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These lecture notes give an introduction to optomechanics with ultracold atoms, focusing
in particular on hybrid systems where atoms are interfaced with micro- and nanofabri-
cated mechanical structures.

I would like to thank K. Hammerer, C. Genes, K. Stannigel, B. Vogell, M. Wallquist
and P. Zoller for the fruitful collaborations which laid the theoretical ground for our atom-
optomechanics activities. I am equally grateful to the talented and motivated students
who have contributed to our experiments: D. Hunger, S. Camerer, M. Korppi, A. Jöckel,
M. Mader, T. Lauber, M. T. Rakher, A. Faber, T. Kampschulte, L. Beguin, T. Karg and
G. Buser. In particular, I would like to thank T. Karg for helping with the preparation of
these lecture notes.

9.1 Introduction

The mechanical effects of light on matter are at the heart of research in the fields
of optomechanics and ultracold atoms. In optomechanics, a growing community of
researchers is developing techniques for laser cooling, manipulation, and measurement of
micro- and nanofabricated mechanical oscillators (Aspelmeyer et al., 2012; Aspelmeyer
et al., 2014). An important goal is to control mechanical vibrations of a massive solid-
state oscillator on the quantum level and to exploit this control for fundamental tests of
quantum physics and applications in precision sensing and signal transduction.

For ultracold atoms, quantum control of mechanical vibrations is well established.
The techniques of laser cooling and trapping developed since the 1980s allow one to
prepare single atoms as well as large ensembles in the ground-state of a trap, to coherently
manipulate their motion, and to detect their vibrations with quantum-limited precision
(Chu, 1991; Adams and Riis, 1997; Chu, 2002; Weidemüller and Zimmermann, 2009).
The coupling of ultracold atoms to the light field inside high-finesse cavities has been
studied on the single-photon level in cavity quantum electrodynamics (Miller et al., 2005;
Tanji-Suzuki et al., 2011). The availability of these techniques makes ultracold atoms
attractive for optomechanics experiments deep in the quantum regime.

Atomic implementations of optomechanics give access to new regimes of
optomechanical coupling, such as the ‘granular’ regime where the coupling of photons
and phonons is significant at the level of single quanta (Stamper-Kurn, 2014), and
connect optomechanics to research in many-body physics (Ritsch et al., 2013). Besides
their mechanical degrees of freedom, atoms have discrete internal levels that can be
controlled with high fidelity. This adds new features to optomechanical systems such as
two-level systems or collective spins that can be prepared in highly nonclassical states
(Riedel et al., 2010; Gross et al., 2010; Vasilakis et al., 2015; McConnell et al., 2015).
The new regimes and new functionality provided by atomic optomechanical systems
are currently being explored in a number of experiments (Brennecke et al., 2008; Murch
et al., 2008; Purdy et al., 2010; Schleier-Smith et al., 2011; Wolke et al., 2012).

The close analogies between optomechanics and laser manipulation of atoms have
also played a role in the development of hybrid mechanical-atomic systems (Hunger et al.,
2011; Treutlein et al., 2014). In these systems, laser light is used to couple the vibrations
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of a solid-state mechanical oscillator to the vibrations or internal states of atoms in a trap.
Hybrid mechanical-atomic systems provide new opportunities for quantum control. For
example, atoms can enhance the optomechanical cooling of mechanical oscillators, which
could enable ground-state cooling in regimes where purely optomechanical techniques
fail (Genes et al., 2011; Vogell et al., 2013; Bennett et al., 2014; Bariani et al., 2014).
By engineering strong coherent interactions between mechanical oscillator and atoms,
non-classical atomic states could be swapped to the mechanical device, realizing non-
classical states of mechanical motion (Hammerer et al., 2009b; Vogell et al., 2015).
Coupling a mechanical oscillator to a spin oscillator with negative effective mass allows
one to create Einstein–Podolsky–Rosen entanglement between the two systems, which
could be exploited for remote sensing of mechanical vibrations with a precision beyond
the standard quantum limit (Hammerer et al., 2009a; Polzik and Hammerer, 2015).
Exploiting the nonlinearities offered by interacting atomic systems, control of mechanical
vibrations on the level of single phonons could be achieved (Carmele et al., 2014). The
rich toolbox for quantum control and measurement of atoms thus becomes available for
control of solid-state mechanical devices.

These lecture notes give an introduction to optomechanics with ultracold atoms, with
a particular focus on hybrid systems. In the first half, we derive the basic optomechanical
interactions of atoms and light. Section 9.2 introduces essentials of atom trapping
in far-detuned laser light. In section 9.3 we discuss the properties of trapped atoms
as mechanical oscillators from an optomechanics point of view. Section 9.4 presents
a very useful model to describe the optomechanical interactions of atoms and light,
treating the atoms as polarizable particles. In section 9.5, we use this model to derive
the optomechanical coupling of atoms and a cavity field and briefly review cavity
optomechanics experiments with atoms in the quantum regime.

The second half of the chapter is devoted to hybrid mechanical-atomic systems. We
start with an overview of different coupling mechanisms that are explored in recent
experiments (section 9.6). In the following, we focus on light-mediated interactions
and derive the long-distance coupling of a membrane to an ensemble of laser-cooled
atoms (section 9.7). In section 9.8 we review experiments on sympathetic cooling of a
membrane with cold atoms. The requirements and perspectives for mechanical quantum
control are discussed in section 9.9. In section 9.10 we introduce the new possibilities
that arise if the mechanical oscillator is coupled to the atomic internal state.

9.2 Optical Forces on Atoms

Laser light can exert forces on matter through radiation pressure. Harnessing these
forces for laser cooling and trapping of atoms triggered a revolution in the field of
atomic physics, which led to the observation of new quantum states of matter such as
Bose–Einstein condensates, first implementations of quantum information processing
tasks, and the development of precision measurement devices such as atomic fountain
clocks and atom interferometers (Chu, 1991; Adams and Riis, 1997; Chu, 2002;
Weidemüller and Zimmermann, 2009). One distinguishes two types of optical forces
on atoms:
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• The optical dipole force arises from absorption of photons by the atom followed by
stimulated reemission into the laser field. This is a coherent process that results in a
redistribution of photons between laser field modes and an associated momentum
transfer to the atom. The optical dipole force is conservative and it is frequently
used for atom trapping, but it also plays a role in sub-Doppler laser cooling.

• The scattering force has its origin in absorption of photons followed by spontaneous
emission. This is an incoherent process whereby photons are taken from the
incident laser field and scattered into vacuum field modes. The scattering force
is dissipative and it is mostly used in laser cooling.

We will discuss basic properties of these forces for the case of an atom with an
optical transition at frequency ω0 and natural linewidth � = 1/τ , where τ is the excited-
state lifetime. As an example, consider the D2 line of 87Rb with ω0 = 2π × 384 THz,
corresponding to a wavelength of 780 nm, and � = 2π × 6 MHz. We focus on the
experimentally relevant case where the driving laser field at frequency ω is far-detuned
from the atomic transition, so that the detuning � = ω − ω0 satisfies |�| � � and the
atomic transition is very far from being saturated. In this regime, the optical dipole force
is much stronger than the scattering force, as we will see below. A very useful review of
far-detuned optical dipole traps is given in (Grimm et al., 2000), which forms the basis
of the following discussion.

9.2.1 Optical Dipole Force and Photon Scattering Rate

We consider an atom driven by a classical laser field

E(r, t) = 1
2 e Ẽ(r)e−iωt + c.c. (9.1)

The field induces an oscillating electric dipole moment in the atom,

p(r, t) = 1
2 e p̃(r)e−iωt + c.c. (9.2)

with p̃ = αẼ, where α = α(ω) is the frequency-dependent, complex atomic polarizability.
The interaction potential of this induced dipole in the driving laser field is

Udip(r) = −1
2
〈p(r, t) · E(r, t)〉 = − 1

2ε0c
Re(α)I(r). (9.3)

Here, 〈·〉 denotes a time average over one oscillation period of the electric field and
the electric field intensity is I(r) = 1

2ε0c|Ẽ(r)|2. The optical dipole force is given by the
gradient of the potential

Fdip(r) = −∇Udip(r) = 1
2ε0c

�(α)∇I(r). (9.4)
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The dipole force is a conservative force that depends on the real part �(α) of the atomic
polarizability, representing the in-phase response of the atom.

The power absorbed by the oscillator from the driving field and re-emitted as dipole
radiation into free space is given by

Pabs = 〈ṗ · E〉 = ω

ε0c
�(α)I . (9.5)

It depends on the imaginary part �(α) of the atomic polarizability, representing the out-
of-phase response of the atom. In a photon picture, the underlying process is absorption
of photons followed by spontaneous emission. The corresponding photon scattering
rate is

�sc(r) = Pabs

h̄ω
= 1

h̄ε0c
�(α)I(r). (9.6)

The above expressions for the optical dipole potential and the photon scattering rate
hold for any polarizable neutral particle in an oscillating electric field, as long as a proper
model for the polarizability α is used. For example, they also apply to experiments with
levitated dielectric nanoparticles (Romero-Isart et al., 2011).

9.2.2 Oscillator Model and Atomic Polarizability

There are different ways to describe the atom–light interaction and to derive the optical
forces on an atom. If the atomic transition is far from being saturated, we can use the
Lorentz oscillator model of the atom to obtain the atomic polarizability. In section 9.2.4,
we will briefly discuss the connections to the two-level model.

