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Abstract
We derive the semiclassical evolution equations for a system consisting of helium-3 atoms in the
23Smetastable state interacting with a light field far-detuned from the 23S− 23P transition, in the
presence of metastability exchange collisions with ground state helium atoms and a static magnetic
field. For two configurations, each corresponding to a particular choice of atom–light detuning in
which the contribution of either the metastable level F= 1/2 or F= 3/2 is dominant, we derive a
simple model of three coupled collective spins from which we can analytically extract an effective
coupling constant between the collective nuclear spin and light. In these two configurations, we
compare the predictions of our simplified model with the full model.

1. Introduction

Helium-3 in its ground state has a purely nuclear spin 1/2. Protected by a complete electronic shell and
separated from the first excited state by 20 eV, the nuclear spin of helium is a two-level quantum system that
offers exceptionally long coherence times of hundreds of hours [1]. For this reason, helium-3 nuclear spins
are used in ultra-sensitive magnetometry in fundamental physics experiments [2–4]. A further improvement
in precision, when using helium nuclear spins as a sensor, is in principle possible using quantum
entanglement and spin squeezing, especially in the case of small samples where the relative effect of quantum
fluctuations is greater. In addition to sensing, the possibility of effectively coupling helium-3 nuclear spins
with light, which carries information over long distances and can be measured at the quantum noise level,
offers interesting prospects for example for quantum memories. Although the manipulation of the collective
nuclear spin of a helium gas at the quantum limit has not yet been achieved experimentally, theoretical and
experimental efforts in this direction are ongoing [5–10]. The Faraday interaction between the collective spin
of an ensemble of atoms and the Stokes spin of light provides a light-matter quantum interface that has
already been demonstrated in the laboratory in the case of alkaline atoms [11–13]. In the case of the purely
nuclear spin of rare gases in their ground state, interaction with light requires an intermediate system. For
helium-3, it is a small fraction of atoms brought into a metastable state that offers near-infrared transitions
and interacts with atoms in the ground state via metastability exchange collisions [1]. In this paper we study
in detail the interaction of light with a set of helium-3 atoms, a fraction of which is brought into the
metastable state. At the semiclassical level, we explore the validity of the simplified model used in [9, 10],
taking into account the full atomic structure in the metastable 23S and the excited 23P states. Moreover, we
propose another possible configuration that should allow for a larger effective coupling between the nuclear
spins and the light.
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Figure 1. Left: hyperfine structure of states 23S1 and 23P in 3He. Right: allowed transitions at 1083nm.

Table 1. Frequencies of transitions C1 −C9 shown in figure 1, and calculated with respect to transition C8 = 2π 276726257MHz [14].

Freq. offset (GHz) F J F′ J′

∆1/2π −32.6045 1/2 1 3/2 1
∆2/2π −28.0929 1/2 1 1/2 1
∆3/2π −27.6453 3/2 1 5/2 2
∆4/2π −27.4238 1/2 1 3/2 2
∆5/2π −25.8648 3/2 1 3/2 1
∆6/2π −21.3532 3/2 1 1/2 1
∆7/2π −20.6841 3/2 1 3/2 2
∆8/2π 0 1/2 1 1/2 0
∆9/2π +6.7397 3/2 1 1/2 0

2. Light–matter interaction for metastable helium atoms

While the ground state 11S0 of helium-3 is purely nuclear, the metastable state 23S1 has an electronic
component and is the starting level for transitions at 1083nm to the excited states 23P. Figure 1(Left) shows
the hyperfine structure of the metastable and excited levels. The accessible transitions between levels are
shown in figure 1(Right), and the relative frequencies in table 1.

For light propagating along the z-axis, we introduce the components of the Stokes spin in terms of the
creation and annihilation operators of a photon polarized in the x or y direction, and in term of the circularly
polarized photons creation and annihilation operators a1 = (ax − iay)/

√
2, a2 = (ax + iay)/

√
2

S0 =
(
a†xax + a†yay

)
/2=

(
a†1a2 + a†2a1

)
/2 (1)

Sx =
(
a†xax − a†yay

)
/2=

(
a†1a1 + a†2a2

)
/2 (2)

Sy =
(
a†xay + a†yax

)
/2=

(
a†1a2 − a†2a1

)
/2i (3)

Sz =
(
a†xay − a†yax

)
/2i =

(
a†2a2 − a†1a1

)
/2. (4)

In the weak saturation regime, the interaction of light with atoms in either one of the two states F= 1/2 or
F= 3/2 of metastable helium can be described by an effective Hamiltonian obtained by adiabatically
eliminating the optical coherences and the populations of the excited state [15–17]. The general form of the
effective Hamiltonian for one atom of spin F with light a is recalled in appendix A.

2.1. Effective atom–light interaction in the metastable state
In the case of the metastable state 23S of helium-3, we first introduce the collective operators K⃗, J⃗ and Tl

m,
respectively obtained by summing the single atom spin operators in the F= 1/2, and spin and tensor
operators in the F= 3/2 manifolds of the metastable state. Considering the transitions to the excited states
23P, in the case of large detuning, the effective light–atoms Hamiltonian for the ensemble then takes the form

2
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HLA =H1/2 +HV
3/2 +HT

3/2 (5)

where the two vectorial contributions, of the F= 1/2 metastable state (K⃗) and of the F= 3/2 metastable
state (⃗J) take the Faraday form

H1/2 = h̄χKzSz HV
3/2 = h̄ηJzSz, (6)

and the tensorial contribution of the F= 3/2 metastable state takes the form

HT
3/2 =

n∑
i=1

h̄µ

[(
Fi (Fi + 1)

3
− F2i,z

)
S0 +

(
F2i,x − F2i,y

)
Sx +

(
Fi,xFi,y + Fi,yFi,x

)
Sy

]
= h̄µ

[
−2T2

0S0 +
√
12
(
RT2

2Sx + IT2
2Sy
)]

. (7)

In the above, we used the collective irreducible tensor operators T2
0,RT2

2 and IT2
2, that are obtained by

summing the single-atom tensor operators defined in appendix A.
The constants χ, η and µ representing the strength of the different contributions have the form

χ =
σ2
4A

Γ

(
2

9
(
∆p −∆1

) − 8

9
(
∆p −∆2

) + 10

9
(
∆p −∆4

) − 4

9∆p

)
(8)

η =
σ2
4A

Γ

(
3

5
(
∆p −∆3

) − 2

9
(
∆p −∆5

) − 1

9
(
∆p −∆6

) − 2

45
(
∆p −∆7

) − 2

9
(
∆p −∆9

)) (9)

µ=
σ2
10A

Γ

(
− 1

4
(
∆p −∆3

) + 5

9
(
∆p −∆5

) − 5

36
(
∆p −∆6

) + 1

9
(
∆p −∆7

) − 5

18
(
∆p −∆9

)) . (10)

In these equations, σ2 = 3λ2/2π, A is the cross sectional area of the light mode, Γ≈ 107 s−1 is the excited-
state spontaneous decay rate, and taking the C8 transition as a reference, we have defined∆p = ωprobe −ωC8

and∆i = ωFF ′ −ωC8 . In figure 2 we represent the three coupling constants χ (8), η (9) and µ (10), all divided
by the constant 4A/(σ2Γ), as a function of light frequency. For∆p/(2π) =−2GHz, which is the operating
point considered in [9, 10] and marked as ‘Config.1’ in figure 2, the vector contribution of F= 1/2 is
dominant. A second interesting operating point, marked as ‘Config.2’ in figure 2, is for∆p/(2π) =−31GHz,
around the local minimum of the grey absorption curve where the tensor part of F= 3/2 is relatively small.
The main advantage of this configuration is that one could work with a highly polarized state,M≃ 1, for
which the F= 1/2 spin manifold is empty and the initial state is effectively a spin coherent state [19].

