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In 1935, Einstein, Podolsky and Rosen (EPR) conceived a Gedankenexperiment which became
a cornerstone of quantum technology and still challenges our understanding of reality and locality
today. While the experiment has been realized with small quantum systems, a demonstration of the
EPR paradox with spatially separated, massive many-particle systems has so far remained elusive.
We observe the EPR paradox in an experiment with two spatially separated Bose-Einstein conden-
sates containing about 700 Rubidium atoms each. EPR entanglement in conjunction with individual
manipulation of the two condensates on the quantum level, as demonstrated here, constitutes an
important resource for quantum metrology and information processing with many-particle systems.
Our results show that the conflict between quantum mechanics and local realism does not disappear
as the system size is increased to over a thousand massive particles.

I. INTRODUCTION

According to quantum mechanics, complementary
properties of a physical system such as its position and
momentum or two orthogonal components of its spin can-
not be simultaneously known with arbitrary precision.
This is expressed by the Heisenberg uncertainty princi-
ple [1, 2], which imposes a lower bound on the product
of the two uncertainties, so that better knowledge of one
property necessitates greater uncertainty of the other and
vice versa. This is in stark contrast to classical physics,
where all properties of a system can be simultaneously
known, in principle with arbitrary precision.

In their seminal work [3], EPR considered this aspect
for a bipartite quantum system where the parts A and
B are entangled through interactions. After spatially
splitting the system, measurements on the two parts
yield strongly correlated outcomes, which allow one to
use measurements on A to predict properties of B (and
vice versa). The uncertainty product of such predictions
for two complementary properties of B falls below the
Heisenberg uncertainty bound of B [4]. The fact that the
distant system A can be used for better predictions than
what is locally possible at B revealed a conflict between
quantum mechanics and the classical principle of local re-
alism, which became known as the “EPR paradox” [5]. In
a local realist world, each system possesses its properties
independent of observation and independent of actions
performed on spatially separated systems. In a quantum
world, on the other hand, the measurements on A change
the quantum state of the distant system B, a scenario
Schrödinger called “steering” [5]. It was later found that
not all entangled states are able to show such strong cor-
relations [6, 7]. Only a strict subset, the so-called EPR
entangled states, are able to demonstrate an EPR para-
dox [8]. Furthermore, EPR entanglement was identified
as a resource for quantum technologies such as quantum
metrology, quantum teleportation, entanglement swap-
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ping, or randomness certification [9–11].
The EPR paradox has been observed with small sys-

tems of few photons or atoms, in its original form [8, 12–
15] or in the form of Bell tests[16–22]. How far quantum
behavior extends into the macroscopic world is an open
question [23], which can be addressed by performing EPR
experiments with increasingly macroscopic, massive sys-
tems [8, 24, 25]. Generating and verifying sufficiently
strong entanglement between massive many-particle sys-
tems is a challenging task, requiring excellent isolation
from the environment, high fidelity coherent manipu-
lations and low noise detection. Previous experiments
demonstrated entanglement (non-separability) between
spatially separated atomic ensembles [26, 27], mechani-
cal oscillators [28, 29], and hybrid systems [30, 31]. How-
ever, the observed correlations were not strong enough
to demonstrate an EPR paradox.

Atomic Bose-Einstein condensates (BECs) are many-
particle systems that are particularly well suited to in-
vestigate non-classical phenomena at the quantum-to-
classical boundary [32]. Being composed of neutral atoms
in ultra-high vacuum, they couple very weakly to their
environment and thus show excellent coherence. Further-
more, they are reliably initialized in pure states and can
be manipulated and detected with high fidelity by means
of radio-frequency, microwave and optical fields. Multi-
particle entanglement in BECs has been demonstrated in
the form of squeezed spin states [32]. These states are
EPR entangled, which has been verified by measuring
spin correlations within a single cloud of atoms [33–36],
making them a promising starting point for an EPR ex-
periment.

In this work we perform an EPR experiment with two
BECs, in close analogy with the original Gedankenexper-
iment, see Fig. 1: We first prepare a BEC in a squeezed
spin state, in which all atoms are entangled with each
other. We then physically split it into two distinct con-
densates, which can be individually manipulated and
detected on the quantum level. The two condensates
inherit the entanglement from the initial state, result-
ing in correlated measurement outcomes and allowing us
to demonstrate the EPR paradox between two massive
many-particle systems.

ar
X

iv
:2

21
1.

