
Optical coherent feedback control of a mechanical oscillator

Maryse Ernzer,∗ Manel Bosch Aguilera,∗ Matteo Brunelli, Gian-Luca
Schmid, Christoph Bruder, Patrick P. Potts,† and Philipp Treutlein‡

Department of Physics and Swiss Nanoscience Institute,
University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

Feedback is a powerful and ubiquitous technique both in classical and quantum system control. In its stan-
dard implementation it relies on measuring the state of a system, classically processing and feeding back the
extracted information. In quantum physics, however, measurements not only read out the state of the system,
but also modify it irreversibly. A different kind of feedback which coherently processes and feeds back quantum
signals without actually measuring the system is possible. This is known as coherent feedback. Here, we report
on the realization of an optical coherent feedback platform to control the motional state of a nanomechanical
membrane in an optical cavity. The coherent feedback loop consists of a light field interacting twice with the
same mechanical mode through different cavity modes, without any measurement taking place. Tuning the op-
tical phase and delay of the feedback loop allows us to control the motional state of the mechanical oscillator,
its resonance frequency and damping rate, the latter of which we use to cool the membrane close to the quantum
ground state. We present here a theoretical description and experimental realization of this scheme. Our theo-
retical analysis provides the optimal cooling conditions, showing that this new technique enables ground-state
cooling. Experimentally, we show that we can cool the membrane to a state with n̄m = 4.89 ± 0.14 phonons
(480 µK) in a 20 K environment. This lies below the theoretical limit of cavity dynamical backaction cooling in
the unresolved sideband regime. Our feedback scheme is very versatile, offering new opportunities for quantum
control in a variety of optomechanical systems.

I. INTRODUCTION

Quantum feedback is a powerful technique for cooling and
controlling quantum systems [1]. The conventional strategy
relies on quantum-limited measurements followed by classi-
cal processing and feedback actuation onto the system. How-
ever, quantum mechanics also allows for coherent feedback
of quantum signals [2, 3], without destroying coherence in the
process. Such coherent feedback may exploit the informa-
tion stored in non-commuting observables, while circumvent-
ing the decoherence and back-action noise associated with a
measurement [1, 2, 4]. Coherent feedback has thus the po-
tential to improve quantum control and provide new capabil-
ities in a broad range of physical systems [5, 6]. Coherent
feedback strategies have been adopted to assist in a variety
of different tasks [1], e.g. for noise cancellation [7, 8], pure-
state preparation [6], optical squeezing [9, 10], stabilization
and enhancement of entanglement [11, 12], sympathetic cool-
ing [13–15], swaps of arbitrary states [16], qubit state control
[17], and generating large optical nonlinearities at the single-
photon level [18, 19].

Optomechanical systems are very well suited for coher-
ent feedback control, as they offer a clean and tailored inter-
face between highly coherent mechanical and electromagnetic
field modes [20]. Indeed, various coherent feedback protocols
have been theoretically proposed to enhance cooling of op-
tomechanical systems [21–23], to reduce the added noise in
the low-phonon number regime of optomechanical precision
measurements [24], to enable or enhance entanglement gen-
eration, verification, as well as state transfer [22, 25–27]. Co-
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herent feedback thus allows to facilitate and extend the capa-
bilities of quantum transducers between optics and mechanics
[28].

Despite this wide range of possibilities, there have been sur-
prisingly few experiments investigating coherent feedback in
optomechanics [15, 29]. An optical coherent feedback loop
acting directly onto a mechanical oscillator has not yet been
realized. Moreover, while measurement-based feedback has
been studied in some depth also from a theory point of view
[30–34], essential questions regarding the performance of co-
herent feedback in optomechanics and its limitations in actual
experimental settings remain open.

In this work, we present both a theoretical description and
experimental realization of a simple, all-optical coherent feed-
back platform to control a single vibrational mode of a me-
chanical oscillator. We use a double-pass scheme where an
optical signal interacts twice with the same mechanical mode
through two different cavity modes of orthogonal polarization.
The entire control of the phase and delay of the feedback sig-
nal is implemented purely via the optical field, without intro-
ducing measurements and subsequent electronic processing.
Our approach is thus able to generate a variety of different in-
teractions, ranging from Hamiltonian couplings to dissipative
and non-reciprocal dynamics [35–37].

As a first application of the extended control offered by
the coherent feedback loop, we investigate cooling of the me-
chanical mode close to its quantum ground state, a prerequi-
site for many applications in quantum science and technology
[20, 28, 38]. We show theoretically that coherent feedback en-
ables ground-state cooling even in the non-resolved sideband
regime, where cavity dynamical backaction cooling with a
single or two independent optomechanical interactions cannot
reach the ground state [20]. Experimentally, we demonstrate
the advantage of the coherent feedback loop by cooling below
the theoretical limit of cavity dynamical backaction cooling
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FIG. 1. Sketch of experimental setup and optical coherent feedback loop. (a): An incoming light beam âin
1 is injected into an optomechanical

cavity, where it drives the cavity field ĉ1 that interacts with a mechanical oscillator with quadratures X̂m, P̂m. The back-reflected beam âout
1

is combined with an auxiliary local oscillator mode âaux to control the phase of the feedback loop ϕ. The combined field is delayed by τ
with the help of an optical fiber, before being sent back as input âin

2 for a second interaction with the mechanical oscillator in an orthogonal
polarization cavity mode ĉ2. The outgoing light after the second interaction leaves the loop. A small fraction of âout

1 is picked up for detection
and phase locking of the loop. (b): Phase-space visualisation of the feedback loop. The sketch represents the amplitude (XL) and phase (PL)
quadratures of the light outside the cavity in an arbitrary frame. On resonance, the coherent cavity output field after the first interaction αout

1
is phase-modulated (dashed line) with the membrane displacement signal Xm(t). This is converted into an amplitude modulation of αin

2 by
mixing the coherent field with an auxiliary local oscillator αaux with the appropriate relative phase φ. After a delay Ωmτ = π/2, the amplitude
modulation becomes proportional to the membrane momentum Pm at time t (dashed line in αin

2 ) and exerts a force on the mechanical oscillator.

in our system. This is of particular interest for optomechan-
ical systems with cavities of large bandwidth, which induce
only a small delay and are frequently encountered in optome-
chanical displacement sensing, quantum interfaces and hybrid
setups [39].

The remainder of this paper is structured as follows: We
first give an overview of the working principle of our coher-
ent feedback platform for controlling a mechanical oscillator
in an optical cavity. Next we develop a theoretical model of
the feedback scheme, before we show experimental results on
motional state control and its application to cooling. Finally
we compare our theoretical results to those of measurement-
based feedback for the specific task of cooling.

II. OVERVIEW OF THE COHERENT FEEDBACK
SCHEME

We start by illustrating the working principle of our coher-
ent feedback scheme, sketched in Fig. 1. The goal is to con-
trol the motional state of a mechanical oscillator by designing
an optical feedback loop that preserves the quantum coherent
properties of the light field, which acts as the controller. To
this end, the mechanical oscillator is radiation-pressure cou-
pled to two cavity modes in a cascaded double-pass interac-
tion. The first interaction takes place between the mechanical
oscillator and the cavity mode ĉ1, which is driven by a strong
local oscillator, realizing the standard cavity optomechanical
interaction [20]. Due to the optomechanical coupling, infor-
mation about the mechanical position X̂m is imprinted onto
the phase quadrature of ĉ1. This mode is then cascaded into
the second cavity mode ĉ2 via an all-optical feedback loop.
Specifically, the output light of the first mode, with mean am-
plitude αout

1 , is mixed with a second local oscillator and fed

back as the input of the second cavity mode, with amplitude
αin

2 , as shown in Fig. 1. The resulting optical feedback loop is
characterized by two parameters, the relative phase ϕ and the
in-loop delay time τ. The phase ϕ is determined by a second
local oscillator αaux, which implements a displacement in the
optical phase space of the modes travelling within the loop,
see Fig. 1 (b).

