the full probability distribution p(a1, . . . , aN |x1, . . . , xN ), we
imagine that the only accessible information consists of the
following one- and two-body expectation values:〈

M (i)
x

〉
,

〈
M (i)

x M ( j)
y

〉
(9)

with i 
= j = 1, . . . , N and x, y = 0, 1. Such an assumption is
particularly relevant for experimental applications, since those
quantities can be efficiently estimated with just a polynomial
amount of measurements. In addition, this allows us to answer
a fundamental question: whether two-body correlators, i.e.,
the minimal amount of information needed to detect nonlo-
cality in a quantum system, are enough to reveal nonlocality
depth in a multipartite system. Moreover, we look for Bell
inequalities that are invariant under an exchange of any pair
of parties, meaning that they are function of the symmetrized
quantities

Sx :=
N∑

i=1

〈
M (i)

x

〉
, Sxy :=

N∑
i, j = 1
i 
= j

〈
M (i)

x M ( j)
y

〉
(10)

with x, y = 0, 1. Mathematically, this implies that instead of
studying the full PN,k polytope, we want to characterize its
projection P2,S

N,k onto the lower dimensional space of sym-
metric one- and two-body correlators, spanned by the five
quantities (10) [44].

Therefore, we look for a complete characterization of the
symmetric two-body Bell inequalities that detect nonlocality
depth, whose most general form is

I := αS0 + βS1 + γ

2
S00 + δS01 + ε

2
S11 + βk � 0, (11)

with

βk = − min
P2,S

N,k

I, (12)

where the minimum is taken over all correlations belonging to
P2,S

N,k .
Recall that the case of k = 1 recovers the study of the local

polytope, whose complete list of Bell inequalities is unknown
already for N � 4. Interestingly, it turns out that restricting to
its symmetric two-body projection dramatically simplifies the
problem, as was extensively shown in Refs. [22,24,44]. More
precisely, such a projection makes it possible to derive all the
facets of the local polytope for scenarios with tens of particles,
which allowed also to introduce classes of inequalities valid
for any N .

Here, we take a step forward and look at the cases cor-
responding to k > 1. Remarkably, we see that many simpli-
fications can be carried out in the generic nonlocality depth
case as well. The rest of the section is devoted to briefly
summarizing our results, as well as their applications to the
study of correlations in many-body systems, while leaving the
in-depth presentation to Secs. IV, V, and VI.

Result 1. The vertices of the polytopes P2,S
N,k can be com-

puted efficiently as functions of the vertices of the pro-
jected no-signaling polytopes NS2,S

p of p � k parties. For a
fixed value of k, the number of vertices scales polynomially
with N .

Recall the first obstacle stated above, regarding the com-
plexity of finding the vertices of NSN for a general N . Our
first result implies that, in order to study nonlocality depth
with symmetric two-body correlators, it is not necessary to
find all the vertices of NSN , and it is sufficient to find the
vertices of its projection to the two-body symmetric subspace,
NS2,S

N .
Note, however, that determining the projection of a poly-

tope is not a simple task, especially if the original polytope
is described in terms of inequalities, which is the case for
NSN . The general procedure to find such a projection relies
on the Fourier-Motzkin elimination method (see Appendix
A), which has an exponential scaling with the number of
components that need to be projected out (note that the
number of correlators involving more than two parties already
scales exponentially with N , therefore yielding an overall
doubly exponential scaling). Indeed, the NSN polytope is
parametrized by the correlators (4), and there are 3N − 1 of
them, while NS2,S

N is embedded in a five-dimensional space
for any N [cf. (11)]; therefore, applying Fourier-Motzkin is
basically impractical for any N > 2.

Nonetheless, in Sec. IV, we show that the structure of the
no-signaling polytope can be exploited to dramatically reduce
the complexity of the problem. In particular, we divide the
projection operation into two steps: first, the symmetrization
one, which yields the polytope NSS , parametrized by the
symmetric correlators (10) of any order, and second, the
projection onto the two-body space NS2,S , which consists in
removing all the symmetric correlators of order higher than 2.
By following this procedure, we arrive at our second result,
which is the technical key point of our work:

Result 2. The facets of the NSS
N polytopes can be effi-

ciently obtained for any N . Then, the projection operation
to get the desired NS2,S

N polytopes involve projecting out a
number of components that scales only as O(N2).

Combining the two results, we are able to make several
advancements in the problem of detecting nonlocality depth
in multipartite systems. Thanks to Result 2, we are able to
obtain the complete list of vertices of the NS2,S

N polytopes for
up to N = 6 parties. This allows us to characterize the vertices
of the polytopes of k-producible correlations for a nonlocality
depth of k � 6. Because of the exponential reduction with
respect to Result 1, it is then possible to obtain all the Bell
inequalties detecting such nonlocality depths for systems of
N � 15 particles. In Sec. V, we present the main findings
regarding those inequalities, among others the possibility of
efficiently detecting GMNL up to seven parties.

Moreover, we study a class of Bell inequalities, valid for
any N , whose k-producible bound βk varies with k and is
violated by quantum correlations for sufficiently large N if
k � 6. This leads to our third result:

Result 3. Nonlocality depth, for values of at least k �
6, can be detected with symmetric two-body correlators in
systems composed of any number of particles.

Up to now, all the results we have presented are purely
device independent. Therefore, if one were capable of per-
forming a loophole-free Bell test [12–21] among the involved
parties, one would be able to certify the aforementioned
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nonlocality depth of the correlations being produced.
However, two-body permutationally invariant Bell
inequalities have an additional extra feature: They can be
used to construct quantum operators that can always be
evaluated with only first and second moments of collective
observables [22]. When the measurements are trusted, these
operators act as witnesses for states that can display Bell
correlation depth k, i.e., entangled states capable of producing
k-nonlocal correlations [23]. This makes it possible to see if
Bell correlations with higher nonlocality depth arise naturally
in low-energy states of many-body systems [26,45,46]. In
Sec. VI, we turn our attention toward the application of our
findings to the study of many-body systems. Importantly,
in such a scenario, the information accessible is often
represented by collective observables, which are enough to
estimate the expectation values of Bell correlation witnesses.

Notice that thus far Bell correlation witnesses have been
studied only in the context of two-body inequalities detecting
standard nonlocal correlations. We first consider their appli-
cation to already known full-body Bell inequalities capable
of distinguishing nonlocality depth, such as the Mermin [47]
and Svetlichny inequalities [39]. In Sec. VI A, we show that,
although being composed by an exponentially large number of
terms, such inequalities can be related to witnesses involving
only two collective measurements. This is our fourth result:

Result 4. Bell correlation depth up to k = N can be de-
tected for all N with a witness involving only two collective
measurements.

The ability to detect large Bell correlation depths through
the collective witnesses issued from the Svetlichny and Mer-
min inequalities comes at the price that one of these collec-
tive observables consists in a parity measurement, which is
technologically demanding in large systems. This motivates
us to turn our attention to the Bell correlation witnesses
that can be constructed with the two-body Bell inequalities
introduced here. In particular, we connect the class of Bell
inequalities studied in Sec. V to witnesses related to the
squeezing parameter in a many-body state. We conclude by
applying this witness to already available experimental data
from a Bose-Einstein condensate to show the following:

Result 5. Entangled k-nonlocal states, for values of at least
k � 6, can be detected in many-body systems of in principle
any number of particles.

We devote the rest of the paper to presenting our results in
detail.

IV. CHARACTERIZING THE SETS OF k-PRODUCIBLE
CORRELATIONS WITH TWO-BODY CORRELATORS

Our aim in this section is characterization of the symmetric
two-body polytopes of k-producible correlations P2,S

N,k defined
in Sec. II B. To this end, we will also determine the vertices of
the projections of the nonsignaling polytopes onto two-body
symmetric correlations NS2,S

N for small values of N .

A. Characterization of the vertices of the k-producible
two-body symmetric polytopes

Here, we introduce a general description of all the vertices
of the projected P2,S

N,k polytopes. This description assumes

previous knowledge of all the vertices of the symmetrized
p-partite no-signaling polytope NS2,S

p for each p � k.
Let us introduce the following notation. Let np be the num-

ber of vertices of NSS,2
p , with 1 � p � k. We want to compute

the values that the correlators (10) take in the ith vertex, with
1 � i � np. Let �S(p, i) denote the five-dimensional vector

�S(p, i) = [S0(p, i), S1(p, i), S00(p, i), S01(p, i), S11(p, i)]

(13)

of one- and two-body symmetric expectation values for the ith
vertex of NS2,S

p . We denote by {�S(p, i)}p,i the list of all such
five-dimensional vectors (13).

Each vertex of the two-body symmetric polytope of k-
producible correlations P2,S

N,k can be obtained as a projection
of a vertex (8) onto the two-body symmetric subspace (cf.
Appendix A). Interestingly, it can be parametrized by the
populations ξp,i with p = 1, . . . , k and i = 1, . . . , np, repre-
senting the number of p-partite subgroups Al in the k partition
of the set {A1, . . . , AN } (cf. Sec. II B) that are adopting the
same “strategy” from the list {�S(p, i)}p,i. Indeed, since we
are addressing permutationally invariant quantities, these are
insensitive to the assignment of a strategy to a specific group
of parties; hence, the only relevant information is about the
number of parties adopting each given set of correlations
[22,25].