05
10

1v
1 

 [
qu

an
t-

ph
] 

 9
 N

ov
 2

02
2

mailto:tilman.zibold@unibas.ch


2

interaction

entangled state

splitting

FIG. 1. Schematic of an EPR experiment with two parti-
cles (left) and with two many-particle systems (right), where
the spin degree of freedom is considered. In both cases, the
particles are entangled by interactions and subsequently split
into two different locations. In the case of the many-particle
system, the interactions produce multipartite entanglement,
which is inherited by the split systems in form of bipartite
entanglement between their collective spins.

II. EXPERIMENTAL SEQUENCE

Our experiment starts by preparing a two-component
87Rb BEC of approximately 1400 atoms in a static mag-
netic trap on an atom chip [37]. The two components
refer to the internal degree of freedom: The atoms oc-
cupy the hyperfine levels |1A〉 ≡ |F = 1,mF = −1〉 and
|2A〉 ≡ |F = 2,mF = 1〉 of the electronic ground state,
see Fig. 2(b), forming a collection of pseudo-spin 1/2
particles. Due to the nearly identical collisional inter-
action strength and magnetic moments of these states,
the atoms occupy a single spatial mode. Hence, we can
describe the BEC as a collective spin Ŝ, the sum of the in-
dividual atomic spins [32]. For instance, the z component
of the collective spin is given by half the population dif-
ference between the two states, Ŝz = (N̂1 − N̂2)/2, which
we can directly measure. By coherently driving the two-
photon transition between |1A〉 and |2A〉 with radio fre-
quency and microwave fields (orange in Fig. 2(b)), we
are able to perform arbitrary spin rotations with high
fidelity.

We create entanglement between the atomic spins in
the initial BEC through interactions, by inducing one-
axis twisting dynamics [38] with a state-dependent po-
tential on the atom chip [34, 39–41]. After an interaction
time of ≈ 40 ms and a subsequent spin rotation, the BEC
is prepared in a squeezed spin state polarized along Ŝx
with squeezed spin component Ŝz (see Fig. 2(a)), whose
variance is reduced by −7 dB compared to a coherent
spin state [32].

We then coherently split the spin-squeezed BEC into

two spatially separated, individually addressable conden-
sates (see Fig. 2(a)). While coherent splitting has been
demonstrated in early experiments with BECs [42], the
particular challenge we face here is to spatially split
a two-component condensate, while maintaining nearly
perfect overlap and coherence between the components.
This is necessary so that high-fidelity coherent spin rota-
tions can be carried out after the splitting on each con-
densate separately.

To split the BEC, we first release it from the
trap and accelerate it with a magnetic field gradi-
ent to reduce the overall expansion time. We then
coherently transfer a fraction of the atoms to states
with zero magnetic moment by simultaneously driv-
ing the transitions |1A〉 → |1B〉 ≡ |F = 2,mF = 0〉 and
|2A〉 → |2B〉 ≡ |F = 1,mF = 0〉 with a two-tone mi-
crowave pulse (magenta in Fig. 2). We choose to transfer
half of the populations (pulse duration tπ/2 ≈ 70 µs for
both transitions), which allows us to realize a nearly ideal
50:50 beam splitter for the atoms. A subsequent pulse
of the magnetic field gradient selectively accelerates the
atoms in states |1A〉 and |2A〉, spatially separating the
system into two distinct two-component BECs, which we
call system A (composed of states |1A〉 and |2A〉) and
system B (composed of states |1B〉 and |2B〉). Since the
overlap of the states in each system is preserved by the
splitting mechanism, we can describe them as two col-
lective spins ŜA and ŜB . Both transition frequencies are
insensitive to magnetic field fluctuations, ensuring long
coherence times [43].

Once the two condensates are split, we can coherently
drive the transitions |1A〉 ↔ |2A〉 and |1B〉 ↔ |2B〉 with
distinct radio-frequency and microwave signals, which al-
lows us to perform arbitrary spin rotations on ŜA and ŜB

independently – as demonstrated by the individual Rabi
oscillations shown in Fig. 2(c). Subsequently, projective
measurements of both collective spins are carried out by
resonant absorption imaging: The atoms in states with
F = 2 (|2A〉 and |1B〉) are detected on a first image
by a resonant laser pulse. On a second image we detect
atoms with F = 1 (|1A〉 and |2B〉), after they have been
optically pumped to F = 2. Due to the large separa-
tion between the two BECs (≈ 80 µm at the time of the
first image and ≈ 100 µm at the time of the second),
we can count the atoms present in all four states sepa-
rately and thus obtain a measurement of the spin compo-
nents ŜAz = (N̂A

1 − N̂A
2 )/2 and ŜBz = (N̂B

1 − N̂B
2 )/2 (see

Fig. 2(a)). Other spin components can be measured by
coherently rotating the collective spins before detection.