2.2. Metastable atomic variables evolution due to the interaction with the light
Due to the Hamiltonian (5), we find from dO/dt= i[H,O]/h̄ that the Stokes operators of the light and the
collective atomic variable obey the following equation of motion

dSx
dt

∣∣∣∣
L

=−χKzSy − ηJzSy +
√
12µIT2

2Sz (11)

dSy
dt

∣∣∣∣
L

= χKzSx + ηJzSx −
√
12µRT2

2Sz (12)

dSz
dt

∣∣∣∣
L

=
√
12µ

(
RT2

2Sy − IT2
2Sx
)

(13)

dKx

dt

∣∣∣∣
L

=−χKySz (14)

dKy

dt

∣∣∣∣
L

= χKxSz (15)

dKz

dt

∣∣∣∣
L

= 0 (16)

dJx
dt

∣∣∣∣
L

=−ηJySz +
√
12µ

(
IT2

1 (Sx − S0)−RT2
1Sy
)

(17)

3
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Figure 2. Top: coupling constants χ equation (8) (blue line), η equation (9) (orange line) and µ equation (10) (green line) for the
F= 1/2 and F= 3/2 levels of the 3He metastable, as a function of the light frequency detuning∆p taking the C8 transition as the
origin. All the constants are divided by the constant 4A/(σ2Γ). The grey line shows the absorption spectrum taking into account
the Doppler broadening for T= 300K for a non polarized sample [18]. Two possible operating point marked as ‘Config.2’ at
∆p/(2π) =−31GHz and ‘Config.1’ at∆p/(2π) =−2GHz are discussed in the text. Bottom: Level scheme depicting the two
possible operating point marked as ‘Config.2’ and ‘Config.1’, respectively.

dJy
dt

∣∣∣∣
L

= ηJxSz +
√
12µ

(
RT2

1 (Sx + S0)+ IT2
1Sy
)

(18)

dJz
dt

∣∣∣∣
L

= 2
√
12µ

(
IT2

2Sx −RT2
2Sy
)

(19)

d

dt
RT2

2

∣∣∣∣
L

=−2ηSzIT
2
2 +

√
12µ

(
1√
5
Sy
(
2T1

0 −T3
0

)
+

1√
3
S0IT

3
2

)
(20)

d

dt
IT2

2

∣∣∣∣
L

= 2ηSzRT2
2 −

√
12µ

(
1√
5
Sx
(
2T1

0 −T3
0

)
+

1√
3
S0RT3

2

)
(21)

d

dt
RT2

1

∣∣∣∣
L

=−ηSzIT
2
1 +

√
6µ

(
Sx

(
−
√

3

5
IT3

1 −
√
2

5
Jy + IT3

3

)
+ S0

(
2√
15

IT2
1 −

√
2

5
Jy

)

+ Sy

(√
3

5
RT3

1 +

√
2

5
Jx −RT3

3

))
(22)

d

dt
IT2

1

∣∣∣∣
L

= ηSzRT2
1 +

√
6µ

(
Sx

(√
3

5
RT3

1 +

√
2

5
Jx +RT3

3

)
+ S0

(
2√
15

RT2
1 −

√
2

5
Jx

)

+ Sy

(√
3

5
IT3

1 +

√
2

5
Jy + IT3

3

))
(23)

d

dt
T2
0

∣∣∣∣
L

=
√
12µ

(
SxIT

3
2 − SyRT3

2

)
(24)

4
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d

dt
RT3

3

∣∣∣∣
L

=−3ηSzIT
3
3 +

√
6µ
(
SxIT

2
1 + SyRT2

1

)
(25)

d

dt
IT3

3

∣∣∣∣
L

= 3ηSzRT3
3 −

√
6µ
(
SxRT2

1 − SyIT
2
1

)
(26)

d

dt
RT3

2

∣∣∣∣
L

=−2ηSzIT
3
2 + 2µ

(√
3SyT

2
0 + S0IT

2
2

)
(27)

d

dt
IT3

2

∣∣∣∣
L

= 2ηSzRT3
2 − 2µ

(√
3SxT

2
0 + S0RT2

2

)
(28)

d

dt
RT3

1

∣∣∣∣
L

=−ηSzIT
3
1 +

√
2

5
µ
(
(2S0 + 3Sx)IT

2
1 − 3SyRT2

1

)
(29)

d

dt
IT3

1

∣∣∣∣
L

= ηSzRT3
1 −
√

2

5
µ
(
(2S0 − 3Sx)RT2

1 − 3SyIT
2
1

)
(30)

d

dt
T3
0

∣∣∣∣
L

=−2

5

√
15µ

(
SxIT

2
2 − SyRT2

2

)
(31)

3. External magnetic field

In the presence of a static magnetic field B⃗, the system evolves according to the Hamiltonian

HB =−h̄
(
γ1/2B⃗ · K⃗+ γ3/2B⃗ · J⃗+ γnucB⃗ · I⃗

)
, where (32)

γ1/2 =
4

3
γms ; γ3/2 =

2

3
γms ; γms =−2π 2.802MHzG−1 ; γnuc =−2π 3.243kHzG−1 ; (33)

are the gyromagnetic ratios [20].

3.1. Metastable atomic variables evolution due to an external magnetic field
The corresponding equations of motion for atomic variables are given by

d⃗I

dt

∣∣∣∣
B

= γnuc I⃗× B⃗ (34)

dK⃗

dt

∣∣∣∣
B

= γ1/2 K⃗× B⃗ (35)

d⃗J

dt

∣∣∣∣
B

= γ3/2 J⃗× B⃗ (36)

d

dt
RT2

2

∣∣∣∣
B

= γ3/2
(
BxIT

2
1 +ByRT2

1 + 2BzIT
2
2

)
(37)

d

dt
IT2

2

∣∣∣∣
B

= γ3/2
(
−BxRT2

1 +ByIT
2
1 − 2BzRT2

2

)
(38)

d

dt
RT2

1

∣∣∣∣
B

= γ3/2

(
BxIT

2
2 +By

(√
3T2

0 −RT2
2

)
+BzIT

2
1

)
(39)

d

dt
IT2

1

∣∣∣∣
B

= γ3/2

(
−Bx

(√
3T2

0 +RT2
2

)
−ByIT

2
2 −BzRT2

1

)
(40)

d

dt
T2
0

∣∣∣∣
B

= γ3/2
√
3
(
BxIT

2
1 −ByRT2

1

)
(41)

d

dt
RT3

3

∣∣∣∣
B

= γ3/2

(
Bx

√
3

2
IT3

2 +By

√
3

2
RT3

2 +Bz3IT
3
3

)
(42)

d

dt
IT3

3

∣∣∣∣
B

= γ3/2

(
−Bx

√
3

2
RT3

2 +By

√
3

2
IT3

2 −Bz3RT3
3

)
(43)

d

dt
RT3

2

∣∣∣∣
B

= γ3/2

(
Bx

(√
10

4
IT3

1 +

√
3

2
IT3

3

)
+By

(√
10

4
RT3

1 −
√

3

2
RT3

3

)
+Bz2IT

3
2

)
(44)

d

dt
IT3

2

∣∣∣∣
B

= γ3/2

(
Bx

(
−
√

10

4
RT3

1 −
√

3

2
RT3

3

)
+By

(√
10

4
IT3

1 −
√

3

2
IT3

3

)
−Bz2RT3

2

)
(45)

5
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d

dt
RT3

1

∣∣∣∣
B

= γ3/2

(
Bx

√
5

2
IT3

2 +By

(
√
6T3

0 −
√

5

2
RT3

2

)
+BzIT

3
1

)
(46)

d

dt
IT3

1

∣∣∣∣
B

= γ3/2

(
−Bx

(
√
6T3

0 −
√

5

2
RT3

2

)
−By

√
5

2
IT3

2 −BzRT3
1

)
(47)

d

dt
T3
0

∣∣∣∣
B

= γ3/2
√
6
(
BxIT

2
1 −ByRT2

1

)
. (48)

Note that in this work we are interested in a weak magnetic field regime, where the metastability exchange
collision rates are weakly affected.

4. Metastability exchange collisions

4.1. Evolution of the one-body density matrix
Metastability exchange collisions (MEC) are fast processes in which the electronic excitation is transferred
from a metastable to a ground state helium atom, without affecting the electronic and nuclear spin variables
[1, 21]. They are usually described in terms of the one-body density matrix ρ which is assumed to be
block-diagonal, with the 2× 2 matrix ρf describing the ground state and the 6× 6 matrix ρm describing the

metastable state. Following a collision, ρ transforms according to ρ
MEC−−−→ ρ ′ with [6, 20]

ρ ′
f = Tre [ρm] (49)

ρ ′
m = ρf ⊗Trn [ρm] (50)

where Tre and Trn denote the trace on the electronic and nuclear degrees of freedom respectively. Note that
the electronic degrees of freedom do not appear in ρf since the ground state is a singlet state, i.e. S= 0.