In the Lorentz model, an electron of charge −e and mass me is considered to be elas-
tically bound to the atomic core, forming a simple harmonic oscillator of eigenfrequency
ω0. The oscillator is damped at a rate �ω due to the power radiated by the accelerated
charge. The equation of motion of the oscillator driven by the electric field is thus

d2x
dt2 + �ω

dx
dt

+ ω2
0x = − e

me
E(t), (9.7)

where x is the distance of the electron from the core. Transforming this equation to the
frequency domain [x(t) = 1

2 x̃e−iωt + c.c.] yields

−ω2x̃ − iω�ωx̃ + ω2
0x̃ = − e

me
Ẽ. (9.8)

The induced electric dipole moment of the atom is p̃ = −ex̃. Using Eq. (9.8) and p̃ = αẼ
we obtain the complex atomic polarizability
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α(ω) = e2

me
· 1

ω2
0 − ω2 − iω�ω

. (9.9)

The classical damping rate of an oscillating charge due to radiative energy loss is given
by (Feynman et al., 1964)

�ω = e2ω2

6πε0mec3 . (9.10)

Using Eq. (9.10) and � ≡ �ω0 = ω2
0

ω2 �ω we can rewrite the atomic polarizability as

α(ω) = 6πε0c3

ω2
0

· �

ω2
0 − ω2 − i(ω3/ω2

0)�
. (9.11)

For detunings |�| 	 ω0 we can approximate ω2
0 − ω2 ≈ −2ω0� and ω/ω0 ≈ 1. Within

this rotating-wave approximation the atomic polarizability is

α � −3πε0c3

ω3
0

· �

�+ i�/2
= −3πε0c3

ω3
0

· �

�
· 1 − i �

2�

1 + (
�

2�

)2 . (9.12)

For |�| � � we can expand to second order in �/� and find

α � −3πε0c3

ω3
0

· �

�
·
(

1 − i
�

2�

)
, (9.13)

which is the atomic polarizability for far-detuned radiation and a single optical transition
without substructure.

Inserting this result in Eqs. (9.3) and (9.6), we obtain the optical dipole potential and
scattering rate for far-detuned radiation:

Udip(r) � 3πc2

2ω3
0

· �

�
· I(r), (9.14)

�sc(r) � 3πc2

2h̄ω3
0

·
(

�

�

)2

· I(r). (9.15)

The two quantities are related by

h̄�sc = �

�
Udip, (9.16)
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a consequence of the relation between the dispersive and absorptive properties of the
atom. From Eq. (9.14) we can read off the important property that the sign of the dipole
potential depends on the sign of the detuning of the laser from the atomic resonance:

red detuning (� < 0) ⇒ attractive potential
blue detuning (� > 0) ⇒ repulsive potential

Moreover, since Udip ∼ I/� but �sc ∼ I/�2, one can make the scattering rate negligible
by working at large detuning and high laser power. The resonant character of the atom–
light interaction and the tunability it offers are one of the main differences between atom
trapping and levitation of dielectric nanoparticles.

So far we have neglected the fine and hyperfine structure of the atom. For alkali
atoms, Eq. (9.13) correctly describes the case where � is much larger than the fine
structure splitting of the D1 and D2 lines. For detunings such that the fine structure
is resolved, the two lines have to be treated separately. If the detuning is still much
larger than the hyperfine splitting and the laser is linearly polarized, α takes the form
Eq. (9.13) multiplied by the line strength factor 1/3 (2/3) for D1 (D2). For general
laser polarization or a detuning that resolves the hyperfine structure, α depends on the
ground-state hyperfine level in which the atom is prepared. Formulae for various relevant
cases are given in (Grimm et al., 2000).

9.2.3 Scattering Force

The scattering force on an atom is due to absorption of photons followed by spontaneous
emission. It is thus connected to the scattering rate �sc. Every absorption event goes
along with a momentum kick h̄k on the atom, where k is the wave vector of the laser
mode from which the photons is absorbed. When the photon is spontaneously reemitted
into the vacuum field mode k′, the atom received another momentum kick of −h̄k′.
Since spontaneous emission is a random process that occurs with equal probability
into opposite directions, the mean momentum transfer due to the emission averages to
zero over many absorption–emission cycles. Therefore, only the absorption processes
contribute to the mean scattering force. For a single laser mode of wave vector k, the
mean scattering force is

Fsc = h̄k �sc. (9.17)

Compare this to the dipole force Fdip = −∇Udip. For a tightly focused laser beam or a
standing wave of light, the intensity and thus the dipole potential varies on the wavelength
scale, ∇Udip ≈ kUdip. Using this and Eq. (9.16), we can estimate

Fsc

Fdip
∼ h̄k�sc

kUdip
= �

�
. (9.18)
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While the scattering force is important for near-resonant light such as in laser cooling of
atoms, it is much weaker than the optical dipole force in far-detuned optical traps with
|�| � �.

9.2.4 Two-level model of the atom

The results of the previous sections can also be obtained in a two-level model of the atom.
In the electric dipole approximation, the atom–light interaction Hamiltonian is

V̂ (r) = −μ̂ · E(r), (9.19)

where μ̂ = −ex̂ is the electric dipole operator and x̂ refers to the position of the electron
in the atom.

In the limit of large detuning |�| � (�, |	R|) one can apply second-order perturbation
theory to calculate the energy shift of the atomic ground state |g〉 due to the atom–light
interaction (also called ‘light shift’ or ‘AC Stark shift’):

Udip(r) =
∣∣∣〈e|V̂ (r)|g〉

∣∣∣
2

h̄�
= h̄|	R(r)|2

4�
. (9.20)

Here, 	R = 1
h̄ 〈e|μ̂|g〉 · Ẽ(r) is the Rabi frequency of the driving laser on the optical

transition of the atom.
The atomic excited state radiatively decays at a rate �. In steady state, the excited state

population of the laser-driven atom is |	R|2
4�2 . Hence the photon scattering rate is given by

�sc = �
|	R|2
4�2 . (9.21)

According to the Wigner–Weisskopf theory, the spontaneous decay rate is related to the
dipole matrix element as

� = ω3
0

3πε0h̄c3

∣∣〈e|μ̂|g〉∣∣2 . (9.22)

This allows us to express the Rabi frequency as

|	R|2 = �
3πε0c3

h̄ω3
0

|Ẽ|2 = �
6πc2

h̄ω3
0

I (9.23)

Inserting this expression in Eqs. (9.20) and (9.21) reproduces the expressions for the
dipole potential Eq. (9.14) and scattering rate Eq. (9.15) obtained from the Lorentz
oscillator model in the far-detuned limit.
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9.3 Trapped Atoms as Mechanical Oscillators

An atom trapped in a far-detuned optical trap is a microscopic mechanical oscillator
that can be prepared and manipulated deep in the quantum regime using the well-
established techniques of atomic physics. A trapped ensemble of N atoms represents
a collection of mechanical oscillators with similar frequency. The centre-of-mass mode
of the ensemble behaves like a simple harmonic oscillator with the same frequency as a
single atom but N times larger mass. In this chapter, we will discuss the properties of
such atomic mechanical oscillators.

9.3.1 One-dimensional Optical Lattice

For concreteness, we consider an atom in a one-dimensional optical lattice potential
(Bloch, 2005), see Fig. 9.1. The lattice is generated by interference of two counterprop-
agating laser beams of equal intensity I0, wave vector k, and detuning � from atomic
resonance. The resulting standing-wave intensity pattern is

I(x) = 4I0 cos2(kx), (9.24)

where I0 is the single-beam intensity. The far-detuned optical dipole potential obtained
from Eq. (9.14) is

Udip = Vm cos2(kx) (9.25)

with a modulation depth

Vm = 3πc2

2ω3
0

�

�
4I0. (9.26)

If the laser is red detuned, � < 0, the potential is attractive and the atoms are trapped
near the intensity maxima of the standing wave. Using standard techniques of laser
cooling (see section 9.3.2), the atoms can be prepared with energies 	 |Vm|, so that
they are confined near the bottom of the sinusoidal potential wells. In a harmonic
approximation to the trap bottom (kx 	 1),

Udip � Vm − Vmk2x2 != Vm + 1
2

m	2
ax2, (9.27)

laser beam

I0

laser beam

I0

λ/2 hΩa

Vm

Fig. 9.1 One-dimensional optical lattice potential created by interference of two laser beams.
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where m is the atomic mass and the trap frequency is defined as

	a =
√

2|Vm|k2

m
. (9.28)

An ultracold atom trapped in the lattice represents a mechanical oscillator whose
frequency can be adjusted via the laser intensity or the detuning, 	a ∝ √

I0/|�|. This
allows for fast in situ changes of 	a, e.g. to bring the atoms in resonance with other
systems.

If an ensemble of N atoms is prepared in the lattice, each atom experiences an optical
dipole potential. As long as the back-action of the atoms onto the light field is small
(see section 9.4), each atom can be treated as an independent oscillator of frequency
	a. The centre-of-mass mode of the ensemble represents a mechanical oscillator with
the same frequency 	a as a single atom, but the mass is increased to Nm. Deviations
from this idealized picture arise e.g. from inhomogeneities across the ensemble due to
the intensity profile of the trapping beams, which limit the mechanical quality factor of
the centre-of-mass mode (see section 9.3.3).

In a red-detuned lattice (� < 0), transverse confinement of the atoms is automatically
provided by the transverse Gaussian laser profile. In the case of a blue-detuned lattice
(� > 0), the atoms are trapped near the intensity minima of the standing wave, but
Eq. (9.28) for the lattice trap frequency still holds. In this case, the transverse confinement
needs to be provided by another trapping beam. Conveniently, the beams creating the
lattice usually need not be interferometrically stabilized. Fluctuations in the relative phase
of the two beams only lead to a translation of the lattice potential but do not change its
shape. Since these fluctuations usually are small and occur at frequencies far below 	a,
the atoms can adiabatically follow the lattice position.

