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Abstract. We investigate squeezing of light through quantum-noise-limited interactions with two different
material systems: an ultracold atomic spin ensemble and a micromechanical membrane. Both systems
feature a light-matter quantum interface that we exploit, respectively, to generate polarization squeezing of
light through Faraday interaction with the collective atomic spin precession, and ponderomotive quadrature
squeezing of light through radiation pressure interaction with the membrane vibrations in an optical cavity.
Both experiments are described in a common theoretical framework, highlighting the conceptual similarities
between them. The observation of squeezing certifies light-matter coupling with large quantum coopera-
tivity, a prerequisite for applications in quantum science and technology. In our experiments, we obtain a
maximal cooperativity of Cqu = 10 for the spin and Cqu = 9 for the membrane. In particular, our results pave
the way for hybrid quantum systems where spin and mechanical degrees of freedom are coherently coupled
via light, enabling new protocols for quantum state transfer and entanglement generation over macroscopic
distances.

Résumé. Nous étudions la compression de la lumière à travers deux systèmes distincts limités par le bruit
quantique : un ensemble de spins atomiques ultrafroids et une membrane micromécanique. Ces deux sys-
tèmes possèdent une interface quantique lumière-matière. Nous utilisons cette interface pour générer, d’une
part, une compression de la polarisation de la lumière par interaction de Faraday grâce à la précession col-
lective du spin atomique, et d’autre part, une compression des quadratures de la lumière via l’interaction de
pression de radiation avec les vibrations de la membrane dans une cavité optique. Les deux expériences sont
décrites dans un cadre théorique commun, mettant en évidence leurs similarités conceptuelles. L’observa-
tion de la compression atteste d’un couplage lumière-matière avec une grande coopérativité quantique, une
condition essentielle pour les applications en science et les technologies quantiques. Dans nos expériences,
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nous obtenons une coopérativité maximale de Cqu = 10 pour le spin et Cqu = 9 pour la membrane. En par-
ticulier, nos résultats ouvrent la voie à des systèmes quantiques hybrides où les degrés de liberté spin et mé-
caniques sont couplés de manière cohérente via la lumière, permettant de nouveaux protocoles de transfert
d’états quantiques et de génération d’intrication sur de grandes distances.

Keywords. Hybrid quantum system, squeezing, atomic system, optomechanics, light-matter interaction.

Mots-clés. Système quantique hybride, états comprimés, système atomique, optomécanique, interaction
lumière-matière.
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1. Introduction

Light-matter quantum interfaces are paradigmatic systems for the study of quantum measure-
ments, quantum feedback control, and quantum networking [1]. Such interfaces enable pre-
cise measurements of quantum systems [2–4], the creation and storage of non-classical states of
light [5], and the generation of entanglement between remote and even very different systems [6].
For many experiments and applications, a quantum-noise-limited light-matter interface is es-
sential. Achieving this necessitates that the coupling rate between the light and the matter sys-
tem surpasses the decoherence rate, which ensures that the interaction remains robust against
noise and dissipation.

The condition for a quantum-noise-limited interface is expressed in terms of the quantum
cooperativity [7,8]

Cqu = Sqba

Sth
, (1)

defined as the ratio between the quantum backaction noise Sqba imparted by the light on the
system due to their interaction and the thermal noise Sth driving the system due to its coupling
to the environment, which is the main decoherence source considered here. A quantum-noise-
limited operation thus requires Cqu > 1.

In many experiments, the quantum cooperativity of the interface is extracted or calibrated
by analyzing the scaling behavior of various noise sources, for example, with the power of
the probe light. As optical power increases, so does backaction noise [7], providing direct
evidence of quantum backaction and validating the high-cooperativity regime. This method
relies on the correct calibration of the different contributions to the measured signal, as well
as the assumption that all technical noise sources are well below the backaction level. A more
direct approach for certifying large quantum cooperativity is the observation of the quantum
correlations induced on the light through its interaction with the system. These correlations
redistribute noise between orthogonal light quadratures, resulting in squeezing of a specific
quadrature of the light. This squeezing is a definitive indicator of strong light-matter coupling, as
it directly reveals the quantum nature of the interaction.

The observation of optical squeezing as a means to quantify the quantum cooperativity is
broadly applicable across various light-matter systems. For mechanical oscillators, this phenom-
enon is commonly referred to as ponderomotive squeezing [9,10]. Ponderomotive squeezing was
observed for silicon nitride membranes at cryogenic temperatures [11] and more recently even
at room temperature [12], for waveguide resonators [13], single levitated nano-particles [14,15],
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and atomic ensembles in a Fabry–Pérot cavity [16]. More recently, this technique has been ap-
plied to other types of quantum light-matter interfaces. For example, the polarization state of the
light was squeezed through its interaction with the collective spin of an atomic ensemble, both
at acoustic frequencies [17] and at megahertz frequencies [18]. These developments underscore
the usefulness of squeezing as a tool for probing and characterizing light-matter interactions in
both microscopic and macroscopic systems.

In this manuscript we will introduce the squeezing mechanism in general terms and suggest
that it can be used to characterize a broad range of light-matter interfaces. To exemplify this,
we present experimental demonstrations of squeezing of light through interactions with two
very different systems: the collective spin precession of an ensemble of ultracold atoms and the
vibrations of a micromechanical membrane.

In Section 2, we present the general framework for quantum-noise-limited measurements
of a harmonic oscillator and discuss how squeezing of light is generated and how it can be
detected. In the following two sections, we demonstrate squeezing of specific light quadratures
in microscopic and macroscopic systems using two distinct experimental platforms: in Section 3
the framework is applied to the interface between the collective spin of a cold atomic cloud and a
detuned probe laser beam; in Section 4 a micromechanical oscillator in an optical cavity is used to
squeeze the light. The observation of squeezing in both systems confirms their quantum-noise-
limited operation. In Section 5 we point out that this is a prerequisite for coupling the systems in
a quantum coherent fashion using light as a mediator of interactions.