Considering a set of Ncell atoms in the ground state and ncell in the metastable state, the equations of
motion of the one-body density matrix are written

d

dt
ρf =

1

T
(−ρf +Tre [ρm]) (51)

d

dt
ρm =

1

τ
(−ρm + ρf ⊗Trn [ρm]) (52)

where the two collision rates γf = 1/T et γm = 1/τ for an atom in the ground and metastable states,
respectively, satisfy the relation

γm
γf

=
T

τ
=

Ncell

ncell
. (53)

Such equations of motion, expressed in the {|i⟩} basis of the Zeeman sublevels of helium-3, are found in [6].
They allow us to calculate the evolution due to the exchange of any one-body atomic operator O

d⟨O⟩
dt

∣∣∣∣
MEC

= Tr

[
O
dρ

dt

∣∣∣∣
MEC

]
. (54)

A detailed example explaining how we proceed to obtain the equations in given in appendix C.

4.2. Atomic variables evolution due to metastability exchange
For the three spins: ground I, metastable (F= 1/2) K and metastable (F= 3/2) J, we obtain the
semi-classical equations

d
〈⃗
I
〉

dt

∣∣∣∣
MEC

=− 1

T

〈⃗
I
〉
+

1

3T

N

n

(〈⃗
J
〉
−
〈
K⃗
〉)

(55)

d
〈
K⃗
〉

dt

∣∣∣∣
MEC

=− 7

9τ

〈
K⃗
〉
+

1

9τ

〈⃗
J
〉
− 1

9τ

n

N

〈⃗
I
〉
− 4

3τ

1

N

〈
⃗⃗Q
〉
·
〈⃗
I
〉

(56)

d
〈⃗
J
〉

dt

∣∣∣∣
MEC

=− 4

9τ

〈⃗
J
〉
+

10

9τ

〈
K⃗
〉
+

10

9τ

n

N

〈⃗
I
〉
+

4

3τ

1

N

〈
⃗⃗Q
〉
·
〈⃗
I
〉
, (57)

6
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where we have introduced the collective alignment tensor ⟨Qαβ⟩=
∑N

i=1
1
3
1
6

(
3
2 ⟨Fi,αFi,β + Fi,βFi,α⟩− 2δαβ

)
[20]

Qxx =
1

6

(√
3RT2

2 −T2
0

)
(58a)

Qyy =−1

6

(√
3RT2

2 +T2
0

)
(58b)

Qzz =
1

3
T2
0 (58c)

Qxy =
1

2
√
3
IT2

2 (58d)

Qxz =− 1

2
√
3
RT2

1 (58e)

Qyz =− 1

2
√
3
IT2

1. (58f )

The rank-2 tensors of state F= 3/2 evolve according to equations

d

dt

〈
RT2

2

〉∣∣∣∣
MEC

=− 2

3τ

〈
RT2

2

〉
+

1√
3τ

1

N

(
⟨Ix⟩⟨Σx⟩−

〈
Iy
〉〈

Σy

〉)
(59)

d

dt

〈
IT2

2

〉∣∣∣∣
MEC

=− 2

3τ

〈
IT2

2

〉
+

1√
3τ

1

N

(
⟨Ix⟩

〈
Σy

〉
+
〈
Iy
〉
⟨Σx⟩

)
(60)

d

dt

〈
RT2

1

〉∣∣∣∣
MEC

=− 2

3τ

〈
RT2

1

〉
+

1√
3τ

1

N
(⟨Ix⟩⟨Σz⟩+ ⟨Iz⟩⟨Σx⟩) (61)

d

dt

〈
IT2

1

〉∣∣∣∣
MEC

=− 2

3τ

〈
IT2

1

〉
+

1√
3τ

1

N

(〈
Iy
〉
⟨Σz⟩+ ⟨Iz⟩

〈
Σy

〉)
(62)

d
〈
T2
0

〉
dt

∣∣∣∣
MEC

=− 2

3τ

〈
T2
0

〉
+

1

3τ

1

N

(
3⟨Iz⟩⟨Σz⟩−

〈⃗
I
〉
·
〈
Σ⃗
〉)

(63)

where we defined the electron spin operator expectation value in the metastable state ⟨Σ⃗⟩= 2
3 (⟨⃗J⟩+ 2⟨K⃗⟩).

The rank-3 tensors of state F= 3/2 evolve according to equations

d

dt

〈
RT3

3

〉∣∣∣∣
MEC

=− 1

τ

〈
RT3

3

〉
−

√
6

3τ

1

N

(
⟨Ix⟩

〈
RT2

2

〉
−
〈
Iy
〉〈

IT2
2

〉)
(64)

d

dt

〈
IT3

3

〉∣∣∣∣
MEC

=− 1

τ

〈
IT3

3

〉
−

√
6

3τ

1

N

(
⟨Ix⟩

〈
IT2

2

〉
−
〈
Iy
〉〈

RT2
2

〉)
(65)

d

dt

〈
RT3

2

〉∣∣∣∣
MEC

=− 1

τ

〈
RT3

2

〉
− 2

3τ

1

N

(
⟨Ix⟩

〈
RT2

1

〉
−
〈
Iy
〉〈

IT2
1

〉
−⟨Iz⟩

〈
RT2

2

〉)
(66)

d

dt

〈
IT3

2

〉∣∣∣∣
MEC

=− 1

τ

〈
IT3

2

〉
− 2

3τ

1

N

(
⟨Ix⟩

〈
IT2

1

〉
+
〈
Iy
〉〈

RT2
1

〉
−⟨Iz⟩

〈
IT2

2

〉)
(67)

d

dt

〈
RT3

1

〉∣∣∣∣
MEC

=− 1

τ

〈
RT3

1

〉
+

2

3
√
10τ

1

N

(
⟨Ix⟩

(〈
RT2

2

〉
− 2

√
3
〈
T2
0

〉)
+
〈
Iy
〉〈

IT2
2

〉
+ 4⟨Iz⟩

〈
RT2

1

〉)
(68)

d

dt

〈
IT3

1

〉∣∣∣∣
MEC

=− 1

τ

〈
IT3

1

〉
+

2

3
√
10τ

1

N

(
⟨Ix⟩

〈
IT2

2

〉
−
〈
Iy
〉(〈

RT2
2

〉
− 2

√
3
〈
T2
0

〉)
+ 4⟨Iz⟩

〈
IT2

1

〉)
(69)

d

dt

〈
T3
0

〉∣∣∣∣
MEC

=− 1

τ

〈
T3
0

〉
+

2√
5τ

1

N

(
2
√
3

6

(
⟨Ix⟩

〈
RT2

1

〉
+
〈
Iy
〉〈

IT2
1

〉)
+ ⟨Iz⟩

〈
T2
0

〉)
(70)

5. Semiclassical equations of motion

5.1. Semiclassical equations for the atomic and field variables
Using the results of sections 2.2, 3 and 4.2, we can write the semiclassical equations of motion for the
averages of the Stokes and atomic collective spin components operators, under the influence of (i) the
light–atom interaction in the metastable state, (ii) a uniform external magnetic field, and (iii) metastability
exchange collisions. The term ‘semiclassical’ means here that all the operators, including those in equations
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of sections 2.2 and 3, are replaced by their expectation values. The time derivative of a semiclassical variable
⟨O⟩ has three contributions:

d⟨O⟩
dt

=
d⟨O⟩
dt

∣∣∣∣
L

+
d⟨O⟩
dt

∣∣∣∣
B

+
d⟨O⟩
dt

∣∣∣∣
MEC

. (71)

5.2. Stationary solution
For a nuclear polarizationM ∈ [−1,1], a fixed magnetic field along the x-direction, B⃗= Bx⃗ex, and a fixed
light intensity and polarization, the semi-classical equations of motion have a stationary solution that is
found by setting the time derivatives to zero. Here we consider the Stokes spin and the nuclear spin polarized
along the static magnetic field in the x-direction,

⟨Sx⟩s =
nph
2

,
〈
Sy
〉
s
= ⟨Sz⟩s = 0, ⟨Ix⟩s =M

N

2
,

〈
Iy
〉
s
= ⟨Iz⟩s = 0. (72)

The stationary solution for the atomic variables in the metastable state and its small polarization expansion is
then:

⟨Kx⟩s =
M

2

(
1−M2

3+M2

)
ncell

M→0≃
(
M

6
− 2M3

9
+O

(
M5
))

ncell (73a)

⟨Jx⟩s =M

(
5+M2

3+M2

)
ncell

M→0≃
(
5M

3
− 2M3

9
+O

(
M5
))

ncell (73b)

〈
T2
0

〉
s
=−

(
M2

3+M2

)
ncell

M→0≃
(
−M2

3
+O

(
M4
))

ncell (73c)

〈
RT2

2

〉
s
=
√
3

(
M2

3+M2

)
ncell

M→0≃
(
M2

√
3
+O

(
M4
))

ncell (73d)

〈
RT3

1

〉
s
=

√
3

10

(
M3

3+M2

)
ncell

M→0≃
(

M3

√
30

+O
(
M5
))

ncell (73e)

〈
RT3

3

〉
s
=− 1√

2

(
M3

3+M2

)
ncell

M→0≃
(
− M3

3
√
2
+O

(
M5
))

ncell. (73f )

ForM→ 0, the quantities (73a), (73b), (73c), (73d) and (73e), (73f ) are respectively of order one, two
and three inM, indicating that the tensor contributions can be neglected for a small polarization.