9.3.2 Ground-state Cooling of Atoms

With atoms in an optical lattice, mechanical frequencies up to a few MHz can be achieved
(see also Table 9.1). To prepare the atoms in the ground state of the lattice potential, i.e. to
reach kBT < h̄	a, microkelvin temperatures are required. Such low temperatures are
routinely achieved using the techniques of atomic laser cooling (Adams and Riis, 1997).
In the case of Rb atoms, simple optical molasses cooling provides temperatures < 10 μK

Table 9.1 Parameters of rubidium atoms trapped in a one-
dimensional optical lattice. P is the single-beam power and S the beam
cross-sectional area so that the peak intensity is I0 = P/S.

P S �/2π 	a/2π xa,zpf �heat

1 W (250 μm)2 105 GHz 50 kHz 34 nm 5 mHz

1 mW (250 μm)2 1 GHz 510 kHz 11 nm 5 kHz
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in all three dimensions. Moreover, these cooling techniques have been shown to work well
in the presence of optical lattice potentials (Winoto et al., 1999). More advanced laser
cooling techniques such as Raman sideband cooling (Kerman et al., 2000; Treutlein et al.,
2001) have been used to achieve temperatures of a few hundred nanokelvin, preparing
a large fraction of the atoms in the ground state of the lattice.

Since these laser cooling techniques cool each atom individually, all vibrational modes
of an atomic ensemble are simultaneously cooled. Coupling between different vibrational
modes of the ensemble, while providing a mechanism of mechanical decoherence, does
not lead to heating because all modes are cold.

In ultracold atom experiments, the atoms are trapped under ultra-high vacuum
conditions, with typical pressures in the range of 10−10 mbar and lower. Under these
conditions, the atoms are very well isolated from the environment. The experimental
apparatus itself is at room temperature, cryogenic cooling is not required. Decoherence
of atomic motion mainly arises from the intrinsic fluctuations of the trapping potentials,
which we discuss next.

9.3.3 Decoherence due to Photon Recoil Heating

So far, we have considered the mean optical forces experienced by the atom. They
are the forces that remain in the limit of a classical polarizable object in a classical
electromagnetic field. However, both the field as well as the induced atomic dipole
show quantum fluctuations. These lead to fluctuations of the scattering force and the
optical dipole force, which heat the trapped atoms and represent a fundamental source
of decoherence in atom trapping.

In a red-detuned single-beam trap, the heating rate can be understood in terms of the
spontaneous photon scattering at rate �sc (Grimm et al., 2000). Each scattered photon
increases the energy of the atom by an amount proportional to the photon recoil energy
Er = h̄2k2/2m. In a standing-wave trap, as in Fig. 9.1, the situation is more subtle: both
the spontaneous photon scattering as well as the quantum fluctuations of the dipole force
contribute to the heating. The resulting heating power is (Gordon and Ashkin, 1980)

Pheat = Er · �sc,max = Er
�Vm

h̄�
, (9.29)

where �sc,max is the maximum photon scattering rate in the lattice, i.e. the rate evaluated
at the intensity maxima. Note that Pheat is independent of the position in the lattice and
independent of the sign of the detuning, so that blue- and red-detuned lattices show the
same heating rate.

The resulting phonon heating rate along the lattice direction, �heat, limits the coherent
manipulation of the atomic motion. For example, the coherence time of the vibrational
ground state is limited by 1/�heat. Neglecting the three-dimensional character of the
heating, we can estimate
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�heat = Pheat

h̄	a
= (kxa,zpf)

2 �sc,max. (9.30)

Here, xa,zpf = √
h̄/2m	a is the atomic zero-point motion. Note that for typical param-

eters, kxa,zpf = √
Er/h̄	a 	 1 and therefore �heat 	 �sc,max. This means that many

photons need to be scattered to change the vibrational quantum state of the atom by
one phonon.

Table 9.1 shows parameters for atomic mechanical oscillators in a one-dimensional
optical lattice. The heating rate �heat is usually smaller than the typical cooling rates of
a few kHz achievable with atomic laser cooling techniques. The atoms can therefore
be prepared in the ground-state of the lattice potential using standard laser cooling
techniques as discussed in section 9.3.2. In very far-detuned lattices, the heating rate is so
small that the atomic motion can be coherently manipulated on timescales of milliseconds
or even seconds.

In experiments with micro- and nanofabricated mechanical oscillators, the mechanical
quality factor is a key parameter that determines also the thermal heating rate. In the case
of trapped atoms, the situation is very different. In contrast to nanomechanical oscillators,
which are clamped to a support, trapped atoms in an ultra-high vacuum chamber are
nearly perfectly isolated. The quality factor Qa = 	a/�a, where �a is the mechanical
linewidth, is typically limited by trap anharmonicities, by drifts in the trapping potential,
or, in the case of atomic ensembles, by inhomogeneities across the ensemble. These
mechanisms result in pure dephasing or in a coupling of the mechanical mode of interest
to other modes of the ensemble that are also at microkelvin temperatures. Although the
resulting Qa in the range of 10–104 is relatively small, there is negligible heating associated
with these damping or dephasing mechanisms. When comparing with other systems, it
is therefore more meaningful to compare the decoherence rates rather than the quality
factors.

9.4 Atoms as Optical Elements

In the previous chapters, we treated the optical potential as a static container that holds
the atoms and is not affected by their presence. This approximation is very well satisfied
in most optical lattice experiments, where the lattice light is detuned by tens or even
hundreds of nanometres from the atomic transition. In optomechanics experiments, on
the other hand, the back-action of the atoms onto the light field is of primary interest.
This implies that one needs to work at moderate detunings of the order of GHz. In this
section, we discuss a model of atom–light interactions that is very well suited to describing
optomechanics experiments with atoms (Asboth et al., 2008). It treats the atoms as
polarizable objects that are trapped by the light but also influence the propagation of
the trapping fields in a consistent manner.
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9.4.1 Beam-splitter Model of Atoms in an Optical Lattice

Consider a one-dimensional optical lattice whose transverse size is much larger than the
λ/2 spacing of the lattice potential wells. Ultracold atoms tightly trapped in the lattice
form an array of disc-shaped atomic clouds whose thickness is much smaller than λ. We
can model the atoms in a given potential well as an infinitesimally thin sheet of polarizable
material, containing N atoms of polarizability α in a cross-sectional area S, see Fig. 9.2.
We consider for the moment just a single disc of atoms at position x0 and model the
incoming and outgoing light fields as plane waves with identical polarization and complex
amplitudes Ei as shown in Fig. 9.2a.

To determine the light field in the presence of the atoms, we have to solve the scalar
Helmholtz equation

(
∂2

x + k2
)

E(x) = −2kζE(x)δ(x − x0), (9.31)

where the dimensionless coupling constant

ζ = k · N
S

· α

2ε0
(9.32)

is proportional to the areal density of the cloud polarizability. Integrating Eq. (9.31) over
a small interval centred at x0, we obtain the boundary conditions for the electric field at
the position of the atoms

E(x−
0 ) = E(x+

0 ),

∂xE(x−
0 ) = ∂xE(x+

0 )+ 2kζE(x0).
(9.33)

E2e–ikx

E0eikx

E1e–ikx

E3eikx

(a)

(b)

B

A = rB + tC

D = tB + rC

C

x0

ζ

Fig. 9.2 Atoms in one potential well of an optical lattice form a thin sheet of polarizable material that
acts as a beam splitter for the light fields. (a) Incoming and outgoing electric fields modelled as plane waves
with amplitudes Ei. (b) The atoms act as a beam splitter with reflection and transmission coefficients r and
t, respectively. Here, A = E2e−ikx0 , B = E0eikx0 , C = E1e−ikx0 , and D = E3eikx0 are the field amplitudes
at the position of the atoms x0.
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When evaluating these boundary conditions for the situation shown in Fig. 9.2a, it is
useful to define the field amplitudes at the position of the atoms A = E2e−ikx0 , B = E0eikx0 ,
C = E1e−ikx0 , and D = E3eikx0 . We find that the thin sheet of atoms acts as a beam splitter
with reflection and transmission coefficients

r = iζ
1 − iζ

, t = 1
1 − iζ

, (9.34)

so that ζ = −ir/t and A = rB + tC and D = tB + rC, see Fig. 9.2b.
These relations can also be expressed as a transfer matrix connecting the field

amplitudes on the left of the atoms to those on the right,

(
A
B

)
=

(
1 + iζ iζ
−iζ 1 − iζ

)
·
(

C
D

)
. (9.35)

Using the expression for α at large detuning from Eq. (9.13) we find

ζ = −Nσ

2S
· �

2�
·
(

1 − i
�

2�

)
, (9.36)

where σ = 3λ2/(2π) is the resonant scattering cross-section of a single atom. The
quantity Nσ/S is the resonant optical depth of the N atoms. This formalism now allows
us to calculate the outgoing fields for given incoming fields and to determine the optical
forces experienced by the atoms.