Both feedback parameters are crucial for controlling the
mechanical oscillator. The phase ϕ is adjusted so that the
phase quadrature of the outgoing mode, which contains infor-
mation on the mechanical position, is turned into the ampli-
tude quadrature of the incoming mode, which exerts the radi-
ation pressure force on the mechanical oscillator. As sketched
in Fig. 1 (b), this occurs for ϕ = π/2. Adjusting the delay
τ allows to either feed back the instantaneous position [when
X̂m(t − τ) ' X̂m(t)], momentum [when X̂m(t − τ) ' P̂m(t), as
represented in Fig. 1 (b)], or a superposition thereof. While
feeding back the position enables the control of the mechan-
ical oscillator frequency, feeding back the momentum allows
to control its damping, which can be exploited for ground-
state cooling.

Previous theoretical proposals for coherent feedback cool-
ing of mechanical oscillators [21–23, 27] rely on coherently
enhancing the interaction of the cavity light with the me-
chanics, mostly by modifying the effective cavity linewidth
[22, 27], and on loops that impart only a delay (plus unavoid-
able coupling losses). In contrast, our scheme applies the co-
herent feedback directly to the mechanical oscillator, such that
the feedback can be generated with a single cavity driven in
two independent modes. Moreover, it allows to tune the loop
phase ϕ, which strongly influences the effect of the feedback.

Our scheme requires no additional optical devices such as
cavities and only minor modifications of the optical path, re-
sulting in a modular scheme that is optimally suited for incor-
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poration into various types of optomechanical systems.
Furthermore, our double-pass scheme does not require non-

classical input light states [40, 41], additional interactions
with other physical systems [13, 15, 42], nor the overall
very high detection efficiency of measurement-based feedback
schemes [30–34]. The relaxation of the requirements on mea-
surement efficiency renders our scheme valuable for systems
working in wavelength ranges where efficient photodetectors
are not available, e.g. in integrated circuit platforms [43].

III. THEORETICAL MODEL

In this section, we provide a theoretical model for the co-
herent feedback scheme described above. The mechanical os-
cillator that is to be controlled is described by the Langevin
equations

∂tX̂m(t) = ΩmP̂m(t),

∂tP̂m(t) = −ΩmX̂m(t) − γmP̂m(t) − 2
2∑

j=1

g j x̂ j(t) −
√

2γm ξ̂th(t),

(1)
where X̂m(t) and P̂m(t) denote the dimensionless position and
momentum operators of the mechanical oscillator, Ωm its fre-
quency, and γm its energy damping rate. The mechanical os-
cillator is driven by thermal noise ξ̂th, which has zero average
and is fully described by its spectral density [44]

S th(ω) =
ω

Ωm
[nB(ω) + Θ(ω)], (2)

where nB(ω) = [exp(~ω/kBT ) − 1]−1 denotes the Bose-
Einstein distribution and Θ(ω) the Heaviside theta function.

The oscillator furthermore couples to the amplitude quadra-
ture of two optical modes, x̂ j = (ĉ†j + ĉ j)/

√
2 with strength

g j, where j = 1, 2. As discussed in more detail below, the
coupling strengths depend on the average displacements of
the optical modes and the operators ĉ j describe fluctuations
around this displacement [20].

The first cavity mode is described by the Langevin equation
(in a frame rotating at ωL)

∂tĉ1(t) =

(
i∆ −

κ

2

)
ĉ1(t) − i

√
2g1X̂m(t) −

√
κâin

1 (t), (3)

where ∆ = ωL − ωc denotes the detuning from the cavity
mode frequency ωc and κ the cavity linewidth. This mode
is driven by a local oscillator with frequency ωL and average
displacement αin

1 , which serves as our phase-reference [i.e.,
arg(αin

1 ) = 0]. Fluctuations around this displacement are de-
scribed by the operator âin

1 . Due to the optomechanical cou-
pling, the outgoing field leaving this cavity mode

âout
1 (t) = âin

1 (t) +
√
κĉ1(t), (4)

contains information on the position of the mechanical oscil-
lator. From Eq. (3), it follows that on resonance (∆ = 0),
this information is only contained in the phase quadrature
p̂1 = i(ĉ†1 − ĉ1)/

√
2.

To implement the coherent feedback, the output of the first
cavity mode is fed back into the input of the second cavity
mode. Before it is coupled into the cavity, it undergoes a dis-
placement by combining it with an auxiliary local oscillator
with the same frequency ωL and average displacement αaux
[arg(αaux) = φ], and it is delayed by the time τ. The second
cavity mode is then driven by the input mode [45]

âin
2 (t) =

√
η eiϕâout

1 (t − τ) +
√

1 − η âaux(t), (5)

where the phase ϕ = arg(α1/α2) denotes the phase-difference
between the average displacements of the cavity modes. As
shown in App. B 1, η may take into account any losses in the
system. The Langevin equation for the second cavity mode
then reads

∂tĉ2(t) =

(
i∆ −

κ

2

)
ĉ2(t) − i

√
2g2X̂m(t) −

√
ηκ eiϕĉ1(t − τ)

−
√
ηκ eiϕâin

1 (t − τ) −
√

(1 − η)κ âaux(t).
(6)

The average displacements of the cavity modes can be written
as

α1 = −

√
καin

1

κ/2 − i∆
,

α2 =
1

κ/2 − i∆

[
√
ηκ
κ/2 + i∆
κ/2 − i∆

αin
1 −

√
(1 − η)κ αaux

]
.

(7)

In terms of these, the optomechanical coupling strengths can
be written as g j = g0|α j|, where g0 is the bare coupling
strength. The amplitudes of the local oscillators are related
to their input power as P1 = ~ωL|α

in
1 |

2 and Paux = ~ωL|αaux|
2

respectively.
To better understand the effect of the coherent feedback

loop, it is illustrative to eliminate the cavity modes from the
Langevin equations. For a high-quality oscillator γm � Ωm
and delay times that obey τγm � 1, we find

∂2
t X̂m(t) = − (Ωm + δΩm)2X̂m(t) − (γm + Γm) ∂tX̂m(t)

+ Ωm
√

2γm ξ̂th(t) + Ωm

√
2Γm ξ̂fb(t),

(8)

where Γm and δΩm denote the effective damping and the fre-
quency shift that are controlled by the coherent feedback loop.
In the unresolved sideband regime and on cavity resonance
these quantities reduce to

Γm = 16
√
η

g1g2

κ
sin(ϕ) sin(Ωmτ),

δΩm = −8
√
η

g1g2

κ
sin(ϕ) cos(Ωmτ).

