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We experimentally and theoretically study phase coherence in two-component Bose-Einstein con-
densates of 87Rb atoms on an atom chip. Using Ramsey interferometry we measure the temporal
decay of coherence between the |F = 1, mF = −1〉 and |F = 2, mF = +1〉 hyperfine ground
states. We observe that the coherence is limited by random collisional phase shifts due to the
stochastic nature of atom loss. The mechanism is confirmed quantitatively by a quantum trajectory
method based on a master equation which takes into account collisional interactions, atom number
fluctuations, and losses in the system. This decoherence process can be slowed down by reducing
the density of the condensate. Our findings are relevant for experiments on quantum metrology
and many-particle entanglement with Bose-Einstein condensates and the development of chip-based
atomic clocks.

Atomic Bose-Einstein condensates (BECs) in magnetic
traps are exceptionally well-isolated quantum many-body
systems. Distinct from most other systems, the coher-
ence of atomic BECs in state-of-the-art experiments is
limited by intrinsic dynamics rather than interactions
with the environment [1]. Elucidating the dominant
decoherence mechanisms is thus an intriguing challenge
for quantum many-body physics, but at the same time
also highly relevant for applications of BECs in quantum
metrology [2] and in experiments on the foundations of
quantum physics [3–6].

The spatial coherence across a condensate has been
studied in different systems [7–10]. Here we focus on
the temporal coherence of three-dimensional trapped
BECs, which limits the preparation fidelity of non-
classical states and the duration of interferometric se-
quences in precision measurements. Theoretical stud-
ies of BEC temporal coherence have suggested different
decoherence mechanisms resulting from the interplay of
elastic collisional interactions, inelastic collisional atom
loss, and finite temperature [1]. Previous experiments
have mostly investigated inhomogeneous dephasing due
to mean-field driven spatial dynamics of the condensate
wavefunctions [11, 12], while homogenous dephasing was
attributed to technical noise. Inhomogeneous dephasing
and spatial demixing can be reversed by spin echo tech-
niques [1, 11]. Other experiments investigated the effect
of phase noise on spin-squeezed states [13]. However,
a detailed experimental study of the predicted homoge-
neous phase decoherence mechanisms [1], which funda-
mentally limit the BEC coherence, has not yet been re-
ported.

Here we report experiments and corresponding the-
oretical simulations of the decoherence mechanisms in
two-component BECs of 87Rb atoms. Using Ramsey
interferometry, we explore the phase coherence of the
hyperfine ground states |1〉 ≡ |F = 1,mF = −1〉 and

|2〉 ≡ |F = 2,mF = +1〉 in a magnetic trap on an
atom chip [14]. This system is used in recent experi-
ments on quantum metrology and many-particle entan-
glement [3, 4, 15] as well as in chip-based atomic clocks
that are currently being developed [13, 16]. We observe
an increase of relative phase fluctuations between the
two hyperfine states (Fig. 1), and find that the coher-
ence is limited by random collisional phase shifts due to
the stochastic nature of atom loss. The experimental re-
sults are confirmed quantitatively by a theoretical model
based on the quantum trajectory approach, which takes
into account elastic collisional interactions, atom number
fluctuations, and losses in the system. Our experimental
findings are relevant for compact atomic clocks realized
in similar cold or ultracold atomic systems where atomic
interactions are a limiting factor [13, 16].

In our experiment, a BEC of 1020 ± 40 87Rb atoms
is prepared in the hyperfine state |1〉 and trapped in a
cigar-shaped magnetic potential with harmonic trapping
frequencies ω(r,z) = 2π × (714, 114) Hz. We coherently
couple the two hyperfine states |1〉 and |2〉 via a resonant
two-photon transition induced by microwave and radio-
frequency magnetic fields, with a two-photon Rabi fre-
quency of ≈ 2π×600 Hz at a detuning of ≈ 2π×500 kHz
from the intermediate state |F = 2,mF = 0〉. The two
states |1〉 and |2〉 are of special interest for atomic clocks
because their differential Zeeman shift vanishes to first
order at a magnetic field of ≈ 3.23 G, making superpo-
sitions of the two states largely insensitive to magnetic
field fluctuations [17]. Since the atoms are condensed in
a single spatial mode, they can be regarded as pseudo-
spin 1/2 and the whole ensemble can be well described
in terms of a collective spin [2].