Input light

Quantum system

nth

γ

   Detection
of                           

Figure 1. Schematic of the light-matter quantum interfaces discussed in this paper: co-
herent light interacts with a quantum system and is detected after the interaction. The
quantum system is modeled as a harmonic oscillator of frequencyΩ, which is damped and
stochastically driven through its coupling at rate γ to a thermal environment. The light-
matter interaction maps the X̂ quadrature of the oscillator onto the P̂ L-quadrature of the
output light, while the X̂ L-quadrature of the input light drives the oscillator, representing
the measurement backaction. By adjusting the homodyne angle θ, any superposition of the
output light quadratures can be detected.

2. Quantum-noise-limited measurements

We begin by providing a general description of our light-matter interfaces, where light interacts
with systems modeled as harmonic oscillators characterized by an angular frequency Ω and an
energy decay rate γ, see Figure 1. These systems are also coupled to a thermal environment at
temperature T , with an average occupation number nth = [

exp(ħΩ/kBT )− 1
]−1. This coupling

results in a total decoherence rate given by γth = γ(nth +1/2).
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The interaction between light and the oscillator is described by a Hamiltonian in which
a light quadrature Q̂L,i linearly couples to one of the oscillator’s quadratures Q̂ j , where the
light quadratures are Q̂L = (X̂ L , P̂ L) and the oscillator quadratures Q̂ = (X̂ , P̂ ). The interaction
Hamiltonian is of the form

Ĥ int =ħg Q̂L,i Q̂ j , (2)

where the coupling constant g has units of [s−1/2] and Q̂L,i is a quadrature of a traveling light field
with units of [s−1/2] satisfying the commutation relation

[
X̂ L(t ), P̂ L(t ′)

] = iδ(t − t ′). The system’s
operators are dimensionless and satisfy the commutation relation [X̂ , P̂ ] = i.

As an example, consider the specific coupling Ĥ int = ħg X̂ L X̂ . In this case, the Langevin
equations of motion for the system quadrature operators are given by [19]

∂t X̂ (t ) =ΩP̂ (t ), (3)

∂t P̂ (t ) =−ΩX̂ (t )−γP̂ (t )+√
2γP̂ th(t )− g X̂ L(t ). (4)

In the absence of coupling to the light, the system is driven solely by a random force F̂ th =√
2γP̂ th, which arises from coupling to the thermal environment. This thermal noise is fully

characterized by its power spectral density (PSD) Sth(ω), which we assume to be flat around the
system’s resonance frequency, i.e., Sth(ω≃Ω) = γth. When the coupling to the light is introduced,
quantum noise (shot noise) of the light field also drives the system with a force F̂ qba =−g X̂ L . This
force represents the unavoidable quantum backaction exerted by a probe during a measurement.
The quantum backaction is also characterised by its PSD Sqba(ω), which we also assume to be flat
around resonance, i.e., Sqba(ω) ≃ Sqba(ω≃Ω) = g 2/4. As customary, we define the measurement
rate Γ= g 2/4 [8,20,21], and in this case Sqba = Γ.

The steady-state dynamics of the system can be characterized by its PSD. From the Langevin
equations given in (3) and (4), we obtain the following PSD (see Appendix A for a detailed
derivation):

SX X (ω) = 2
∣∣χ(ω)

∣∣2[Sth +Sqba
]= 2

∣∣χ(ω)
∣∣2
γth(1+Cqu), (5)

where χ(ω) = Ω/(Ω2 −ω2 − iγω) is the system’s susceptibility [8]. Here, we have introduced the
quantum cooperativity Cqu = Sqba/Sth = g 2/(4γth) = Γ/γth [22]. If the quantum cooperativity
exceeds unity, the quantum noise of the light (the probe) drives the system more strongly than
the thermal noise, placing the system in the so-called quantum-noise-limited regime.

Continuing with the example, Ĥ int maps the X̂ quadrature of the system onto the P̂ L quadra-
ture of the output light, which can be used to observe the dynamics of the system. Consequently,
if we denote the P̂ L quadrature operator before the interaction as P̂ (in)

L , then after the interaction
we can express it using the input-output relations [19,23] as

P̂ (out)
L = P̂ (in)

L +
p

4ΓX̂ . (6)

Here, one can see that Γ is the rate at which information about the system’s quadrature X̂ is
imprinted onto the output phase quadrature of the light P̂ (out)

L . A measurement of P̂ (out)
L then

yields the power spectral density

S(out)
PL ,PL

(ω) = S(in)
PL ,PL

+4ΓSX X (ω), (7)

where the first term S(in)
PL ,PL

= 1/2 is the shot noise of the light, and the second term is the signal
from the system imprinted onto the light.

For small measurement rates Γ, the spectrum of the output light is dominated by the first
term (shot noise). This shows that a sufficiently large measurement rate Γ is required to ensure
that the measurement is not overwhelmed by shot noise, allowing observation of the system’s
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dynamics. However, increasing the coupling strength also enhances the quantum backaction in
SX X , causing the system to be driven more strongly by the light. Indeed, using eq. (5) we can write

S(out)
PL ,PL

(ω) = 1

2
+8

∣∣χ(ω)
∣∣2
γth

(
Γ+ Γ2

γth

)
. (8)

Here we see that, in a first stage, when the measurement rate is increased, the thermal noise
of the system becomes the dominant contribution to the spectrum, which scales linearly with
the measurement rate Γ. However, in the regime of large cooperativity, the dominant noise
contribution is the backaction noise, scaling quadratically with the measurement rate Γ. By
carefully calibrating how the noise in the measured spectrum scales for different measurement
rates, these differences can be used to estimate the quantum cooperativity.