III. EPR CRITERIA

According to quantum mechanics, ŜB sat-
isfies the Heisenberg uncertainty relation
EBHei ≡ 4 Var(ŜBz )Var(ŜBy )/|〈ŜBx 〉|2 ≥ 1, which places

a lower bound on the uncertainty product of ŜBz and ŜBy .
It follows from the spin commutation relations and ap-
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FIG. 2. Experimental sequence for spatial splitting and independent coherent control of the two condensates. (a) Space-time
schematic. Orange and green color refer to condensate A and B, respectively, whereas magenta represents the splitting pulse.
Bottom left: main control parameters for splitting and state manipulation. The timing is aligned with the sketch above, but
not to scale. On the right, typical absorption images are shown, from which the atom numbers in all four states are determined.
This corresponds to a measurement of the selected components of the collective spins ŜA and ŜB . (b) Hyperfine levels of the
87Rb ground state with transitions for coherent splitting and manipulation of ŜA and ŜB . (c) Individual Rabi oscillations of the

two collective spins after spatial splitting. Shown are the normalized spin components nA,B = (NA,B
1 −NA,B

2 )/(NA,B
1 +NA,B

2 ).
The discontinuity in the horizontal axis denotes a change in time scale.

plies to repeated measurements on identically prepared
systems. A similar relation holds for ŜA. However, if the
two spins are entangled, their measurement outcomes
are correlated, allowing us to use measurement outcomes
obtained on ŜA to predict those obtained on ŜB . The
accuracy of this prediction is quantified by the inferred

variances Varinf

(
ŜBz,y

)
≡ Var

(
ŜBz,y − ŜB,infz,y

)
, which

involve linear estimates ŜB,infz,y ≡ −gz,yŜAz,y + cz,y of ŜBz,y
using ŜAz,y. Here, gz,y and cz,y are real numbers that can
be chosen to optimize the prediction, i.e. to ensure that
〈ŜB,infz,y 〉 = 〈ŜBz,y〉 and to minimize the inferred variances.

The EPR paradox is demonstrated if the product of
the inferred variances of two non-commuting spin compo-
nents is lower than the associated Heisenberg uncertainty
bound [8], that is if the inequality

EA→BEPR ≡
4 Varinf

(
ŜBz

)
Varinf

(
ŜBy

)
∣∣∣〈ŜBx 〉∣∣∣2 ≥ 1 (1)

is violated. Observing a violation of Eq. (1) challenges
our classical notions of locality and reality: it implies
that an experimenter with access to a spatially separated
system ŜA can make better predictions about ŜB than
what is possible if one has full local control over ŜB alone.

A related but weaker criterion exists for entanglement
(non-separability) [44]: Two spins ŜA and ŜB are in an
entangled state if the inequality

EEnt ≡
4 Var

(
gzŜ

A
z + ŜBz

)
Var

(
gyŜ

A
y + ŜBy

)
(
|gzgy|

∣∣∣〈ŜAx 〉∣∣∣+
∣∣∣〈ŜBx 〉∣∣∣)2 ≥ 1 (2)

is violated. EA→BEPR is always larger or equal than EEnt,
reflecting the fact that an observation of the EPR para-
dox requires stronger correlations than a demonstration
of entanglement [7].

IV. OBSERVATION OF THE EPR PARADOX

To evaluate these criteria, we perform measurements
of either the x, y, or z spin components simultaneously
on both systems, repeating the experiment many times
with identical preparation. The measurement basis is
selected by rotating the two collective spins individu-
ally when they are completely separated, at a distance
of more than 14 µm, see Fig. 2(a). The outcome of every

measurement of ŜA,By or ŜA,Bz (approx. 1600 repetitions
each) is represented by a point in the correlation plots of
Fig. 3. Strong correlations are visible between A and B in
both spin components. The inference corresponds to an
affine transformation (e.g. SBz 7→ SBz +gzS

A
z − cz), which

reduces the variance, as can be seen from the marginal
histograms and 2σ intervals of the raw data (blue) and
the transformed quantities (red). Splitting a squeezed
spin state with a beam-splitter-like process retains part
of the reduced (increased) fluctuations in the squeezed
(anti-squeezed) component. This can be seen from the
comparison of the variance ellipse of a separable coher-
ent spin state with the same atom number (yellow lines
in Fig. 3) to the covariance ellipse of the data (blue).