9.4.2 Optical Forces Experienced by the Atoms

The force F acting on the atomic cloud is determined by the rate at which momentum
is extracted from the electromagnetic field. It can be expressed in terms of the power of
the incoming and outgoing beams,

F = 1
c

(PA + PB − PC − PD) , (9.37)

reflecting the fact that a beam incident from the left (PB) and being reflected to the left
(PA) results in a force to the right (F > 0), while a beam incident from the right (PC) and
being reflected to the right (PD) leads to a force to the left (F < 0). Relating the power
PA = IA · S to the intensity IA = 1

2ε0c|A|2 and similar for the other beams, we obtain

F = ε0

2
· S ·

(
|A|2 + |B|2 − |C|2 − |D|2

)
. (9.38)

The formalism described in the previous section allows us to express A and D in terms of
the incoming fields B = E0eikx0 and C = E1e−ikx0 . Inserting the result in Eq. (9.38), we
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obtain the force as a function of the atomic position x0 and the intensities of the incoming
beams I0 ≡ IB and I1 ≡ IC,

F(x0) = 2S
c

(I0 − I1)
�(ζ )

|1 − iζ |2
}

= Fsc

−4S
c

√
I0I1

�(ζ )

|1 − iζ |2 sin(2kx0 + ϕ)

}
= Fdip

+2S
c

(I0 − I1)
|ζ |2

|1 − iζ |2
}

= Frefl (9.39)

where ϕ = arg(E0)− arg(E1) is the relative phase of the two incoming beams at x = 0.
The first term can be identified with the scattering force Fsc due to spontaneous
scattering of photons out of the laser beams. The second term corresponds to the dipole
force Fdip due to stimulated redistribution of photons between the two laser beams. The
third term Frefl arises from the incoherent reflection of light at the atomic cloud. It is of
order |ζ |2 and insensitive to the phase of the two incoming laser beams. Equation (9.39)
allows us to calculate the optical force even in the regime |ζ | � 1 where the light field is
strongly perturbed by the presence of the atoms.

The standard expressions for the optical dipole force and scattering force are obtained
in the limit |ζ | 	 1, corresponding to low atomic density or small |α|, where the back-
action of the atoms on the light field is small. In this limit, the term Frefl is negligible and
to lowest order in ζ we recover the results of section 9.2,

F(x0) � 2S
c

(I0 − I1)�(ζ )

︸ ︷︷ ︸
− 4S

c

√
I0I1 �(ζ )sin(2kx0 + ϕ)

︸ ︷︷ ︸
(9.40)

= Fsc + Fdip.

If we furthermore take the limit of large detuning (�/|�| 	 1), only Fdip remains to
lowest order.

9.4.3 Back-action of Atoms on the Light Field

The back-action of the atoms on the light field manifests itself in a modulation of the
outgoing laser beams. For example, we find that the intensity IA depends on the atomic
position x0,

IA = I1
1

|1 − iζ |2
}

transmitted

+ I0
|ζ |2

|1 − iζ |2
}

incoherent reflection (9.41)
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− 2
√

I0I1
�(ζ )

|1 − iζ |2 sin(2kx0 + ϕ)

}
stimulated processes

− 2
√

I0I1
�(ζ )

|1 − iζ |2 cos(2kx0 + ϕ)

}
scattering out of beam.

A similar expression holds for ID, with I0 and I1 exchanged and opposite sign on the
third line.

We can again take the limits |ζ | 	 1 and �/|�| 	 1 and find that the dominant terms
are

IA � I1 − 2
√

I0I1 �(ζ )sin(2kx0 + ϕ) = I1 + c
2S

Fdip. (9.42)

Consequently, the transmitted beam is power modulated by δPA = c
2 Fdip, and similarly

δPD = − c
2 Fdip. This back-action of the atoms onto the light field has been observed in

a number of experiments (Kozuma et al., 1996; Görlitz et al., 1997; Raithel et al., 1998).
For large atom number and relatively near-resonant lattices, the power modulation can
be quite substantial, on the order of a few percent.

9.4.4 Generalization to Multiple Clouds and Multi-level Atoms

So far we considered only a single disc of atoms in one well of the optical lattice
potential. In general, many neighbouring wells will be filled with atoms. The transfer
matrix formalism based on Eq. (9.35) is ideally suited to analyse this situation. In the
regime |ζ | � 1 where the atoms strongly perturb the light field, new phenomena emerge
which can be understood in terms of the light-mediated interactions between atoms in
different potential wells (Asboth et al., 2008). On the other hand, many experiments
operate in the regime |ζ | 	 1. In this perturbative regime, the effects on the light field of
atoms in different wells of the lattice simply add up, leading to the same results as if all
atoms were placed in the same well.

Finally, we point out that the formalism described here has been generalized to the case
of atoms with multiple internal states interacting with light fields of general polarization
(Xuereb et al., 2010). This allows one e.g. to describe polarization gradient laser cooling
of atoms in counterpropagating laser beams. In the context of atom optomechanics
experiments, it allows description of spin-optomechanics experiments where the atomic
hyperfine spin state couples to the polarization state of the light field.

9.5 Cavity Optomechanics with Atoms

Ultracold atoms trapped in the light field of an optical cavity are a powerful and flexible
system to study cavity optomechanics in the quantum regime. The optomechanical
interaction of the atoms is analogous to that of thin dielectric membranes or levitated
nanoparticles in optical cavities. We will make this analogy evident by describing
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the atoms as small polarizable objects using the formalism presented in section 9.4.
Because the atoms are microscopic objects, their mechanical quantum fluctuations are
comparatively large, resulting in a very large optomechanical coupling strength. In
combination with the ground-state cooling and quantum control techniques of atomic
physics, this has allowed several experiments to enter the quantum regime of cavity
optomechanics (Brennecke et al., 2008; Murch et al., 2008; Schleier-Smith et al., 2011;
Wolke et al., 2012) and observe phenomena such as quantum measurement back-action
(Murch et al., 2008), ponderomotive squeezing (Brooks et al., 2012), and novel many-
body quantum phases (Baumann et al., 2010). The field of cavity optomechanics with
atoms has been reviewed in (Stamper-Kurn, 2014; Ritsch et al., 2013).

9.5.1 ‘Atom-in-the-middle’ Setup

As a simple model, we consider a cloud of N atoms in a trap of frequency 	a, which is
placed in the standing-wave light field inside a Fabry–Perot optical cavity. This situation
is closely analogous to cavity optomechanics experiments with thin dielectric membranes
in optical cavities (Jayich et al., 2008), see Fig. 9.3. Recall that the optomechanical single-
photon single-phonon coupling constant in such a ‘membrane-in-the-middle’ setup is
given by

g0 = ∂ωcav

∂x
xzpf = 2|r|ωcav

L
xzpf (9.43)

where ωcav is the resonance frequency and L the length of the cavity, and we have
considered the case where the membrane of reflectivity r is placed on the slope of
intracavity intensity standing wave, where g0 is maximal.

To determine the optomechanical coupling for an ‘atom-in-the-middle’ system, we
use the formalism of section 9.4 to calculate the reflectivity of the atoms. Note that in

intra-cavity
intensity

Fig. 9.3 Analogy between a ‘membrane-in-the-middle’ setup (top) and an ‘atom-in-the-middle’ setup
(bottom) for optomechanics. Figure courtesy of D. M. Stamper-Kurn.
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the regime where the atoms only weakly perturb the intracavity field (|ζ | 	 1), we have
r � iζ . For large detuning (� � �), Eq. (9.36) gives a reflectivity of

|r| � |ζ | � Nσ

2S
· �

2|�| . (9.44)

The first term is half the resonant optical depth of the atoms, the second term accounts
for the reduction of the atom–light interaction due to the detuning. Furthermore, since
the mechanical mode of interest is the centre-of-mass motion of N atoms in the trap of
frequency 	a, the zero-point motion has an amplitude of xzpf = √

h̄/2Nm	a, where m
is the mass of a single atom. Hence, the atom-optomechanical coupling constant can be
expressed as

g0 = √
N · σ

S
· �

2|�| · ωcav

L

√
h̄

2m	a
. (9.45)

We find that the optomechanical coupling scales with
√

N , a characteristic feature of
collective coupling. The same result can also be derived in the framework of cavity
quantum electrodynamics in the dispersive limit, with N atoms collectively coupled to
a single cavity mode (Stamper-Kurn, 2014). The interaction of the atomic centre-of-
mass motion and the cavity mode is given by the generic optomechanical Hamiltonian
(Aspelmeyer et al., 2014)

H = h̄ωcavc†c + h̄	aa†a − h̄g0c†c(a + a†), (9.46)

again in direct analogy with a ‘membrane-in-the-middle’ setup. Here, c (c†) and a (a†)
are annihilation (creation) operators for the photons of cavity mode and the phonons of
the atomic centre-of-mass mode, respectively.

It is interesting to compare the parameters of an ‘atom-in-the-middle’ setup with those
of a ‘membrane-in-the-middle’ experiment, see Table 9.2. Although the reflectivity of the
atomic ensemble is very small, this is more than compensated for by the large atomic zero-
point motion. As a result, the optomechanical coupling of the atomic system is several

Table 9.2 Comparison of optomechanical coupling parameters for a
Fabry–Perot cavity of length L containing, respectively, a micromechanical
membrane and an ensemble of N atoms as mechanical element.For the atoms,
we consider N = 5 · 104, � = 2π · 100 GHz, and S = (30 μm)2.

|r| xzpf 	/2π L g0/2π

membrane 0.4 7 · 10−16 m 270 kHz 1 mm 0.22 kHz

N atoms 2 · 10−4 2 · 10−10 m 50 kHz 200 μm 150 kHz
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orders of magnitude bigger than that of a typical membrane-in-the-middle system.
This feature, in combination with the established ground-state cooling and quantum
control techniques of atomic physics, makes atomic systems attractive for exploring
cavity optomechanics deep in the quantum regime.