(9)

Expressions for the general scenario are given in App. B.
From these expressions, we may understand the physical

significance of the parameters that determine the coherent
feedback loop. To maximize the effect that the optical field
exerts on the mechanics, we should choose ϕ = π/2. The
reason for this is sketched in Fig. 1 (b) and was already dis-
cussed qualitatively in Sec. II: For ∆ = 0, the first optical
mode contains the information on X̂m in the phase quadrature,
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p̂1 = i(ĉ†1 − ĉ1)/
√

2, the quadrature that does not exert a ra-
diation pressure force on the mechanical oscillator. Through
the feedback loop, the ĉ1 mode will be fed into the second,
ĉ2 mode. In order for the feedback to be effective, the phase
quadrature of the ĉ1 mode has to be fed into the amplitude
quadrature of the ĉ2 mode, x̂2, the quadrature that does cou-
ple to the mechanical oscillator. For this to occur, the field
has to be displaced by the auxiliary local oscillator, such that
ϕ = π/2.

Furthermore, Eqs. (9) show that by tuning the delay, the
feedback can either result in a frequency shift or a damping.
Since for τγm � 1 we have approximately

X̂m(t − τ) ' cos(Ωmτ)X̂m(t) − sin(Ωmτ)P̂m(t), (10)

we can see that the delay determines which quadrature, X̂m
or P̂m, is being fed back to the oscillator. In the limit of no
delay we are feeding back a force proportional to the posi-
tion, resulting in a strong frequency shift. Maximal damping
can be achieved by feeding back a force proportional to the
momentum, which occurs at Ωmτ = π/2. We note that the in-
duced damping can become negative as γm +Γm < 0, in which
scenario the system becomes unstable and our linearized de-
scription fails.

The phonon number of the mechanical oscillator is deter-
mined by the symmetrized spectral densities of the noise terms
in Eq. (8) and can be written as

n̄m =
γm/2

γm + Γm
S̄ th(Ωm) +

Γm/2
γm + Γm

S̄ fb(Ωm) −
1
2
, (11)

with S̄ th(Ωm) = S th(Ωm) + S th(−Ωm) = 2nth + 1, where
nth = nB(Ωm) denotes the thermal occupation. The expres-
sion for the spectral density of the feedback noise S fb(ω) is
given in Eq. (B25). From the last equation and the damping
given in Eq. (9), we find that a large quantum cooperativity
is a necessary condition to reach the quantum regime where
thermal excitations can be neglected

Cqu =
4g1g2

κγmnth
� 1. (12)

In the unresolved sideband limit and on resonance, we find
the phonon occupation number

n̄m =
4
κΓm

[
g2

1 + g2
2 − 2

√
ηg1g2 cos(Ωmτ − ϕ)

]
≥

1 −
√
η

2
√
η
,

(13)
where the lower limit is reached for Ωmτ = ϕ and g1 = g2.
Interestingly, this lower bound has the same form as the limit
of measurement-based feedback cooling [31, 46], with the ef-
ficiency of the feedback loop η replacing the measurement ef-
ficiency. As discussed in more detail in Sec. VI, the coherent
feedback cooling can, in the ideal limit, be understood as a
coherent implementation of measurement-based cooling.

IV. COHERENT FEEDBACK CONTROL OF A
NANOMECHANICAL MEMBRANE

Our experimental setup consists of a mechanical oscillator
inside a cavity in a cryogenic environment provided by a low-

noise liquid-Helium flow cryostat. The mechanical oscillator
is the (2,2) square drum mode of a silicon nitride membrane
[47] with a vibrational frequency Ωm = 2π × 1.9 MHz. The
membrane is surrounded by a silicon phononic bandgap struc-
ture which shields this mode, leading to intrinsic quality fac-
tors that range from Q = Ωm/γm = 1.9 × 106 at room tempera-
ture to Q = 3.2 × 106 at 20 K. The membrane is placed inside
a single-sided optical cavity of free spectral range 150 GHz, fi-
nesse F = 1200 and linewidth κ = 2π×55 MHz, such that the
optomechanical system operates in the unresolved sideband
regime κ � Ωm. The bare optomechanical coupling strength
is g0 = 2π × 160 Hz, calibrated via a phase modulation tone
[48].

The overall efficiency of the feedback loop is determined by
a combination of different losses that accumulate along the op-
tical path. Following the optical path illustrated in Fig. 1 (a),
for the first beam we have to consider the finite cavity incou-
pling efficiency η1 = 0.91. For the second pass it includes the
unavoidable loss at the beamsplitter that combines the aux-
iliary local oscillator âaux and the back reflection of the first
beam âout

1 , which has a splitting ratio ηaux = 0.87. Addition-
ally, there is a cumulative loss due to the propagation in the
optical fibre and other optical elements together with the cav-
ity incoupling efficiency of the second beam in orthogonal po-
larization, resulting in a total efficiency η2 = 0.28 of the sec-
ond pass. As discussed in App. B 1, these losses can be fully
taken into account by the overall efficiency of the feedback
loop η = 0.22 and by an appropriate rescaling of the average
displacements.

In the following experiments, we use the delay and the
phase of the coherent feedback loop as the tuning knobs that
allow us to control the mechanical state of the membrane, as
described by Eq. (9). This shows up in the recorded mechan-
ical power spectral densities as a change of both the mechan-
ical linewidth and the oscillation frequency, which we extract
from Lorentzian fits to our data.

A. Control via the loop delay

In a first set of experiments, we study the effect of de-
lay alone without an auxiliary local oscillator in the feedback
loop. We generate different delays between the two interac-
tions with the mechanical oscillator by sending the light after
the first pass through optical fibers of different lengths. In-
teresting situations arise once the delay is significant, i.e. of
order Ωmτ ∼ 2π. We investigate the effect generated by dif-
ferent delays starting from a fibre length of 2 m going up to
80 m, which corresponds to Ωmτ = 0.07π up to Ωmτ = 1.55π.

At zero detuning, the motion of the membrane is imprinted
purely as a phase modulation onto the output light such that in
the absence of the auxiliary local oscillator this results in ϕ =

π (due to the back reflection from the cavity) and we expect no
effect from the coherent feedback loop [cf. Eqs. (9)]. With a
finite detuning however, a phase shift ϕ , π is introduced even
without any auxiliary local oscillator [cf. Eqs. (7)]. Therefore,
in that case the motion is imprinted onto both the amplitude
and phase quadratures and the effect of different delays due to
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feedback becomes apparent. Additionally, the standard cavity
dynamical backaction effects that are not captured by Eqs. (9)
modify the frequency shift and damping rate, see App. B for
details.

Figure 2 shows experimental data where we study the ef-
fect of different feedback delays while scanning the detuning
for an input power P1 = 60 µW. The coherent feedback onto
the mechanical oscillator results both in a shift of the mechan-
ical frequency [Fig. 2(a)] and in a broadening or narrowing
of the mechanical linewidth [Fig. 2(b)], leading to damping
or driving, respectively. This is consistent with a picture in
which the membrane motion couples via the light to a delayed
version of itself, leading to feedback forces Ffb ∝ ±Pm(t) for
certain delays as shown in Eq. (8) and in Fig. 2(c).