A closer look at the light-matter interaction reveals that the interaction generates correlations
between the quadratures of the outgoing light field, a phenomenon known as squeezing. When
light interacts with the system, the amplitude quadrature X̂ L of the light drives the system, whose
X̂ quadrature is in turn imprinted onto the phase quadrature P̂ L of the light. This mechanism
leads to correlations between the orthogonal quadratures of the output light field, leading to a
redistribution of noise between them. Specifically, the noise in a particular linear combination
of the output light quadratures is reduced (squeezed), while the noise in the orthogonal linear
combination is increased (anti-squeezed), consistent with the Heisenberg uncertainty principle.

The squeezing of the light can be observed by homodyne detection, which allows to measure
any linear combination of quadratures

D̂θ = X̂ L cosθ+ P̂ L sinθ, (9)

where θ is the homodyne angle. By adjusting θ, it is possible to measure either the squeezed
quadrature (minimum noise) or the anti-squeezed quadrature (maximum noise). We also note
that because the system is a harmonic oscillator, squeezing will be frequency-dependent, shaped
by the susceptibility of the oscillator χ(ω). Near the resonance frequency Ω, the correlations
between the light’s quadratures are strongest, enabling precision measurements below the shot-
noise limit. Far from resonance, the orthogonal quadratures are uncorrelated and the noise of the
light field is given by shot noise. Achieving significant squeezing requires a large measurement
rate Γ, which simultaneously enhances quantum backaction and drives the system more strongly
with the light. The PSD of an arbitrary output light quadrature Dθ at an angle θ is derived in
Appendix B and given by

SDθDθ
(ω) = 1

2
+4Γ

{
Re

[
χ(ω)

]
cos(θ)sin(θ)+SX X (ω)sin2(θ)

}
, (10)

where, as before, the first term is the shot noise of the light, the second term describes the
interference between the shot noise on the X̂ L quadrature and the signal of the driven system
on the P̂ L quadrature, and the third term is the signal of the driven system on the P̂ L quadrature.
The squeezing of the light can therefore be observed by measuring an intermediate quadrature
θ ̸= 0,π and appears as a dip in the spectrum below the shot-noise level of 1/2.

In the following, these concepts are investigated with two physically very different but con-
ceptually similar systems: we experimentally demonstrate squeezing of light by exploiting first
its interaction with the spin of a cold atomic cloud (a microscopic system), and then with a mi-
cromechanical membrane (a much more macroscopic system).
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z
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y

Input light

Spin system    Detection
of                            

PBS

PBS

HWPQWP
Bx

Figure 2. Setup of the spin-light interface: the coherent input light is well polarised
along Sx . In this limit, the polarisation state of the light can be described in terms of har-
monic oscillator quadratures X̂ L and P̂ L . The light is focused on a pencil-shaped cloud
of Rubidium atoms and interacts with the atomic spin via the Faraday interaction. Subse-
quently, the light is detected by polarisation homodyne detection using two waveplates and
a polarizing beam-splitter (PBS). The quarter-wave plate (QWP) rotates the local oscillator
onto the circular polarisation Sx → Sz . The half-wave plate (HWP) is then used to set the
homodyne angle θ.

3. Spin-light interface

3.1. Description of the spin system

Our spin system is a dense cloud of Na = 2.0(2) × 107 cold rubidium atoms trapped in a far-
detuned optical dipole trap, with a large optical depth d0 ≃ 500(50) along the long axis of the
cloud, see Figure 2. To describe the spin of the entire atomic ensemble, we define a collective spin

operator [4] that is the sum of all individual atomic spins, F̂ = ∑
i f̂

(i )
, which is the main degree

of freedom of the atomic system. The spin of the atoms is pumped into the hyperfine ground
state | f = 2,m f = −2〉 along a bias magnetic field with a spin polarization of |F x |/(2Na) ≥ 0.92.
The pencil-shaped atomic cloud (shown in Figure 2) is interfaced with a mode-matched probe
laser [24–26], red-detuned by −2π× 30GHz from the 87Rb D2-line. In these conditions, the
collective spin interacts with the light via the Faraday interaction [1],

Ĥ s =ħα1F̂ z Ŝz , (11)

where α1 is the unitless vector component of the atomic polarisability and Ŝz is the circularly
polarised Stokes vector component of the probe light (where each Stokes vector component
describes the difference in photon flux of two orthogonal polarizations with units of [s−1]).

For a well-pumped spin along the x-axis, |F x | =
∣∣〈F̂ x〉

∣∣ ≫ √
〈F̂ 2

y 〉,
√
〈F̂ 2

z〉, the transverse spin

components F̂ y and F̂ z can be mapped onto harmonic oscillator quadratures via the Holstein–

Primakoff approximation [1], X̂ s = F̂ z /
√
|F x | and P̂ s = F̂ y /

√
|F x |. The frequency of this spin os-

cillatorΩs is given by the Larmor precession frequency, which is set by the bias magnetic field Bx .
Here, we choose to implement the spin as a positive frequency oscillator, but alternatively a neg-
ative frequency oscillator could be implemented as e.g. in [18].
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The Holstein–Primakoff approximation can also be applied to the polarization Stokes vector of
the light if the coherent probe light beam is well polarized. For input light linearly polarised along

Sx = 〈Ŝx〉, we define the polarisation amplitude and phase quadratures as X̂ (pol)
L = Ŝ y /

√
Sx and

P̂ (pol)
L = Ŝz /

√
Sx , respectively, with dimensions [s−1/2]. Under these approximations, the Faraday

spin-light interaction can be rewritten in terms of harmonic oscillator quadratures as in eq. (2),

Ĥ s =ħ
√

4Γs X̂ s P̂ (pol)
L , (12)

with the spin measurement rate given by

Γs =
α2

1|Sx ||F x |
4

. (13)

We find that Γs depends on the length of the mean spin, the intensity of the probe light and the
atomic polarisability constant.