Moreover, we note that the stationary solutions equation (73a)–(73d) are identical to those found in [9],
although the light–matter interaction for the F= 3/2 level of the metastable state was not included in that
work.

5.3. Linearized equations of motion
The linearized semiclassical equations around the stationary solution (73) are obtained by substituting
⟨O⟩ → ⟨O⟩s + δO, where δO is the small variation of ⟨O⟩ from its steady state value, and keeping only linear

terms in the variations. Introducing the fluctuation vector c⃗= (⃗a, b⃗) with

a⃗=
(
δSy, δSz, δIy, δIz, δKy, δKz, δJy, δJz, δRT2

1, δIT
2
2, δT

3
0, δIT

3
1, δRT3

2, δIT
3
3

)
(74)

b⃗=
(
δS0, δSx, δIx, δKx, δJx, δT

2
0, δIT

2
1,RT2

2, δRT3
1, δIT

3
2, δRT3

3

)
, (75)

the linearized equations of motion take the block-diagonal form

˙⃗c=

[
A 0
0 B

]
c⃗, (76)

where the first block represents fluctuations in the yz-plane, namely the plane perpendicular to the spin
polarization. In the expression of the matrices A and B given below, the lines isolate the sub-blocks for the
light, nuclear and metastable states respectively.
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A
=

                                               

0
−

6µ
M

2
n

M
2
+
3

0
0

0
χ
n p

h

2
0

η
n p

h

2
0

0
0

0
0

0
6µ

M
2
n

M
2
+
3

0
0

0
0

0
0

0
0

−
√
3µ

n p
h

0
0

0
0

0
0

−
1 T

B
x
γ
n
u
c

−
N 3n
T

0
N 3n
T

0
0

0
0

0
0

0

0
0

−
B
x
γ
n
u
c

−
1 T

0
−

N 3n
T

0
N 3n
T

0
0

0
0

0
0

0
1 2
M
( 4

M
2
+
3
−
1) nχ

−
n−

M
2
n

3M
2
N
τ
+
9N

τ
0

−
7 9τ

γ
1/
2
B
x

1 9τ
0

0
−

M
3√

3τ
0

0
0

0

0
0

0
−

n−
M

2
n

3M
2
N
τ
+
9N

τ
γ
1/
2
(−

B
x
)

−
7 9τ

0
1 9τ

M
3√

3τ
0

0
0

0
0

0
η
M
(M

2
+
5 )

n

M
2
+
3

2 (
M

2
+
5 )

n

3(
M

2
+
3)

N
τ

0
10 9τ

0
−

4 9τ
γ
3/
2
B
x

2√
3µ

n p
h

M
3√

3τ
0

0
0

0

−
12
µ
M

2
n

M
2
+
3

0
0

2 (
M

2
+
5 )

n

3(
M

2
+
3)

N
τ

0
10 9τ

γ
3/
2
(−

B
x
)

−
4 9τ

−
M

3√
3τ

2√
3µ

n p
h

0
0

0
0

2√
3µ

M
(M

2
+
1 )

n

M
2
+
3

0
0

−
4M

n
√

3(
M

2
N
τ
+
3N

τ
)

0
−

2M
3√

3τ
−

2 5

√
3µ

n p
h

−
M

3√
3τ

−
2 3τ

γ
3/
2
B
x

0
−

µ
n p

h
√

10
0

√ 3 2
µ
n p

h

0
2√

3η
M

2
n

M
2
+
3

4M
n

√
3(

M
2
N
τ
+
3N

τ
)

0
2M

3√
3τ

0
M

3√
3τ

−
2 5

√
3µ

n p
h

γ
3/
2
(−

B
x
)

−
2 3τ

√ 3 5
µ
n p

h
0

−
µ
n p

h
0

6µ
M

2
n

√
5 (

M
2
+
3)

0
0

−
2M

2
n

√
5 (

M
2
N
τ
+
3N

τ
)

0
0

0
0

M
√

15
τ

−
√ 3 5

µ
n p

h
−

1 τ

√
6γ

3/
2
B
x

0
0

0

√ 3 10
η
M

3
n

M
2
+
3

√ 2 15
M

2
n

M
2
N
τ
+
3N

τ
0

0
0

0
0

µ
n p

h
√

10
M

3√
10
τ

−
√
6γ

3/
2
B
x

−
1 τ

−
√ 5 2

γ
3/
2
B
x

0

−
2√

3µ
M

2
n

M
2
+
3

0
0

2M
2
n

√
3(

M
2
N
τ
+
3N

τ
)

0
0

0
0

−
M 3τ

µ
n p

h
0

√ 5 2
γ
3/
2
B
x

−
1 τ

√ 3 2
γ
3/
2
B
x

0
−

3η
M

3
n

√
2(

M
2
+
3)

−
√

2M
2
n

M
2
N
τ
+
3N

τ
0

0
0

0
0

−
√ 3 2

µ
n p

h
−

M √
6τ

0
0

−
√ 3 2

γ
3/
2
B
x

−
1 τ

                                               
(7
7)
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B
=

                                      

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

−
1 T

−
N 3n
T

N 3n
T

0
0

0
0

0
0

0
0

−
3M

2
n+

n
3M

2
N
τ
+
9N

τ
−

7 9τ
1 9τ

M 9τ
0

−
M

3√
3τ

0
0

0

0
0

6M
2
n+

10
n

3M
2
N
τ
+
9N

τ
10 9τ

−
4 9τ

−
M 9τ

0
M

3√
3τ

0
0

0

0
0

−
4M

n
3M

2
N
τ
+
9N

τ
−

2M 9τ
−

M 9τ
−

2 3τ

√
3γ

3/
2
B
x

0
0

√
3µ

n p
h

0
2√

3µ
M
n

M
2
+
3

−
2√

3µ
M
n

M
2
+
3

0
0

0
−
√
3γ

3/
2
B
x

−
2 3τ

γ
3/
2
(−

B
x)

−
√ 5 2

µ
n p

h
0

−
√ 3 2

µ
n p

h

0
0

4M
n

√
3(
M

2
N
τ
+
3N

τ
)

2M
3√

3τ
M

3√
3τ

0
γ
3/
2
B
x

−
2 3τ

0
µ
n p

h
0

0
0

√
6 5
M

2
n

M
2
N
τ
+
3N

τ
0

0
−
√

2 15
M

τ

√ 5 2
µ
n p

h
M

3√
10
τ

−
1 τ

√ 5 2
γ
3/
2
B
x

0

−
2√

3µ
M

2
n

M
2
+
3

2√
3µ

M
2
n

M
2
+
3

0
0

0
−
√
3µ

n p
h

−
M 3τ

−
µ
n p

h
−
√ 5 2

γ
3/
2
B
x

−
1 τ

−
√ 3 2

γ
3/
2
B
x

0
0

−
√
2M

2
n

M
2
N
τ
+
3N

τ
0

0
0

√ 3 2
µ
n p

h
−

M √
6τ

0
√ 3 2

γ
3/
2
B
x

−
1 τ

                                      

(7
8)
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6. Effective coupling between the nuclear spin and the light in two configurations

A simplified model involving only three coupled spins (one for the light field, one for the metastable state
and one for the fundamental state) can be derived when focusing on one of the two choices of the light
frequency detuning shown in figure 2: ‘Config.1’ or ‘Config.2’, where the vector Hamiltonian of the
metastable level F= 1/2 or the metastable level F= 3/2 dominates. For this purpose, for a given light
detuning, we set the non-dominant interaction terms in HLA equation (5) to zero and, among the degrees of
freedom of the metastable state, we adiabatically eliminate those that evolve only under the influence of the
magnetic field and the metastable exchange collisions.