Indeed, we observe that for a delay close to Ωmτ ∼ π/2
(i.e. a quarter of the oscillation period) the coupling is mostly
proportional to +Pm and we observe driving (narrowing of the
linewidth) even with a red detuned beam. Half a period later,
for Ωmτ ∼ 3π/2, the feedback force is mostly proportional
to −Pm and the motional damping is amplified by more than
a factor 3 as compared to a single interaction, leading to ad-
ditional cooling of the mechanical oscillator. Finally, we see
that for the smaller delays Ωmτ ∼ 0, the effect of the second
interaction on the broadening is small Γm ' 0, since the feed-
back force in this case is mostly ∝ Xm.

The agreement with the theoretical predictions in
Eqs. (B23) and (B24) (solid lines in Fig. 2) is excellent.
The theory lines for the feedback interaction contain no free
parameters. The detuning axis is calibrated from the recorded
linewidths in the single-pass interaction under the effect of
the standard cavity dynamical backaction [20], and can be
extracted with an uncertainty of ±5%.

B. Control via the loop phase

A handy tuning knob of a feedback platform is the over-
all feedback phase. Here, we investigate how the loop phase
modifies the membrane motion at a fixed delay and cavity
detuning. As previously discussed, this phase allows us to
control the amount of motional information that is transferred
onto the amplitude quadrature of the second interaction beam,
thereby maximising or minimising the feedback force on the
membrane, as well as the overall sign of the interaction. Ex-
perimentally, we scan the loop phase ϕ by adjusting the phase
of the auxiliary local oscillator φ, which is selected and sta-
bilised by locking at a specific angle of the interferometric
signal between a small leak of αout

1 and αaux [see Fig. 1].
The measured frequency shifts and linewidths are shown

in Fig. 3. In this measurement, the delay is held constant at
Ωmτ ∼ 0.07π and the detuning at ∆/κ = −0.2, the input pow-
ers were set to P1 = 20 µW and Paux = 3 µW. This detuning is
experimentally chosen such that the amount of standard cav-
ity dynamical backaction cooling is strong. This allows us to
show the coherent feedback effect by scanning the full range
2π of the loop phase without running into instabilities when
approaching negative effective linewidths. In practice, when
we reach this unstable regime [blue dashed lines in Fig. 3 (b)],

0 π/2 π 3π/2 2π
Ωmτ
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2π
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z]

(a) (b)

(c)

FIG. 2. Mechanical frequency shift (a) and damping rate (b) as a
function of the cavity detuning for different feedback delays. The
data points correspond to the results of Lorentzian fits to the me-
chanical power spectral density. The solid lines correspond to the
theoretical predictions in Eqs. (B23) and (B24) evaluated at ω = Ωm

with no free parameters. The detuning axis is calibrated from the
measured linewidth in the single-pass interaction (dashed red line).
(c) The mechanical linewidth at a detuning of ∆/κ = -0.57 for the
different fibres and respective delays.

the system is driven and the measured linewidth is close to
zero.

Scanning the phase, we observe that both the resonance fre-
quency and the linewidth can be modified to either higher or
lower values compared to the optical spring and broadening
that occur even without the coherent feedback. We exploit
this aspect in the next section to optimally feedback cool the
mechanical oscillator. Here again, we find an excellent agree-
ment between the experimental data points and the theory pre-
diction in Eqs. (B23) and (B24) with no free parameters.

V. COHERENT FEEDBACK COOLING BELOW THE
DYNAMICAL BACKACTION LIMIT

For cavity optomechanical systems within the so-called re-
solved sideband regime, it has been established theoretically
and demonstrated in multiple platforms that a red-detuned
drive allows to cool the mechanical oscillator close to its
motional ground state [20]. Outside this regime, cavity dy-
namical backaction cooling to the ground state is no longer
attainable and the most widely used cooling technique is
measurement-based feedback [30, 49], where the optical sig-
nal is measured and converted into a classical electronic signal
that drives the feedback actuator.

Here, we exploit the control provided by the coherent feed-
back loop demonstrated in the previous section to cool the
membrane close to the ground state in the unresolved side-
band regime. The available tuning knobs are the loop phase
ϕ and delay τ as well as the detuning ∆ and the powers of
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FIG. 3. Mechanical frequency shift (a) and damping rate (b) as a
function of the phase of the auxiliary local oscillator. The red dotted
lines correspond to the broadening expected in the absence of feed-
back, but with an equivalent power in a single beam. The solid lines
correspond to Eqs. (B23) and (B24) evaluated at ω = Ωm with no
free parameters. The solid line in (b) is set to zero for negative val-
ues (dashed line), where the mechanical oscillator is driven by the
feedback.

the first and auxiliary local oscillators P1 and Paux. In stan-
dard cavity cooling, the minimal number of phonons achiev-
able in the unresolved sideband regime is bounded by κ/(4Ωm)
(cf. App. B 3), which in our case corresponds to about 7
phonons. In order to reach this dynamical backaction limit
with our mechanical quality factor, we would need a laser
power on the order of 100 mW [see Fig. 4 (c)]. The coher-
ent feedback loop dramatically relaxes this power constraint
and we are able to cool the motion of the membrane below
the dynamical backaction limit, approaching the ground state.

In Fig. 4 (a) we show experiments where we reach our low-
est membrane phonon occupation by scanning the experimen-
tal feedback loop phase. We present measurements at different
cryostat temperatures, where the delay is set to Ωmτ ∼ π/4
and the detuning is kept fixed at ∆/κ = −0.35. The powers
for the first and auxiliary local oscillators are set to 400 µW
and 1.2 mW, respectively. With these experimental param-
eters, the feedback loop drives the mechanical oscillator to-
wards a state with phonon occupation of n̄m = 4.89 ± 0.14
phonons for a cryostat temperature of 20 K, reaching a phonon
number below the theoretical limit of cavity dynamical back-
action cooling for our membrane-cavity assembly. The co-
herent feedback cooling rate is Γm > 10Γdyn, where Γdyn is
the cooling rate of dynamical backaction cooling at the same
power. We note that higher powers, smaller detunings and
slightly smaller phases should further reduce the final number
of phonons, but these parameter regimes were not accessible
for us due to technical instabilities related to the cavity lock.
Similarly, the optimal delay Ωmτ ∼ π/2 could not be imple-
mented, most likely due to additional phase noise in longer
fibres.

In these experiments the membrane phonon occupation is
determined from the area of the mechanical power spectral
density, recorded via phase-sensitive homodyne detection. By
determining the reduction in area with respect to a single in-
teraction [see Fig. 4 (b) and App. A] we extract n̄m.