In order to correctly calibrate the spin-light interface, we have to consider that the radial waist
of the 3D-Gaussian atomic cloud of wa = 25µm is similar in size to the waist of the Gaussian probe
beam w0 = 50µm. This causes the spin-light coupling to be inhomogeneous. To account for this,
the local intensity of the light at the position of the atoms has to be averaged over the ensemble.
The normalized mean intensity of the light seen by the atoms is 〈ηs〉 = ∑

i

∣∣u0(r i )
∣∣2/Na and the

normalized mean squared intensity reads 〈η2
s〉 =

∑
i

∣∣u0(r i )
∣∣4/Na , which has to be taken into

account for the calibration of spin noise properties [24,27]. Here, r i is the position of the i th atom
and the laser mode function u0(r ) is normalised to unity at the focus u0(0) = 1. The effective spin
quadratures are then defined as X̂ s,eff = 〈ηs 〉p

〈η2
s 〉

X̂ s and P̂ s,eff = 〈ηs 〉p
〈η2

s 〉
P̂ s , and the measurement rate

as Γs,eff = 〈η2
s〉Γs . For our experimental implementation, we estimate 〈ηs〉 = 0.53 and 〈η2

s〉 = 0.33,
which is described in more detail in [26].

3.2. Scaling with the atom number

In a first set of experiments, the scaling of the different contributions to the fluctuations of the
light after the interaction with the spin is studied. For this, the light beam containing the spin
signal is measured using polarisation homodyne detection (see Figure 2 with θ = 0). For our well-
polarized spin, imperfect optical pumping corresponds to a thermal occupation of nth = 0.03 [28]
and thus γth ≈ γs /2, meaning that the spin noise is purely quantum mechanical with Sth(ω) =
γs /2. Often, this term is called projection noise in the literature because it describes the quantum
uncertainty of the spin state that appears when it is projected by a measurement. The backaction
of the light acting on the spin is as before given by the spin measurement rate Sqba(ω) = Γs,eff.
Integrating the recorded spectrum in eq. (8) over the spin resonance (with ∆bw ≫ γs ), we obtain
the variance of the measured light quadrature [19]

var(X̂ (pol)
L ) = 2

∫ Ωs+∆bw/2

Ωs−∆bw/2
SXL XL (ω)

dω

2π
= ∆bw

2π
+2Γs,eff

(
1+ 2Γs,eff

γs

)
, (14)

where the first term is the shot noise of the light, the second term is the projection noise (or
thermal noise in case nth ̸= 0) of the spin, and the third term is the backaction noise. Here, we
consider SXL XL instead of SPL PL because of the different quadratures involved in the coupling
Hamiltonian given in eq. (12) compared to the example given in Section 2.

In the measurement shown in Figure 3(a), the measurement rate is varied by loading the
dipole trap with a different number of atoms Na for each data point. This changes the mean
spin length |F x | ≃ 2Na and therefore the measurement rate Γs,eff (see eq. (13)). The output of
the homodyne detector is measured with a lock-in amplifier. The measurement rate of each
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Figure 3. (a) Variance of the polarisation fluctuations of the light after the interaction with
the atoms. Here, the integration bandwidth is fbw = ∆bw/(2π) = 4kHz, which is about
an order of magnitude larger than the linewidth of the spin of γs = 2π× 280Hz. The
measurement rate is varied by changing the number of atoms in the dipole trap. Each
data point is an average over ten measurements. The theory curve is calculated without
free parameters, taking the inhomogeneous spin-light coupling into account, as described
in the text, see eq. (14). Here, the probe light is −30 GHz red detuned and has a power of
1 mW. The spin oscillator has a frequency of Ωs = 2π× 0.98MHz, set by a magnetic bias
field of Bx = 1.4G. The detection efficiency of ηdet = 0.83 is included in the theory curve,
which increases the effective shot noise contribution from 1 to 1/ηdet (eq. (14) is modified
accordingly). (b) Spectrum of the light around the spin resonance of Ωs = 2π×1.958MHz
(magnetic bias field of Bx = 2.8G). Here, we detect at a homodyne angle of θ = 0.19π.
Polarization squeezing below the shot noise level is observed due to the quantum-noise
limited interaction of the light with the atomic spin.

individual measurement (the horizontal axis of Figure 3(a)) is calibrated by aligning the mean
spin with the propagation axis of the light and measuring the dc Faraday rotation of the light.

The theory reproduces the measured variances well. However, the theory lines depend
strongly on the correct estimation of the cloud geometry and the linewidth of the spin oscillator.
A less calibration-dependent experiment can be performed by using the spin system to squeeze
the light, as described in the following section.

Note that the cooperativity of the spin system Cs = Γs,eff/γth ≃ 2Γs,eff/γs can be directly read
off from the ratio of the backaction noise and the thermal noise. From the comparison of the
measurement with the theory we deduce that the backaction noise is up to an order of magnitude
larger than the thermal noise, which gives a spin cooperativity of order Cs ≈ 10 for the largest
measurement rates in Figure 3(a).

3.3. Polarization squeezing experiment

In another experiment, we measure the correlations between different polarisation quadratures
of the light induced by the interaction with the spin. They arise as the atomic spin is driven by the
quantum noise of the circularly polarised component of the light P̂ (pol)

L ∝ Ŝz , while the induced

spin fluctuations are mapped onto the linear polarisation component X̂ (pol)
L ∝ Ŝ y , assuming the

input light is well-polarised along Sx . Thus, the interaction with the spin correlates the Ŝz and
the Ŝ y polarization components of the light. In order to measure a linear combination of the
two quadratures, two waveplates are installed: a quarter-wave plate (QWP) rotates the mean
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polarisation of the light to the circular quadrature, Sx → Sz , Ŝ y → Ŝ y , and Ŝz →−Ŝx (see Figure 2).
The half-wave plate (HWP) then sets the angle θ of the detected polarisation component Dθ [29].