6.1. Configuration 1: Exploiting the interaction with the F= 1/2 manifold
We start from the linearized equations (76), and neglect the coupling of the light with the F= 3/2 manifold
by setting η = µ= 0. Then, we adiabatically eliminate the δJα and δQαx degrees of freedom by solving the
algebraic equations d(δJα)/dt= 0 and d(δQαx)/dt= 0, and inserting the solution in the equations of
motion for the remaining variables. In terms of the complex variables

I+ = Iy + i Iz, K+ = Ky + iKz, (79)

we obtain

d

dt
δSy = ⟨Sx⟩χδKz (80a)

d

dt
δSz = 0 (80b)

d

dt
δI+ =−γ

(1/2)
f

(
a(1/2)1

c(1/2)
+ i

Bxγnuc

γ
(1/2)
f

)
δI+ + γ(1/2)

m
a(1/2)2

c(1/2)
δK+ (80c)

d

dt
δK+ =−γ(1/2)

m

(
b(1/2)1

c(1/2)
+ i

Bxγ1/2

γ
(1/2)
f

)
δK+ + γ

(1/2)
f

b(1/2)2

c(1/2)
δI+ + ⟨Kx⟩χδSz (80d)

where we introduced the rescaled polarization-dependent metastability exchange rates

γ
(1/2)
f =

1

T

(
4+M2

)(
1−M2

)
(8−M2)(3+M2)

, γ(1/2)
m =

1

τ

(
4+M2

)
(8−M2)

, (81)

and the dimensionless coefficients a(1/2)i , b(1/2)i and c(1/2), that can be found in appendix D. To first order in
the product Bxγms/γm, where γms equation (33) is the gyromagnetic factor in the metastable state and γm
(53) is the metastability exchange rate for a metastable atom, one has

a(1/2)1

c(1/2)
Bx→0≃ 1− i

6
(
M4 + 37M2 + 60

)
(M2 − 8)2 (M2 − 1)

Bxγ3/2
γm

(82)

a(1/2)2

c(1/2)
Bx→0≃ 1− i

30
(
M2 + 4

)
(M2 − 8)2

Bxγ3/2
γm

(83)

b(1/2)1

c(1/2)
Bx→0≃ 1− i

2
(
M4 + 17M2 − 20

)
(M2 − 8)2

Bxγ3/2
γm

(84)

b(1/2)2

c(1/2)
Bx→0≃ 1− i

30
(
M2 + 4

)
(M2 − 8)2

Bxγ3/2
γm

. (85)

We show in figure 3 the comparison between the numerical solution of equation (80) and the full systems
of equations equation (71) for two values of the nuclear spin polarization,M= 0.02 andM= 0.1. While these
two models are in good agreement for the atomic variables, which shows the validity of adiabatic elimination
there is a discrepancy for the variables Sy and Sz representing the light field. Such a discrepancy is due to the
fact that the interaction of light with the F= 3/2 level, although detuned, is never completely negligible. This
is especially visible for the larger polarizations, where the F= 3/2 manifold is more populated, and for the
evolution of the Sz quadrature equation (13), which depends exclusively on the tensorial interaction.
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Figure 3. Comparison between the full model equation (71) and the simplified model equation (80) in ‘Config.1’. Top row is for a
nuclear magnetization ofM= 2%, while the bottom row is forM= 10%. Blue indicates the y spin component, while yellow the z
spin component. Solid lines are the full model, while round and square markers indicate the numerical solution of equation (80).
Simulation parameters: nph/Ncell = 10−3, Ncell/ncell = T/τ = 106, and an initial state resulting from tilting the nuclear spin by
0.01 rad. Time is in units of the nuclear spin Larmor frequency.

In the spirit of [9, 10], we are now interested in extracting the effective coupling constant between light
and nuclear spin in the limit Bx → 0. This can be done by adiabatically eliminating also the equations for δK,
and then introducing the bosonic quadratures

δSy√
⟨Sx⟩s

≃ XS
δIy√
⟨Ix⟩s

≃ XI (86a)

δSz√
⟨Sx⟩s

≃ PS
δIz√
⟨Ix⟩s

≃ PI, (86b)

satisfying the canonical commutation relations [XS,PS] = [XI,PI] = ih̄. The resulting equation of motion for
the light field is

d

dt
XS = χ

⟨Kx⟩s
⟨Ix⟩s

√
⟨Sx⟩s ⟨Ix⟩sPS, (87)

from which we obtain the effective Hamiltonian describing an interaction between light and nuclear spin

Heff = h̄Ω(1/2)PSPI, (88)

with the effective coupling rate

Ω(1/2) = χ
⟨Kx⟩s
⟨Ix⟩s

√
⟨Sx⟩s ⟨Ix⟩s (89)

= χ
ncell
Ncell

√
nphNcellf

(1/2) (M) , (90)

where the second line is obtained by inserting the stationary values equations (72) and (73), and in the last
line we defined the polarization-dependent function

f(1/2) (M) =

(
1−M2

3+M2

)√
M. (91)

6.2. Configuration 2: Exploiting the interaction with the F= 3/2 manifold
For this configuration we want to exploit the interaction of the light with the F= 3/2 metastable manifold.
Therefore, for a large nuclear spin polarization, we neglect the coupling of the light with the F= 1/2
manifold by setting χ= 0 in the linearized equations (76). In addition, we see from figure 2 that in ‘Config.2’
the tensor polarizability is small, which motivates us to set µ= 0 as well. Then we adiabatically eliminate the
δKα and δQαx degrees of freedom by solving the algebraic equations d(δKα)/dt= 0 and d(δQαx)/dt= 0

12
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and inserting the solution into the equations of motion for the remaining variables. In terms of the complex
variables

I+ = Iy + i Iz, J+ = Jy + i Jz, (92)

we obtain

d

dt
δSy = ⟨Sx⟩ηδJz (93a)

d

dt
δSz = 0 (93b)

d

dt
δI+ =−γ

(3/2)
f

(
a(3/2)1

c(3/2)
+ i

Bxγnuc

γ
(3/2)
f

)
δI+ + γ(3/2)

m
a(3/2)2

c(3/2)
δJ+ +

a(3/2)3

c(3/2)
⟨Jx⟩ηδSz (93c)

d

dt
δJ+ =−γ(3/2)

m

(
b(3/2)1

c(3/2)
+ i

Bxγ3/2

γ
(3/2)
f

)
δJ+ + γ

(3/2)
f

b(3/2)2

c(3/2)
δI+ +

(
b(3/2)3

c(3/2)
+ 1

)
⟨Jx⟩ηδSz (93d)

where we introduced the rescaled polarization-dependent metastability exchange rates

γ
(3/2)
f =

1

T

(
4+M2

)(
5+M2

)
(7+M2)(3+M2)

, γ(3/2)
m =

1

τ

(
4+M2

)
2(7+M2)

(94)

and the dimensionless coefficients a(3/2)i , b(3/2)i and c(3/2), that can be found in appendix D. To first order in
the product Bxγmsτ , where γms equation (33) is the gyromagnetic factor in the metastable state and τ is the
inverse of the metastability exchange rate, one has

a(3/2)1

c(3/2)
Bx→0≃ 1+ i

3Bx

(
6
(
M2 + 1

)
γ1/2 +

(
M2 + 13

)
M2γ3/2

)
4(M2 + 5)(M2 + 7)2 γm

(95)

a(3/2)2

c(3/2)
Bx→0≃ 1− i

3Bx

(
2
(
M2 − 2

)
γ1/2 + 3M2γ3/2

)
4(M2 + 7)2 γm

(96)

a(3/2)3

c(3/2)
Bx→0≃ 3M2

4(M2 + 5)(M2 + 7)3

(
4
(
M2 + 7

)2 − 3i
(
M2 + 4

) Bx

γm
(6γ1/2 + 7γ3/2)

)
(97)

b(3/2)1

c(3/2)
Bx→0≃ 1− i

Bx

(
2
(
M4 + 8M2 − 20

)
γ1/2 + 9M2γ3/2

)
4(M2 + 7)2 γm

(98)

b(3/2)2

c(3/2)
Bx→0≃ 1+ i

3Bx

(
2
(
M2 + 1

)(
M2 + 10

)
γ1/2 +

(
M2 + 13

)
M2γ3/2

)
4(M2 + 5)(M2 + 7)2 γm

(99)

b(3/2)3

c(3/2)
Bx→0≃ 3M2

4(M2 + 5)(M2 + 7)3

(
i3
(
M2 + 4

) Bx

γm

(
2
(
M2 + 10

)
γ1/2 + 7γ3/2

)
− 4
(
M2 + 7

)2)
. (100)

We show in figure 4 the comparison between the numerical solution of equation (93) and the full systems
of equations equation (71) for a nuclear spin polarization ofM= 98%. While these two models are in good
agreement for the atomic and Sy variables, there is a discrepancy for the light Sz variable. As in the previous
case, such a discrepancy is due to the residual tensor interaction, as it can be noted by the oscillation of Sz at
twice the Larmor frequency and it is more pronounced for large nuclear polarizations due to the M3 scaling
of the tensor components (73). On the other hand, the adiabatic elimination of the F= 1/2 and tensor
degrees of freedom (without setting µ and χ to zero) gives a very good approximation of the dynamics, as we
show numerically in section 7.