VI. COMPARISON WITH MEASUREMENT-BASED
FEEDBACK COOLING

It is illustrative to compare our coherent feedback scheme
to well-known measurement-based feedback (mf) schemes for
the specific task of cooling mechanical motion [30–33, 49]. In
measurement-based feedback, the all-optical loop is replaced
by an electronic loop. An estimate of the mechanical displace-
ment is obtained from a measurement of the phase quadrature
of the output light from cavity mode ĉ1, and then a mechan-
ical force proportional to the derivative of the estimated dis-
placement is applied. In the case where the feedback force
is optomechanically actuated, the electronic signal modulates
the amplitude of a laser driving the second cavity mode ĉ2,
which results in a time-dependent coupling g2. Irrespective of
the particular implementation of the feedback force, the effect
of the feedback can be effectively modelled by replacing the
coupling to the second cavity in the equation of motion for
P̂m with a feedback force, entering Eq. (1) as a convolution
term Fmf(t) = (hmf ∗ pest

1 )(t), where hmf denotes the feedback
transfer function and pest

1 = pout, ηdet
1 /

√
ηdetκ. Notice that the

measurement is limited by the finite quantum efficiency of the
detector ηdet, i.e., pout, ηdet

1 =
√
ηdet pout

1 −
√

1 − ηdet p0, where
p0 is an uncorrelated vacuum field. For concreteness, here we
focus on the case of the so-called cold damping scheme [49],
while a more general treatment is provided in App. C. Cold
damping is characterised by the following spectral filter func-
tion

hmf(ω) = −i
gmf ω

1 − iω/ωmf
, (14)

which is expressed in terms of the bandwidth ωmf and by
the dimensionless quantity gmf , which quantifies the feed-
back gain. The bandwidth ωmf describes the finite time re-
sponse of the feedback, while any explicit delay in the feed-
back loop is neglected [50]. From Eq. (14) we can already un-
derstand the regime of interest for feedback by observing that
arg(hmf) = − arctan(ωmf/ω). For ωmf � ω ≈ Ωm, the argu-
ment tends to −π/2, so that the feedback force becomes pro-
portional to momentum, thus providing damping of the me-
chanical motion. Therefore, the relevant regime for feedback
cooling is that of large feedback bandwidth.

Similar to coherent feedback cooling, the effect of
measurement-based feedback cooling is fully taken into ac-
count by introducing a modified mechanical frequency and a
modified damping rate, which are given by

Γmf =
2Ωmg1gmfωmf[(κ/2)ωmf −Ω2

m][
(κ/2)2 + Ω2

m

]
(Ω2

m + ω2
mf)

, (15)

δΩmf =
Ω2

mg1gmfωmf (κ/2 + ωmf)[
(κ/2)2 + Ω2

m

]
(Ω2

m + ω2
mf)

. (16)

In the relevant limit ωmf , κ � Ωm, the residual phonon oc-
cupation, as obtained from the corresponding noise spectral
density, is given by

n̄m,mf =
g1

gmfΩm
+

gmfΩm

16g1ηdet
−

1
2
≥

1 −
√
ηdet

2
√
ηdet

, (17)
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FIG. 4. Coherent feedback cooling below the dynamical backaction limit. (a): Phonon occupation plotted as a function of the phase of the
auxiliary local oscillator at different cryostat temperatures for input powers P1 = 0.4 mW and Paux = 1.2 mW and detuning ∆/κ = −0.35.
The red shaded area indicates the limit of cavity dynamical backaction cooling. The shaded areas around the theory lines correspond to a
±5% uncertainty in the inferred detuning. The error bars take into account both the numerical uncertainty from the fit of the raw data and the
propagation of uncertainties from the calibrated quantities, and are small compared to the point size. (b): Shot-noise normalised mechanical
power spectral densities corresponding to the data points at T = 20 K in (a), the frequency origin is centered so that the δΩ = 0 corresponds to
the single-pass mechanical resonance frequency. (c): Coherent feedback cooling compared to standard cavity dynamical backaction cooling.
Blue line and data points: Phonon occupation at a constant loop phase φ = 130◦, scanning the total input power resulting from the double-pass
interaction P = P1(1 + η) + Paux + 2

√
ηP1Paux cos (φ) while keeping the ratio Paux/P1 = 3 fixed, at a detuning ∆/κ = −0.35. Red line: cooling

by standard cavity dynamical backaction given the same total input power P at the optimal detuning ∆/κ = −0.5 for dynamical backaction.

where the inequality is saturated for a value of the feedback
gain gmf = 4

√
ηdetg1/Ωm. Remarkably, the above expression

has the same form as the residual occupation of coherent feed-
back cooling, given by Eq. (13).

To better appreciate this correspondence, we can evaluate
Eqs. (9) and (13) for Ωmτ = ϕ = π/2, i.e. the parameters that
result in optimal cooling. We find

Γm = 16
√
η

g1g2

κ
, δΩm = 0,

n̄m =
g1

4
√
ηg2

+
g2

4
√
ηg1
−

1
2
.

(18)

In the limit ωmf , κ � Ωm, we can recover these expressions
from Eqs. (15), (16), and (17) upon setting gmf = 4

√
ηg2Ωm

and ηdet = η. We therefore conclude that in this limit the two
schemes are equivalent. In App. C we show that this equiv-
alence can be extended to arbitrary delays τ and linewidths
κ.

We note that beyond cooling applications where both light
quadratures might play a role, coherent and measurement-
based feedback control are not equivalent anymore [1].

VII. CONCLUSIONS & OUTLOOK

We implemented an all-optical coherent feedback platform
to control the motion of a mechanical oscillator and demon-
strated full control via the parameters of the feedback loop,
namely the phase and the delay. We showed theoretically
that this scheme can be used for ground-state cooling in the
unresolved sideband regime without the need of measure-
ments. We demonstrated experimentally that even with a

moderate mechanical Q−factor, we can beat the theoretical
lowest-phonon number limit of cavity dynamical backaction
cooling in the unresolved sideband regime. In contrast to pre-
vious proposals, where feedback is performed on the optical
cavity mode [22, 27], we perform feedback directly on a me-
chanical oscillator mode. As such, the double-pass scheme
can be adapted to a variety of different physical systems and
is not restricted to optomechanics.

The beauty of coherent feedback lies in its potential for pro-
cessing non-commuting observables [24]. In the unresolved
sideband regime, coherent feedback opens up the possibility
to generate self-interactions and mechanical squeezing [35],
photon-phonon entanglement [22], or to enhance optical non-
linearities at the single-photon level [19]. Our scheme could
also be exploited in the sideband resolved regime, where op-
tomechanical couplings of the form ĉ jB̂ + B̂†ĉ†j can be de-
signed, with B̂ being a raising or lowering operator of the
mechanical oscillator. Such couplings are sensitive to both
quadratures and potentially allow for creating non-classical
mechanical states using coherent feedback [3].

In contrast to measurement-based control, coherent feed-
back avoids the incoherent addition of feedback and measure-
ment noise, making it a key technique in the low-phonon num-
ber regime [24]. In particular, the interference resulting from
a coherent addition of noise can be tuned via the loop phase
to realize backaction cancellation [8, 35]. This makes our co-
herent feedback scheme a promising candidate for sensing ap-
plications, where such backaction cancellation is highly desir-
able.

Coherent feedback thus opens up new approaches for engi-
neering the dynamics of quantum systems with potential ap-
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plications for quantum technology, measurement and control
as well as quantum thermodynamics.
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Appendix A: Phonon number calibrations

1. Phonon number via homodyne detection

In this section, we detail the calibration of the phonon num-
ber, which is determined by performing a homodyne measure-
ment on a leak of the first beam interacting with the membrane
[see Fig. 1(a)]. This is done at room temperature, where we
know the membrane is thermalised to the environment.

In the frequency domain, we can write the field ĉ1 inside
the cavity as [46]

ĉ1(ω) = −χc(ω)
[√
κη1âin

1 (ω) + i
√

2g1X̂m(ω)
]
, (A1)

where η1 is the cavity incoupling efficiency and χc(ω)−1 =

κ/2 − i(∆ + ω) the cavity susceptibility.
The output phase quadrature of the light P̂L is related to

the one inside the cavity p̂1 via the input-output relation P̂L =

P̂in
1 +
√
κη1 p̂1.