In order to investigate the phase coherence between
the two spin states, we perform a Ramsey interferome-
ter sequence with varying interrogation time. Starting
with a BEC in state |1〉, we apply a π/2-pulse to prepare
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an equal superposition coherent spin state. After an in-
terrogation time TR, a second π/2 pulse is applied to
convert the accumulated phase into an observable atom
number difference. At the end of the experiment, we
measure the atom numbers in the two spin states N1 and
N2 by absorption imaging, and evaluate the normalized
atom number imbalance nrel = (N1 − N2)/(N1 + N2).
By scanning the relative phase φR of the two pulses we
record the Ramsey interferometer fringe in phase domain
(Fig. 1, top panel). The outcome of such an experiment
can be described by the following heuristic model for a
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FIG. 1. Ramsey interferometer fringes at TR = 0.1 ms (a)
and TR = 200 ms (b), with red curve showing a sinusoidal fit
of the experimental data (blue dots). The fringe at 0.1 ms
shows almost no sign of phase noise while after 200 ms the
fringe is smeared out by phase noise and the contrast is re-
duced. Phase noise as a function of TR is shown for a tight
trap with ω(r,z) = 2π × (714, 114) Hz (c) and a shallow trap
with ω(r,z) = 2π × (301, 113) Hz (d). Experimental results
are shown before (red and purple) and after collisional phase
shift correction (blue and green). Dots and square symbols
represent data at TR < 0.2 s and TR > 0.2 s respectively, eval-
uated with different methods (see text). Results of quantum
trajectory simulations are given by the dashed line with cor-
responding color. Black dashed line shows the upper bound
on technical noise (see text). The insets show the phase noise
at TR < 0.2 s in a log-log scale. The minimal phase uncer-
tainty is close to the projection noise of a coherent spin state
∆φ = 1/

√
N ≈ 0.033 rad.

Ramsey fringe

nrel(φR) = V sin(φR + φ), (1)

where V is the fringe visibility, and φ is a classical random
variable describing the phase accumulated by the state
during the interrogation time TR, which fluctuates due
to noise. The phase noise quantified by the standard
deviation ∆φ is evaluated in the following way.

For short Ramsey times TR < 0.2 s, we experimentally
set the Ramsey phase to the value φR = φ0 where the
mean of nrel is zero. At this point, with the maximal
slope of the fringe ∂nrel/∂φ = V, the phase is evaluated
as φ = arcsin(nrel/V). In general, V < 1 due to the
asymmetric losses in the two spin states. We repeat the
experiment to gather statistics and evaluate the standard
deviation ∆φ assuming a Gaussian distribution of the
phase fluctuations.

For long Ramsey times TR > 0.2 s, the above method
is not reliable due to ambiguities of the phase. As a more
reliable evaluation, we fit the entire Ramsey fringe with
nrel(φR) = C sin(φR − φ0), where C is the contrast, and
φ0 is the fitted phase at zero-crossing. For a Gaussian
distribution of the phase fluctuations, ∆φ is evaluated
by the relation C = V exp(− 1

2∆φ2).

We observe an increase of the phase noise with time
(Fig. 1). The main interest of this work is to inves-
tigate the origins of these fluctuations, which can be
divided into technical and intrinsic sources of noise.
On the technical side, the system is suffering from lo-
cal oscillator noise, magnetic field fluctuations, and de-
tection noise. To estimate the contribution of techni-
cal noise, we perform the same experiments with non-
condensed atoms in a relaxed trap with trap frequencies
(ωr, ωz) = 2π× (301, 113) Hz. The non-condensed atoms
suffer from the same technical noise, but due to a signifi-
cantly reduced atomic density, the effects of interactions
are largely suppressed. We use the result as an upper
bound on the technical noise in our experiment, shown in
Fig. 1 with a black dashed line ∆φtech(t) = 0.1 (rad/s)×t.
This demonstrates that technical noise contributes little
to the observed phase noise in our experiments.

Intrinsic to the two-component BEC, the collisional in-
teractions also introduce phase fluctuations. The dynam-
ics of the collective spin due to elastic collisions between
atoms can be described by the Hamiltonian [18]:

Ĥ = h̄χ̃N̂ Ŝz + h̄χŜ2
z , (2)

where Ŝz = (N̂1 − N̂2)/2 is the z component of the col-
lective spin operator, and N̂ = N̂1 + N̂2 is the total

atom number. The parameters χ̃ = 1
2h̄

(
∂2E
∂N2

1
− ∂2E

∂N2
2

)
and

χ = 1
2h̄

(
∂2E
∂N2

1
+ ∂2E

∂N2
2
− 2 ∂2E

∂N2∂N1

)
depend on the energy

E of the two interacting components with mean atom
number N̄1 and N̄2 in state |1〉 and |2〉 respectively [18].
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In our experiment where the atoms occupy a single spa-
tial mode, the first term h̄χ̃N̂ Ŝz dominates (typical val-
ues: χ/2π ≈ 4.8× 10−4 Hz and χ̃/2π ≈ 0.01 Hz). This
term introduces a phase evolution depending on the total
atom number N , which is the so-called collisional clock
shift [12, 19]. Since the initial atom number of the BEC
fluctuates, a superposition state has a spread of phase
evolution rates, causing dephasing. As a result, for a
fixed TR, the measured phase φ shows a linear depen-
dence on the total atom number N (see Fig. 2(a)), which
can be extracted by fitting the data with the function

f(N) = α(TR)TRN + β, (3)

where α(TR) and β are free parameters. The value we
obtain for α(TR) can be used to quantify the strength of
the collisional phase shifts. In the ideal case with χ =
0 and without atom loss, α(TR)TRN is proportional to∫ TR

0
χ̃(t)N(t)dt.