Recall that parties are divided into subsets of size at most
k, and each subset of size p chooses one out of np strategies.
Therefore, the populations ξp,i, weighted by p, form a partition
of N ; that is, ξp,i are integer numbers satisfying the conditions
ξp,i � 0 and

k∑
p=1

np∑
i=1

p ξp,i = N. (14)

By running over all populations ξp,i obeying (14), one spans
the whole set of vertices of the polytope P2,S

N,k . Moreover, de-

noting by �ξ the vector with components ξp,i, the symmetrized
one- and two-body expectation values for the vertices of P2,S

N,k
can be expressed as

Sx(�ξ ) =
k∑

p=1

np∑
i=1

ξp,iSx(p, i) (15)

and

Sxy(�ξ )=
k∑

p=1

np∑
i=1

ξp,iSxy(p, i)

+
k∑

p=1

np∑
i=1

ξp,i(ξp,i − 1)Sx(p, i)Sy(p, i)

+
∑

{p,i}
={q, j}
ξp,iξq, jSx(p, i)Sy(q, j), (16)

where we used the fact that 〈M (i)
x M ( j)

y 〉 = 〈M (i)
x 〉〈M ( j)

y 〉 when-
ever the parties i and j belong to different groups, and
{p, i} 
= {q, j} means that p 
= q or i 
= j (cf. Appendix B
for the details of the calculation and Fig. 1 for a pictorial
representation).
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FIG. 1. A possible Lk partition corresponding to a vertex of P2,S
N,k ,

for N = 22, k = 3, and L = 12. Here, we have taken a 123 partition
consisting of five subsets of size 1, four subsets of size 2, and
three subsets of size 3. Each of the five parties that are alone can
choose one out of the n1 = 4 possible local deterministic strategies.
Counting how many particles choose the ith strategy, where 1 � i �
n1, determines ξ1,i. Each pair of particles highlighted in yellow can
choose one out of the n2 possible Popescu-Rohrlich (PR) boxes of
NS2 and each triplet of particles highlighted in gray can choose
one out of the n3 PR boxes highlighted in gray. The remaining
coordinates of �ξ are obtained analogously by counting. In Fig. 6, a
detailed explanation is given, showing how to obtain the values (15)
and (B9) from �ξ .

Hence, from (15) and (16) we see that all the vertices of
the P2,S

N,k can be directly computed as a function of the vertices
of the projected no-signaling polytopes. In particular, their
number is entirely encoded in the population vector �ξ and
grows only as O(Nk ) (see Appendix C for a proof of the
scaling).

Therefore, given that the expressions above allow us to
compute efficiently the vertices of P2,S

N,k , the only remaining

difficulty is to obtain the lists {�S(p, i)}p,i of vertices of the pro-
jected no-signaling polytopes, which we address in Sec. IV B.

B. Projecting the nonsignaling polytopes

In order to generate the vertices of the symmetric two-
body polytope of k-producible correlations P2,S

N,k , we need to
know the vertices of the nonsignaling polytope NS p in the
two-body symmetric space for 2 � p � k parties. To this aim,
we need to determine its projection NS2,S

p onto the two-body
symmetric space spanned by (10) for any p = 2, . . . , k.

As already mentioned, the vertices of NS p for p > 3 are
unknown and difficult to determine. In contrast, its facets are
easy to describe by the positivity constraints, which in the
correlator picture can be stated as [cf. Eq. (5)]

p∑
k=1

∑
1�i1<...<ik�p

ai1 . . . aik

〈
M (i1 )

xi1
. . . M (ik )

xik

〉+ 1 � 0, (17)

for all the possible outcomes ai1 , . . . , aiN = ±1 and measure-
ment choices x1, . . . , xN = 0, 1.

Recall that the default approach to find the projections
NS2,S

p onto the two-body symmetric space, namely the
Fourier-Motzkin procedure (see Appendix A), becomes im-
practical already for p = 3, due to exponential number of
components to project out. Nevertheless, in what follows we
will show how to overcome this difficulty by making use of
the properties of the NS p set with respect to the projection
we are interested to perform.

To this end, let us denote by V2 the subspace spanned by
one- and two-body expectation values (9) and by Vsym the sub-
space spanned by the symmetrized correlators of any order:

Sx1...xl =
k∑

i1 
=... 
=il =1

〈
M (i1 )

x1
. . . M (il )

xl

〉
(18)

with xi = 0, 1 and l = 1, . . . , p. We then define π2, πsym

as the linear projections onto the V2 and Vsym respectively;
that is, π2 discards all correlators that involve more than two
parties and πsym sums all the permutations of the correlators
of a given order. We will use the fact that, in this notation,
the projection we want to compute can be divided into two
intermediate steps as P = π2 ◦ πsym = πsym ◦ π2, where the
order in which the projections π2 and πsym are applied to
NS p does not change the result. In other words, the following
diagram is commutative:

NSp NS2
p

NSS
p NS2,S

p

π2

πsym πsym.

π2

This property follows from the fact that each coordinate of
NS p participates solely in one coordinate of NS2,S

p [cf.
Eq. (10)].

We therefore choose to perform the projection as P = π2 ◦
πsym, hence first computing the symmetrize polytope NSS

p
and then projecting it onto the two-body space. At this stage,
it is crucial to note that the no-signaling set is invariant under
the parties’ permutation. We now prove that this implies a
very useful result, namely that the projection of this set onto
Vsym coincides with the intersection between NS p and Vsym,
an idea which we illustrate in Fig. 2, i.e.,

intsym(NS p) = πsym(NS p). (19)

Let us first explain what we mean by the intersection. To
do so, consider the coordinates

T j1... jl
x1...xl

=
⎛⎝ k∑

i1 
=... 
=il =1

⎞⎠〈M ( j1 )
x1

. . . M ( jl )
xl

〉− Sx1...xl . (20)

Taken together with the symmetrized S of Eq. (18),
these correlators provide an overcomplete parametriza-
tion of the no-signaling probability space: Any correlator
〈M ( j1 )

x1 . . . M ( jl )
xl 〉 can be recovered from the corresponding T

and S variables. Moreover, these coordinates conveniently
identify the subspaces that we are interested in: The sym-
metric subspace is spanned by the S variables, while its
orthogonal complement is spanned by the T variables. In other
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FIG. 2. A cartoon picture illustrating the cases when projection
and intersection of a polytope with a hyperplane are the same
operation (left) and the generic case in which the intersection of a
polytope with a hyperplane is strictly contained into its projection
onto the same hyperplane (right).

words, all correlations in the symmetric subspace have all T
components equal to zero (however, the variables themselves
before projection need not be zero). Moreover, the one- and
two-body space has all S and T parameters equal to 0 for
l > 2.

Using the above notation, we define intsym(NS p) as the
set that contains all no-signaling correlations for which all
the variables T j1... jl

x1...xl = 0 (cf. Appendix A for a more formal
introduction to projection and intersection). Now, if a vertex v

of NS p (which may have both nonzero S and T components)
leads to an extremal vertex after projection onto Vsym, then all
images vα = τα (v) of v under the party permutations {τα}α
are also in NS p and lead to the same point in Vsym after
projection. This follows directly from the invariance of NS p

under party permutations. Then, the convex combination of
these points v ∝ ∑

α vα also gives rise to the same extremal
point in Vsym. However, a direct computation shows that the
point v already belongs to the symmetric subspace, because
all of its T variables are zero. Hence, all extremal points of
the projection of NS p onto the symmetric subspace belong
to the intersection of the no-signaling polytope with the sym-
metric subspace, and we can replace the projection operation
πsym by the intersection.

The main advantage of this approach is that the facets of the
intersection of a polytope can be efficiently computed from
the facets of the original one. Therefore, we only need to
apply the Fourier-Motzkin method to perform the projection
of NSS

p onto the two-body space V2. In this case, the number
of variables to discard does not grow exponentially with N .
Indeed, the number of symmetric correlators Sx1...xl with x j =
0, 1 and l = 1, . . . , p scales as (1/2)(p + 1)(p + 2) − 1 and,
since one has to discard all the terms with l > 2, we need to
eliminate only (1/2)(p + 1)(p + 2) − 6 ≈ O(p2) terms.

This simplification allows us to obtain the complete list
of vertices of the NS2,S

N polytopes for N � 6 particles,
thus improving significantly the already known results. For
the N = 2, 3, 4 cases, the lists of vertices are presented in
Tables I–III in Appendix D, whereas in the case N = 5, 6 the
list contains more than a hundred vertices and therefore we
could not present it here. In the next section, we implement
these findings to construct Bell-like inequalities detecting k-
nonlocality in multipartite correlations.

V. BELL-LIKE INEQUALITIES FOR NONLOCALITY
DEPTH FROM TWO-BODY CORRELATIONS

We are now ready to demonstrate that two-body Bell-
like inequalities are capable of witnessing nonlocality depth
in multipartite correlations. First of all, we remind readers
that, by following the procedure given in Sec. IV A, we
are able to construct the list of vertices of the k-nonlocal
two-body symmetric polytopes for any number of parties N
and producibility k � 6. By solving the convex hull problem,
such lists allow us to derive the corresponding complete set
of facets of the k-nonlocal polytopes. This can be done via
the dual description method, which is implemented in such
software as CDD [48], and, thanks to both the low dimension
of the space and the polynomial scaling of the k-producible
vertices, we are able to do so for scenarios involving up to
N = 15 parties.

In particular, since these inequalities can test against k-
producibility with k � 6, we can identify all the symmetric
two-body inequalities that detect genuine multipartite nonlo-
cality (GMNL) for systems of N � 7 particles (see Appendix
E for the complete lists). Interestingly, we find that no inequal-
ity of such kind can be violated by quantum mechanics in the
tripartite case. That is, symmetric two-body correlations do
not provide enough information to detect GMNL in three-
partite quantum states. This is no longer the case for four
parties; indeed, the facet

I4
GMNL := −12S0 + 9S1 + 3S00 − 6S01 + 1

2 S11 + 42 � 0

(21)

detects GMNL and is violated by quantum mechanics with a
ratio (βQ − β3)/β3 of at least 1.3%, where βQ is the maximal
quantum value of I4

GMNL and β3 = 42 is the bound for nonlo-
cality depth 3.

