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QUANTUM SENSING

Multiparameter estimation with 
an array of entangled 
atomic sensors
Yifan Li1†, Lex Joosten1, Youcef Baamara2, Paolo Colciaghi1,  
Alice Sinatra2*, Philipp Treutlein1*, Tilman Zibold1 

In quantum metrology, entangled states of many-particle 
systems are investigated to enhance measurement precision of 
the most precise clocks and field sensors. Whereas single-
parameter quantum metrology is well established, joint 
multiparameter estimation poses conceptual challenges and has 
been explored only theoretically. We experimentally 
demonstrated multiparameter quantum metrology with an array 
of entangled atomic ensembles. By splitting a spin-squeezed 
ensemble, we created an atomic sensor array featuring 
intersensor entanglement that can be flexibly configured to 
enhance measurement precision of multiple parameters jointly. 
Using an optimal estimation protocol, we achieved substantial 
gains over the standard quantum limit in key multiparameter 
estimation tasks, thus grounding the concept of quantum 
enhancement of field sensor arrays and imaging devices.

Atomic precision sensors, such as atomic clocks (1), magnetometers 
(2), and inertial sensors (3), play an important role in science and 
technology. Many state-of-the-art devices are limited by the intrinsic 
quantum noise associated with measurements on a finite number of 
sensor particles, giving rise to the standard quantum limit (SQL) (4). 
Quantum metrology aims at reducing this noise by harnessing en-
tanglement between the particles (5), promising substantial improve-
ments for sensor applications in fundamental physics and technology 
(6). Quantum metrology of a single parameter, such as the frequency 
of an atomic transition or a single component of a magnetic field, has 
been demonstrated in proof-of-principle experiments (7–13) and 
recently also in metrology-grade setups (14–16).

Multiparameter estimation is a new frontier in quantum metrology 
that is receiving great interest (17–23) because of its relevance for vec-
tor field sensors (24, 25), imaging devices (22, 26, 27), sensor arrays 
(18, 28–33), and clock networks (34). Whereas, for single-parameter 
quantum metrology, there is a clear theoretical framework (5), the joint 
estimation of multiple parameters with quantum sensors is surpris-
ingly complex from a conceptual point of view. For parameters en-
coded by noncommuting Hamiltonians, the incompatibility of optimal 
measurements poses a fundamental challenge (19, 24, 35, 36, 37). For dis-
tributed sensing with parameters encoded by commuting Hamiltonians 
on spatially separated sensor modes, intriguing questions arise regard-
ing the optimal strategy and the possible enhancements provided by 
intersensor entanglement (18, 28–33). Further challenges arise from 
constraints on sensor control and detection and the presence of (pos-
sibly correlated) technical noise (31, 38). Owing to the complexity of 
the problem, statements about quantum gain in multiparameter 
estimation generally depend on the framework adopted. Although 
these questions have been intensely investigated theoretically, experi-
ments are only beginning to explore this field (39–42).

A paradigmatic system for multiparameter quantum sensing is an 
array of spatially separated atomic ensembles that can be individually 
controlled and detected (18, 27, 29, 33), such as in an atomic field imag-
ing sensor (43, 44) or optical lattice clock (16). The parameters are 
local spin rotation angles imprinted on the ensembles and the task is 
to estimate these parameters or certain nonlocal linear combinations 
of interest. Previous experiments demonstrated quantum gain in 
estimating a single parameter combination with distributed entangle-
ment (40, 41). The scenario considered in this work is a true multi
parameter estimation problem, where each sensor reveals a local 
parameter value in each experimental run, and the question is how 
entanglement within each ensemble and between the ensembles can 
enhance measurement precision in multiple parameters jointly. This 
may require adapting the input state dynamically within the given set 
of resources (27). These questions have recently attracted considerable 
theoretical interest, and different sensing protocols have been pro-
posed (18, 27, 29, 32, 33), but experimental demonstrations of multi-
parameter estimation with entangled atomic ensembles are lacking.