The measurements of 〈ŜA,Bx 〉 quantify the lengths of

the collective spins ŜA,B and thus determine the Heisen-
berg uncertainty bounds. Their values normalized to the
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FIG. 3. Spin correlations between the two BECs and illustration of the inferring mechanism. The grey dots are individual
data points of simultaneous measurements of spin components SA

z and SB
z (left plot) and SA

y and SB
y (right plot) of the two

systems. Data points for SB
y are corrected for the phase shift due to the measured trigger jitter of the microwave generator

(Appendix D). The blue histograms are their marginal distributions, 2σ intervals are indicated by blue dotted lines. The
correlations of measurement results (2σ covariance ellipses in blue) allow one to infer measurement results of one system from
the other. This reduces the variance of the prediction as shown by the histograms and the reduced 2σ intervals in red. For
comparison, the 2σ variance ellipses of ideal non-entangled states with the same number of atoms are shown in yellow.

atom numbers correspond to the interferometric contrast,
which is a measure of the overall coherence of the process.
We obtain 96% contrast for both ŜA and ŜB , compara-
ble to the contrast we measure without splitting the con-
densate, indicating that the reduction is mostly due to
spin squeezing [45] and imperfections in the initial state
preparation, not due to the splitting process.

Combining all measurements we obtain

EA→BEPR = 0.81± 0.03 ,

EB→AEPR = 0.77± 0.03 ,

EEnt = 0.35± 0.02 ,

EBHei = 10.2± 0.4 ,

EAHei = 9.2± 0.5 ,

demonstrating both entanglement and the EPR paradox
between the condensates A and B. The Heisenberg un-
certainty products EAHei and EBHei are larger than unity due
to technical noise. The EPR criteria are much smaller
due to the variance reduction by inferring. We note that
all criteria are determined without subtraction of any
technical noise and that we observe the paradox both
ways, inferring from A→ B and from B → A.

V. INDIVIDUAL CONTROL OF THE BECS

Although we rotate ŜA and ŜB individually, the re-
sults presented so far were obtained by measuring the
two spins in the same bases. Since many applications
of EPR entanglement require performing different mea-
surements on the two systems, we demonstrate that our
experiment is able to maintain the entanglement between
ŜA and ŜB in this process. Figure 4 shows the results

0 π/2 π

100

101

θ (rad)

θ
B A

FIG. 4. Individual manipulation of the two entangled BECs
on the quantum level. ŜB is rotated by an angle θ around the
x axis with respect to ŜA, as sketched in the inset on the top
left. The red filled circles represent EEnt, red empty circles
EB→A
EPR , and blue squares EAHei. The EPR paradox (entangle-

ment) is observed if EB→A
EPR (EEnt) falls below the dashed line

at unity. The insets at the bottom show the spin correlations
similar to Fig. 3, with Ŝz on top and Ŝy at the bottom, for
θ = 0, π/2 and π.

of measurements in which ŜB is rotated by an angle θ
around the x axis with respect to ŜA, as sketched in the
inset on the top left. The case θ = 0 (leftmost points in
Fig. 4) corresponds to the same configuration as above,
i.e. simultaneous measurements of the same spin com-
ponent. As θ increases, the correlations decrease and
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almost completely vanish for θ = π/2, where orthogonal
spin components are measured on the two condensates.
This can be directly seen in the correlation plots at the
bottom of Fig. 4. For θ = π the correlations reappear,
but with opposite sign, since the spin components are
now anti-aligned. The parameters EEnt and EB→AEPR fall
again below unity, demonstrating that the manipulation
preserves the quantum correlations.