The effective coupling constant between light and nuclear spin in the Bx = 0 limit can be extracted
similarly to the previous case, now adiabatically eliminating also the equations for δJ. The effective
Hamiltonian is then

Heff = h̄Ω(3/2)PSPI, (101)

with the effective coupling rate between the light field and the nuclear spin given by

Ω(3/2) = η
⟨Jx⟩s
⟨Ix⟩s

√
⟨Sx⟩s ⟨Ix⟩s (102)

= η
ncell
Ncell

√
nphNcellf

(3/2) (M) . (103)
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Figure 4. Comparison between the full model equation (71) and the simplified model equation (93) in ‘Config.2’. The nuclear
magnetization is set toM= 98%. Blue indicates the y spin component, while yellow the z spin component. Solid lines are the full
model, while round and square markers indicate the numerical solution of equation (93). Simulation parameters:
nph/Ncell = 10−3, Ncell/ncell = T/τ = 106, and an initial state resulting from tilting the nuclear spin by 0.01rad. Time is in units
of the nuclear spin Larmor frequency.

Figure 5. Comparison between the effective light-nuclear spin coupling factor in ‘Config.1’ and ‘Config.2’ as a function of the
nuclear spin magnetizationM, and associated metastable manifolds population. Left: Blue indicates ‘Config.1’, while yellow
‘Config.2’. Solid lines refer to the coupling extracted from the full model, while round and square markers refer to the coupling
extracted from equations (80) and (93), respectively. Red and green lines are the analytical expressions obtained for Bx = 0,
namely equations (91) and (104) respectively. Simulation parameters: nph/Ncell = 10−3 and Ncell/ncell = T/τ = 106. Right:
relative population in the metastable manifolds F= 1/2 and F= 3/2 as a function of the nuclear polarization along the
x-direction.

Here we used T/τ = Ncell/ncell, together with the stationary solution for the spins equations (72) and (73),
and we defined the polarization-dependent scaling function

f(3/2) (M) = 2

(
5+M2

3+M2

)√
M. (104)

In the next section we will compare this result with the one obtained for ‘Config.1’.

6.3. Effective coupling in the two configurations and comparison with the full model
Equations (89) and (102) for the rates Ω(1/2) and Ω(3/2) describing the effective coupling between the
collective nuclear spin and the light in ‘Config.1’ and ‘Config.2’ respectively, were obtained from
approximate models. In this section, we extract such coupling constants from numerical simulations of the
full semiclassical equations, and compare the results with the analytical expressions.

From the evolution of the Stokes spin fluctuation XS, equations (86) and (87), we see that an oscillation
of the collective nuclear spin fluctuation PI = PI(0)cos(ωIt+ϕ) results in a light signal
XS = (ΩPI(0)/ωI) sin(ωIt+ϕ). Computing the ratio between the oscillation amplitude of the light and
nuclear spin gives us Ω/ωI, from which we extract the effective coupling for different nuclear polarizations.

We plot in figure 5 the polarization dependent part of the coupling as obtained from the solution of the
full set equations of motions (71), for a small initial tilt of the collective nuclear spin in the linear response
regime in the two configurations (solid lines), and from the solution of the simplified models (80) in
‘Config.1’ (circles) and (93) in ‘Config.2’ (squares). On the same plot, we show the analytic expressions of the
functions (91) and (104).

Even accounting for the difference in the coupling constants in the two configurations, η being
approximately 0.48 times χ, due to the large difference in the scaling factors f(3/2) and f(1/2) the effective
coupling between nuclear spin and light is significantly larger in ‘Config.2’ than in ‘Config.1’.

14



New J. Phys. 26 (2024) 103037 M Fadel et al

Figure 6. Comparison between the full model equation (71) and the same model after adiabatic elimination of the F= 1/2 and
tensor degrees of freedom in ‘Config.2’. The nuclear magnetization is set toM= 98%. Blue indicates the y spin component, while
yellow the z spin component. Solid lines are the full model, while round and square markers indicate the numerical solution of
the same model after adiabatic elimination of the F= 1/2 and tensor degrees of freedom (without setting µ= χ = 0, as done in
figure 4). Simulation parameters: nph/Ncell = 10−3, Ncell/ncell = T/τ = 106, and an initial state resulting from tilting the nuclear
spin by 0.01rad. Time is in units of the nuclear spin Larmor frequency.

7. Discussion on the validity of the analytical models

In sections 6.1 and 6.2 we obtain for ‘Config.1’ and ‘Config.2’ a set of simple equations of motion for three
collective variables (light, nuclear and metastable spins) that can be treated analytically. For example, for
‘Config.2’ we obtain a closed set of equations for the variables S, I and J, by first setting the coupling
coefficients χ = µ= 0 in equation (76), and then adiabatically eliminating the δKα and δQαx degrees of
freedom.

When we compare the predictions of the full numerical model including all the atomic transitions and
those of the analytical models in ‘Config.1’ or ‘Config.2’, we find good agreement for the nuclear and
metastable variables, see figures 3 and 4, but less good agreement for the light variables. This is because in the
analytical models we have neglected from the start part of the light–atoms interaction, and in particular the
tensor part from the F= 3/2 manifold that, although subdominant, is always present. This is also the reason
for the difference between the curves from the full numerical model and the analytical models in
figure 5(left). In particular, the simplified model for ‘Config.1’ fails for large polarizations, because the
F= 1/2 manifold is empty whenM= 1, see figure 5(right).

A more accurate (but non analytic) effective model involving three collective spins can be obtained by
still performing the adiabatic elimination, but keeping all the terms in the light–atom Hamiltonian. For
example, for ‘Config.2’, we perform the adiabatic elimination of δKα and δQαx directly on equation (76),
keeping all the coupling coefficients. This leads to a set of expressions that are too complex to be treated
analytically, but can be solved numerically showing good agreement with the full model, see figure 6.

8. Conclusions

In conclusion, we have derived the full set of semiclassical equation of motion describing the interaction
between light and metastable helium-3, taking into account metastability-exchange collisions with helium-3
atoms in the ground state as well as a static external weak magnetic field. We then explored two particular
choices of detunings between light and metastable helium-3 23S− 23P transition, for which the dominant
interaction, in the F= 1/2 or F= 3/2 manifolds, is vectorial of the Faraday form. For these configurations
we were able to extract analytically the effective coupling constant between light and helium-3 nuclear spin as
a function of the experimental parameters, and conclude that this quantity is considerably larger in the
configuration dominated by the F= 3/2 manifold with a large nuclear spin polarization. A comparison
between the numerical solution of the full set of equations of motion and the analytical model shows a fairly
good agreement. The observed discrepancies come from the coupling of the light with tensor spin
components that was neglected in the analytical models. In the future, it will be important to explore how
the presence of these tensor contributions might affect squeezing of the nuclear spin in a fully quantum
treatment [9, 10].
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Appendix A. Effective Hamiltonian in a state F in the large detuning limit

The Hamiltonian for a single-atom interacting with a light field is

hF =
∑
F′

h̄
σF′

2A

Γ/2

∆F′ + iΓ/2

{
αV
F′FzSz

+
αT
F′

(F+ 1)

[(
F(F+ 1)

3
− F2z

)
S0 +

(
F2x − F2y

)
Sx +

(
FxFy + FyFx

)
Sy

]}
. (A1)

In equation (A1), F (F′) is the total angular momentum of the starting (target) state of the transition, σF′ is
the resonant effective cross section of the transition F→ F ′, and∆F′ = ωprobe −ωFF ′ is the detuning with
respect to the resonance. In the expression∆F′ + iΓ/2 in the denominator, the imaginary part can be
neglected for∆F′ ≫ Γ/2.