Interestingly, our lists of inequalities sometimes contain
also the Bell expressions introduced already in Refs. [22,25],
thus showing that such classes are actually capable of detect-
ing a nonlocality depth higher than 2. In particular, we can
find inequalities that test against any k-producibility for k � 5
that belong to the class (91) introduced in Ref. [25]. This class
is particulary interesting since it was shown to be violated
by Dicke states. Moreover, among the facets of the GMNL
polytope for N = 5, we find the following inequality:

IW = 28S0 + 28S1 + 2S00 + 9S01 + 2S11 + 116 � 0, (22)

which has a very similar structure to class (91) of Ref. [25].
Indeed, it can be shown that it is possible to violate such
inequality with the five-partite Dicke state with one excitation,
also known as the W state. Lastly, we notice that the Bell
expression (6) from Ref. [22], which for the sake of complete-
ness we state here as

I := 2S0 + 1
2 S00 + S01 + 1

2 S11, (23)

appears in our lists sometimes as well, with a classical bound
that clearly depends on degree of nonlocality depth that one
is interested in detecting. This is a particularly useful fea-
ture, since it implies that by the use of a single inequality
one can infer the nonlocality depth by the amount of the
quantum violation that is observed. Because of this property
and also its relevance for experimental implementation (see
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FIG. 3. Plot of the quantum violation (βQ − β1)/2N (black
line) of the inequality (23) obtainable by following the procedure
in Ref. [25]. The violation is compared with the—appropriately
rescaled—k-producible bounds (βk − β1)/2N for the same inequal-
ity (colored lines) for values k = 4, 5, 6 (curves shown from top to
bottom). Recall that the bounds for k � 3 coincide with the local one,
and hence they are not shown in the plot.

Refs. [23,30]), we focus on this last inequality and deter-
mine its βk for k = 2, . . . , 6 and any number of parties (see
Appendix F for the details of the calculations). In particular,
we first obtain that for the simples cases of k = 2, 3, the
k-producible bound coincides with the local, i.e., βk = 2N ,
meaning that the violation of such inequality actually detects
already a nonlocality depth of at least 4. Then, for the higher
values of k, we are able show that the bound takes the
following simple form:

βk = 2N + 1
2 + αkN, (24)

where the parameter αk encodes the dependence on the non-
locality depth. More explicitly, we obtain α4 = 2/49, α5 =
8/121, and α6 = 1/12. After having introduced k-producible
bounds for inequality (23), it is important to show that they
can be used in practice to witness the nonlocality depth that
could be displayed by quantum states. First of all, we have
to show that the different bounds βk can be violated by
correlations obtained by properly choosing a quantum state
and some local measurements. This can be done in a scalable
way by following the procedure in Ref. [25] and constructing
the permutationally invariant Bell operator corresponding to
the expression (23). Notice that to do so we assume for
simplicity that each party performs the same measurements:

M (i)
0 = cos(θ )σ (i)

z + sin(θ )σ (i)
x ,

M (i)
1 = cos(φ)σ (i)

z + sin(φ)σ (i)
x , (25)

where θ, φ ∈ [0, 2π ), and σz and σx are the standard Pauli
matrices. Then, by computing the minimal eigenvalue of
the resulting Bell operator B(θ, φ) and optimizing over the
choice of angles, one obtains the maximal quantum violation
of (23) attainable with same measurements settings on each
site. By performing these numerical checks, whose results are
compared in Fig. 3, it is possible to show that the bound βk

for k � 3 starts being violated for N = 5 parties, while for the
higher cases k = 4, 5 the violation appears from N = 9 and
N = 11 respectively. Moreover, if we take into account the

analytical class of states introduced in Ref. [25] (cf. Sec. V B),
we can show that for a sufficiently high number of parties it
violates all the bounds that we have just derived. Indeed, let us
recall that this class of states can achieve a relative violation
(βQ − β1)/β1 of (23) that tends to −1/4 when N → ∞. By
using this result, it is easy to show that βQ exceeds βk for
any k � 6, at least in the asymptotic limit, confirming the
numerical evidence shown in Fig. 3. To conclude, in the
following section we also present how to apply our results to
an experimental setting.

VI. EXPERIMENTAL WITNESSING OF k-BODY
BELL CORRELATIONS

The inequalities introduced in the previous sections pro-
vide efficient tools to study the nonlocality depth of corre-
lations produced by multipartite states. In fact, being based
on two-body correlations only, they require at most per-
forming O(N2) measurements. This makes these inequali-
ties particularly amenable for currently available photonic
and atomic systems composed of few tens of particles
[49–51].

Moreover, as already noticed in Refs. [22,23,27], the sym-
metrized one- and two-body correlators (10) can be estimated
by means of collective measurements. Recall, however, that
this is possible only when the measurements performed lo-
cally correspond to spin projections along well-defined di-
rections. Under this additional assumption, inequalities of
the form (11) thus give rise to device-dependent witnesses
that quantify the amount of Bell correlations exhibited by a
many-body system. More precisely, violating such witnesses
detects Bell correlations depth in the state: Violation of Bell
correlation witnesses for depth k certifies the presence of an
entangled state that could display nonlocal correlations of
depth k + 1 if the single particles were brought far apart from
each other and addressed separately.

In the following subsections, we study in more detail
the available methods to quantify Bell correlation depths
in a many-body state. First of all, we derive the witness
corresponding to already known full-body inequalities ca-
pable of detecting nonlocality depth, such as the Mermin
and Svetlichny Bell inequalities. Interestingly, we show that
such a witness can actually be estimated by collective spin
measurements along two directions only, although requiring a
parity measurement that is very demanding for large systems.
This shows how the two-body Bell inequalities introduced in
this work can provide a real advantage in terms of experimen-
tal feasibility. We demonstrate this advantage by deriving a
witness associated to inequality (23) and, by making use of
already available data, show how it can be applied to detect
Bell correlations depth in a BEC composed of hundreds of
particles.

A. Witnessing genuine nonlocality from Svetlichny
and Mermin inequalities

The Mermin and Svetlichny Bell expressions are known
to be suitable for the detection of nonlocality depth in mul-
tipartite systems [33]. They thus suit our investigations very
well. We here show the form of the corresponding witnesses
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for nonlocality depth. Let us begin with the Svetlichny Bell
expressions written in the following form [52]:

ISvet
N =2−N/2

⎡⎣ ∑
x|s=0 (mod 2)

(−1)s/2Ex+
∑

x|s=1 (mod 2)

(−1)(s−1)/2Ex

⎤⎦,
(26)

where s = ∑
i xi is the sum of all parties’ settings (recall that

xi ∈ {0, 1}), x|s = i (mod 2) means that the summation is over
those x’s for which s is even for i = 0 or odd for i = 1, and,
finally,

Ex = 〈
M (1)

x1
. . . M (N )

xN

〉
(27)

is a short-hand notation for an N-partite correlator. Using the
same notation, we also introduce the Mermin Bell expression
[53], namely

IMermin
N = 2−(N−1)/2

⎡⎣ ∑
x|s=0 (mod 2)

(−1)s/2Ex

⎤⎦. (28)

For both the above inequalities, the k-producible bounds βk

can be explicitly computed and they can be used to reveal
different nonlocality depth from observed correlations (cf.
Appendix G for more details). In particular, the (N − 1)-
nonlocal bound is always smaller than the maximal quan-
tum violation βQ, meaning that these inequalities can detect
genuine multipartite nonlocality for any number of particles.
However, the sums in Eqs. (26) and (28) involve 2N terms
in total, making the Svetlichny and Mermin inequalities very
difficult to test in systems with a large number of parties.
Nevertheless, in the following we will show that if one is
willing to assume that the measurements are well calibrated
spin projections, then one can derive a witness that involves
only collective measurement in two directions.

First of all, let us construct Bell operators for the Bell
expressions (26) and (28). For this, we recall that the
measurement settings maximizing the quantum value of
the Svetlichny inequality, for a |GHZ+

N 〉 state, |GHZ±
N〉 =

(|0〉⊗N ± |1〉⊗N)/
√

2, are

M (i)
j = cos(φ j ) σx + sin(φ j ) σy , φ j = − π

4N
+ j

π

2
, (29)

with j ∈ 0, 1. Similarly, the Mermin inequality is maximally
violated by the same |GHZ+

N 〉 state when the measurements
are M (i)

0 = σx and M (i)
1 = σy for each party i = 1, . . . , N . By

substituting these settings in their respective inequalities, we
find that both the Svetlichny and Mermin operators take the
following very simple form:

BSvetlichny
N = BMermin

N = BN

= 2(N−1)/2(|0〉〈1|⊗N + |1〉〈0|⊗N ). (30)

We can thus derive a common witness with which the non-
locality depth of any multipartite system can be evaluated.
In particular, one can prove that the above operator can be
bounded in the following way:

BN =
√

2
N−1

(|GHZ+
N 〉〈GHZ+

N | − |GHZ−
N 〉〈GHZ−

N |)
�

√
2

N−1[
σ 1

x . . . σ N
x + 4J2

z − N21
]
, (31)

where Jn = (1/2)
∑N

i=1 σ (i) · n is the collective spin operator
along the direction n. Combining the k-nonlocal bounds of the
Svetlichny and Mermin Bell expressions given in Appendix G
then allows us to write the following witness of Bell correla-
tions depth:

〈BN 〉 =
√

2
N−1〈

σ 1
x . . . σ N

x + 4J2
z − N21

〉
� 2(N−� N

k �)/2. (32)

Inequality (32) shows that two settings are enough to conclude
about the Bell correlation depth of a given state, that is, to
test the capability of a state to violate a Svetlichny or Mermin
bound for k-nonlocality. This provides a way to detect various
depths of Bell correlations with just two measurement settings
and no individual addressing of the parties. In particular, since
the GHZ state saturates all the inequalities we used in this
section, the operator BN is able to detect that GHZ states are
genuinely Bell correlated.