As is common in atomic clock experiments, one can
enhance the precision of the phase measurement by post-
processing the data to subtract the dependence of φ on
N . The corrected phase φcorr = φ− α(TR)TRN , as plot-
ted in Fig. 2(c), shows no dependence on N . This cor-
rection reduces the observed phase noise significantly, as
shown in Fig. 1(c, d) and Fig. 2(c, d). However, even
after the clock-shift correction, there is still significant
residual phase noise, which can be attributed to the ran-
dom nature of atom loss. Atom loss due to inelastic col-
lisions occurs stochastically, thus randomizing the atom
number time-evolution. In general, this leads to phase
fluctuations since experimental shots with different atom
number time-evolution will dephase with respect to each
other. Experimentally, only the final total atom number
is accessible, therefore the correction method described
above does not allow to subtract the random collisional
phase shifts completely.

To build a theoretical model taking into account this
interplay of collisional interactions and the stochastic na-
ture of atom losses, we model the quantum dynamics of
the collective spin with the master equation [20]:

dρ̂

dt
= − i

h̄

[
Ĥ, ρ̂

]
+

4∑
k=1

Ĉkρ̂Ĉ
†
k−

1

2
ρ̂Ĉ†kĈk−

1

2
Ĉ†kĈkρ̂, (4)

where the Hamiltonian is defined in Eq. (2).
The dominant types of losses are collisions between

the BEC atoms and the residual background gas, de-
scribed by one-body loss constant K1, and the intrin-
sic losses from inelastic two-body collisions, described
by inter-species and intra-species two-body loss con-

stants K
(2)
12 and K

(2)
22 , respectively. Two-body loss in

state |1〉 and three-body losses are negligible for our
parameters. The quantum jump operators Ĉk express
the four types of significant losses in our system: one-
body losses (Ĉ1, Ĉ2) = (

√
K1â1,

√
K1â2) and two-body

losses (Ĉ3, Ĉ4) = (
√
γ12â1â2,

√
γ22â

2
2), where âi is the

bosonic operator annihilating atoms in the |i〉 state. Pa-
rameters γij are the integrated two-body loss rates, i.e.

γij =
K

(2)
ij

2

∫
d3r |ψi|2|ψj |2, where |ψj | is the wavefunc-

tion of state |j〉.
In order to quantify the atom loss in our experiment,

we perform three independent measurements. First, we
prepare a BEC in state |1〉. With the loss of atoms hap-
pening solely due to one-body losses, we can extract K1

by a simple exponential fit, shown in Fig. 3, top panel. In
a second experiment, we measure the loss of atoms start-
ing with a BEC in |2〉. In this case, there are one-body
losses with already determined rate K1 and the intra-

species two-body losses depending on K
(2)
22 . We solve

the one-component Gross-Pitaevskii equation (GPE) in-

cluding losses with varying K
(2)
22 to find the best fit to

the experimental data, see Fig. 3, middle. Eventually,
we perform experiments with the BEC prepared in an
equal superposition of |1〉 and |2〉 (Fig. 3, bottom). In
this case all loss channels are present, but only one un-

known loss constant K
(2)
12 remains, which we determine

by comparing the two-component GPE (2C-GPE) simu-
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FIG. 2. Inteferometer data (a,c) and histogram (b,d) at
fixed time TR = 100 ms and fixed φR, with the raw data (red)
and data after the correction of collisional phase shift (blue).
Black curves are a linear fit of the data. The raw φ shows a
dependence on N , while after correction the slope is zero. (d)
shows a reduced phase uncertainty compared to (b) due to
the correction. (e) shows the collisional phase shift coefficient
α at different times in a tight trap ω(r,z) = 2π× (714, 114) Hz
(red) and a shallow trap ω(r,z) = 2π× (301, 113) Hz (purple).
The dashed curves with corresponding colors show the results
of the quantum trajectory simulation.
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FIG. 3. Time evolution of the mean atom number for three
different initial states: all atoms in state |1〉 (top), all atoms
in state |2〉 (middle) and atoms initially in the superposi-
tion (|1〉+ |2〉) /

√
2 (bottom). Red (Blue) points show the

measured atom number in spin state |1〉 (|2〉). Lines are
from corresponding GPE simulations with loss rate constants

K1 = 0.17 s−1, K
(2)
22 = 10.3 × 10−14 cm3s−1 and K

(2)
12 =

2.0× 10−14 cm3s−1.

lation with the data. The loss rate constants determined
in this way are K

(2)
22 = (10.3 ± 0.3) × 10−14 cm3s−1 and

K
(2)
12 = (2.0 ± 0.1) × 10−14 cm3s−1. Our values differ

from previously reported values in [21] but agree with
the ones from [22] and [23]. The conservation of mag-
netization excludes spin-changing collisions between two
atoms in |1〉 [24], therefore atom losses in the two states
are asymmetric, causing the decay of V as mentioned be-
fore.