In Figure 3(b) a measurement of the polarization fluctuation PSD of the light is shown near
the spin resonance, demonstrating polarization squeezing of the light by −1.74(5)dB below
shot noise. The data is fit with a theory curve according to eq. (10), with the linewidth and
measurement rate as free parameters. The theory curve also includes the effect of losses in
the detection chain (detection efficiency of ηdet = 0.83), which reduces the observed squeezing.
The fit yields a measurement rate of Γs,eff = 2π× 812(24)Hz. The squeezing measurement was
performed in an earlier stage of the experiment [30] with only Na = 1.0(1)×107 atoms and a probe
geometry slightly different from that of the experiments presented in the previous section, which
explains the difference in measurement rate. The fitted linewidth is γs = 2π×1.41(2)kHz, which
is inhomogeneously broadened by the presence of multiple Zeeman levels in the F = 2 hyperfine
spin manifold. Since this broadening does not add additional noise, it does not change the area
of the integrated spectrum shown in Figure 3(a), but increases the linewidth obtained from the
fit in Figure 3(b). The resulting spin cooperativity in the squeezing measurement is Cs = 1.14(5).

4. Membrane cavity optomechanical interface

4.1. Description of the membrane system

In the following we describe experiments where we observe similar physics with an optomechan-
ical system. It consists of a nanomechanical membrane that is patterned with regions of nanopil-
lar arrays forming a phononic crystal [31]. A defect in the center of the crystal supports a localized
vibrational mode with a resonance frequency ofΩm = 2π×2.27MHz, see Figure 4. The phononic
crystal isolates this vibrational mode from the environment, resulting in a very high mechanical
quality factor of Qm =Ωm/γm = 5.10(3)×107 at a cryogenic temperature of T = 10K, determined
by a ring-down measurement, see [26]. The membrane is embedded in a cavity with linewidth
κ= 2π×94MHz. The vibrations of the membrane are coupled to the intracavity field via the op-
tomechanical radiation pressure interaction [7]. For our cavity, the two cavity mirrors have dif-
ferent reflectivities (r 2

1 = 0.995 and r 2
2 = 0.9999) so that most of the light leaves the cavity through

the incoupling mirror. We choose to work deep in the unresolved sideband regime κ≫ Ωm in
order to have a fast interaction of the membrane vibrations with the traveling field outside of the
cavity. In this regime, the cavity field can be eliminated from the description, allowing the op-
tomechanical interaction to be written as an interaction between the membrane vibrations and
the traveling light field outside the cavity,

Ĥ om =ħ
√

4Γm X̂ m X̂ L . (15)

Here, Γm = 4g 2
om/κ is the optomechanical measurement rate, with gom = g0

p
nc the coherently

enhanced optomechanical coupling, nc the intracavity photon number, and g0 = 2π×248(10)Hz
the single-photon single-phonon optomechanical coupling (calibration shown in [26]). The unit-
less membrane position quadrature is given by X̂ m = x̂m/(

p
2x0), with the membrane displace-

ment operator x̂m , the zero-point fluctuation amplitude x0 = √ħ/(2meffΩm), and the effective
mass meff of the membrane vibration mode. The Hamiltonian in eq. (15) is formally equivalent
to the Hamiltonian of the atomic system given in eq. (12) and the general Hamiltonian discussed
above, given in eq. (2).

4.2. Cooling experiment

First, we consider again the scaling of the different noise contributions that are stochastically
driving the mechanical oscillator. For this, we perform a cavity dynamical backaction cooling
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Optomechanical 
system

   Homodyne detection 

piezo
mirror

local
oscillator

Input light

Figure 4. The optomechanical interface: coherent input light drives an optical cavity with
a nanomechanical membrane inside, interacting with the membrane vibrations through
radiation pressure. An image of the membrane (on top) and the vibration mode of the
central defect (below) are shown as insets on the right. The light leaving the cavity is
measured by homodyne detection. For this, it is combined with a local oscillator which is
derived from the driving laser. The phase between the driving beam and the local oscillator
can be controlled with a mirror glued on a piezo crystal. By changing this phase, any
superposition between the amplitude quadrature X̂ L and the phase quadrature P̂ L of the
output light can be detected.

experiment, in which the optomechanical cavity is driven with a red-detuned laser beam [7].
Unlike in the experiments with the atomic spin described above, the light not only drives the
membrane vibrations by the quantum backaction of the light, but also reduces its mechanical
phonon occupation by providing a viscous damping force. In the unresolved sideband regime,
the PSD of the quantum backaction force in an off-resonantly driven cavity is given by

Sqba(ω) = g 2
om

2

(
κ

(κ/2)2 + (∆c +ω)2 + κ

(κ/2)2 + (∆c −ω)2

)
, (16)

where ∆c is the detuning of the driving light from the cavity resonance. While the PSD of the
thermal noise of the environment is not affected by the interaction with the light and is simply
given by Sth = γm(nth + 1/2), the mechanical susceptibility has to be modified χ(ω) → χeff(ω)
due to the linewidth broadening and the frequency shift caused by the interaction with the
light [7]. The frequency is shifted byΩm →Ωm +δΩm with δΩm = 2g 2

om∆c /(κ2/4+∆2
c ), while the

membrane linewidth is changed to γm → γm+γm,opt with γm,opt =−4g 2
om∆cκΩm/(κ2/4+∆2

c )2 [7].
By integrating the mechanical displacement PSD SXm Xm over the resonance of the membrane,
the effective occupation of the membrane oscillator can be calculated,

nm + 1

2
= var(X̂ m) = 2

∫ ∞

0
SXm Xm (ω)

dω

2π
= 1

2
+ncool +

Sqba(Ωm)

γm +γm,opt
, (17)

where the optically cooled membrane has an effective occupation of ncool = nthγm/(γm +γm,opt)
phonons thanks to the cooling induced by the red-detuned beam, plus a residual heating nqba ≈
Sqba(Ωm)/γm,opt due to the radiation pressure shot noise of the light.