9.5.2 Atom Optomechanics in the Quantum Regime

Several experimental implementations of cavity optomechanics with ultracold atoms
have been reported (Brennecke et al., 2008; Murch et al., 2008; Purdy et al., 2010;
Schleier-Smith et al., 2011; Brahms et al., 2012; Wolke et al., 2012), for a review see
(Stamper-Kurn, 2014; Ritsch et al., 2013).

In the experiments of the Berkeley group (Gupta et al., 2007; Murch et al., 2008;
Purdy et al., 2010; Brahms et al., 2012), an ensemble of ultracold thermal 87Rb atoms
is tightly trapped in an optical lattice potential inside a high-finesse Fabry–Perot cavity.
The lattice is realized by driving a cavity mode with a laser at a wavelength of 850 nm,
far detuned from the atomic transition. The vibrations of the atoms in this far-detuned
lattice interact with a second cavity mode at 780 nm, much closer to atomic resonance, see
Fig. 9.4. Because the periodicities of the trapping mode and the probe mode are different,
each lattice well experiences a different optomechanical coupling g0(z), where z is the
position along the cavity axis. In contrast to the simplified picture presented above, the
mechanical oscillator thus corresponds to a collective mode of the ensemble where each
atomic cloud contributes with a weight given by the local optomechanical coupling. More
recently, experiments have been performed with individual clouds (Purdy et al., 2010),
in direct analogy to the model of section 9.5.1. The mechanical mode is ground-state
cooled using a combination of laser and evaporative cooling. This system has been used
to observe optomechanical effects such as quantum measurement back-action (Murch
et al., 2008) and ponderomotive squeezing (Brooks et al., 2012).

The large optomechanical coupling strength that can be achieved in atomic systems
(see Table 9.2) opens the way to investigations of the ‘granular’ regime of optomechanics,
where the interaction of phonons and photons is significant on the level of single quanta

(a) (b)
850 nm

trap

780 nm
probe

1 1

single
photon
counter

cavity
mirror

1/2 1/20=
g2(zi)

g0
2

ƒ ƒ

Fig. 9.4 Optomechanics with atoms tightly confined in an intracavity lattice. (a) Schematic showing the
intra-cavity optical lattice trap at 850 nm and the probe light at 780 nm. The mechanical mode is a
collective oscillation of the array of atomic clouds. (b) Absorption image of the atoms between the mirrors
of the optical cavity. Figure courtesy of D. M. Stamper-Kurn.
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(a)

collective
density

oscillation

(b) (c)

SPCMSPCM

p < pcr p < pcr

Fig. 9.5 (a) Optomechanics with a weakly confined Bose–Einstein condensate. A collective density wave
of the BEC acts as mechanical oscillator coupled to the cavity mode. (b,c) Setup used for the observation of
the Dicke phase transition.(b) The gas is pumped from the side with light near-resonant with a cavity mode.
(c) Above a certain threshold pump power, the atoms self-organize into a periodic pattern,maximizing the
collective light scattering into the cavity mode. Figure courtesy of T. Esslinger.

(Stamper-Kurn, 2014). The figure of merit is the ratio g0/κ, where κ is the cavity
linewidth. If g0/κ > 1, a single phonon of vibration is sufficient to detune the cavity
by more than its linewidth. Conversely, a single cavity photon gives a momentum kick
to the mechanical oscillator that is larger than its zero-point momentum uncertainty.
Experiments with atom-optomechanical systems are approaching the granular regime
with g0/κ ∼ 1 (Brennecke et al., 2008; Murch et al., 2008), giving access to studies of
nonlinear quantum optomechanics.

In the experiments of the Zürich group (Brennecke et al., 2008), a Bose–Einstein
condensate (BEC) is weakly trapped inside the cavity, distributed over many periods of
the standing-wave cavity mode, see Fig. 9.5. In this system, the cavity mode is coupled to
a collective density wave on the BEC, representing a mechanical oscillator of frequency
4ωr , where ωr = Er/h̄ is the recoil frequency.

This experiment was used to explore optomechanical self-organization phenomena
in many-body systems, such as the Dicke phase transition (Baumann et al., 2010). When
driven from the side with a standing-wave laser beam whose frequency is close to a cavity
mode, the atoms can emit light into the cavity. Above a certain threshold driving strength,
the atoms self-organize into a periodic pattern inside the cavity where they maximize their
collective emission into the cavity mode and are simultaneously trapped by the combined
cavity and driving laser field. These experiments open the path to studies of light–matter
interactions at the intersection of optomechanics and many-body physics (Ritsch et al.,
2013).

9.6 Hybrid Mechanical-atomic Systems: Coupling
Mechanisms

Hybrid mechanical systems are a promising way to achieve quantum control over
the vibrations of mechanical oscillators (Treutlein et al., 2014). In these systems, a
mechanical oscillator is coupled to a microscopic quantum system for which a well-
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developed toolbox for quantum control is available. Through the coupling, this toolbox
can be harnessed for enhanced cooling of mechanical structures, for detection of their
quantum motion, for the preparation of non-classical states of vibration, and to imple-
ment new protocols for quantum measurement. In fact, the first experiment that reported
a nanomechanical oscillator in the quantum regime used a hybrid approach (O’Connell
et al., 2010). More generally, since mechanical oscillators can be functionalized with elec-
trodes, magnets and mirrors, they can couple to a variety of different quantum systems
and serve as transducers in hybrid quantum information processing (Rabl et al., 2010).

Different hybrid mechanical systems are currently being investigated, involving
mechanical oscillators coupled to atoms (Wang et al., 2006; Jöckel et al., 2015; Camerer
et al., 2011; Hunger et al., 2010; Montoya et al., 2015), solid-state spin systems
(Degen et al., 2009; Arcizet et al., 2011; Kolkowitz et al., 2012; Teissier et al., 2014;
Ovartchaiyapong et al., 2014), semiconductor quantum dots (Yeo et al., 2013; Montinaro
et al., 2014), and superconducting qubits (O’Connell et al., 2010; Pirkkalainen et al.,
2013; Lecocq et al., 2015). Ultracold atoms are attractive in this context because all
degrees of freedom, the internal states and the motion in a trap, can be controlled on the
quantum level with long coherence times. In hybrid systems, the atoms can thus act as a
microscopic mechanical oscillator deep in the quantum regime (Stamper-Kurn, 2014),
or they can provide discrete internal levels that give access to new features difficult
to realize in purely mechanical systems such as spin oscillators with negative effective
mass (Hammerer et al., 2009a; Polzik and Hammerer, 2015) and techniques for single-
phonon control (Carmele et al., 2014). Figure 9.6 shows an overview of different coupling
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Fig. 9.6 Coupling mechanisms for hybrid mechanical-atomic systems. (a) Cantilever with a magnetic
tip coupled to the spin of atoms (Wang et al., 2006; Treutlein et al., 2007; Montoya et al., 2015). (b)
Cantilever coupled by atom-surface forces to the vibrations of a Bose–Einstein condensate in a trap
(Hunger et al., 2010). (c) Light-mediated coupling of a membrane oscillator to the vibrations of atoms
in an optical lattice (Vogell et al., 2013; Jöckel et al., 2015). (d) Scheme for measurement-based entan-
glement generation between a membrane and the spin of an atomic ensemble (Hammerer et al., 2009a).
(e) Coupling of a membrane to the motion of a single atom through intracavity light fields (Hammerer
et al., 2009b).
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mechanisms for atoms and mechanical oscillators; see also the reviews in (Hunger et al.,
2011; Treutlein et al., 2014)

First experimental implementations of hybrid mechanical-atomic systems in the
classical regime were reported in (Wang et al., 2006; Jöckel et al., 2015; Camerer et al.,
2011; Hunger et al., 2010; Montoya et al., 2015). In (Wang et al., 2006), a piezo-driven
cantilever with a magnetic tip was used to excite magnetic resonance in a hot atomic
vapour. In (Montoya et al., 2015) a similar experiment was performed with trapped,
ultracold atoms. In (Hunger et al., 2010), a Bose–Einstein condensate was placed a few
hundred nanometres from a classically driven cantilever, so that atom-surface forces led
to the excitation of collective modes of the condensate. In all of these experiments, the
atoms were used to detect classically driven mechanical vibrations at room temperature.
However, the back-action of the atoms onto the mechanical oscillator, which is essential
for controlling the oscillator with the atoms, could not be observed. More recently,
hybrid mechanical-atomic systems coupled by light were implemented (Jöckel et al.,
2015; Camerer et al., 2011). In these experiments, the back-action of the atoms onto
the mechanical vibrations (Camerer et al., 2011) as well as strong sympathetic cooling
of the mechanical oscillator with the atoms (Jöckel et al., 2015) were observed for the
first time. Although the mechanical system still resided in the classical regime because of
technical noise and its room-temperature environment, the experimental results showed
good agreement with theory (Hammerer et al., 2010b; Vogell et al., 2013), which predicts
that the quantum regime is accessible for realistic parameters.

In the following, we consider hybrid mechanical-atomic systems where the coupling
is mediated by laser light. This results in a modular system, where the mechanical
oscillator and the atoms reside in different experimental setups. The light can be routed
from one setup to the other via a free-space link or an optical fibre. Such a modular
setup circumvents the technological challenge of combining high-power lasers for atom
trapping with a cryostat for pre-cooling of the mechanical device. Moreover, it is
flexible, providing a great variety of coupling schemes, which can be implemented by
simply changing the coupling laser configuration, without the need to open up the
optomechanics setup or the cold atom machine. In particular, the light field can be
arranged to couple either to the motion of the atoms (Hammerer et al., 2010b; Vogell
et al., 2013) or to their internal state (Hammerer et al., 2009b; Vogell et al., 2015).