In the thermal-noise dominated regime, we can neglect the
term P̂in

1 . Setting g1 = g0 χc(0)
√
κη1α

in
1 we can express P̂L in

terms of experimentally measurable quantities:

P̂L(ω) = −η1g0α
in
1 R(ω)X̂m(ω), (A2)

with the cavity transduction factor

R(ω) = κ
[
χc(0)χc(ω) + χ∗c(0)χ∗c(−ω)

] ∆=0
=

8
κ
. (A3)

The thermal occupation number n̄m is then calibrated by
measuring this light quadrature. For this, we beat the out-
put beam with a strong local oscillator with power PLO =

~ωLα
2
LO � P1 and use a Mach-Zehnder interferometer to per-

form homodyne detection. By means of a piezoelectric mirror
in the local oscillator arm, we can scan the homodyne angle θ,
and the recorded output voltage is given by:

D̂(ω) =
√

2αLO
[
cos (θ)X̂L(ω) + sin (θ)P̂L(ω)

]
. (A4)

The DC signal of the interference is given by D(ω = 0) =

2αLOα
in
1 cos θ, whose amplitude D0 = 2αLOα

in
1 can now be

used to calibrate the membrane signal. Locking the interfer-
ometer at θ = π/2 we are sensitive to the phase quadrature P̂L
encoding the membrane signal X̂m

D̂θ= π
2
(ω) =

√
2αLOα

in
1 η1g0R(ω)X̂m(ω). (A5)

From this signal D̂θ= π
2
(ω), we can compute the detected

power spectral density (PSD) S DD(ω)

S DD(ω) =
1
2

D2
0
[
η1g0 |R(ω)|

]2 S XX(ω), (A6)

with the membrane displacement power spectral density
S XX(ω). On the other hand, the average number of phonons is
related to the variance of the membrane displacement as

n̄m +
1
2

= 〈X̂2
m(t)〉 = 2

∫ ∞

0
S̄ XX(ω)

dω
2π

, (A7)

with the symmetrized PSD S̄ XX(ω). Therefore, combining
Eqs. (A6) and (A7) the number of phonons can be directly
obtained from the recorded power spectral density as

n̄m =
4

D2
0
[
ηg0 |R(ω)|

]2

∫ ∞

0
S̄ DD(ω)

dω
2π
−

1
2
. (A8)

2. Phonon number via area ratios

An alternative way to determine the thermal occupation
number of the mechanical oscillator consists in comparing the
measured power spectral density area in the presence of feed-
back with the area obtained if only a single interaction takes
place.

In a single-pass interaction, the phonon occupation can be
estimated from the procedure outlined in the previous section
or from the measured linewidth Γm and knowledge of the en-
vironment temperature by n̄calib = nth(T )γm/(γm + Γm). We
can now associate the area of the measured spectrum Acalib to
an occupation n̄calib.

For this, we first obtain the membrane occupation in the
presence of moderate cooling due to the optical field following
standard optomechanical cooling theory measured as a change
in linewidth to its voltage transduction in our PSD measure-
ment S̄ calib

DD (ω). We can then use the ratio between the corre-
sponding calibration area Acalib and the computed occupation
number n̄calib to determine the occupation number n̄m due to
our coherent feedback loop.

In the presence of additional cooling due to the feedback
loop, the phonon number is then given by the ratio of areas

n̄m =
n̄calib

Acalib
ADD, (A9)

with ADD the area of the measured PSD. For this to be ac-
curate, it is essential to know the temperature T at which
the membrane is thermalised. To determine the actual ther-
malisation temperature at different cryostat temperatures we
use standard optomechanical cooling experiments as shown in
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Fig. 5. For each cryostat temperature, we increase the power
of a red-detuned beam and measure the displacement PSD
with a resonant probe beam in a homodyne detection scheme.
The ratio of the areas at different temperatures can be used to
infer the environment temperature. If we compare the reduc-
tion in areas due to the optomechanical cooling to the theo-
retical expectation at those temperatures we find an excellent
agreement. Furthermore this agreement allows us to exclude
excess backaction through classical laser noise for the powers
that we are employing. We find a satisfactory agreement be-
tween the two calibration procedures described in this and the
previous section.

10−2 10−1 100

Pcool [mW]

100

102

104

n̄ m

300 K
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20 K

FIG. 5. Standard dynamical backaction cooling. For different cryo-
stat temperatures the plot shows the phonon occupation as a function
of cooling beam power. The shaded area marks the cavity dynamical
backaction limit.

Appendix B: Theoretical description

1. Langevin equations including losses

In this section, we derive the Langevin equations provided
in Eqs. (1), (3), and (6) from the non-linear optomechanical
equations of motion including additional losses. We start by
considering the Langevin equations for the mechanical oscil-
lator

∂tX̂′m(t) =ΩmP̂m(t),

∂tP̂m(t) = −ΩmX̂′m(t) − γmP̂m(t) −
√

2g0

2∑
j=1

Ĉ†j (t)Ĉ j(t)

−
√

2γm ξ̂th(t).

(B1)

Here Ĉ j denotes the annihilation operator in the cavity mode
j. We now write

Ĉ j = eiφ j
(
|α j| + ĉ j

)
, (B2)

where α j = 〈Ĉ j〉. In the optomechanical coupling, we drop the
non-linear term that is independent of α j, as it is negligible for
large average displacements. This results in the equation for

the momentum

∂tP̂m(t) = −Ωm

[
X̂′m(t) + δX

]
− γmP̂m(t)

− 2
2∑

j=1

g j x̂ j(t) −
√

2γmξ̂th(t),

δX =
√

2
g0

Ωm
(|α1|

2 + |α2|
2),

(B3)

where x̂ j = (ĉ†j + ĉ j)/
√

2 as in the main text. To recover
Eqs. (1) in the main text, we identify X̂m = X̂′m + δX, which
also obeys ∂tX̂m = ΩmP̂m. We note that δX is of order one for
the parameters in the experiment, implying that the mechani-
cal oscillator exhibits an average displacement of the order of
the zero-point fluctuations.

The Langevin equation for the cavity modes read

∂tĈ j(t) =

(
i∆ −

κ

2

)
Ĉ j(t) − i

√
2g0Ĉ jX̂′m(t)

−
√
κÂin

j (t),
(B4)

where Âin
j = αin

j + eiφ j âin
j denotes the input field for the re-

spective mode, with 〈Âin
j 〉 = αin

j . Using Eq. (B2) and dropping
the non-linear term in the optomechanical coupling, we find
equations of motion for both the average displacements α j and
the operators describing fluctuations around those averages ĉ j.
For the averages, we find

∂tα j(t) =

(
i∆ + i

√
2g0δX −

κ

2

)
α j(t) −

√
καin

j . (B5)

We note that these equations are non-linear, because δX de-
pends on α j. This non-linear term acts like a displacement-
dependent detuning. However, since δX is of order one and
g0 � κ, this can safely be ignored and we find the steady-
state values

α j = −

√
καin

j

κ/2 − i∆
. (B6)

For the fluctuations, we find the Langevin equations

∂tĉ j(t) =

(
i∆ + i

√
2g0δX −

κ

2

)
ĉ j(t) − i

√
2g jX̂m(t)

−
√
κâin

j (t).
(B7)

The contribution to the detuning due to the displacement of
the mechanical oscillator can again safely be ignored. For
the first cavity mode, we directly recover Eq. (3). For the
second cavity mode, we first need to determine the input field
operator.