The mechanical occupation can be measured by performing homodyne detection on the
beam reflected from the cavity. The data for such a cooling experiment in a 10 K environment
are shown in Figure 5(a). We carefully calibrated the homodyne detection chain to convert the
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Figure 5. (a) Cavity dynamical backaction cooling experiment. The membrane phonon
occupation is measured for a red-detuned light beam driving the cavity with different
powers. Increasing the optical power decreases the phonon occupation due to thermal
noise (dash-dotted line) but increases the contribution from backaction noise (dashed
line). For large optical driving powers, the cooling and backaction driving effects balance
and the membrane occupation approaches the theoretical limit of nm = 11 phonons. The
quantum cooperativity is unity for an input power of 224(20)µW and is about Cm = 7.6(7)
for the highest applied input power. (b) Spectrum of the light after the interaction with the
membrane. The ponderomotive squeezing of the light shows up as a reduction of the noise
below the shot noise floor shown in black. The blue line is a fit using eq. (52). The fit yields
a linewidth of γm,opt = 2π×5.2kHz and a measurement rate of Γm = 2π×47(2)kHz, which
gives a quantum cooperativity of Cm = 9.0(4).

detected signal into an occupation number, as described in [26,32]. As the cooling power is
increased, the number of phonons in the membrane mode decreases because the membrane
is cooled via dynamical backaction. At the same time, the quantum noise on the light drives
the membrane, limiting the cooling at high optical powers. In the unresolved sideband limit
this prevents ground-state cooling and limits the phonon occupation to a minimum of nm =
κ/(4Ωm) ≃ 11 phonons. We observe that when the cooling beam power is increased, the phonon
occupation levels off at 11 phonons, which is an experimental signature for the operation of the
system at high optomechanical quantum cooperativity. In our experiment, the regime of high
cooperativity is entered at a driving power of about 224(20)µW, above which the drive due to
backaction noise exceeds the drive due to thermal noise. For the highest applied laser power, we
reach an optomechanical quantum cooperativity of Cm = 7.6(7).

4.3. Ponderomotive squeezing experiment

The optomechanical system in the quantum regime can also be used to squeeze light. As shown
in eq. (10), the squeezing is only observed if the backaction noise is the main driving source of
the membrane oscillator. As described above for the general case and for the spin oscillator, in
the regime of large cooperativity the driving of the membrane is mainly due to shot noise on the
X̂ L-quadrature of the light. This noise is then also mapped onto the P̂ L-quadrature of the light,
effectively correlating the amplitude and the phase quadratures. If we perform this experiment,
we measure squeezing below shot-noise by −1.48(1)dB after the interaction with the membrane,
as shown in Figure 5(b). To fit the data, we have to take into account that the cavity is driven with
a red-detuned beam (∆c = −2π× 40(2)MHz, P = 2.00(2)mW), which provides some cooling of
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Table 1. Main parameters of the two systems in comparison. The coupling strength g [in
s−1/2] is defined in the Hamiltonian Ĥ int =ħg Q̂L,i Q̂ j given in eq. (2).

Spin-light interface Optomechanical interface

Coupling mechanism Faraday interaction Radiation pressure

Coupling strength
g =p

4Γ
g =α1

√
|Sx ||F x |

Γs = 2π×812(24)Hz

g = 4g0
p

ncp
κ

Γm = 2π×47(2)kHz
Decoherence rate γth γth ≈ γs /2 = 2π×705(10)Hz γth ≈ γm nm = 2π×5.21(3)kHz

Parameters
α1: polarisability constant
2|Sx | =Φ: photon flux
|F x | = 2Na : collective spin length

g0: single-photon coupling rate
|nc |: number of cavity photons
κ: cavity linewidth

the membrane but at the same time mixes the XL and the PL quadratures of the light. The model
for the fit is therefore more sophisticated than the one in eq. (10) and is given in Appendix B. The
optomechanical quantum cooperativity obtained from this fit is Cm = 9.0(4).

5. Conclusion and outlook

We have reported experiments with a spin-light and an optomechanical quantum interface in
the quantum-noise-limited regime. Both systems, although physically very different, can be
described in a common framework of a harmonic oscillator whose displacement is coupled to a
quadrature of the light field. The main parameters of the two systems are summarised in Table 1.
As the coupling strength is increased, we observe that the light-matter interfaces enter the regime
of large quantum cooperativity, where the quantum fluctuations of the light are the dominant
driving force of the oscillator. Furthermore, the interaction with the oscillator correlates the
quantum noise of orthogonal quadratures of the light field, which generates optical squeezing. By
observing the squeezing in suitable optical quadratures after the interaction with the atomic spin
and the nanomechanical membrane, respectively, we certify the operation of the two interfaces
with large quantum cooperativity. These concepts are very general and can be transferred to
other systems featuring a light-matter quantum interface, such as various solid-state emitters or
atoms in optical cavities.

The two quantum interfaces demonstrated in our experiment open up the possibility to
implement various quantum protocols. A particularly interesting perspective is to use the
light to mediate a coupling between the atomic spin and the membrane oscillator over a long
distance [6,20,33,34], exploiting their conceptual similarity even further. For such couplings
to operate in the quantum coherent regime, the individual light-matter interfaces have to be
quantum noise limited [35].