Still, this scheme involves one parity measurement: the
N-body term in the x direction. It is worth noticing that the
evaluation of this term does not require an estimation of all
the moment of the spin operator Jx in the x direction (which
would require a gigantic amount of statistics to be evaluated
properly whenever N � 1). Rather, this term corresponds to
the parity of the spin operator Jx, i.e., a binary quantity,
and can thus be evaluated efficiently. However, an extreme
resolution is required to estimate this quantity; failure to
distinguish between two successive values of Jx can entirely
randomize its parity.

The next section aims at detecting the Bell correlation
depth of multipartite states with two-body correlators only.

B. Witnessing with two-body correlations only

In the same spirit as Refs. [22,23,27], we derive a witness
for Bell correlations of depth k from the expression I + βk �
0, where I is defined in Eq. (23). We assume that M (i)

0 and
M (i)

1 are spin projection measurements on the ith party, along
directions n and m, respectively. This allows us to write
M (i)

0 = σ (i) · n and M (i)
1 = σ (i) · m, where σ (i) is the vector

of Pauli matrices acting on the ith party, and to express all
correlators appearing in the Bell inequality as measurements
of the collective spin operator Jn. With the substitution m =
2(a · n)a − n, we arrive at the inequality (see Ref. [23] for
details)

−
∣∣∣∣〈 Jn

N/2

〉∣∣∣∣+ (a · n)2

〈
J2

a

N/4

〉
− (a · n)2 + βk

2N
� 0, (33)

which is satisfied by all states with Bell correlations of depth
at most k. In other words, the violation of Ineq. (33) witnesses
that the state of the system contains Bell correlations of depth
(at least) (k + 1).

It is now convenient to define the spin contrast Cn =
〈2Jn/N〉 and the scaled second moment ζ 2

a = 〈4J2
a /N〉.

Furthermore, we express n = a cos(θ ) + b sin(θ ) cos(φ) +
c sin(θ ) sin(φ), with the orthonormal vectors a, b, and c =
a × b with × denoting the vector product. With these
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FIG. 4. Quantification of the Bell correlation depth in a BEC
with inequality (34) and connection to spin squeezing and entangle-
ment. Black: the data reported in Ref. [23] expressed in terms of the
Rabi contrast Cb and the squeezed second moment ζ 2

a , with 1σ error
bars. The number of particles is N = 480. Blue shaded region: Bell
correlations detected by violation of inequality (34) for k = 1. Red
shaded region: entanglement witnessed by spin squeezing [54,56].
Red lines: limits on ζ 2

a below which there is at least (k + 1)-particle
entanglement [55], increasing in powers of 2 up to k = 256. Blue
lines: limits on ζ 2

a below which there are Bell correlations of depth
at least k + 1, for k = 1, . . . , 6.

definitions, one can obtain the witness [23]

ζ 2
a �

2 − βk/(2N ) −
√

[βk/(2N )]2 − C2
b

2
, (34)

which involves the measurements of ζa and Cb, for the two
orthogonal directions a and b. The violation of Ineq. (34), for
a given βk , witnesses that the state contains Bell correlations
with a depth of (at least) k + 1.

An interesting comparison is made with the Wineland spin-
squeezing criterion [54], according to which entanglement
is present if ζ 2

a < C2
b [23]. This criterion was also shown

to be able to quantify the degree of entanglement in the
state [55], and (k + 1)-particle entanglement is witnessed by
measuring values of ζ 2

a below some threshold; see Fig. 4 (red
lines). In Fig. 4, we plot the bounds given by Eq. (34), for
k = 1, . . . , 6, together with the entanglement bound obtained
from the Wineland criterion [55] and the experimental point
measured in Ref. [23]. A statistical analysis on the probability
distribution estimated experimentally [23] gives likelihoods
of 99.9%, 97.5%, 90.3%, and 80.8% for 1/2/3-, 4-, 5-,
and 6-body nonlocality respectively. This likelihood can be
interpreted as, for example, a p value of 1 − 80.8% = 19.2%
for rejecting the following hypothesis: The experimental data
were generated by a state that has no 6-body nonlocality, in
the presence of Gaussian noise.

VII. CONCLUSION

We study the problem of finding efficient ways to detect
the nonlocality depth of quantum correlations. Nonlocality

depth is a relevant concept in the study of multipartite systems,
because it contains the information of how many particles
share genuine Bell correlations in their state. In analogy
to the case of nonlocality, detecting nonlocality depth is a
computationally very demanding problem.

We first exploit the framework of two-body symmetric
correlations introduced in Ref. [22] to provide means of
certifying nonlocality depth in many-body physics that meet
the requirements of current experiments. By developing a
general framework to describe the set of correlations of a
given nonlocality depth, we are able to show that two-body
symmetric correlations are enough to distinguish such depth
for k � 6. We do so by completely characterizing the set
of Bell inequalities that detect k-nonlocality with respect to
nonsignaling resources for values of k � 6 and a fixed number
of particle N � 15. Remarkably, we also show that detecting
nonlocality depth can be done efficiently for any fixed k,
that is, involving a polynomial amount of computational re-
sources. Moreover, we take an explicit example of inequality
and show that it can be used to witness the depth of Bell
correlations for k � 6 and any number of parties.

Lastly, we comment on the practical application of our
techniques to large many-body states. As an initial compar-
ison, we turn to the known Bell inequalities of Mermin and
Svetlichny that allow for detection of nonlocality depth in
multipartite quantum states. We show that if the measure-
ments are trusted, such inequalities can be used to derive
witnesses that can reveal genuine Bell correlations with two
collective measurements in systems where many-body cor-
relation functions can be evaluated. This approach based on
two-body correlations is advantageous because it does not
utilize the parity measurement which is extremely challenging
to perform in large systems. We therefore show that the wit-
nesses that can be derived from our two-body Bell inequality
can be successfully applied to already available experimental
data from a Bose-Einstein condensate. We stress that such a
witness should be considered as a tool for many-body states
that allows us to quantify correlations that are stronger than
entanglement. In particular, we proposed the notion of entan-
gled state displaying Bell correlation depth, that is, a many-
body state that, if the particles were brought apart, would be
capable of producing correlations with a nonocality depth k.

Our results pave the way for a more refined study of Bell
correlations in many-body systems by presenting available
techniques to determine the amount of particles sharing Bell
correlations in these systems. As a future direction to inves-
tigate, it would be interesting to derive inequalities that test
for higher nonlocality depth than 6, as it is already possible
to do in the case of entanglement. In particular, a more
ambitious direction would be to find ways to assess genuine
Bell correlations in systems of hundreds of particles without
relying on parity measurements. This would give a convenient
way to prove that all the particles in the system are genuinely
sharing Bell correlations.

As argued in the previous sections, the main challenge for
these purposes consists in characterizing the no-signaling set
of multipartite correlations in the subspace of two-body per-
mutationally invariant correlators. We are able to do so only
for the cases of low number of parties, while a general and
efficient method is still missing. Therefore, a more technical
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but still interesting question would be to find such a general
characterization.

Another possible research direction would be to consider
inequalities involving more than two settings per party. The
resulting witness could still only involve two measurement
directions and provide improved bounds. In particular, it
would be interesting to find the k-nonlocality bounds for
the family of inequalities in Ref. [27] admitting an arbitrary
number of settings.

It would also be interesting to design witnesses suited for
specific families of states other than the GHZ state such as all
the graph states or the Dicke states.

Except for the witnesses we derived from the Svetlichny in-
equalities, the witnesses we obtained here rely on the notion of
Svetlichny models defined in terms of no-signaling resources.
It would be interesting to see if the bounds derived here remain
valid with respect to the sequential and signaling models, in
which case they could also demonstrate this stronger form of
k-nonlocality. Otherwise, it would be interesting to find other
two-body inequalities suited for this task.

Lastly, we stress that our results can already be applied to
experimentally detect in a Bell test genuine multipartite non-
locality for systems of size up to N = 7. In particular, since the
inequalities that we introduce consist only of two-body corre-
lators, such detection would require only an O(N2) amount of
measurements, contrarily to already known inequalities, such
as Mermin’s, that involve measuring an exponential amount
of correlators.
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APPENDIX A: POLYTOPES

Here, we provide the definitions of polytopes and their
duals. We then show how to project a polytope P onto a given
subspace V as well as how to intersect P and V .

A convex polytope, in what follows we call simply “poly-
tope,” is a subset in a linear space Rd with some finite d
defined as the convex hull of a finite number of points �ei ∈ Rd

(i = 1, . . . , K ), i.e.,

P =
{

�p ∈ Rd | �p =
m∑

i=1

qi�ei

such that qi � 0 and
m∑

i=1

qi = 1

}
. (A1)

Here �ei are the vertices of P. Alternatively, one can define
a polytope to be an intersection of a finite number of half-
spaces, meaning that P is described by a finite set of inequali-
ties:

P = { �p ∈ Rd | �fi · �p � βi with �fi ∈ Rd and βi ∈ R}.
(A2)

Facets of a polytope P are its intersections with the hyper-
planes �fi · �p = βi. Let us also define the dual of a polytope P
to be

P∗ = { �f ∈ Rd | �f · �p � 0 for all �p ∈ P}. (A3)

For our convenience, in Eqs. (A2) and (A3), we use different
conventions regarding inequalities when defining a polytope
and its dual. However, it should be noticed that it is not diffi-
cult to transform inequalities appearing in Eq. (A2) into those
in Eq. (A3) and vice versa: In particular, to obtain inequalities
in (A3) from those in (A2), it suffices to incorporate the free
parameter βi and the sign into the vector �f , in the first case
exploiting the fact that for a given choice of measurements,
elements of the vector �p are normalized.