Besides the loss rates, the phase noise evaluated from
Eq. (4) is also very sensitive to the precise values of the s-
wave scattering lengths, especially the difference between
a11 and a22, which affects the parameter χ̃ crucially. To
certify the values of scattering lengths used as input of
the theoretical model, we run the Ramsey sequence with
TR = 10 ms with varying initial atom numbers and ex-
tract χ̃. For this short interrogation time, atom losses are
insignificant and α ≈ χ̃. The 2C-GPE simulation with
values of scattering lengths taken from [21] shows a good
agreement with the experiment, see Fig. 4.

For long interrogation times the atomic densities de-
crease significantly due to atom loss. As a consequence,
the parameters χ, χ̃ and γij also change with time. To
take this effect into account, at each instant of time we
compute these parameters numerically by solving sta-
tionary coupled Gross-Pitaevskii equations for the mean
atom numbers N1 and N2, determined from Fig. 3. Such

an approach assumes that the atomic densities follow adi-
abatically the 2C-GPE ground states and the superpo-
sition states with different atom loss trajectories evolve
with the same parameters χ(t), χ̃(t), and γij(t).

The phase noise simulation starts with an equal su-
perposition of the two spin states. The initial number
of atoms is drawn from a Gaussian distribution with
mean and standard deviation as in the experiment. Its
dynamics, given by Eq. (4), is found with the help of
the quantum trajectory method [25, 26]. This stochastic

method results in a set of random final states
{
|ψ̃(TR)〉

}
,

whose mixture is the solution of the master equation,
i.e.

∑
|ψ̃(TR)〉〈ψ̃(TR)| ≈ ρ̂(TR). The numerically found

stochastic wave-functions are treated as experimental re-
alizations – we analyze them in exactly the same manner
as the real measurements to extract contrast, visibility,
clock-shift correction and phase noise, to ensure a reliable
comparison between experiment and simulation.

In Fig. 1 we show the results of the quantum trajectory
simulations. The simulation accurately reproduces the
observed increase of phase noise, both before and after
the phase shift correction. We also show in Fig. 2(e)
the simulated and measured collisional phase shift as a
function of time. In conclusion, the simulation provides
a good description of the mean of phase shift, as well as
the phase fluctuations.

Our study shows that the phase coherence is limited
mainly by the interplay of collisional interactions (elastic
and inelastic) between atoms. To extend the coherence
time, one can decrease the gas density, and thereby re-
duce the collisional rates. We confirm this by perform-
ing the phase noise measurement in a relaxed trap with
trap frequencies ω(r,z) = 2π × (301, 113) Hz. As shown
in Fig. 1(d) the phase noise is indeed strongly reduced.
In order to reach the fundamental bound of precision
limits in quantum metrology as theoretically described

200 400 600 800 1000
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0.015
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0.025

FIG. 4. Comparison of the extracted initial χ̃ between ex-
periment (black dots) and 2C-GPE simulation (red line). For
BECs with varying initial atom numbers we extract χ̃ with a
Ramsey sequence of TR = 10 ms.
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in [27, 28], the unwanted effects of decoherence should
be further mitigated. Experimentally, a state-dependent
potential could be applied to engineer interactions [18].
Using this technique, one can minimize χ̃, thus the col-
lisional phase shift, or tune the interactions so that the
quantum states are protected from the decoherence in-
duced by two-body losses, as proposed in [29].

In conclusion, we measure precisely the growth of the
phase noise in a trapped two-component BEC and iden-
tify the main decoherence sources. A clear distinction is
drawn between the technical noise and the noise induced
by the atomic interactions. We observe that the coher-
ence is limited by random collisional phase shifts due to
the stochastic nature of atom loss. The good agreement
between our data and the GPE simulation also allows
us to extract the two-body loss rate constants. Our ex-
perimental findings provide a good understanding of the
temporal coherence of a two-component BEC. In con-
trast to most other systems where decoherence is due
to interactions with the environment, in our experiment
the atoms are well-isolated, and the observed decoher-
ence effect is intrinsic to such a two-component BEC. Our
findings are relevant for trapped-atom clocks and inter-
ferometers where the atomic interactions play important
roles [13].
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