In the case of a finite coupling efficiency to the cavity mode,
the input operator for the first cavity mode reads

âin
1 (t) =

√
η1â′ in1 (t) +

√
1 − η1ν̂1(t), (B8)

where â′ in1 denotes the input mode driven by the local oscilla-
tor and ν̂1 denotes an additional source of vacuum noise. Note
that αin

1 =
√
η1α

′in
1 , i.e., the cavity mode is driven by a fraction
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η1 of the physical input power. The output mode of the first
cavity mode that is used for feedback is given by

â′ out
1 (t) = â′ in1 (t) +

√
η1κ ĉ1(t). (B9)

This mode is then combined with an auxiliary local oscillator
â′aux at a beamsplitter with splitting ratio ηaux, before being
delayed by the time τ. Including further losses arising from
the delay fiber, additional optics as well as from coupling to
the second cavity mode, the input mode for the second cavity
mode reads

âin
2 (t) =

√
1 − η2ν̂2(t)

+
√
η2

[√
ηaux eiϕâ′out

1 (t − τ) +
√

1 − ηaux â′aux(t − τ)
]

=
√

1 − η2ν̂2(t) +
√
η1η2ηauxκ eiϕĉ1(t − τ)

+
√
η2ηaux eiϕâ′in1 (t − τ) +

√
η2(1 − ηaux) â′aux(t − τ).

(B10)

Here the phase ϕ = φ1 − φ2 arises because of the different
phases that enter the definitions of ĉ1 and ĉ2, see Eq. (B2). We
may now introduce the mode

âaux(t) =

√
η2(1 − ηaux)

1 − η
â′aux(t − τ) +

√
1 − η2

1 − η
ν̂2(t)

+

√
(1 − η1)η2ηaux

1 − η
eiϕ

[ √
1 − η1â′in1 (t − τ) −

√
η1ν̂1(t − τ)

]
,

(B11)
where we introduced the total efficiency

η = η1η2ηaux. (B12)

We note that in the ideal limit where η1 = η2 = 0, we have
âaux(t) = â′aux(t − τ), i.e., we shifted the time-argument. With
the help of Eq. (B11), we find

âin
2 (t) =

√
η eiϕ

[√
κĉ1(t − τ) + âin

1 (t − τ)
]

+
√

1 − η âaux(t),
(B13)

recovering Eq. (6). Importantly, the mode âaux is orthogonal
to the mode âin

1 for all values of τ, such that we preserve the
commutation relations from the ideal scenario. However, the
average of the auxiliary mode reads

αaux = (1 − η1)
√
η2ηaux

1 − η
α′in1 +

√
η2(1 − ηaux)

1 − η
α′aux. (B14)

For η1 , 1, this average is non-zero even in the absence of an
auxiliary local oscillator.

With these input modes, we recover the averages given in
Eqs. (7). The Langevin equations in the main text thus fully
capture additional loss channels. However, the amplitudes of
the input modes have to be re-scaled as αin

1 =
√
η α′in1 and

according to Eq. (B14) in order to take into account all the
loss channels that are present.

2. Eliminating the cavity

The Langevin equations in Eqs. (1), (3), and (6) can conve-
niently be written as a matrix equation in frequency space

− iωr̂(ω) = A(ω)r̂(ω) + B(ω)r̂in(ω), (B15)
where we introduced the vectors

r̂(ω) =



X̂m(ω)
P̂m(ω)
x̂1(ω)
p̂1(ω)
x̂2(ω)
p̂2(ω)


, r̂in(ω) =


ξ̂th(ω)
x̂in

1 (ω)
p̂in

1 (ω)
x̂aux(ω)
p̂aux(ω)

 . (B16)

Here, operators in frequency space are given by

Ô(ω) =
1
√

2π

∫
Ô(t) eiωt dt. (B17)

The matrices in Eq. (B15) read

A(ω) =



0 Ωm 0 0 0 0
−Ωm −γm −2g1 0 −2g2 0

0 0 −κ/2 −∆ 0 0
−2g1 0 ∆ −κ/2 0 0

0 0 −
√
ηκ cos(ϕ) eiωτ √

ηκ sin(ϕ) eiωτ −κ/2 −∆

−2g2 0 −
√
ηκ sin(ϕ) eiωτ −

√
ηκ cos(ϕ) eiωτ ∆ −κ/2


, (B18)

and

B(ω) =



0 0 0 0 0
−

√
2γm 0 0 0 0
0 −

√
κ 0 0 0

0 0 −
√
κ 0 0

0 −
√
ηκ cos(ϕ) eiωτ √

ηκ sin(ϕ) eiωτ −
√

(1 − η)κ 0
0 −

√
ηκ sin(ϕ) eiωτ −

√
ηκ cos(ϕ) eiωτ 0 −

√
(1 − η)κ


. (B19)

From Eq. (B15), we find that any power spectral density can be written using

〈r̂(ω)r̂T (ω′)〉 = C(ω)〈r̂in(ω)r̂T
in(ω′)〉CT (ω′), (B20)
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where C(ω) = [A(ω) + iω]−1B(ω) and the input spectral density matrix reads

〈r̂in(ω)r̂T
in(ω′)〉 = δ(ω + ω′)


S th(ω) 0 0 0 0

0 1/2 i/2 0 0
0 −i/2 1/2 0 0
0 0 0 1/2 i/2
0 0 0 −i/2 1/2

 , (B21)

with S th(ω) given in Eq. (2).
Since we are dealing with a linear set of equations, the cavity modes may be eliminated from Eq. (B15). A tedious but

straightforward calculation results in

− iωP̂m(ω) = −[Ωm + 2δΩm(ω)]X̂m(ω) − [Γm(ω) + γm]P̂m(ω) +
√

2γmξ̂th(ω) +
√

2Γmξ̂fb(ω), (B22)

where we introduced the frequency-dependent frequency shift

δΩm(ω) = Re

 2∆(g2
1 + g2

2)

∆2 + (κ/2 − iω)2 − 2 eiωτg1g2
√
ηκ

2∆ (κ/2 − iω) cos(ϕ) −
[
∆2 − (κ/2 − iω)2

]
sin(ϕ)[

∆2 + (κ/2 − iω)2
]2

 , (B23)

and the optomechanical damping rate

Γm(ω) =
Ωm

ω
Im

− 4∆(g2
1 + g2

2)

∆2 + (κ/2 − iω)2 + 4 eiωτg1g2
√
ηκ

2∆ (κ/2 − iω) cos(ϕ) −
[
∆2 − (κ/2 − iω)2

]
sin(ϕ)[

∆2 + (κ/2 − iω)2
]2

 . (B24)

In Eq. (B22), we further identified Γm ≡ Γm(Ωm) and the feedback noise ξ̂fb is described by the spectral density

S fb(ω) =
κ

Γm

 g2
1 + g2

2

(κ/2)2 + (∆ + ω)2 + 2g1g2
√
η

[(∆ + ω)2 − (κ/2)2] cos(ϕ + ωτ) + κ(∆ + ω) sin(ϕ + ωτ)
[(κ/2)2 + (∆ + ω)2]2

 . (B25)

We stress that Eqs. (B22-B25) involve no further approximations after the linearization of the optomechanical coupling.