In the setting θ = π/2 our experiment realizes a sit-
uation discussed by Schrödinger [46], where the values
of two complementary properties of system A are appar-
ently obtained in a single experimental run: one (ŜAz )

by direct measurement on A and the other (ŜAy ) by ex-
ploiting the strong correlations to infer its value from the
simultaneous measurement on B. Under the local realist
assumptions that measurements reveal pre-existing prop-
erties of a system and that simultaneous measurements
on spatially separated systems do not disturb each other,
the restrictions imposed by the Heisenberg uncertainty
relation could thus be overcome [46]. Today, however,
we know that local realism is inconsistent with the re-
sults of increasingly rigorous experimental tests of Bell
inequalities [16–22]. In the spirit of Peres’ statement
that “unperformed experiments have no results” [47], we

should thus refrain from inferring a value for ŜAy if it is
not actually measured on system A.

VI. CONCLUSIONS

Our experiment demonstrates the EPR paradox, a cor-
nerstone of quantum physics, between two systems with
a large number of massive particles. This shows that
the conflict between quantum mechanics and the classi-
cal principles of locality and realism does not disappear
in systems of increasing size and complexity, at least up
to the level demonstrated here. The key to this result
is the high degree of coherence of our splitting technique
together with the ability to perform high-fidelity coher-
ent rotations of the individual systems after splitting.
The ability to measure the two collective spins in dif-
ferent bases is also an essential prerequisite for a future
Bell test, which in addition requires non-Gaussian mea-
surements or state preparation, e.g. single-atom resolving
detection [48].

EPR entanglement is a valuable resource for both
quantum metrology and quantum information process-
ing. The noise reduction gained from the inference in
Eq. (1), quantified by the difference between the Heisen-
berg products and the EPR criteria, translates to a
metrological enhancement that can be exploited in quan-
tum sensing [11, 49]. One can, e.g., use one system as a
small sensor to probe fields and forces with high spatial
resolution and the other one as a reference to reduce the
quantum noise of the first system. Furthermore, EPR en-
tanglement is the resource that guarantees the efficacy of
certain quantum information protocols such as quantum
teleportation, entanglement swapping, one-side device-

independent quantum key distribution, or randomness
certification [8–10]. For this resource to be useful, how-
ever, the systems need to be spatially separated and in-
dividually addressable, which we realize here for the first
time in massive many-particle systems. Therefore, in ad-
dition to its foundational significance, our work demon-
strates the necessary ingredients to exploit EPR entan-
glement in many-particle systems as a resource.
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Appendix A: Addressability and strength of the
transitions

In our experiment, multiple transitions in the
hyperfine-split ground state of 87Rb are coupled with
radio-frequency and microwave driving fields in order
to coherently split and manipulate the two-component
BEC. To preserve the entanglement in this process, it
is essential to prevent loss from the system by spurious
driving of undesired transitions. This requires a careful
choice of parameters since several of the transitions in-
volved are nearly degenerate and differ only by quadratic
Zeeman shifts, which are of the same order of magnitude
as the Rabi frequencies (1-10 kHz).

In the experimental sequence up until the splitting, the
populated states and applied driving frequencies are such
that they do not lead to any undesired couplings. How-
ever, the driving fields used for the splitting pulse and
for the subsequent rotations of ŜA are close to resonance
with other relevant transitions, see Fig. 5. It is possible
in principle to suppress the undesired transitions by po-
larization selection rules, using only driving fields with
the correct circular polarization. However, since the con-
densate is close to the metallic atom chip surface, this is
challenging to attain in our experiment and we observe
that the driving fields contain all polarization compo-
nents. We therefore have to ensure the selectivity by
careful choice of driving field frequencies and strength.

In the case of the splitting pulse (Fig. 5(a)), the de-
sired transition |1A〉 ↔ |1B〉 is close to resonance with
|2B〉 ↔ |F = 2,mF = −1〉 (9 kHz detuning) and the de-
sired |2A〉 ↔ |2B〉 with |1B〉 ↔ |F = 1,mF = 1〉 (9 kHz
detuning). These additional close-to-resonant transitions
can cause atoms to be transferred from system B further
to states where they are lost during the application of
the magnetic gradient pulse due to the different magnetic
moments. This loss mechanism is mitigated by the fact
that states |1B〉 and |2B〉 are initially unpopulated and
become populated only during the splitting π/2 pulse.
In addition to this, since we only need to transfer half
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of the population with the splitting pulse, we can choose
a detuning to make the undesired transitions further off
resonant. We carefully choose a combination of detun-
ing and small enough Rabi frequency for this pulse for
which we observe no losses to the undesired states, cor-
responding to a detuning of 2.2 kHz and a pulse duration

tsplitπ/2 ≈ 70 µs.