A light-mediated Hamiltonian coupling between the atomic spin and the mechanical oscilla-
tor, which has so far only been realized in a thermal-noise-dominated regime [20,34], can be gen-
erated by coupling the two systems with the light in a looped geometry [35], with a phase shift ofπ
applied to the quantum signal between the two interactions. In this case, an effective Hamilton-
ian coupling between the spin and the membrane oscillator of the form Ĥ hyb = 2ħghyb X̂ m X̂ s can
be engineered [35]. Here, the coupling rate is determined by the product of the measurement
rates of the individual systems to the light, ghyb = (4ΓmΓs )1/2. The cooperativity of the hybrid
spin-membrane coupling is given by

Chyb =
4g 2

hyb

γs,totγm,tot
, (18)
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where the total decoherence rates γi ,tot include both thermal noise driving and decoherence
due to backaction noise, γi ,tot = γi ,th +Γi ,ba/2. In a looped geometry, backaction noise can be
canceled [35], and the hybrid cooperativity is bounded by the product of the cooperativities of
the individual systems, Chyb < 16CmCs . By coupling the two quantum-noise-limited interfaces
described in this work, it thus becomes possible to generate quantum coherent interactions
between the spin and the membrane. This can be used e.g. to entangle the two systems over
a distance, or to use the spin ensemble as a coherent controller for the mechanical oscillator [34],
opening up many exciting opportunities for quantum science and technology.

Appendix A. From the Langevin equations to the power spectral density

In this appendix, we present how we calculate the PSD starting from the Langevin equations. The
Langevin equations (3) and (4) can be written in the frequency domain as

X̂ (ω) =χ(ω)
[√

2γP̂ th(ω)− g X̂ L(ω)
]

, (19)

where the system’s susceptibility is given by χ = Ω/(Ω2 −ω2 − iγω). Here, we have defined the
Fourier transform of an operator as

Ô(ω) = 1p
2π

∫ ∞

−∞
Ô(t )eiωt dt , (20)

Ô(t ) = 1p
2π

∫ ∞

−∞
Ô(ω)e−iωt dω. (21)

In order to calculate the system’s PSD, we have to consider the noise properties of the thermal
bath and the input light. For here, we assume that we have〈

X̂ ν(ω)X̂ µ(ω′)
〉= 〈

P̂ν(ω)P̂µ(ω′)
〉= (

nν+ 1

2

)
δ(ω+ω′)δνµ, (22)〈

X̂ ν(ω)P̂µ(ω′)
〉=−〈

P̂ν(ω)X̂ µ(ω′)
〉= i

2
δ(ω+ω′)δνµ, (23)

where the indices are given by µ,ν ∈ {L, th}. For the thermal noise term, nth is the thermal
occupation of the environment, while for the optical field nL = 0. For an operator with stationary
statistics, the Wiener–Khinchin theorem can be applied to obtain the PSD [19,23]

SX X (ω) =
∫ ∞

−∞
〈

X̂ (t )X̂ (0)
〉

eiωt dt

=
∫ ∞

−∞
〈

X̂ (ω)X̂ (ω′)
〉

dω′

=
∫ ∞

−∞
χ(ω)χ(ω′)

[
2γ

〈
P̂ th(ω)P̂ th(ω′)

〉+ g 2〈X̂ L(ω)X̂ L(ω′)
〉]

dω′

= ∣∣χ(ω)
∣∣2

[
2γ

(
nth +

1

2

)
+ g 2

2

]
,

(24)

which is the expression given in eq. (5).

Appendix B. Ponderomotive squeezing of the membrane in a cavity using a red-
detuned beam

The linearised Hamiltonian describing the optomechanical interaction between the membrane
and the cavity photons is given by [7]

Ĥ om =−ħg0
p

nc
p

2X̂ m(ĉ + ĉ†), (25)
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where nc = 〈ĉ†ĉ〉 is the average number of photons in the cavity. From this Hamiltonian, the
following equations of motion can be derived:

∂t X̂ m =Ωm P̂ m , (26)

∂t P̂ m =−Ωm X̂ m −γm P̂ m −p
2(g∗

omĉ + gomĉ†)+√
2γm P̂ th, (27)

∂t ĉ =
(
i∆c − κ

2

)
ĉ −p

κηâ(in) − i
p

2gom X̂ m . (28)

Here, we have defined a general optomechanical coupling strength gom = g0αL
p
κη/(κ/2− i∆)

which takes the phase difference between the incoming field and the cavity field due to the cavity
detuning into account. Furthermore, the cavity incoupling efficiency is given as η= κ1/κ. In the
frequency domain, the cavity field is given by

ĉ(ω) =−χc (ω)
(p
κηâ(in)(ω)+ i

p
2gom X̂ m(ω)

)
, (29)

where the cavity susceptibility is defined as

χc (ω) = 1

κ/2− i(ω+∆c )
. (30)

The ponderomotive squeezing affects the outgoing light, thus we derive the outgoing light
quadratures. The outgoing light is given by the incoming field plus the effect of the cavity on
the light

X̂ (out)
L = X̂ (in)

L +p
κηX̂ c , (31)

P̂ (out)
L = P̂ (in)

L +p
κηP̂ c , (32)

with the incoming light quadratures defined as

X̂ (in)
L = 1p

2
(â(in)† + â(in)), P̂ (in)

L = ip
2

(â(in)† − â(in)), (33)

and the cavity quadratures as

X̂ c = 1p
2

(ĉ† + ĉ), P̂ c = ip
2

(ĉ† − ĉ). (34)

Plugging the expression from above in the equation for the outgoing light quadratures, we
obtain

X̂ (out)
L (ω) =−κηξ−(ω)P̂ (in)

L + (
1−κηξ+(ω)

)
X̂ (in)

L −ηκR−(ω)g0αL X̂ m(ω), (35)

P̂ (out)
L (ω) = κηξ−(ω)X̂ (in)

L + (
1−κηξ+(ω)

)
P̂ (in)

L −ηκR+(ω)g0αL X̂ m(ω), (36)

where we defined

ξ+(ω) = χc (ω)+χ∗c (−ω)

2
, (37)

ξ−(ω) = i
χc (ω)−χ∗c (−ω)

2
, (38)

R+(ω) = (
χc (0)χc (ω)+χ∗c (0)χ∗c (−ω)

)
, (39)

R−(ω) = i
(
χc (0)χc (ω)−χ∗c (0)χ∗c (−ω)

)
. (40)

The mechanical quadrature can be rewritten in the frequency domain as

X̂ m(ω) =χm,eff(ω)
[
ηκαL g0

(
R+(ω)X̂ (in)