Let us now discuss projections of polytopes. Consider a
subspace V ⊂ Rd and denote by πV : Rd → V the projection
onto it. Imagine then that we want to project a given polytope
P ⊂ Rd onto V . There are two ways of determining the action
of πV on P. First, πV (P) can be straightforwardly defined in
terms of projection of its vertices, i.e.,

πV (P) =
{

�p ∈ V | �p =
K∑

i=1

qiπV (�ei )

such that qi � 0 and
∑

i

qi = 1

}
. (A4)

Notice that the projections of the vertices �ei, πV (�ei ) might
not be vertices of the projected polytope πV (P). On the other
hand, a vertex of πV (P) must come from a vertex of P under
the projection πV .

However, in certain situations it is much easier to describe a
polytope by using inequalities instead of vertices. In fact, there
are polytopes such as those formed by correlations fulfilling
the no-signaling principle (see below) whose vertices are
basically unknown, whereas their facets are straightforward
to describe. In such case, it is thus impossible to use (A4)
in order to find πV (P), and one needs to exploit facets of P
for that purpose. A method that does the job is the Fourier-
Motzkin elimination method [57], which allows one to find
facets of πV (P) starting from facets of P.
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x

y

(0, 0)

(1, 1)

(2, 0)

Py=0

T2
T1

(0, 1)

FIG. 5. Example of projection of a triangle onto the y axis. The
vertices of the triangle are the set {(0, 0), (2, 0), (1, 1)}, whose pro-
jection are the points {(0, 0), (0, 1)}. Therefore, the desired projected
polytope is the set 0 � y � 1.

Let us now briefly describe this method starting from an
illustrative bidimensional example. Let us suppose that we
want to project the triangle shown in Fig. 5 onto the y axis.
It is easy to see that the inequalities defining such geometrical
object are

x + y � 2, −x + y � 0, y � 0. (A5)

If we cancel out the x coordinate from the inequalities, as
we would have done when projecting vertices, we obtain the
following three inequalities, y � 2, y � 0, and y � 0, which
is not the projection we want since it defines only a single
point y = 0. For further purposes, we notice that the result of
this procedure coincides with the intersection of the polytope
with the x = 0 axis, instead of the projection. Thus, projecting
facets is a different task than projecting vertices: While for
the latter it is enough to map each original vertex into the
projected one, the above example shows that this procedure
does not work for inequalities.

The basic principle of the Fourier-Motzkin elimination
procedure is the fact that any convex combination of two
facets of a polytope defines another valid inequality for it. To
be more precise, let us consider a polytope P ⊂ Rd for some
finite d , and let �f1 · �p � β1 and �f2 · �p � β2 be inequalities
defining two different facets of it; here, �f1, �f2 ∈ Rd and
β1, β2 ∈ R, and �p ∈ P. It is clear that any vector �p satisfying
both these inequalities obeys also the following inequality:

[λ �f1 + (1 − λ) �f2] · �p � λβ1 + (1 − λ)β2 (A6)

for any 0 � λ � 1. The Fourier-Motzkin elimination exploits
this property in order to define new valid inequalities bound-
ing the polytope in which the coordinate that we want to
project out is no longer involved. Coming back to the triangle
example, we notice that by taking a convex combination with
λ = 1/2 of the first two inequalities in (A5) we get a new
inequality that involves only y, i.e., y � 1. If we consider in
addition the third inequality, that does not contain x, we get
the right projection of the triangle, that is, the set 0 � y � 1,
as shown in Fig. 5.

Let us now state the general procedure of the Fourier-
Motzkin elimination. Given a generic polytope in Rd defined
by a finite set of inequalities �fi · �p � βi, where �fi ∈ Rd and
βi ∈ R, the list of inequalities defining its projection in the

FIG. 6. An example with N = 22, and the 3-partition into n1 = 5
sets of size 1, n2 = 4 of size 2, and n3 = 3 of size 3. The first
sum in Eq. (B9) corresponds to the value of Sxy that comes from
the two-body correlators 〈M (i)

x M ( j)
y 〉 within each set (i.e., i, j ∈ Al

for some l). For the 1-body boxes, these values are clearly zero,
and for larger boxes, they correspond to the two-body marginals of
the corresponding Popescu-Rohrlich box (PR box). Therefore, once
symmetrized, the contribution of the box involving p parties using
the ith strategy is Sxy(p, i). The second sum in Eq. (B9) counts those
two-body correlators 〈M (i)

x M ( j)
y 〉 in which i ∈ Ak , j ∈ Al , k 
= l , and

|Ak | = |Al | = p. These correlations are represented by the blue, red,
and yellow lines. Because they are correlations coming from differ-
ent PR boxes, the locality assumption guarantees the factorization
〈M (i)

x M ( j)
y 〉 = 〈M (i)

x 〉〈M ( j)
y 〉, yielding the term Sx (p, i)Sy(p, i) once

symmetrized. The factor ξp,i(ξp,i − 1) is given by the fact that Sxy

is defined as the sum for all i 
= j, therefore containing repetitions.
Finally, the last sum in Eq. (B9) is given by all two-body correlators
〈M (i)

x M ( j)
y 〉 in which i ∈ Ak , j ∈ Al , and |Ak | = p, |Al | = q with

p 
= q, i.e., two-body correlations connecting PR boxes of different
sizes. Here, the locality assumption also enables a factorization
which amounts to Sx (p, i)Sy(q, j) once symmetrized, weighted by
the number of occurrences ξp,iξq, j . These correspond to the purple,
green, and orange lines in the figure.

subspace defined by pi = 0 for some i, is obtained through
the following steps:

(1) Divide the list of inequalities according to the sign of
the coefficient in front of pi to obtain three sublists fi+ , fi− , fi0
corresponding to positive, negative, or zero coefficient.

(2) Take all the possible convex combinations between one
element of fi+ and one of fi− , choosing the proper combination
in order to get a new valid inequality with zero coefficient in
front of pi.

(3) The obtained list, together with fi0 , gives a complete set
of inequalities that defines the projected polytope.

(4) Remove all the redundant inequalities to get the mini-
mal set.

The main problem with the Fourier-Motzking elimination
method is that it is in general very costly in terms of compu-
tational requirements. Indeed, due to the redundancy that one
gets at each step, the time and memory needed to eliminate
the variables scale exponentially with the number of variables
that one wants to project out.

Another operation that we heavily exploit here is an inter-
section of a polytope P with a given subspace. To define it, let
us consider again a linear space Rd and its subspace V ⊂ Rd .

022121-13



F. BACCARI et al. PHYSICAL REVIEW A 100, 022121 (2019)

Then, the intersection operation, denoted intV : Rd −→ V , is
defined as

intV (P) = {�x ∈ P | �x · �w = 0 for all �w ∈ V ⊥}, (A7)

where V ⊥ is the subspace of Rd orthogonal to V . It is not
difficult to notice that any element belonging to the intersec-
tion of P with V is also an element of its projection onto the
subspace, that is,

intV (P) ⊆ πV (P). (A8)

Moreover, contrary to the projection, the intersection of a
polytope is more easily described in the dual representation.
To show how, we define the dual basis {�v∗

i } and { �w∗
j } for the

dual of the subspaces V and V ⊥, respectively, so to decompose
any inequality in P∗ as �f = ∑

i fi�v∗
i +∑

j f j �w∗
j . Then, we

can define

intV (P)∗ =
{

g ∈ V ∗ | g =
∑

i

fi�v∗
i

where fi = �f · �v∗
i for �f ∈ P∗

}
. (A9)

Before moving to the application to our specific case, we also
notice that (A8) implies, for the dual representation,

intV (P)∗ ⊇ πV (P)∗, (A10)

meaning that some inequalities valid for the intersection of
the polytope might be not valid for its projection. In other
words, there are generally inequalities in intV (P)∗ that cannot
be written as a convex combination of the original ones in P∗.

APPENDIX B: PROJECTING THE VERTICES OF THE
k-PRODUCIBLE POLYTOPES

Here, we show in more detail how to explicitly project
the vertices of the k-producible polytopes and obtain the
expressions in (15) and (16). Let us start by recalling that, for
any fixed Lk partition, the corresponding vertices of the PN,k

factorize in the following way:

p(a|x) = p1(aA1 |xA1 ) × · · · × pL(aAL |xAL ), (B1)

where each ps(aAs |xAs ) is a vertex of the corresponding
|As|-partite nonsignaling polytope. As shown in Appendix
A, the vertices of the projected polytope P2,S

N,k are obtained
directly by projecting the original vertices into the two-body
symmetric space. In other words, we simply have to compute
the symmetric correlators (10) as function of (B1). Let us start
by evaluating the one-body correlators as follows:

Sx =
N∑

i=1

〈
M (i)

x

〉 = ∑
As

∑
i∈As

〈
M (i)

x

〉

=
k∑

p=1

∑
As

s.t .|As| = p

∑
i∈As

〈
M (i)

x

〉
(B2)

where we have first divided the summation into parties be-
longing to the same partition As and then further grouped the

partitions of same size. Notice now that∑
i∈As

〈
M (i)

x

〉 = Sx(ps(aAs |xAs )) (B3)

where we denote by Sx(ps(aAs |xAs )) the one-body compo-
nents of the vector in the symmetric two-body space, obtained
by projecting the vertex ps(aAs |xAs )) only. Notice that the
list of extremal points resulting from the projection of the
vertices of the p-partite no-signaling polytope coincides with
the vertices of the projected set NS2,S

p . Hence, we can rewrite
(B2) as

Sx =
k∑

p=1

∑
As

s.t .|As| = p

Sx(p, iAs ), (B4)

where we have now adopted the notation in (13) for the vector
denoting a given vertex of the projected no-signaling polytope
and iAs = 1, . . . , np can run over all the possible choices of
vertices. Now, to list all the extremal points of P2,S

N,k , we have
to consider all the possible Lk partitions of N parties. Notice,
however, that the expression in (B4) is now invariant under
permutation of parties, since it is a function of the symmetric
Sx terms only. This property allows for further simplifications:
Indeed, it implies that the vertices components Sx are sensitive
only to how many partitions of same size p are associated to
the same projected vertex Sx(p, i), while being insensitive to
which specific parties belong to such partitions. Therefore,
we introduce the concept of populations ξp,i, which are in-
teger numbers counting how many, among the partitions of
size p, are associated to the same vertex Sx(p, i). Clearly,
if multiplied by p, the population have to sum to the actual
number of parties belonging to these partitions. Moreover, if
we sum over the different sizes, we obtain the total number
of particles. These conditions can be summarized by the
following equation,

k∑
p=1

np∑
i=1

p ξp,i = N, (B5)

and (B4) can now be restated as

Sx =
k∑

p=1

np∑
i=1

ξp,iSx(p, i). (B6)

In this formalism, running over all the choices of population
satisfying (B5) corresponds to listing all the nonequivalent
choices of Lk partitions.