To rotate ŜA after the splitting, the states |1A〉
and |2A〉 are coupled by a two-photon transition via
the intermediate state |F = 2,mF = 0〉 (see Fig. 5(b)).
The same driving fields are near resonance with the
transition |1B〉 ↔ |2B〉, driven as a two-photon tran-
sition with intermediate states |F = 2,mF = −1〉 and
|F = 1,mF = −1〉 (10 kHz detuning). Since all tran-
sitions involved are two-photon transitions with corre-
spondingly weak effective two-photon Rabi frequencies,
this two-photon detuning can be exploited to ensure
good selectivity of the pulse. The desired transition
|1A〉 ↔ |2A〉 is driven on two-photon resonance with π/2
time of tAπ/2 ≈ 960 µs, ensuring that the two-photon de-

tuning of the undesired transitions is sufficient to render
spurious rotations of ŜB negligible.

Appendix B: Imaging

We detect the atoms by resonant absorption imaging
[50], which is based on comparing the shadow cast by
the atoms in a resonant laser beam (absorption image)
with a reference image taken without atoms. Since the
criteria Eq. (1) and Eq. (2) depend on the atom number,
the accurate calibration of the imaging system is crucial.
This is ensured with three types of calibration measure-
ments: First of all, the conversion from absorbed light
to atom number is made independent of the laser inten-
sity following the method described in Ref.[51]. Second,
the detectivity of the four states is calibrated by ensur-
ing that the detected total atom number is independent
of the relative population in the four states when driv-
ing Rabi oscillations between them. Last, the total atom
number is calibrated by observing the projection noise of
a coherent spin state [52] prepared in an equal superpo-
sition of |1A〉 and |2A〉.

Since the calibration relies on projection noise mea-
surements on equal superpositions of the involved states,
it is most accurate for the measurements of Ŝy and Ŝz
that enter the inferred variances in the EPR and entan-
glement criteria. In the measurements of Ŝx, nearly all
atoms occupy one state, and we observe a slight decrease
on the order of 3% in the detected total atom number.
Since we can exclude atom loss, we attribute this effect to
an effective decrease in detectivity due to the increased
density of the cloud. To correct for this effect, we deter-
mine 〈ŜA,Bx 〉 = 〈nA,Bx 〉〈NA,B

y,z 〉/2, i.e. we measure the rel-

ative atom number nA,Bx = (NA,B
1,x −NA,B

2,x )/(NA,B
x ) cor-

responding to the interferometric contrast, and multiply

by 〈N (A,B)
y,z 〉, the total atom number detected in the cor-

responding measurements along y and z.
In order to minimize detection noise, we choose the

region of interest for counting atoms to be as small as
possible, while still including nearly all of the atomic sig-
nal. We do this by selecting elliptical regions that include
≈ 97% of the total detected atom number. To avoid any
artificial noise reduction due to the small discarded sig-
nal (see the supplementary materials of Ref. [34] for a
discussion of this effect), we perform the atom number
calibration after the region of interest has been deter-
mined.

Since detection noise is mainly composed of photon
shot noise, we can reduce it by choosing longer imaging
pulses, as long as atomic diffusion during the imaging
pulse doesn’t increase the cloud size on the image too
much. We find the lowest imaging noise for an imaging
pulse duration of 70 µs. During this time, the radia-
tion pressure accelerates the atoms, inducing a relevant
Doppler shift. To maintain the resonance throughout the
process, we chirp the frequency of the imaging pulses.

We use a fringe removal algorithm for optimized ref-
erence images based on linear combination of actual ref-
erence images [53]. Besides minimizing the effect of in-
terference fringes on the reference images, this procedure
further reduces the contribution of photon shot noise of
the reference images.

With these optimizations the resulting photon shot
noise corresponds to about ±3 atoms in every state.

Appendix C: Data analysis

To determine the EPR and entanglement criteria, we
take 4500 measurements overall within 42 hours of mea-
surement time. We subdivide the data into blocks for
which we evaluate the criteria separately. Each block
consists of hundred Ŝz, hundred Ŝy, and twenty Ŝx mea-
surements. The measurements along x are performed ten
times along the positive and negative spin directions, re-
spectively, to reduce bias from a potential difference in
the detectivity. This procedure renders the analysis ro-
bust against the effect of small, slow drifts of the exper-
imental conditions during the many hour long measure-
ment run, while the quantum noise of the atoms, which
occurs in each shot of the experiment, is unchanged. The
values of the EPR and entanglement criteria listed in the
main text are the averages of the values obtained for the
individual blocks. We verified that analyzing the whole
data set in one block does not change the conclusions of
our paper, in this case we obtain EA→BEPR = 0.87 ± 0.04
and EB→AEPR = 0.82± 0.04.