For a high quality oscillator, we may replace δΩm(ω) with
δΩm ≡ δΩm(Ωm) and Γm(ω) with Γm in Eq. (B22). This results
in a second-order differential equation describing a damped
harmonic oscillator

∂2
t X̂m(t) = − (Ωm + δΩm)2X̂m(t) − (Γm + γm) ∂tX̂m(t)

+ Ωm
√

2γm ξ̂th(t) + Ωm

√
2Γm ξ̂fb(t).

(B26)

From this equation, we may derive the spectral density

S XX(ω) =
(γm/2) S th(Ωm) + (Γm/2) S fb(Ωm)

(Ωm + δΩm − ω)2 + [(γm + Γm)/2]2

+
(γm/2) S th(−Ωm) + (Γm/2) S fb(−Ωm)
(Ωm + δΩm + ω)2 + [(γm + Γm)/2]2 ,

(B27)

where we again invoked the high quality factor of the oscilla-
tor.

The number of phonons can be obtained from

2n̄m + 1 =

∫ ∞

−∞

[S XX(ω) + S PP(ω)]
dω
2π

=

∫ ∞

−∞

S XX(ω)[1 + (ω/Ωm)2]
dω
2π

' 2
∫ ∞

−∞

S XX(ω)
dω
2π

,

(B28)

which yields Eq. (11) with S̄ fb(Ωm) = S fb(Ωm) + S fb(−Ωm).

3. The unresolved sideband limit

Here we provide simplified expressions for the unresolved
sideband limit, Ωm � κ. In contrast to the expressions given
in the main text, we consider a finite detuning ∆. We first
consider dynamical backaction cooling without coherent feed-
back by setting η = 0. In this case, the frequency shift and the
optomechanical damping rate reduce to

δΩdyn =
2∆(g2

1 + g2
2)

∆2 + (κ/2)2 , (B29)

and

Γdyn = −4
∆κΩm(g2

1 + g2
2)[

∆2 + (κ/2)2
]2 . (B30)

For Γm � γm, the phonon occupation number in Eq. (11) re-
duces to

n̄dyn =
∆2 + (κ/2)2

4|∆|Ωm
−

1
2
, (B31)

which is minimized at ∆ = −κ/2 where it reads

n̄dyn =
κ

4Ωm
� 1. (B32)
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Here, we dropped the term 1/2 as it becomes negligible.
The last equation is the well-known cooling limit for cav-
ity dynamical backaction cooling in the unresolved sideband

regime [20].
In the presence of coherent feedback (η , 0), we find the

following expressions to lowest-order in Ωm/κ

δΩm =
2∆(g2

1 + g2
2)

∆2 + (κ/2)2 − 2 cos(Ωmτ)g1g2
√
ηκ

∆κ cos(ϕ) −
[
∆2 − (κ/2)2

]
sin(ϕ)[

∆2 + (κ/2)2
]2 , (B33)

and

Γm = 4 sin(Ωmτ)g1g2
√
ηκ

∆κ cos(ϕ) −
[
∆2 − (κ/2)2

]
sin(ϕ)[

∆2 + (κ/2)2
]2 . (B34)

We note that the coherent feedback allows for a Γm that is independent of Ωm/κ to lowest-order in this parameter. This stands in
contrast to cavity dynamical backaction cooling, where Γdyn ∝ Ωm/κ to lowest-order [cf. Eq. (B30)]. In the limit Γm � γm, the
number of phonons is then given by

n̄m =
κ

Γm

(g2
1 + g2

2)
(κ/2)2 + ∆2 +

1
2

cos(Ωmτ)
sin(Ωmτ)

κ∆ sin(ϕ) + [∆2 − (κ/2)2] cos(ϕ)
κ∆ cos(ϕ) − [∆2 − (κ/2)2] sin(ϕ)

−
1
2
. (B35)

For ∆ = 0, Eqs. (B33), (B34), and (B35) reduce to Eqs. (9) and (13).

Appendix C: Equivalence with measurement-based feedback
cooling

In this section, we extend the comparison between coher-
ent feedback and measurement-based feedback of Sec. VI by

considering a generic spectral filter function Ξmf(ω), which
implements an arbitrary feedback response taking place after
the measurement. As for the treatment of coherent feedback,
we can obtain a reduced description for the mechanical vari-
ables by eliminating the cavity mode

− iωP̂m(ω) = −[Ωm + 2δΩmf(ω)]X̂m(ω) − [Γmf(ω) + γm]P̂m(ω) +
√

2γm ξ̂th(ω) +
√

2Γmf ξ̂mf(ω), (C1)

where we introduced the frequency shift and optomechanical damping rate, respectively given by

δΩmf(ω) =
1
2

Re
{

2g1Ξmf(ω)
κ/2 − iω

}
, (C2)

Γmf(ω) = −
Ωm

ω
Im

{
2g1Ξmf(ω)
κ/2 − iω

}
, (C3)

with Γmf = Γmf(Ωm), and collected the noise terms in the expression

ξ̂mf(ω) =
1

√
2Γmf

 2g1
√
κ

κ/2 − iω
x̂in(ω) −

Ξmf(ω)
√
κ

(
κ/2 + iω
κ/2 − iω

)
p̂in(ω) −

Ξmf(ω)
√
κ

√
1 − ηdet

ηdet
p̂0(ω)

 . (C4)

The first term in Eq. (C4) describes shot noise due to radia-
tion pressure interaction with the first cavity, while the second
and third terms describe the noise associated with the feed-
back process. The spectral density characterizing the noise
ξ̂mf reads

S mf(ω) =
1

Γmf

 κg2
1

ω2 + (κ/2)2 +
|Ξmf(ω)|2

4κηdet
− g1Im

{
Ξmf(ω)
κ/2 − iω

}
=

1
Γmf

 κg2
1

ω2 + (κ/2)2 +
|Ξmf(ω)|2

4κηdet
+

1
2
ω

Ωm
Γmf(ω)

 .
(C5)

We can now compare the quantities δΩmf(ω), Γmf(ω)
and S mf(ω) with the corresponding expressions derived
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for the case of coherent feedback, respectively given by
Eqs. (B23), (B24) and (B25). We further focus on the case
∆ = 0 and ϕ = π/2, which is relevant for cooling.

By requiring the measurement-based feedback to induce
the same effective damping and broadening as coherent feed-
back at all frequencies, i.e., by enforcing δΩmf(ω) = δΩm(ω)
and Γmf(ω) = Γm(ω), we get the following filter function

Ξ̃mf(ω) = −4g2
√
η

eiωτ

1 − 2iω/κ
. (C6)

In the above expression the exponential term describes the
effect of delay, i.e., in order to reproduce the effect of coherent

feedback a delay has to be incorporated in the measurement-
based feedback loop. If we compare this expression to the
case of cold damping in Eq. (14), we notice that κ/2 plays
the role of the feedback bandwidth, 4g2

√
η the strength of the

feedback and that there is no frequency dependence in the nu-
merator for τ = 0.

We then plug this filter in Eq. (C5) and compare the cor-
responding noise spectral density with that of coherent feed-
back Eq. (B25). It is straightforward to show that when-
ever η = ηdet, the ensuing noise spectral densities S fb(ω) and
S mf(ω) match for all frequency values and for arbitrary values
of delay. This shows the equivalence of measurement-based
feedback cooling and coherent feedback cooling in more gen-
eral terms than the particular case of cold damping.
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