Now that the one-body terms have been computed, we
use a similar argument to compute the two-body components
as function of the population and the projected components
Sxy(p, i). Following from (10), we have

Sxy =
N∑

i, j = 1
i 
= j

〈
M (i)

x M ( j)
y

〉

=
∑
As

∑
i, j ∈ As

i 
= j

〈
M (i)

x M ( j)
y

〉+ ∑
As,At

s 
= t

〈
M (i)

x

〉〈
M ( j)

y

〉
, (B7)
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where we have used that, because of the factorization (B1),
the two-body expectation values factorize as well when i, j
belong to different partitions. Similar to the one-body case,
we then group partitions of same sizes and substitute the sum
over parties with the symmetrized correlator, so to get

Sxy =
k∑

p=1

∑
As

s.t .|As| = p

Sxy(p, iAs )

+
k∑

p=1

∑
As,At

s.t .|As| = |At | = p
s 
= t

Sx(p, iAs )Sy(p, iAt )

+
k∑

p, q = 1
p 
= q

∑
As,At

s.t .|As| = p
|At | = q

Sx(p, iAs )Sy(q, iAt ). (B8)

Notice that we have divided the second sum in (B7) into the
case where the two partitions As,At are of same or different
size. Lastly, we replace the sum over different vertices (B1)
and all the Lk partitions with the sum over population and we
arrive at

Sxy(�ξ ) =
k∑

p=1

np∑
i=1

ξp,iSxy(p, i)

+
k∑

p=1

np∑
i=1

ξp,i(ξp,i − 1)Sx(p, i)Sy(p, i)

+
∑

{p,i}
={q, j}
ξp,iξq, jSx(p, i)Sy(q, j) . (B9)

APPENDIX C: ESTIMATING THE NUMBER OF
VERTICES OF P2,S

N,k

Here we prove that the number of vertices of P2,S
N,k grows

with N as O(Nk ).
Let k � N be a constant, np be the number of vertices of

NS2,S
p , and n′ = maxp np. Let us then define

λp = p
∑

i=1,...,np

ξp,i (C1)

and group the components of λp into a vector �λ. Observe that
�λ forms a partition of N in k elements, where the pth element
is a multiple of p. Let us denote this fact as �λ �′

k N . For a given
p between 1 and k, we have to choose how many ways there
are to partition λp/p into np possibly empty subsets. This is
given by

(
λp/p + np − 1

np − 1

)
(C2)

TABLE I. List of the vertices of NS2,S
2 . In the first column, we

also add the corresponding populations.

S0 S0 S00 S01 S11

ξ2,1 0 0 2 2 −2
ξ2,1 0 0 −2 2 2
ξ2,3 0 0 2 −2 −2
ξ2,4 0 0 −2 −2 2

ways. Therefore, the total number of partitions satisfying (14)
is given by

∑
�λ�′

kN

k∏
p=1

(
λp/p + np − 1

np − 1

)
. (C3)

Now, we are going to give an upper bound to (C3) just to show
a polynomial scaling in k. Since λp/p � N and np � n′, we
have the bound∑

�λ�′
kN

k∏
p=1

(
λp/p + np − 1

np − 1

)
�
∑
�λ�′

kN

(
N + n′ − 1

n′ − 1

)k

�
(

N + k − 1

k − 1

)(
N + n′ − 1

n′ − 1

)k

= O(Nζn′k ), (C4)

where ζ > 1 is some constant. Note that
(N+k−1

k−1

)
counts the

number of partitions of N into k possibly empty subsets,
which is clearly greater than the number of partitions of N
into k possibly empty subsets, satisfying the extra condition
of λp being divisible by p. Since n′ is constant because k is
constant, the overall scaling is polynomial in N .

APPENDIX D: VERTICES OF THE PROJECTED
NONSIGNALING POLYTOPES OF N = 2, 3, 4 PARTICLES

Here, we attach tables with vertices for the projections
NS2,S

N of the nonsignaling polytopes NSN onto the symmet-
ric two-body subspace for 2 � N � 4 (Tables I–III). For com-
pleteness we also attach the table containing the deterministic
values of single-body correlations (Table IV). We omit the
cases N = 5, 6 because the lists of vertices are too long to
present here.

Notice that, for the smallest Ns, the lists of vertices of the
nonsignaling polytopes are known. For N = 2, the only nonlo-
cal vertices belong to the equivalence class of the so-called PR

TABLE II. List of the vertices of NS2,S
3 . In the first column, we

also add the corresponding populations.

S0 S0 S00 S01 S11

ξ3,1 −1 −1 6 −2 −2
ξ3,2 −1 −1 −2 −2 6
ξ3,3 −1 1 6 2 −2
ξ3,4 −1 1 −2 2 6
ξ3,5 1 −1 6 2 −2
ξ3,6 1 −1 −2 2 6
ξ3,7 1 1 6 −2 −2
ξ3,8 1 1 −2 −2 6
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TABLE III. List of the vertices of NS2,S
4 . In the first column, we

also present the associated populations.

S0 S0 S00 S01 S11

ξ4,1 −2 −2 12 0 0
ξ4,2 −2 −2 0 0 12
ξ4,3 −2 2 12 0 0
ξ4,4 −2 2 0 0 12
ξ4,5 2 −2 12 0 0
ξ4,6 2 −2 0 0 12
ξ4,7 2 2 12 0 0
ξ4,8 2 2 0 0 12
ξ4,9 0 0 12 −4 −4
ξ4,10 0 0 −4 −4 12
ξ4,11 0 0 12 4 −4
ξ4,12 0 0 −4 4 12
ξ4,13

−20
7

−4
7

36
7

−12
7

−12
7

ξ4,14
−20

7
−4
7

−12
7

−12
7

36
7

ξ4,15
−20

7
4
7

36
7

12
7

−12
7

ξ4,16
−20

7
4
7

−12
7

12
7

36
7

ξ4,17
20
7

−4
7

36
7

12
7

−12
7

ξ4,18
20
7

−4
7

−12
7

12
7

36
7

ξ4,19
20
7

4
7

36
7

−12
7

−12
7

ξ4,20
20
7

4
7

−12
7

−12
7

36
7

box [32]. For N = 3, the list of the 46 equivalence classes was
derived in Ref. [40]. Therefore, for these scenarios, the pro-
jection can be performed straightforwardly through the vertex
representation (cf. Appendix A). The resulting extremal points
are shown in Tables I and II in (the vertices that are shared
with the local polytope are omitted). For the bipartite case,
N = 2, the four nontrivial vertices belong obviously to a
single equivalence class, corresponding to the projection of
the PR box. Interestingly, there is also only one relevant class
for the tripartite case, corresponding to the projection of the
class number 29 of Ref. [40], which is one of the two that
violate maximally the guess-your-neighbor-input inequality
[58]. For higher values of N , the number of equivalence
classes starts growing, as can already be seen for the vertices
of N = 4 in Table III.

APPENDIX E: COMPLETE LIST OF FACETS FOR THE
POLYTOPES THAT TEST FOR GMNL

Here, we present the complete list of facets for the poly-
topes that test for genuine multipartite nonlocality for N =

TABLE IV. List of the values of the one- and two-body sym-
metric expectation values for deterministic local strategies. In this
case, S0 and S1 contain consist of one expectation value, while Sxy

are simply zero.

S0 S1 S00 S01 S11

ξ1,1 1 1 0 0 0
ξ1,2 1 −1 0 0 0
ξ1,3 −1 1 0 0 0
ξ1,4 −1 −1 0 0 0

TABLE V. List of the facets of the symmetric two-body polytope
of two-producible correlations for N = 3.

βC α β γ δ ε

1 0 0 1 0 0
12 −3 1 3 − 3

2 −2
6 −2 −2 0 1 0
3 0 0 0 −1 1
3 0 −2 0 0 1
3 0 0 −1 0 0

3, 4, 5 (Tables V–VII). We omit the N = 6, 7 cases since the
amount of inequalities starts becoming too long to be con-
tained in one page. The inequalities are sorted in equivalence
classes, under symmetry operations such as outcome-input
swapping, in the same fashion as in Ref. [22].