In this work, we used an array of atomic Bose-Einstein condensates 
(BECs) whose collective spins are entangled with each other and can 
be individually manipulated and detected to demonstrate quantum 
gain in joint multiparameter estimation of a set of parameters 
imprinted on the array and their nonlocal linear combinations. Our 
experiment shows that intersensor entanglement enhances the per-
formance of sensor arrays (18, 29) and constitutes a notable proof of 
concept for quantum-enhanced field sensors and imaging devices (27).

Joint multiparameter estimation
Consider an array of M quantum sensors operating in parallel 
(18, 27, 29), each consisting of an ensemble of Nk two-level atoms that 
form a collective spin (5) Sk, with k = 1,…,M (Fig. 1). Each sensor is 
located at a distinct spatial position rk and measures the local value 
of an external field B(rk), which is imprinted as a rotation of angle 
θ
k
∝ B

(
r
k

)
 onto the sensor spin. The collection of parameters θ = 

(θ1,…,θM) thus provides discrete sampling of the spatial distribution 
of B(r), enabling reconstruction of the field profile. Here, B is a mag-
netic field, but other quantities such as electric fields or gravity can be 
imprinted in a similar way through evolution with suitable Hamiltonians. 
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Fig. 1. Array of entangled atomic sensors for multiparameter estimation. An array 
of M sensors, each consisting of a collective spin Sk of Nk two-level atoms, is used to 
determine M parameters θ1, θ2,…,θM that are encoded on the sensors as local spin 
rotations. The sensor spins are prepared by coherently splitting a two-component BEC 
in a spin-squeezed state, resulting in entanglement between atoms within each sensor 
and between different sensors. In combination with individual spin rotations and 
detection, the entanglement enables a statistical gain in the determination of the M 
parameters compared with the case without quantum correlations.
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The sensors are read out by measuring suitable components of each 
Sk, and the whole experiment is repeated μ times. The goal of multi-
parameter quantum metrology is to jointly estimate with the highest 
possible precision the local parameters θk or certain nonlocal combina-
tions n ⋅ � = n

1
θ
1
+ … + n

M
θ
M

, where n = (n1,…,nM) is a unit vector of 
coefficients determining the specific linear combination of interest. 
For example, in the case of M = 2 ensembles, n+ = (1, 1)∕

√
2 gives a mea

surement of the sum θ+ =
�
θ1+θ2

�
∕
√
2 and n− = (1, −1)∕

√
2 a mea

surement of the difference θ− =
�
θ1−θ2

�
∕
√
2 of the parameters, 

corresponding to the average field and the field gradient, respectively.
In such a multiparameter estimation task, the optimal management 

of resources is a complex problem (18, 20, 21, 22, 28, 29, 30), and the 
expected performance depends on the scenario considered. In accor-
dance with the experimental constraints and capabilities, we consider 
the total number of atoms N =

∑M

k=1
N

k
 and the total number of prepara-

tions μ of the system as fixed resources and assume that every sensor 
can be manipulated and measured individually. The performance of 
such a sensor array has been theoretically analyzed (18, 29), showing 
that entanglement between the atoms in each ensemble as well as 
entanglement between the different ensembles can enhance the mea-
surement precision compared with the case of nonentangled atoms. 
Moreover, it has been shown that entanglement both within and be-
tween the ensembles is necessary to achieve the highest performance 
in estimating a single nonlocal parameter combination (18).

Multiparameter squeezing (29), also called multimode squeezing 
in other contexts (40), is a particularly promising strategy for quantum 
enhancement in sensor arrays. Similar to spin-squeezing of a single 
atomic ensemble (45, 46), which has been the most successful approach 
to quantum metrology with atomic sensors (5), it is comparatively 
simple to generate, compatible with standard interferometric se-
quences and detection methods, and robust against decoherence. A 
multiparameter squeezed state features quantum correlations of the 
sensor spins Sk that squeeze the noise in the measurement of specific 
combinations of the parameters θk. For nonlocal parameter combina-
tions, this requires nonlocal squeezing in a corresponding super-
position of sensor modes. For example, if the whole sensor array is 
prepared in a squeezed state of the global spin S =