L +R−(ω)P̂ (in)
L

)+√
2γm P̂ th

]
, (41)

where the effective susceptibility is given by

χm,eff(ω)−1 = 1

Ωm

(
Ω2

m −ω2 − iγmω−4|gom|2Ωmξ−(ω)
)
. (42)
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The homodyne detection signal is given by [32]

D̂(ω) = cos(θ)X̂ (out)
L (ω)+ sin(θ)P̂ (out)

L (ω), (43)

where θ is the homodyne angle that allows us to adjust the detected light quadrature. Expressing
D̂(ω) in terms of the input light quadratures and the thermal drive of the membrane, we obtain

D̂(ω) = X̂ (in)
L

[
cos(θ)−κη(

cos(θ)ξ+(ω)− sin(θ)ξ−(ω)
)

− (κηαL g0)2χm(ω)
(
cos(θ)R−(ω)R+(ω)+ sin(θ)R+(ω)2)]

+ P̂ (in)
L

[
sin(θ)−κη(

cos(θ)ξ−(ω)+ sin(θ)ξ+(ω)
)

− (κηαL g0)2χm(ω)
(
cos(θ)R−(ω)2 + sin(θ)R−(ω)R+(ω)

)]
+ P̂ th

[
ηκαL g0

√
2γmχm

(
cos(θ)R−(ω)+ sin(θ)R+(ω)

)]
.

(44)

As it is written here, the output light depends on the input noise of the light and the thermal noise
of the membrane. The correlators of the stochastic noise terms are given by〈

X̂ (in)
L (ω)X̂ (in)

L (ω′)
〉= 〈

P̂ (in)
L (ω)P̂ (in)

L (ω′)
〉= 1

2
δ(ω+ω′), (45)〈

X̂ (in)
L (ω)P̂ (in)

L (ω′)
〉=−〈

P̂ (in)
L (ω)X̂ (in)

L (ω′)
〉= i

2
δ(ω+ω′), (46)〈

P̂ (in)
th (ω)P̂ (in)

th (ω′)
〉= (

nth +
1

2

)
δ(ω+ω′), (47)

while the thermal noise and the optical input noise do not correlate. We can write this expression
as D̂(ω) = A(ω)X̂ (in)

L + B(ω)P̂ (in)
L + C (ω)P̂ th. The symmetrised power spectral density of the

detected field is then given by

SDD (ω) = ∣∣A(ω)
∣∣2S(in)

X X + ∣∣B(ω)
∣∣2S(in)

PP + ∣∣C (ω)
∣∣2S(th)

PP , (48)

where the individual noise power spectral densities are given by

S(in)
X X = S(in)

PP = 1

2
and S(th)

PP = nth +
1

2
. (49)

This equation is used to fit the data in Figure 5(b).

Resonantly driven cavity. Writing all the terms of eq. (48) results in a long and not very easily
understandable expression. In order to gain a intuitive understanding of the membrane PSD
given in eq. (48), we consider the limit of a resonantly driven cavity, i.e. ∆c = 0. In this case,
eq. (44) simplifies significantly to

D̂(ω) = X̂ (in)
L

[
cos(θ)

(
1−κηξ+(ω)

)− (κηαL g0)2χm(ω)sin(θ)R+(ω)2
]

+ P̂ (in)
L

[
sin(θ)

(
1−κηξ+(ω)

)]
+ P̂ th

[
ηκαL g0

√
2γmχm(ω)sin(θ)R+(ω)

]
,

(50)

which can be re-expressed as

D̂(ω) = X̂ (in)
L

[(
1−χc (ω)κη

)
cos(θ)+4g 2

omκηχm(ω)χ2
c (ω)sin(θ)

]
+ P̂ (in)

L

[(
1−χc (ω)κη

)
sin(θ)

]
+ P̂ th

[
2gom

p
κηχm(ω)χc (ω)

√
2γm sin(θ)

]
.

(51)

For a cavity with a very large linewidth κ≫Ωm around the membrane resonanceΩm/ω≃ 1, one
can write |χc |2 → 4/κ2. Using this, we can calculate a very simple expression for the symmetrised
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power spectral density. Here, we apply the Lorentzian approximation and evaluate the power
spectral density at ω≈Ωm to get

SDD = 1

2
− (1−η)η

(
κ

2

)2∣∣χc (ω)
∣∣2

+4g 2
omηκ

∣∣χm(ω)
∣∣2∣∣χc (ω)

∣∣4

·
[
γmκ(1−η)(∆c −ω)+2

(
(2η−1)

(
κ

2

)2

+ (∆−ω)2
)
(ω−Ωm)

]
sin(θ)cos(θ)

+8g 4
omκ

2η2∣∣χm(ω)
∣∣2∣∣χc (ω)

∣∣4 sin2(θ)

+8γm,thg 2
omκη

∣∣χm(ω)
∣∣2∣∣χc (ω)

∣∣2 sin2(θ).

(52)

If we neglect the losses η= 1, this simplifies to

SDD = 1

2
+8g 2

omκ
∣∣χm(ω)

∣∣2∣∣χc (ω)
∣∣2(ω−Ωm)sin(θ)cos(θ)

+8g 4
omκ

2∣∣χm(ω)
∣∣2∣∣χc (ω)

∣∣4 sin2(θ)

+8γm,thg 2
omκ

∣∣χm(ω)
∣∣2∣∣χc (ω)

∣∣2 sin2(θ).

(53)

If we further assume that the cavity linewidth is large, κ≫ ω, we can simplify κ
∣∣χc (ω)

∣∣ → 2 and
get

SDD = 1

2
+8Γm

∣∣χm(ω)
∣∣2

[
(ω−Ωm)sin(θ)cos(θ)+ (Γm +γm,th)sin2(θ)

]
. (54)

This is the expression given in eq. (10).
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