APPENDIX F: DERIVING THE INEQUALITY OF
k-NONLOCALITY FOR ANY NUMBER OF PARTIES

In what follows, we explicitly compute k-producible
bounds βk [cf. Eq. (12)] for different k’s for the two-body Bell
expression (23). We begin with fully general considerations
and later we focus on a few values of k and compute βk case
by case. Let us start by noting that, since the sets P2,S

N,k are
polytopes, it is enough to perform the above minimization
over their vertices (see Fig. 6). Hence, by making use of
Eqs. (15) and (B9), the expression I in Eq. (23) for all vertices
of P2,S

N,k can be written as

I (�S(�ξ )) =
k∑

p=1

np∑
i=1

ξp,iI (�S(p, i))

+ 1

2

k∑
p=1

np∑
i=1

ξp,i[ξp,i − 1]I (�S(p, i), �S(p, i))

+ 1

2

∑
{p,i}
={q, j}

ξp,iξq, jI (�S(p, i), �S(q, j)), (F1)

TABLE VI. List of the facets of the symmetric two-body poly-
tope of three-producible correlations for N = 4.

βC α β γ δ ε

2 1 0 1 0 0
42 12 3 6 2 −3
42 −12 9 6 −6 1
20 −5 3 4 −3 0
30 −6 3 6 −4 −1
12 0 0 3 1 −1
12 3 3 1 2 1
6 −3 0 1 0 0
8 −3 −1 2 1 0
6 0 0 1 −1 0
8 0 2 1 1 1
12 −3 −3 0 1 0
6 0 0 −1 0 0
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TABLE VII. List of the facets of the symmetric two-body poly-
tope of four-producible correlations for N = 5.

βC α β γ δ ε

30 −4 10 1 −2 3
40 −8 12 1 −3 3
116 28 −28 4 −9 4
134 −36 30 8 −11 4
452 −120 104 25 −37 15
562 −144 136 27 −45 22
112 28 −28 5 −9 5
116 28 −28 5 −10 5
380 −92 84 21 −34 13
36 −4 8 4 −3 2
380 −92 84 20 −33 12
320 −76 68 20 −29 10
200 −52 44 12 −17 6
16 −2 4 2 −1 1
110 −30 24 7 −9 3
20 4 −4 0 −1 0
410 −120 72 40 −30 3
170 −60 24 20 −10 1
8 0 0 2 1 0
20 0 0 3 3 1
20 −2 8 0 −1 3
20 0 4 1 −2 3
50 0 12 4 −4 5
40 −4 12 2 −3 4
80 4 12 9 −8 7
34 2 6 4 −3 3
4 2 0 1 0 0
10 −4 0 1 0 0
220 60 12 20 5 −8
120 20 −4 20 −5 −6
400 −60 36 60 −45 2
20 4 2 3 2 0
20 −4 −4 1 2 1
80 8 20 −2 5 10
40 −12 −6 5 3 0
2 0 0 0 0 1
10 0 0 −1 0 0

where we have defined the following cross terms:

I (�S(p, i), �S(q, j)) = [S0(p, i)+S1(p, i)][S0(q, j)+S1(q, j)].

(F2)

When the vectors �S(p, i) are known, the expression (F1)
takes the form of a polynomial of degree 2 in terms of the
populations ξp,i. By grouping together the linear and quadratic
terms, we get

I (�S(�ξ )) =
k∑

p=1

np∑
i=1

ξp,i
[
I (�S(p, i)) − 1

2I (�S(p, i), �S(p, i))
]

+ 1

2

k∑
p,q=1

np∑
i, j=1

ξp,iξq, jI (�S(p, i), �S(q, j)). (F3)

Then, by substituting the explicit form of the cross term (F2),
one arrives at

I (�S(�ξ )) =
k∑

p=1

np∑
i=1

ξp,i
{
I (�S(p, i)) − 1

2 [S0(p, i) + S1(p, i)]2
}

+ 1

2

⎧⎨⎩
k∑

p=1

np∑
i=1

ξp,i[S0(p, i) + S1(p, i)]

⎫⎬⎭
2

. (F4)

With the above expression in hand, we can now seek the k-
producibility bounds βk for I. Our approach is the following.
Instead of minimizing the expression I for all k-producible
correlations, we will rather consider a particular value of βk

and prove that the inequality I + βk � 0 holds for all integer
values of ξp,i � 0 for p = 1, . . . , k and i = 1, . . . , np such that
the condition (14) holds.

1. Cases k = 2 and k = 3

We will first consider the simplest cases of k = 2, 3 and
show that for them βk

C = 2N is the correct classical bound.
In other words, below we demonstrate that the following
inequality,

2S0 + 1
2 S00 + S01 + 1

2 S11 + 2N � 0, (F5)

is satisfied for all correlations belonging to P2,S
N,k for k = 2, 3 and any N . To this end, we use Eqs. (F4) and (14) to write down

the following expression:

I (�S(�ξ )) + 2N =
k∑

p=1

np∑
i=1

ξp,i
{
I (�S(p, i)) + 2p − 1

2 [S0(p, i) + S1(p, i)]2}+ 1

2

⎧⎨⎩
k∑

p=1

np∑
i=1

ξp,i[S0(p, i) + S1(p, i)]

⎫⎬⎭
2

. (F6)

Then, plugging in the explicit values of the one- and two-body symmetric expectation values for p = 1, 2, 3 collected in Tables I,
II, and IV, the above further rewrites as

I (�S(�ξ )) + 2N = 2[(ξ1,1 − ξ1,4 − ξ3,1 − ξ3,2 + ξ3,7 + ξ3,8)2 + ξ1,1 + 2ξ1,2 − ξ1,4]

+2[3(ξ2,1 + ξ2,2) + ξ2,3 + ξ2,4] + 2[(ξ3,1 + ξ3,2) + 4(ξ3,3 + ξ3,4) + 6(ξ3,5 + ξ3,6) + 3(ξ3,7 + ξ3,8)]. (F7)
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With the following substitutions,

X = 2(ξ1,1 − ξ1,4),

Y = 2(−ξ3,1 − ξ3,2 + ξ3,7 + ξ3,8),

P (�ξ ) = 2[ξ1,2 + 3(ξ2,1 + ξ2,2) + ξ2,3 + ξ2,4 + 2(ξ3,1 + ξ3,2)

+4(ξ3,3 + ξ3,4) + 6(ξ3,5 + ξ3,6) + 2(ξ3,7 + ξ3,8)], (F8)

we can bring the expression (F7) into the following simple form:

I (�S(�ξ )) + 2N = 1
2 (X + Y )2 + X + Y + P (�ξ )

= 2Z (Z + 1) + P (�ξ ), (F9)

where Z = (X + Y/2). We then notice that all ξp,i � 0, which immediately implies that P (�ξ ) � 0 for all configurations of
populations. Thus, we are left with the term Z (Z + 1), which is negative only when −1 < Z < 0. However, because Z is a
linear combination of integers with integer coefficients, it cannot take such values. Thus, Z (Z + 1) � 0, which completes the
proof.

2. The case k = 4

We now address the first case in which the bound βk is different than the local bound of the Bell inequality. First of all, we
notice that the bipartite nonsignaling populations ξ2,i enter the expression (F6) only in the linear part and, since their coefficient
are always positive, we know that they never contribute to the violation of the local bound. Thus, the expression I (�S(�x)) + 2N
without these terms reads explicitly

1
2 (X + Y + Y ′ + W + W ′)2 + 2(ξ1,1 + 2ξ1,2 − ξ1,4)

+ 2[(ξ3,1 + ξ3,2) + 4(ξ3,3 + ξ3,4) + 6(ξ3,5 + ξ3,6) + 3(ξ3,7 + ξ3,8)]

+ 2[ξ4,1 + ξ4,2 + 5(ξ4,3 + ξ4,4) + 9(ξ4,5 + ξ4,6) + 5(ξ4,7 + ξ4,8)]

+ 8[ξ4,9 + ξ4,10 + 2(ξ4,11 + ξ4,12)]

+ 8
49 [−22(ξ4,13 + ξ4,14) + 19(ξ4,15 + ξ4,16) + 89(ξ4,17 + ξ4,18) + 48(ξ4,19 + ξ4,20)], (F10)

where X and Y are defined above and Y ′, W , and W ′ are given by

Y ′ = 4(−ξ4,1 − ξ4,2 + ξ4,7 + ξ4,8),

W = 24
7 (−ξ4,13 − ξ4,14 + ξ4,19 + ξ4,20),

W ′ = 16
7 (−ξ4,15 − ξ4,16 + ξ4,17 + ξ4,18). (F11)

Then, we can simplify this expression

1
2 (X + Y + Y ′ + W + W ′)2 + X + Y + Y ′ + W + W ′ + P̃ (�ξ ) − 8

49 (ξ4,13 + ξ4,14), (F12)

where

P̃ (�ξ ) = 4ξ2,2 + 4[ξ3,1 + ξ3,2 + 2(ξ3,3 + ξ3,4) + 3(ξ3,5 + ξ3,6) + ξ3,7 + ξ3,8]

+2[3(ξ4,1 + ξ4,2) + 5(ξ4,3 + ξ4,4) + 9(ξ4,5 + ξ4,6) + 3(ξ4,7 + ξ4,8)]

+8[ξ4,9 + ξ4,10 + 2(ξ4,11 + ξ4,12)]

+ 8
49 [33(ξ4,15 + ξ4,16) + 75(ξ4,17 + ξ4,18) + 27(ξ4,19 + ξ4,20)] (F13)

is a polynomial that is positive for all configurations of populations ξp,i. Let us now show that the expression in (F13) is always
greater or equal to −2N/49 − 1/2. In other words, we want to prove that

1
2 (X + Y + Y ′ + W + W ′)2 + X + Y + Y ′ + W + W ′ + P̃ (�ξ ) − 8

49 (ξ4,13 + ξ4,14) + 1
2 + 2

49 N � 0, (F14)

for any ξp,i. To this end, we can exploit (14) in order to express N in terms of the populations, which allows us to see that
2N � 8(ξ4,13 + ξ4,14), implying that (F14) holds true. As a result, the bound for k = 4 amounts to