∑M

k=1
S
k
 and the 

atoms are equally distributed, that is Nk = N/M, the linear combination 
corresponding to the sum 

�
θ1+ … +θ

M

�
∕
√
M of all parameters can 

be measured with quantum gain, whereas all other orthogonal 

combinations will be measured with a statistical uncertainty greater 
than that for independent atoms [see (47), section 3.1]. However, as we 
show theoretically and experimentally, local rotations of the individual 
sensor spins Sk can reconfigure the quantum correlations between the 
sensors, allowing us to achieve quantum enhancement for multiple 
parameters jointly, using global squeezing of the initial state as the 
resource (27). Moreover, a suitable distribution Nk of atoms into the 
M sensors in combination with local rotations allows us to enhance 
the measurement of any parameter combination n ⋅ � of interest 
(27, 29, 47).

Preparation of entangled sensor array
In our experiment, the atomic sensor array was realized by spatially split-
ting a spin-squeezed BEC of N ≈ 1450 87Rb atoms (10) into the M en-
sembles using coherent splitting techniques similar to those in (48), 
which we extended here to enable splitting into more than two 
ensembles and to adjust the splitting ratios as desired while maintain-
ing full coherent control (47).

In each ensemble k, the atoms were prepared in a superposition 
of hyperfine ground states �k↑⟩ and �k↓⟩ that define the collective 
spin (5) Sk. Arbitrary spin rotations could be applied to each sensor 
individually by coupling the states with resonant microwave and 
radio frequency magnetic fields. By absorption detection of the atom 
numbers N

k↑ and N
k↓ in the two states, we could directly measure 

N
k
= N

k↑ + N
k↓ and the collective spin component Sz

k
=
(
N

k↑−N
k↓

)
∕2.

As a source of entanglement, we prepared the initial BEC in a spin-
squeezed state of the global spin S, where all atomic spins are en-
tangled with each other (5). Using controlled atomic collisions on an atom 
chip (10), we prepared states with a Wineland spin-squeezing param-
eter ξ2 = NVar

�
S
z

�
∕ ��⟨Sx⟩��

2
≈ −6.5(2) dB and spin length ⟨S

x
⟩ = CN ∕2 

with contrast C = 0.94(1). Upon spatial splitting into the sensor clouds 
(47), the spin-squeezing results in Einstein-Podolsky-Rosen entangle-
ment between the sensor spins Sk, as illustrated in Fig. 1 and as we 
have demonstrated previously for two clouds (48). In this work, we 
extended this technique to multiple ensembles and used it as a re-
source for multiparameter quantum metrology.

Joint estimation with two entangled sensors
We first demonstrated joint multiparameter estimation with two en-
tangled atomic sensors (Fig. 2). The ensemble was symmetrically split, 

A

B

C D E F

Fig. 2. Joint estimation of two parameters with two entangled atomic sensors. (A) Parameters θ1 and θ2 are imprinted on the two sensor spins. (B) Absorption image of 
the two atomic clouds with N1 ≈ N2. (C) Correlation plot of simultaneous measurements of θ1 and θ2 showing strong correlations owing to the intersensor entanglement. Two 
datasets are shown for two different values of θ2, each with 1200 repetitions (purple and blue, respectively). (D) Histograms obtained from the measurements in (C) for θ2 (top), 
θ+ (middle), and θ− (bottom). The measurement of θ+ exploits the intersensor entanglement, resulting in the smallest variances. Dashed lines represent the distribution for an 
ideal coherent spin state. (E) Correlation plot similar to (C) but for measurements with a π pulse applied to S2 prior to parameter imprinting. (F) Histograms for the data in (E). 
Now, the measurement of θ− shows minimal variance owing to the entanglement.
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N1 ≈ N2 ≈ N ∕2, and the sensor spins were initially polarized along 
S
x