Appendix D: Radio-frequency and microwave signal
generation and local oscillator phase

The microwave and radio-frequency driving fields
are generated with several commercial function gener-
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FIG. 5. Level structure of the 87Rb hyperfine split ground state in the linear Zeeman regime (not to scale). The color
coding is consistent with Fig. 2: Orange indicates system A, green system B, and magenta the splitting transitions. The
desired transitions are indicated by solid lines, the undesired close-to-resonance transitions are represented by dashed lines. (a)
Transitions involved in the splitting of the condensate into systems A and B. (b) Transitions involved in driving spin rotations

of ŜA after splitting.

ators. To allow phase control and simultaneous gen-
eration of the two frequencies needed for the split-
ting of the two-component condensate, we use an IQ -
modulated microwave signal (microwave generator: Ro-
hde & Schwarz SGS100A). The modulation signal is gen-
erated by a two-channel arbitrary waveform generator
(Keysight 33522B). The radio-frequency signal needed
for the two-photon transition of system A is generated
with a separate radio-frequency source (Photonics Tech-
nologies VFG 150).

The sequence of pulses is generated by programming
lists of frequencies, amplitudes, and phases that are ex-
ecuted upon trigger and by gating the respective func-
tion generator signals. The digital signals used for trig-
gering and gating are derived from a common sampling
clock. All function generators are referenced to a GPS-
disciplined 10 MHz crystal oscillator (Stanford Research
Systems FS752), providing long term frequency stability.
However, absolute phase stability is not ensured since not
all devices share a common sampling clock.

In a standard Ramsey experiment, a constant phase
offset of the local oscillator does not matter, since the
initial coupling of the two states and the final readout
of the phase is done with the same local oscillator and
an offset of its phase drops out. This scenario applies in
our case to the spin A, composed of the states 1A and
2A. The two-photon transition between these two states
is driven by the microwave generator, the IQ modulator
and the RF source. A constant phase offset in any of
these devices will not affect the readout of the phase of
spin A and thereby ŜAy .

For spin B the situation is more complicated. The
phase of system B, and thereby ŜBy , is determined by
three processes. Initially, spin B inherits the phase of

spin A, which as above is determined by the phase of
the microwave generator, the IQ modulator and the RF
source. The second process is the actual splitting in spin
space by the two tone microwave signal, which is gener-
ated by the microwave generator and the IQ modulator.
The same devices are also generating the coupling for
the last process, which is the final rotation of spin B. In
contrast to spin A, the RF source only appears in the
first process and therefore a phase offset of this source
with respect to the other devices does not drop out in
the phase sensitive measurement of ŜBy .

Since the RF signal and the IQ modulator signal are
not derived from the same sampling clock, fluctuations in
the relative triggering delay of the devices by δt will lead
to phase changes of ωRFδt in system B, where ωRF ≈
2π × 1.79 MHz. We measure typical timing fluctuations
of δt on the order of 4 ns. The fluctuations are actually
small when compared to the large variance observed in
the measurement of ŜBy , since this is the anti-squeezed
direction. However, they are relevant for the value of the
much smaller inferred variance.

These fluctuations are a technical limitation that can
be resolved in the future with a different setup of gen-
erators for the driving fields. In the present experiment,
we correct them by directly measuring δt. We determine
δt in each shot of the experiment from a measurement of
the phase of the radio-frequency generator with respect
to the starting time of the IQ modulator sequence with
an oscilloscope. This classical information can then be
used for a better estimation of ŜBy = ŜBy,measured + gδtδt
with an optimized gain parameter gδt. In Fig. 3, the data
points of ŜBy are corrected in this way. Furthermore, we
use this correction in the evaluation of the EPR criterion
Eq. (1). We stress that while this correction based on ad-
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ditional classical information can reduce classical noise,
it cannot lead to a violation of the EPR inequality, which
can only be achieved by sufficiently strong entanglement

between the two systems [8]. The correction based on
this classical information is not applied in the evaluation
of the entanglement criterion.
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