The vector and tensor components of the polarization have the form [15, 22]

αV
F′ =

3(2J ′ + 1)

2(2F ′ + 1)(2J+ 1)

(
−2F− 1

F
δF

′

F−1 −
2F+ 1

F(F+ 1)
δF

′

F +
2F+ 3

F+ 1
δF

′

F+1

)
(A2)

αT
F′ =− 3(F+ 1)(2J ′ + 1)

2(2F ′ + 1)(2J+ 1)

(
1

F
δF

′

F−1 −
2F+ 1

F(F+ 1)
δF

′

F +
1

F+ 1
δF

′

F+1

)
. (A3)

Introducing σ2 = 3λ2/2π and Wigner’s 6j symbols {}, the resonant effective cross section σF′ between two
levels F, J, I and F ′, J ′, I is given by

σF′ = σ2
2(2J+ 1)(2F ′ + 1)

3

{
J ′ 1 J
F I F ′

}2

. (A4)

For a spin greater than F= 1/2, the irreducible tensor basis tlm should be used, with l= 0,1, ..,2F and
m=−l, . . ., l defined as a function of the ladder operators F± = Fx ± iFy, and given below for l⩽ 3.

t00 = n00 I (A5a)

t10 = n10 Fz (A5b)

t1±1 = n1±1 F± (A5c)

t20 = n20
(
3F2z − F2

)
(A5d)

t2±1 = n2±1 (F±Fz + FzF±) (A5e)

t2±2 = n2±2 F
2
± (A5f )

t30 = n30
(
5F2z − 3F2 + 1

)
Fz (A5g)

t3±1 = n3±1

[(
5F2z − F2 − 1/2

)
F± + F±

(
5F2z − F2 − 1/2

)]
(A5h)

t3±2 = n3±2

(
F2±Fz + F±FzF± + FzF

2
±
)

(A5i)

t3±3 = n3±3 F
3
±. (A5j)

As expected, for a spin F operators of rank l> 2F are null. The operators tlm satisfy property (tlm)
† =

(−1)mtl−m and are of null trace except tl=0
0 . Other properties and commutation relations are given in

appendix B. Prefactors nlm are chosen to ensure the normalization condition Tr[tlm(t
l
m)

†] = 1, and for a spin
F= 3/2 they read

n00 n10 n1±1 n20 n2±1 n2±2 n30 n3±1 n3±2 n3±3
1
2

1√
5

∓ 1√
10

1
6 ∓ 1

2
√
6

1
2
√
6

1
3
√
5

∓ 1
4
√
15

1
3
√
6

∓ 1
6 .

Finally, we introduce the symmetric and antisymmetric combinations

Rtlm ≡
tlm +

(
tlm
)†

√
2

Itlm ≡
tlm −

(
tlm
)†

i
√
2

. (A6)
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The associated collective operators are then defined by summing over all particles as e.g.
RTl

m =
∑N

i=1(Rtlm)i. We note that T1
0 is proportional to the longitudinal magnetization,RT1

1 and IT1
1 to the

magnetizations according to x and y, T2
0 is the quadrupolar spin polarization (called alignment),RT2

1 and
IT2

1 imply coherences between levels∆m= 1,RT2
2 and IT2

2 between levels∆m= 2, T3
0 is the octopolar spin

polarization, etc.
Assuming∆≫ Γ, and summing over all atoms, we can rewrite the collective Hamiltonian

HF =
∑
F′

h̄
σF′

4A

Γ

∆F′

{
αV
F′FzSz +

αT
F′

(F+ 1)

[
−2T2

0S0 +
√
12
(
RT2

2Sx + IT2
2Sy
)]}

, (A7)

where we have preferred the notation Fz rather than T1
0.

Appendix B. Commutation relations for the atomic operators

Let F⃗= {Fx,Fy,Fz} be the components of a spin operator, F± = Fx ± iFy the corresponding ladder operators,
and tlm the irreducible tensors explicit in (A5) for l⩽ 3. The operators satisfy the following commutator rules
[15, 23]:[

Fx,Fy
]
= iFz (and cyclic permutations) (B1)

[Fz,F±] =±F± (B2)

[F+,F−] = 2Fz (B3)[
Fz, t

l
m

]
=mtlm (B4)[

F±, t
l
m

]
=
√
(l±m+ 1)(l∓m)tlm±1 (B5)[

tl1m1
, tl2m2

]
=
∑
L,M

(−1)L+2F
√
(2l1 + 1)(2l2 + 1)

{
l1 l2 L
F F F

}
⟨l1m1l2m2,LM⟩

[
1− (−1)l1+l2+L

]
tLM, (B6)

where {} denotes Wigner’s 6j symbols, and ⟨,⟩ the Clebsch–Gordan coefficients.

Appendix C. Derivation of metastability exchange equations

In this appendix we explain how the metastability exchange equations presented in section 4.2 can be derived
in practice. First, the density matrix ρ can be written as ρ=

∑
i,j ρi,j |i⟩⟨j |, where the indices i, j label the basis

states

|5⟩=
√

1

3

∣∣∣∣0,−1

2

〉
−
√

2

3

∣∣∣∣−1,
1

2

〉
|6⟩=−

√
1

3

∣∣∣∣0, 12
〉
+

√
2

3

∣∣∣∣1,−1

2

〉
(C1a)

|1⟩=
∣∣∣∣−1,−1

2

〉
|2⟩=

√
2

3

∣∣∣∣0,−1

2

〉
+

√
1

3

∣∣∣∣−1,
1

2

〉
|3⟩=

√
2

3

∣∣∣∣0, 12
〉
+

√
1

3

∣∣∣∣1,−1

2

〉
|4⟩=

∣∣∣∣1, 12
〉

(C1b)

|9⟩=
∣∣∣∣−1

2

〉
|0⟩=

∣∣∣∣12
〉
. (C1c)

Here, note that |9⟩ and |0⟩ are purely nuclear states, while the others are hyperfine states of total spin
F= 3/2 and F= 1/2 expressed in the decoupled basis of the electronic and nuclear spin. In practice, we
neglect coherences between metastable and ground states, as well as coherences between the 3/2 and 1/2
states. This gives us

ρ=

[
ρm 0
0 ρf

]
=



ρ1,1 ρ1,2 ρ1,3 ρ1,4 0 0 0 0
ρ2,1 ρ2,2 ρ2,3 ρ2,4 0 0 0 0
ρ3,1 ρ3,2 ρ3,3 ρ3,4 0 0 0 0
ρ4,1 ρ4,2 ρ4,3 ρ4,4 0 0 0 0
0 0 0 0 ρ5,5 ρ5,6 0 0
0 0 0 0 ρ6,5 ρ6,6 0 0
0 0 0 0 0 0 ρ9,9 ρ9,0
0 0 0 0 0 0 ρ0,9 ρ0,0


. (C2)

Using now equations (51) and (52), with equations (49) and (50), allows us to derive the equations of
motion of ρ due to metastability exchange collisions. These can be found in the appendix of [6]. Finally, the
evolution due to metastability exchange collisions of any one-body atomic operator O can be calculated
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using equation (54). To this end, it is convenient to express the spin operators in the basis equation (C1). For
the F= 1/2 metastable state and the nuclear ground state, the spin operators in the relevant 2× 2 subspace
are proportional to the Pauli matrices, e.g. kz =

1
2

(−1 0
0 1

)
. For the F= 3/2 metastable state the spin operators

in the relevant 4× 4 subspace are

jx =


0

√
3
2 0 0

√
3
2 0 1 0

0 1 0
√
3
2

0 0
√
3
2 0

 , jy =


0 i

√
3

2 0 0

− i
√
3

2 0 i 0

0 −i 0 i
√
3

2

0 0 − i
√
3

2 0

 , jz =


− 3

2 0 0 0

0 − 1
2 0 0

0 0 1
2 0

0 0 0 3
2

 ,

(C3)

t20 =


1
2 0 0 0

0 − 1
2 0 0

0 0 − 1
2 0

0 0 0 1
2

 , Rt21 =


0 1

2 0 0
1
2 0 0 0

0 0 0 − 1
2

0 0 − 1
2 0

 , Rt22 =


0 0 1

2 0

0 0 0 1
2

1
2 0 0 0

0 1
2 0 0

 ,

(C4)