β4
C = (

2 + 2
49

)
N + 1

2 . (F15)

3. Cases k = 5, 6

Based on the previous results, our guess is that for any 3 < k < N , the bound for k-producible correlations is given by

βk
C = 2N + 1

2 + αkN. (F16)
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In what follows, we estimate the correction to the linear dependence on N , that is, αk for k = 5, 6, and leave the general case of
any k as an open problem. To this aim, we follow the approach used in the case k = 4. More precisely, by substituting βk

C given
in (F16) into I + βk

C , we obtain

I (�S(�ξ )) + βk
C =

k∑
p=1

np∑
i=1

ξp,i

[
I (�S(p, i)) + (2 + αk )p − 1

2
[S0(p, i) + S1(p, i)]2

]

+1

2

⎧⎨⎩
k∑

p=1

np∑
i=1

ξp,i[S0(p, i) + S1(p, i)]

⎫⎬⎭
2

+ 1

2

=
k∑

p=1

np∑
i=1

ξp,i

{
I6(�S(p, i)) + (2 + αk )p

−1

2
[S0(p, i) + S1(p, i)]2 − [S0(p, i) + S1(p, i)]

}

+1

2

⎧⎨⎩
k∑

p=1

np∑
i=1

ξp,i[S0(p, i) + S1(p, i)] + 1

⎫⎬⎭
2

. (F17)

As the last term in this expression is always non-negative, to study the positivity of I (�S(�ξ )) + β
(k)
C , we can restrict our attention

to the following function:

�(�ξ ) =
k∑

p=1

np∑
i=1

ξp,i

{
I (�S(p, i)) + (2 + αk )p − 1

2
[S0(p, i) + S1(p, i)]2 − [S0(p, i) + S1(p, i)]

}
. (F18)

As it is a linear function in the populations which are all
non-negative, its minimum is reached for the population ξ ∗
standing in front the expression that takes the minimal value
over all choices of the vertices. In other words, we can lower
bound �(�x) as

�(�ξ ) � ξ ∗(p∗αk + mk ), (F19)

where p∗ is the number of parties corresponding to x∗ and mk

is defined as

mk = min
p=1,...,k

min
i=1,...,np

{
I (�S(p, i)) + 2p− 1

2 [S0(p, i)+S1(p, i)]2

− [S0(p, i) + S1(p, i)]

}
. (F20)

Thus, we simply need to compute mk and the value αk we are
looking for can be taken as αk = mk/k as for it �(�ξ ) � 0 for
any N .

To this end, we perform the minimization in (F20) by
evaluating the right-hand side on each vertex of the projected
five- and six-partite no-signaling polytope. We obtain m5 =
40/121 and m6 = 1/2, implying that the modified bounds
amount to

β5
C = (

2 + 8
121

)
N + 1

2 (F21)

and

β6
C = (

2 + 1
12

)
N + 1

2 , (F22)

respectively.

TABLE VIII. The local βC , k-nonlocal βk , quantum βQ, and
nonsignaling bounds for the Svetlichny Bell expression.

Local βC k-nonlocal βk Quantum βQ Nonsignaling βNS

2
1−(−1)N

4 2(N−2� �N/k�
2 	)/2 2(N−1)/2 2N/2

APPENDIX G: ESTIMATING THE SVETLICHNY AND
MERMIN OPERATORS WITH COLLECTIVE SPIN

MEASUREMENTS

Here, we show the details on the derivation of the wit-
nessed for the Mermin and Svetlichny inequalities in (28) and
(26). Their fully local β1

C , the k-nonlocal βC ≡ βk , the quan-
tum βQ and the nonsignaling bounds are given in Tables VIII
and IX.

Generally, the bounds for these inequalities are expressed
in terms of the number of groups m in which the N parties are
split. Noticing that N , m, and k are related by the relation m +
k − 1 � N � mk allows one to express the bound as a func-
tion of the nonlocality depth k (resulting in the bound in the
table above). The fact that these bounds can be achieved with a
model in which �N/k	 groups contain exactly k parties implies
that the resulting bounds are tight [33]. As the quantum bound

TABLE IX. The local βC , k-nonlocal βk , quantum βQ, and
nonsignaling bounds for the Mermin Bell expression.

Local βC k-nonlocal βk Quantum βQ Nonsignaling βNS

2
1+(−1)N

4 2(N−2� �N/k�+1
2 	+1)/2 2(N−1)/2 2(N−1)/2
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is larger than the (N − 1)-nonlocal bound, the Mermin and
Svetlichny expressions can reveal genuine nonlocality.

As explained in the main text, the Svetlichny and Mermin
inequalities can give rise to the same witness operator:

BSvet
N = BMermin

N = 2(N−1)/2(|0〉〈1|⊗N + |1〉〈0|⊗N ). (G1)

If the mean value of this operator tr(ρBSvet
N ) is larger than

the k-nonlocal bound given in the Table VII, we conclude
that the state ρ has the capability to violate a Svetlichny
inequality with the corresponding bound, that is, ρ is (k + 1)-
Bell correlated. Similarily, if the mean value of the (same)
operator tr(ρBMermin

N ) is larger than the k-nonlocal bound
given in Table VIII, we obtain the same conclusion.

In order to state our bound in (32), we first need to prove
that the following operator

χN = |GHZ+
N 〉〈GHZ+

N | − |GHZ−
N 〉〈GHZ−

N |

− σ 1
x . . . σ N

x︸ ︷︷ ︸
N times

−
N∑

m 
=n

σ m
z σ n

z + N (N − 1)1 (G2)

is positive semidefinite, where σ i
x/z stands for the Pauli matrix

σx/z acting on site i. The proof can be derived in various ways
from Ref. [59], focusing on genuine entanglement detection.

To this aim, let us assume for simplicity N to be even
and consider the GHZ state |GHZ+

N 〉, and the following set of
states obtained by flipping k of its spins with k = 1, . . . , N/2,
that is,

σ i1
x |GHZ+〉,

σ i1
x σ i2

x |GHZ+〉, i1 
= i2

...

σ i1
x σ i2

x . . . σ
iN/2−1
x |GHZ+〉, i1 
= i2 
= . . . 
= iN/2−1,

σ i1
x σ i2

x . . . σ
iN/2
x |GHZ+〉, i1 
= i2 
= . . . 
= iN/2, (G3)

where i� = 1, . . . , N for � = 1, . . . , N/2. Notice that in each
“line” of Eq. (G3) there are Ck

N = (N
k

)
(k = 1, . . . , N/2 − 1)

orthogonal states except for the last one in which the number
of orthogonal vectors is CN/2

N /2. We then construct an analo-
gous set of vectors with |GHZ−

N 〉, which altogether gives us a
set of

2
N/2−1∑

k=0

Ck
N + CN/2

N =
N∑

k=0

Ck
N = 2N

orthonormal vectors forming a basis in (C2)⊗N . Let us now
show that the operator χN is diagonal in this basis. For this
purpose, we notice that σxσzσx = −σz and therefore (see also
Ref. [60])

〈GHZ±
N |(σ i1

x σ i2
x . . . σ i�

x ) (σ m
z σ n

z ) (σ i1
x σ i2

x . . . σ i�
x )|GHZ±

N 〉
= (−1)λm,n tr

(
σ m

z σ n
z |GHZ±

N 〉〈GHZ±
N |) = (−1)λm,n ,

where � = 1, . . . , N/2, m 
= n, and λm,n = 0 if both qubits m
and n are flipped or neither of them, and λm,n = −1 if only one
of them is flipped. We also notice that for the parity operator
one has

〈GHZ±
N |(σ i1

x σ i2
x . . . σ i�

x

) (
σ 1

x . . . σ N
x

) (
σ i1

x σ i2
x . . . σ i�

x

)|GHZ±
N 〉

= ±1.

All this means that the operator χN is diagonal in the above
basis. Furthermore, the maximal eigenvalue of σ 1

x . . . σ N
x +∑N

m 
=n σ m
z σ n

z is N (N − 1) + 1 and the corresponding eigen-
state is |GHZ+

N 〉. Then, the other GHZ state |GHZ−
N 〉 cor-

responds to the eigenvalue N (N − 1) − 1 and all the other
elements of the above basis vectors eigenvectors with eigen-
values smaller or equal to N (N − 1) − 1. As a result, all
eigenvalues of χN are non-negative, and hence

BSvet
N = BMermin

N =
√

2
N−1

(|GHZ+
N 〉〈GHZ+

N | − |GHZ−
N 〉〈GHZ−

N |) �
√

2
N−1

⎡⎣σ 1
x . . . σ N

x +
N∑

m 
=n

σ m
z σ n

z − N (N − 1)1

⎤⎦. (G4)

It is not difficult to see that the same reasoning holds for odd N [in this case, the basis is formed with all possible spin flips
of (N − 1)/2 spins], and consequently the above bound is valid for any N . Noticing then that

∑N
m 
=n σ m

z σ n
z = 4S2

z + N1, where

Sz = (1/2)
∑N

i=1 σ i
z is the total spin component along the z axis, we arrive at the following operator bound for the Svetlichny and

Mermin Bell operators:

BSvet
N = BMermin

N =
√

2
N−1

(|GHZ+
N 〉〈GHZ+

N | − |GHZ−
N 〉〈GHZ−

N |) �
√

2
N−1[

σ 1
x . . . σ N

x + 4S2
z − N21

]
. (G5)

Combining the k-nonlocal bounds of the Svetlichny and Mermin Bell expressions then allows us to write the following witness
of Bell correlations depth:

〈BN 〉 =
√

2
N−1〈

σ 1
x . . . σ N

x + 4S2
z − N21

〉
� 2(N−� N

k �)/2. (G6)
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