9.7 Optical Lattice with Vibrating Mirror

We consider a hybrid mechanical system as proposed in (Hammerer et al., 2010b; Vogell
et al., 2013), in which the vibrations of a membrane oscillator are coupled via light to the
centre-of-mass (c.o.m.) motion of ultracold atoms in an optical lattice. This system was
experimentally realized in (Camerer et al., 2011), where the coupling was studied and
compared with theory. In a subsequent experiment, the coupling strength was strongly
enhanced by placing the membrane in an optical cavity and sympathetic cooling of the
membrane vibrations through their coupling to laser-cooled atoms was observed (Jöckel
et al., 2015).
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9.7.1 Light-mediated Coupling

The coupled atom–membrane system is schematically shown in Fig. 9.7. Ultracold
atoms are trapped in an optical lattice generated by reflecting a laser beam from an
optomechanical system, essentially realizing an optical lattice with a vibrating mirror.

The optomechanical system is a Si3N4 membrane oscillator in an optical cavity in the
‘membrane-in-the-middle’ configuration (Thompson et al., 2008; Jayich et al., 2008). The
Si3N4 film has a thickness of typically 50 nm and is supported by a Si frame, realizing
a ‘square drum’ mechanical oscillator. For typical lateral dimensions of several hundred
μm to a few mm such membranes feature vibrational modes with frequencies 	m/2π in
the hundreds of kHz to few MHz range and very high mechanical quality factors of up
to Q = 5 × 107 (Wilson et al., 2009; Jöckel et al., 2011; Chakram et al., 2014). In addition
to their outstanding mechanical properties, these dielectric membranes also have very
low optical absorption in the near infrared of order 10−5 − 10−6 in a single pass and a
decent field reflectivity of typically rm = 0.4.

The membrane is placed on the slope of the intracavity intensity standing wave. For
concreteness, we consider the fundamental mode of the membrane, but coupling to
higher-order modes can be realized in a similar way. As the membrane vibrates, it moves
in and out of the intracavity field, periodically detuning the cavity resonance frequency
ωcav. This leads to an optomechanical coupling between the membrane vibrations and
the intracavity field with single-photon single-phonon coupling constant

g0 = G xm,zpf , (9.47)

where

G = −∂ωcav

∂x
= 2|rm|ωcav

L
(9.48)

Membrane in optical cavity

rm Vm

Ωm

Ωa

xa
M K mxm

φr

N atoms in optical lattice

P

5 mm

Fig. 9.7 Atom-membrane coupling mediated by light. The vibrations xm of a membrane in an optical
cavity are coupled to the centre-of-mass motion xa of an ensemble of N atoms in an optical lattice. The
membrane cavity is single-sided and operates in the non-resolved sideband regime κ � 	m. Atoms and
membrane are placed in different experimental setups and coupled by light over a macroscopic distance.
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is the cavity frequency shift per membrane displacement, L is the cavity length, xm,zpf =√
h̄/2M	m the zero-point amplitude and M the effective mass of the membrane mode.
The optical cavity is single-sided so that the light leaves the cavity again through the

input port. Moreover, the cavity intensity decay rate κ � 	m so that the light leaving
the cavity carries instantaneous information about the membrane displacement xm. The
cavity is resonantly driven by a laser of frequency ωL = ωcav and power P to a mean
intracavity photon number

n̄c = 4
κ

P
h̄ωcav

. (9.49)

Under these conditions, the main effect of the membrane vibrations is to modulate the
phase shift φr = π + δφr of the beam reflected from the cavity by

δφr = 4
κ

Gxm. (9.50)

The interference of the driving laser beam and the light reflected from the cavity
creates an optical standing wave outside the cavity. If the driving laser is detuned from
an atomic transition, this creates an optical lattice potential for the atoms as described in
section 9.3. An ensemble of N atoms is trapped in this lattice and cooled to the ground
state along the lattice direction with additional laser cooling beams. Each atom i = 1 . . .N
experiences an optical lattice potential

Ui = Vm cos2
(

kxa,i + φr

2

)
(9.51)

with modulation depth Vm given by Eq. (9.26). The lattice depends on the membrane
position through φr . Expanding to second order in kxa,i 	 1 and δφr 	 1 around the
potential minima we obtain

Ui � Vm

(
kxa,i + δφr

2

)2

= Vmk2x2
a,i + Vmkxa,iδφr + Vm

(
δφr

2

)2

. (9.52)

Using Eq. (9.50) and Eq. (9.28) for the trap frequency along the lattice we find

Ui � 1
2

m	2
ax2

a,i︸ ︷︷ ︸
atom trap

+ 4
κ

GVmkxa,ixm
︸ ︷︷ ︸

coupling

+ Vm

(
2G
κ

)2

x2
m

︸ ︷︷ ︸
freq. shift of membrane

. (9.53)

The first term is the atomic trapping potential in harmonic approximation, the second
term describes a linear coupling of atomic and membrane motion, while the third term
is a small correction to the membrane frequency that can be absorbed in the definition
of 	m.
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For N atoms trapped in the lattice, each atom experiences the optical potential and
the resulting interaction Hamiltonian is Hint = ∑

i Hi ∼ xm
∑

i xa,i with Hi corresponding
to the coupling term in Eq. (9.53). As a result, the membrane is coupled to the atomic
c.o.m. coordinate xa = 1

N

∑
i xa,i with a Hamiltonian

Hint = N
4
κ

GVmkxaxm. (9.54)

Rewriting the position quadratures in terms of bosonic field operators

xm = xm,zpf(b + b†), xm,zpf =
√

h̄
2M	m

, [b,b†] = 1 (9.55)

for the membrane and

xa = xa,zpf√
N

(a + a†), xa,zpf =
√

h̄
2m	a

, [a,a†] = 1 (9.56)

for the atomic c.o.m., we obtain the coupling Hamiltonian

Hint = h̄g(b + b†)(a + a†) (9.57)

with an atom-membrane single-phonon coupling constant

g = √
N

4g0

κ

Vm

h̄
kxa,zpf � |rm|	a

√
Nm
M

2F
π

, (9.58)

where F is the cavity finesse and we have assumed near-resonant coupling 	a ≈ 	m.
Including the free evolution of membrane and atomic c.o.m., the full Hamiltonian is

H = h̄	mb†b + h̄	aa†a + h̄g(b + b†)(a + a†). (9.59)

We thus find that the light field acts like an optical ‘spring’ that couples the two
mechanical oscillators, membrane and atoms. The coupling constant g in Eq. (9.58)
contains a term

√
Nm/M, which is very small as the mass ratio of the atomic ensemble

and the membrane is tiny (in the experiments of (Jöckel et al., 2015), Nm/M ≈ 10−10).
This can be understood as an impedance mismatch between the two mechanical
oscillators. However, this small factor is compensated by the cavity finesse, which can be
large (F = 103–105). The cavity can be thought of as a ‘lever’ that impedance-matches
the two mechanical oscillators.

The same interaction Hamiltonian can also be derived by considering the back-action
of the atomic motion on the light field as in section 9.4. According to Eq. (9.42), the N
atoms oscillating in the optical lattice potential modulate the power of the beam driving
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the optomechanical system by δP = c
2 Fdip = −cNVmk2xa. This leads to a modulation

of the intracavity photon number by δn̄c = 4
κ

δP
h̄ωcav

and consequently to a modulation of

the radiation pressure force acting on the membrane by δFrad = h̄Gδn̄c = −N 4
κ

GVmkxa.
This interaction gives rise to a Hamiltonian Hint = N 4

κ
GVmkxaxm, in agreement with

Eq. (9.54).
The simple semiclassical derivation of the atom-membrane coupling presented here

is confirmed by a rigorous calculation using a fully quantum-mechanical description
of atoms, membrane and light field (Vogell et al., 2013). We point out that this coupling
scheme can be implemented with a variety of different optomechanical systems featuring
a single-sided cavity, such as the photonic crystal zipper cavities described in (Eichenfield
et al., 2009; Cohen et al., 2013). A finite coupling efficiency to the membrane-cavity setup
and losses in the optical beam path can be taken into account as in (Hammerer et al.,
2010b; Jöckel et al., 2015).

9.7.2 Dissipation Mechanisms

In addition to the coherent coupling of atoms and membrane described by the Hamilto-
nian H in Eq. (9.59), there are a number of dissipation mechanisms that affect the atomic
and membrane vibrations. As a result, the coupled system is described by a Lindblad
master equation

ρ̇ = − i
h̄

[H ,ρ] +Lthρ +Lrpρ +Laρ +La,coolρ. (9.60)

The dissipation mechanisms were derived in (Hammerer et al., 2010b; Vogell et al., 2013)
and include the following contributions:

• thermal heating of the membrane

Lthρ = �m

2
(n̄th + 1)D[b]ρ + �m

2
n̄thD[b†]ρ. (9.61)

Here, D[b]ρ = 2bρb† − b†bρ − ρb†b and similar for the other operators, n̄th �
kBTenv/h̄	m is the membrane’s thermal phonon occupation at environment tem-
perature Tenv and �m = 	m/Q is the mechanical energy decay rate. Thermal
heating results in a decoherence rate of the membrane vibrational ground state of
�mn̄th = kBTenv/h̄Q. Heating of the membrane due to absorption of the coupling
light can be accounted for by an increase of Tenv.

• radiation-pressure noise on membrane

Lrpρ = �rp

2
D[b]ρ + �rp

2
D[b†]ρ (9.62)
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Radiation-pressure shot noise leads to diffusion of the membrane motion with
rate �rp = 4g2

0n̄c/κ. This is a fundamental limitation for cooling of the membrane
with the atoms. For small coupling laser power, �rp 	 �mn̄th and thermal heating
dominates.