It21 =


0 i

2 0 0

− i
2 0 0 0

0 0 0 − i
2

0 0 i
2 0

 , It22 =


0 0 i

2 0

0 0 0 i
2

− i
2 0 0 0

0 − i
2 0 0

 , t30 =


− 1

2
√
5

0 0 0

0 3
2
√
5

0 0

0 0 − 3
2
√
5

0

0 0 0 1
2
√
5

 ,

(C5)

Rt31 =


0 − 1√

10
0 0

− 1√
10

0
√

3
10 0

0
√

3
10 0 − 1√

10

0 0 − 1√
10

0

 , Rt32 =


0 0 − 1

2 0

0 0 0 1
2

− 1
2 0 0 0

0 1
2 0 0

 , Rt33 =


0 0 0 − 1√

2

0 0 0 0

0 0 0 0

− 1√
2

0 0 0

 ,

(C6)

It31 =


0 − i√

10
0 0

i√
10

0 i
√

3
10 0

0 −i
√

3
10 0 − i√

10

0 0 i√
10

0

 , It32 =


0 0 − i

2 0

0 0 0 i
2

i
2 0 0 0

0 − i
2 0 0

 , It33 =


0 0 0 − i√

2

0 0 0 0

0 0 0 0
i√
2

0 0 0

 .

(C7)

The equations of motion for the collective spin operators are then readily found by taking〈⃗
I
〉
= N

〈⃗
i
〉
,

〈
K⃗
〉
= n

〈⃗
k
〉
,

〈⃗
J
〉
= n

〈⃗
j
〉
,

〈
RT2

2

〉
= n

〈
Rt22
〉
, etc (C8)

and are the one presented in section 4.2.

Appendix D. Coefficients of the linearized equations of the simplified models

In this appendix we give the expression of the coefficients appearing in the linearized equations of the
simplified models of section 6.

The coefficients appearing in equation (80) read

c(1/2) =

30i
(
M2 + 4

)
γ3/2Bx

γm
+

27
(
M2 + 4

)2
γ23/2(M2−8)B

2
x

γ2m
+
(
M2 − 8

)2 (D1)

a(1/2)1 =

(
M2 − 8

)
(M2 + 4)(M2 − 1)

((
M2 + 3

)
c(1/2) + 4

((
M2 − 8

)(
2M2 + 5

)
−

3i
(
M2 + 4

)(
M2 + 5

)
γ3/2Bx

2γm

))
(D2)

a(1/2)2 =

(
9
(
M2 + 4

)
γ23/2B

2
x

γ2m
+
(
M2 − 8

)2)
(D3)

b(1/2)1 =

(
−
21
(
M2 + 4

)
γ23/2B

2
x

γ2m
−

2i
(
M4 + 2M2 − 80

)
γ3/2Bx

γm
+
(
M2 − 8

)2)
(D4)

b(1/2)2 =

(
9
(
M2 + 4

)
γ23/2B

2
x

γ2m
+
(
M2 − 8

)2)
. (D5)
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The coefficients appearing in equation (93) read

c(3/2) =
6i
(
M2 + 4

)
Bx (6γ1/2 + 7γ3/2)

γm
−

27
(
M2 + 4

)2
γ1/2γ3/2B2

x

(M2 + 7)γ2m
+ 8
(
M2 + 7

)2
(D6)

a(3/2)1 =

(
M2 + 7

)
(M2 + 4)(M2 + 5)

((
M2 + 3

)
c(3/2) − 8

((
M2 + 1

)(
M2 + 7

)
−

3i
(
M2 − 1

)(
M2 + 4

)
γ3/2Bx

4γm

))
(D7)

a(3/2)2 = 2

(
12i
(
M2 + 7

)
Bx (γ1/2 + γ3/2)

γm
−

9
(
M2 + 4

)
γ1/2γ3/2B2

x

γ2m
+ 4
(
M2 + 7

)2)
(D8)

a(3/2)3 =
24M2

(
M2 + 7

)
(M2 + 5)

(D9)

b(3/2)1 =−4

(
i
(
M2 + 7

)
Bx

((
M2 − 8

)
γ1/2 − 6γ3/2

)
γm

+
6
(
M2 + 4

)
γ1/2γ3/2B2

x

γ2m
− 2
(
M2 + 7

)2)
(D10)

b(3/2)2 = a(3/2)2 + a(3/2)3

iBx (γ1/2 + γ3/2)

γm
(D11)

b(3/2)3 =
12M2

(M2 + 5)

(
−2
(
M2 + 7

)
+

3i
(
M2 + 4

)
γ1/2Bx

γm

)
. (D12)

ORCID iD

Matteo Fadel https://orcid.org/0000-0003-3653-0030

References

[1] Gentile T R, Nacher P J, Saam B and Walker T G 2017 Optically polarized 3He Rev. Mod. Phys. 89 045004
[2] Gemmel C et al 2010 Ultra-sensitive magnetometry based on free precession of nuclear spins Eur. Phys. J. D 57 303
[3] Arvanitaki A and Geraci A 2014 Resonantly detecting axion-mediated forces with nuclear magnetic resonance Phys. Rev. Lett.

113 161801
[4] Aggarwal N et al 2020 Characterization of magnetic field noise in the ARIADNE source mass rotor (arXiv:2011.12617)
[5] Dantan A, Reinaudi G, Sinatra A, Laloe F, Giacobino E and Pinard M 2005 Long-lived quantummemory with nuclear atomic spins

Phys. Rev. Lett. 95 123002
[6] Reinaudi G, Sinatra A, Dantan A and Pinard M 2007 Squeezing and entangling nuclear spins in helium 3 J. Mod. Opt. 54 675
[7] Katz O, Shaham R, Polzik E S and Firstenberg O 2020 Long-lived entanglement generation of nuclear spins using coherent light

Phys. Rev. Lett. 124 043602
[8] Katz O, Shaham R, Reches E, Gorshkov A V and Firstenberg O 2022 Optimal control of an optical quantum memory based on

noble-gas spins Phys. Rev. A 105 042606
[9] Serafin A, Castin Y, Fadel M, Treutlein P and Sinatra A 2021 Nuclear spin squeezing by continuous quantum non-demolition

measurement: a theoretical study C. R. Phys. 22 1
[10] Serafin A, Fadel M, Treutlein P and Sinatra A 2021 Nuclear spin squeezing in Helium-3 by continuous quantum nondemolition

measurement Phys. Rev. Lett. 127 013601
[11] Kuzmich A, Bigelow N P and Mandel L 1998 Atomic quantum non-demolition measurements and squeezing Europhys. Lett. 42 481
[12] Hammerer K, Sorensen A and Polzik E 2010 Quantum interface between light and atomic ensembles Rev. Mod. Phys. 82 1041
[13] Vasilakis G, Shen H, Jensen K, Balabas M, Salart D, Chen B and Polzik E S 2015 Generation of a squeezed state of an oscillator by

stroboscopic back-action-evading measurement Nat. Phys. 11 389
[14] Courtade E, Marion F, Nacher P-J, Tastevin G, Kiersnowski K and Dohnalik T 2002 Magnetic field effects on the 1083 nm atomic

line of helium: optical pumping of helium and optical polarisation measurement in high magnetic field Eur. Phys. J. D 21 25–55
[15] Cviklinski J, Dantan A, Ortalo J and Pinard M 2007 Conditional squeezing of an atomic alignment Phys. Rev. A 76 033830
[16] Kuzmich A, Mandel L, Janis J, Young Y E, Ejnisman R and Bigelow N P 1999 Quantum nondemolition measurements of collective

atomic spin Phys. Rev. A 60 2346
[17] Note that in [15] there is an additional 1/2 factor, that in our case has been included in the definition of the Stokes operators.
[18] Batz M 2011 Metastability exchange optical pumping in 3He gas up to 30mT: efficiency measurements and evidence of

laser-induced nuclear relaxation PhD Thesis Université Pierre et Marie Curie—Paris VI (available at: https://tel.archives-ouvertes.
fr/tel-00665393/document)

[19] Due to frequent metastability exchange collisions, the populations of the metastable levels follow a spin temperature distribution
dictated by the nuclear polarization [1].
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