• recoil heating of atoms

Laρ = �heat

2
D[a]ρ + �heat

2
D[a†]ρ (9.63)

On the atomic side, spontaneous photon scattering and fluctuations of the dipole
force lead to diffusion of the atomic motion in the lattice, as discussed in sec-
tion 9.3.3, with a rate �heat given in Eq. (9.30).

• laser cooling of atoms

La,coolρ = �a,cool

2
(n̄a + 1)D[a]ρ + �a,cool

2
n̄aD[a†]ρ. (9.64)

On the atomic system, additional laser cooling beams can be applied to continuously
cool the atomic motion. This can be described by a cooling rate �a,cool and a steady-
state phonon occupation n̄a. Techniques such as Raman sideband cooling (Kerman
et al., 2000; Treutlein et al., 2001) reach n̄a < 1. If furthermore �a,cool � �heat, the
laser cooling is stronger than the additional heating due to the coupling lattice and
the atoms remain in the ground state.

Depending on the strength of the coherent coupling g compared to the various dis-
sipation rates, the coupled atom–membrane system shows different dynamics. In the
following section 9.8, we first discuss how the atoms can be used for sympathetic cooling
of the membrane vibrations. In section 9.9 we will discuss the regime of strong coherent
coupling.

9.8 Sympathetic Cooling of a Membrane with
Ultracold Atoms

In a recent experiment (Jöckel et al., 2015), the hybrid atom–membrane system discussed
in the previous section was implemented and the atoms were used for sympathetic
cooling of the membrane.

To act as an efficient coolant, the atoms must be laser cooled by external cooling
beams, see Fig. 9.8, with a rate �a,cool � (�mn̄th,�rp,�heat) that exceeds all other
dissipation rates. For the parameters of the experiment, the atomic cooling rate was
also larger than the coherent coupling, �a,cool � g. In this regime, the atom–membrane
coherence is quickly damped and can be eliminated from the equations of motion.
For 	a ≈ 	m we can furthermore make the rotating-wave approximation. Under these
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Ωm (Ωa ≈ Ωm)

Γm Γa,cool

g = |rm|Ωa
Nm 2f

√M π

Laser
cooling

Ωa

KBTenv

hΩm

�1n–th  � n–a  	1

Fig. 9.8 Sympathetic cooling of the membrane by coupling to laser-cooled atoms. Phonons enter the
membrane with rate �mn̄th due to the coupling to the frame at temperature Tenv. The light-mediated
coupling g continuously transfers phonons between membrane and atoms. Phonons are removed from the
coupled system by laser cooling the atoms with a set of laser cooling beams, corresponding to a coupling of
the atoms with cooling rate �a,cool to a low-temperature bath (n̄a 	 1).

conditions, the master equation (9.60) yields the following coupled rate equations for
the phonon occupations of the atomic c.o.m. and the membrane mode:

d
dt

〈a†a〉 = −(
�a,cool + �sym

) 〈a†a〉 + �sym〈b†b〉 + �heat + �a,cooln̄a,

d
dt

〈b†b〉 = −(
�m + �sym

) 〈b†b〉 + �sym〈a†a〉 + �rp + �mn̄th.
(9.65)

The rate at which the two systems exchange phonons is

�sym = 4g2

�a,cool
, (9.66)

which can be understood as the incoherent coupling of the membrane with rate g to the
ultracold atomic reservoir of bandwidth �a,cool � g. The membrane is sympathetically
cooled at rate �sym, while the atoms remain at low temperature due to the strong atomic
laser cooling.

From Eqs. (9.65) we obtain the steady-state phonon occupation of the membrane

n̄ss = 〈b†b〉ss � �mn̄th + �rp

�sym + �m
+ �sym

�sym + �m
· �heat

�a,cool
+ �sym

�sym + �m
· n̄a. (9.67)

The first term in this expression is the ratio of overall heating and cooling rates of the
membrane, while the second and third term take into account the finite temperature of
the atoms. Ground-state cooling of the membrane (n̄ss 	 1) requires that

1. sympathetic cooling exceeds membrane heating, �sym � �mn̄th + �rp,

2. the atoms are ground-state cooled, requiring �a,cool � �heat and n̄a 	 1.
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We stress that unlike in standard cavity optomechanical cooling, the membrane-cavity
system does not have to be in the resolved-sideband regime, i.e. sympathetic cooling
with the atoms can reach the ground state for κ � 	m. This can be understood by
noting that the atomic oscillator provides the sideband resolution,1 while the cavity
simply enhances the optomechanical interaction. In section 9.9 we will see more generally
that sympathetic cooling with atoms can reach the ground state in regimes where
optomechanical techniques such as cavity cooling as well as feedback cooling (cold
damping) fail to reach the ground state.

The sympathetic cooling scheme was implemented in a recent experiment (Jöckel
et al., 2015), where the membrane-cavity system was placed in a room-temperature
environment. Figure 9.9 shows measurements of the membrane temperature as a
function of time under different experimental conditions (Faber, 2016). If the coupling
beam is turned on to sufficiently high power so that the atoms can resonantly couple
to the membrane (	a ≈ 	m), the membrane temperature drops from Tenv = 300 K to
about Tmin = 600 mK. The observed cooling rate extracted from the initial slope of the
curve is �sym = 1.4 × 103 s−1. For comparison, if the coupling beam is turned on without
any atoms in the lattice, the membrane temperature drops only to about 10 K. This is
due to cavity optomechanical cooling, because the driving laser was slightly red-detuned
from the cavity resonance to avoid the optomechanical instability on the blue-detuned
side. If the coupling beam is turned off, the membrane stays at Tenv.

The fact that the atoms cool the membrane by a factor of about Tenv/Tmin = 500 is
rather remarkable if one recalls that the mass of the membrane is ten orders of magnitude
larger than the mass of the entire atomic ensemble, Nm/M ≈ 10−10. Sympathetic cooling
with laser-cooled atoms and atomic ions is frequently used to cool molecules or other
atomic species that cannot be directly laser-cooled. In these experiments, the target and
the coolant species thermalize through collisions, and a large mass ratio reduces the
cooling efficiency. The largest particles that were cooled in this way are protein molecules
in an ion trap, using laser-cooled Ba ions as the coolant (Offenberg et al., 2008). These
experiments involved mass ratios of up to ≈ 90 and achieved similar cooling factors and
final temperatures as in the atom-membrane sympathetic cooling experiment.

In the proof-of-principle experiment of (Jöckel et al., 2015), the membrane oscillator
was placed in a room-temperature environment, resulting in a large thermal heating rate
�mn̄th � �sym. The cooling performance was further limited by technical laser noise in
the coupling beam, which was generated by a diode laser. To reach the quantum regime,
the membrane can be pre-cooled in a cryostat, as in many other cavity-optomechanics
experiments. Moreover, the use of higher-frequency membranes and low-noise lasers
will mitigate the effects of technical laser noise. In the following section it is shown that
with such an improved system, ground-state cooling and strong coupling of atoms and
membrane are within reach.

1 If the atoms are cooled by Raman sideband cooling we have n̄a ≈ (�a,cool/4	a)2. The condition n̄a 	 1
thus limits �a,cool 	 	a, i.e. the atomic laser cooling must resolve the vibrational sidebands.
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Fig. 9.9 Sympathetic cooling results. The membrane temperature is shown as a function of time. In
the grey-shaded region, the lattice laser beam is turned on so that the atoms can resonantly couple to
the membrane, 	a ≈ 	m. Red data: measurement with atoms in the lattice, showing strong sympathetic
cooling. Blue: measurement without atoms, showing cavity optomechanical cooling. Black: lattice laser
turned off. Figure courtesy of A. Faber.

9.9 Ground-state Cooling, Strong Coupling, Cooperativity

In this section we discuss the conditions for observing quantum effects in the coupled
atom–membrane system. We find that the atom–membrane cooperativity is an important
figure of merit of the coupled system. We conclude by providing a set of parameters for
which the system reaches the regime of large cooperativity.

9.9.1 Atom-Membrane Cooperativity

Figure 9.10 shows a schematic of the coupled atom–membrane system and its interaction
with the environment. The strength of the coherent coupling is quantified by the rate
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Fig. 9.10 Coherent coupling and decoherence rates in the coupled atom–membrane system.

g given in Eq. (9.58). On the membrane side, we define the decoherence rate of the
vibrational ground state

γm = �mn̄th + �rp. (9.68)

For the atoms, the ground-state decoherence rate depends on whether laser cooling is
applied (since typically �a,cool � �heat),

γa = �heat + �a,cool �
{

�a,cool if laser cooling is on
�heat otherwise.

(9.69)

We now define the atom–membrane cooperativity

C = 4g2

γmγa
, (9.70)

which compares the strength of the coherent interaction with the product of the
decoherence rates of the two systems. In analogy with the corresponding parameter
in cavity quantum electrodynamics (Tanji-Suzuki et al., 2011) or cavity optomechanics
(Aspelmeyer et al., 2014), we expect the cooperativity to be the relevant figure of merit
when analysing the ability of the system to show certain quantum effects.

Ground-state cooling

As a first example, we consider again ground-state cooling of the membrane by coupling
to laser-cooled atoms as described in the previous section. Assuming that the atoms are
ground-state cooled and focusing on the experimentally relevant regime of �sym � �m,
we can express the steady-state phonon occupation of the membrane Eq. (9.67) as

n̄ss � γm

�sym
= γm�a,cool

4g2 = 1
C . (9.71)

Ground-state cooling of the membrane (n̄ss < 1) thus requires a cooperativity C > 1.



OUP CORRECTED PROOF – FINAL, 5/2/2020, SPi

Ground-state Cooling, Strong Coupling, Cooperativity 361

Strong coupling

For balanced decoherence rates γa ≈ γm, the condition C > 1 implies g > (γa/2,γm/2).
This is the strong-coupling regime as defined e.g. in cavity quantum electrodynamics
(Tanji-Suzuki et al., 2011), where single-phonon Rabi oscillations can be observed and
a quantum state swap between the two systems is possible.

Effects analogous to electromagnetically induced transparency

If C > 1 but we either have g < γa/2 or g < γm/2, a full single-phonon Rabi oscillation
between the two systems cannot be observed in the time domain, but interference
phenomena analogous to electromagnetically induced transparency are still observable
and can be exploited for coherent control.

9.9.2 Connection to Optomechanical Cooperativity
and Optical Depth

We can express the atom–membrane coupling Eq. (9.58) as

g = 4
√

Nn̄cg0ga

κ
, (9.72)

where g0 is the membrane–light and ga = V1kxa,zpf/h̄ the atom–light coupling strength
for a single photon in the cavity. Here, V1 = Vm/n̄c is the lattice potential experienced
by the atoms for a single photon in the cavity.2 We furthermore assume γm � �mn̄th and
γa � �heat. With this we can express the atom–membrane cooperativity as

C = 4g2

γmγa
= 4 · 4g2

0n̄c

κ�mn̄th
· 4g2

a n̄cN
κ�heat

= 4CmCa, (9.73)

where the optomechanical (quantum) cooperativity referring to the membrane–light
interaction is defined in the usual way (Aspelmeyer et al., 2014),

Cm = 4g2
0n̄c

κ�mn̄th
. (9.74)

The atomic cooperativity referring to the atom–light interaction is

Ca = 4g2
a n̄cN

κ�heat
= N

σ

S
, (9.75)

2 Note that the atoms are trapped in a lattice outside the cavity, but the power of the lattice beam and the
intracavity photon number are related by Eq. (9.49).
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which is simply the resonant optical depth of the atomic ensemble, as expected for a
free-space atom–light interface (Tanji-Suzuki et al., 2011; Hammerer et al., 2010a). To
derive the second equality in Eq. (9.75) we have used Eqs. (9.26), (9.29), (9.30), and
(9.49).

Equation (9.73) implies that the coupled atom–membrane system can operate in a
regime of large cooperativity C > 1 even if the optomechanical system has a cooperativity
Cm < 1, because this can be compensated for by a large resonant optical depth Ca,
which can reach hundreds or thousandths in state-of-the-art experiments. This has
interesting consequences, as it implies that ground-state cooling and quantum control
of the membrane by coupling to atoms is possible in the regime Cm < 1, where standard
optomechanical techniques applied to the membrane–cavity system alone, i.e. without
atoms in the beam path, cannot achieve these tasks.

For example, as discussed in (Bennett et al., 2014), optomechanical ground-state
cooling (without atoms) requires Cm > 1

8 (feedback cooling/cold damping) or Cm > 1
(cavity feedback cooling). If neither of these conditions is fulfilled, the membrane can
still be ground-state cooled by coupling it to an ensemble of laser-cooled atoms with
Ca � 1 such that the overall cooperativity C = 4CmCa > 1. This can be understood in
terms of the concept of quantum feedback (Bennett et al., 2014): the atoms can be
considered a coherent controller that can potentially outperform a classical controller
that uses detection of light from the cavity and classical feedback. The hybrid atom–
membrane setup thus allows one to experimentally study intriguing conceptual questions
on the remote control of a quantum system (the mechanical oscillator) with the help of
another quantum system (the atoms).

9.9.3 Experimental Parameters

In this section we give a set of experimental parameters of the coupled atom–membrane
system for which the regime of large cooperativity and strong coupling is reached.

We consider the (3,3)-mode of a standard Si3N4 membrane of dimensions 1.5 mm ×
1.5 mm × 50 nm with rm = 0.4 and mechanical frequency 	m/2π = 0.8 MHz, effective
mass M = 80 ng, and quality factor Q = 1 × 107, mounted in a cryostat at Tenv = 4 K.
The membrane is placed in an optical cavity of length L = 1 mm and finesseF = 2 × 103.
The cavity is driven with a laser of power P = 190 μW, cross-sectional area S = (25 μm)2,
and detuning �/2π = 5 GHz from the D2 line of 87Rb atoms. This generates an optical
lattice potential with 	a = 	m where we assume N = 1 × 106 atoms are trapped.

For this system we find a coupling strength of g = 1.2 × 105 s−1, to be compared with
decoherence rates �mn̄th = 8 × 104 s−1 and �a = 1.6 × 103 s−1, placing the system in the
strong-coupling regime. For the cooperativities we find Cm = 0.5, Ca = 310, and C = 643.

9.10 Coupling to the Atomic Internal State

By coupling the mechanical vibrations to the atomic internal state, the full toolbox of
quantum control in atomic ensembles becomes accessible (Hammerer et al., 2010a).
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Such a coupling can be achieved in a setup very similar to Fig. 9.7, as shown in (Vogell
et al., 2015). The basic idea is to transduce the mechanical vibrations into a polarization
rotation of the coupling light that couples to the atomic hyperfine spin. Conversely,
changes in the atomic hyperfine state change the light polarization and modulate the
radiation pressure on the mechanics. This again gives rise to a Hamiltonian of the form
(Vogell et al., 2015)

H = h̄	mb†b + h̄ωLa†a + h̄gint(b + b†)(a + a†), (9.76)

similar to Eq. (9.59), except that a and a† now refer to excitations of the atomic spin state
and ωL is the Larmor frequency. We have assumed that the collective spin describing
the internal state of the N atoms is polarized along a magnetic field so that it can
be mapped to a harmonic oscillator, Sz � a†a − N/2 and Sx � √

N/2
(
a + a†

)
in the

Holstein–Primakoff approximation (Hammerer et al., 2010a). Several schemes have been
analysed that give rise to such interactions (Hammerer et al., 2009a; Bariani et al., 2014;
Vogell et al., 2015) and strong coupling has been predicted for realistic parameters (Vogell
et al., 2015). Since the Larmor frequency ωL can be tuned with magnetic fields over a
wide range, the atoms can be coupled to mechanical oscillators in the MHz regime, where
laser and other technical noise is much reduced.

9.10.1 Beam Splitter and Two-mode Squeezing Hamiltonians

Different types of interactions can be realized with this Hamiltonian: by magnetic-field
tuning of the Larmor frequency to ωL = 	m, the resonant interactions take the form of a
‘beam-splitter’ Hamiltonian Hint = h̄gint

(
ba† + b†a

)
, giving rise to normal mode splitting

and Rabi oscillations between the mechanical and atomic system. This can be used to
swap spin-squeezed and other non-classical states of the atoms to the mechanical system
(Riedel et al., 2010). Alternatively, by inverting the magnetic field orientation one can
set ωL = −	m, so that Hint = h̄gint

(
ba + b†a†

)
. This ‘two-mode squeezing’ Hamiltonian

produces entanglement between the atomic and mechanical modes. Interestingly, in
this case the atomic ensemble can be thought of as realizing a spin oscillator with a
‘negative effective mass’ (Polzik and Hammerer, 2015), since ωL < 0 and creating atomic
excitations thus reduces the energy. This illustrates one of the new features that atoms
can provide in such hybrid systems.

9.10.2 Vibration Sensing beyond the Standard Quantum Limit

The two-mode squeezing Hamiltonian can be used to generate Einstein–Podolsky–
Rosen entanglement between the mechanical oscillator and the atoms. As pointed out in
(Hammerer et al., 2009a), this can be used for sensing of mechanical vibrations beyond
the standard quantum limit, which limits the precision of weak continuous position
measurements (Aspelmeyer et al., 2014). Entanglement is present if the variances of
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position and moment measurements on the two systems satisfy (Polzik and Hammerer,
2015)

Var(Xm − Xa)+ Var(Pm + Pa) < 2, (9.77)

where Xm (Xa) and Pm (Pa) here refer to dimensionless position and momentum
quadratures of the mechanical oscillator (atoms), defined such that they satisfy the
commutation relation [Xm,Pm] = i ([Xa,Pa] = i). In the entangled state, a position
(momentum) measurement on the atomic system can predict the outcome of a position
(momentum) measurement on the mechanical system with a precision better than
the SQL. Remarkably, this holds for both position and momentum quadratures. This
distinguishes the approach from other schemes of back-action evasion in mechanical
systems, which are limited to a single quadrature. It was pointed out (Polzik and
Hammerer, 2015) that this allows one to follow trajectories of the mechanical system
in the reference frame provided by the atoms in principle without quantum uncertainty.
A further exciting aspect is that this is possible in a remote way, with atoms placed at a
macroscopic distance from the mechanical oscillator.

9.10.3 Single-phonon Control

Exploiting the coupling of the mechanical oscillator to the atomic internal state can also
be used to obtain control over single phonons. In the atomic ensemble, the effect of
Rydberg blockade can be used to restrict the internal-state dynamics to an effective two-
level system (Saffman et al., 2010; Weber et al., 2015). Creating single excitations of the
atomic ensemble in this way and swapping them to the mechanical system provides a
challenging, but in principle feasible, route to controlling single phonon excitations in
hybrid mechanical–atomic systems. Indeed, a recent proposal suggests making use of
Rydberg excitations in small atomic ensembles to achieve the desired nonlinearities and
identifies a parameter regime for such experiments (Carmele et al., 2014).
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