k
. The parameters θ1 and θ2 were encoded as small angle rotations 

of the two sensor spins around the y axis. By measuring the atom 
numbers in all four states involved, the parameters could be directly 
estimated as θ

k
≈ S

z

k
∕
�
S
x

k

�
=
�
N

k↑−N
k↓

�
∕C

k
⟨N

k
⟩. Figure 2C shows 

such simultaneous measurements of θ1 and θ2, one dataset with and 
one without a shift applied to θ2. Local entanglement in each en-
semble reduces the variance of both θ1 and θ2 by −1.3(2) dB below 
the SQL, as can be seen in the top histograms in Fig. 2D and in Fig. 3C 
(pink and blue points). However, such an estimation strategy does 
not exploit the entanglement between the sensors, which manifests 
itself in strong correlations between the measurement outcomes of 
θ1 and θ2.

To exploit the intersensor entanglement, we estimated the nonlocal 
parameter θ+ =

�
θ
1
+ θ

2

�
∕
√
2 , which is sensitive to the squeezed 

global spin component Sz = S
z

1
+ S

z

2
 and can be estimated with a vari-

ance of Var
(
θ+

)
= 2ξ2 ∕μN  using N atoms and μ repetitions of the 

experiment [see (47), section 3]. Compared with the SQL obtained with 
unentangled atoms in an ideal coherent spin state, VarSQL

(
θ±

)
= 2∕μN, 

the full enhancement ξ2 provided by the spin-squeezed state can be 
recovered in this way. For the data in Fig. 2C, we found that Var

(
θ+

)
 

was reduced by −5.6(2) dB below the SQL, which is evident in the 
narrow histogram in Fig. 2D and quantitatively shown in Fig. 3C (teal 
square points). The orthogonal linear combination θ− =

�
θ1−θ2

�
∕
√
2, 

on the other hand, which we can also access owing to the individual 
readout of the sensors, was estimated from the same data with a vari-
ance Var

(
θ−

)
≈ 2∕μNC2, slightly above the SQL.

Alternatively, we can apply a local π rotation to invert the sign of Sz
2
 

prior to imprinting the parameters. This transfers the quantum cor-
relations between the sensors into the antisymmetric mode so that 
S
z

1
− S

z

2
 is squeezed. Now, θ− can be estimated with Var

(
θ−

)
= 2ξ2 ∕μN , 

whereas Var
(
θ+

)
≈ 2∕μNC2 remains above the SQL. Figure 2, E and 

F, show data taken in this way. From these measurements, we obtained 
an improvement of −5.6(2) dB below the SQL in Var

(
θ−

)
, as shown 

in Fig. 3C (violet square points).
Our strategy to estimate both θ+ and θ− with quantum enhancement 

was to alternate between these two settings, performing μ/2 measure-
ments with and μ/2 without the π rotation of S2, respectively, so that 
the overall resources are unchanged. To fully exploit the information 
provided by both sets of measurements, we estimated both θ+ and θ− 
in each of the two settings, resulting in four estimates that we com-
bined with appropriate statistical weights, as discussed in (47), sec-
tion 3.2. This allowed us to jointly estimate θ+ and θ−, theoretically 
with identical uncertainties Var

(
θ±

)
=

4

μN

ξ2

1+C2ξ2
. With respect to the 

SQL, the gain here is 2ξ2

1+C2ξ2
≈ 2ξ2 for ξ2 ≪ 1. Because the estimators 

for 
(
θ1, θ2

)
 are orthonormal linear combinations of 

(
θ+, θ−

)
, they can 

be obtained with the same variances Var
(
θ1,2

)
= Var

(
θ±

)
 from the same 

dataset. Figure 3 shows experimental data for such joint estimation of 
the local parameters θ1 and θ2, using the nonlocal squeezed state as a 
resource for quantum enhancement. The observed improvement be-
yond the SQL was −3.6(2) dB for θ1 and −3.5(1) dB for θ2 (Fig. 3C). 
Theoretically, we expected −4.3(2) dB given the initial squeezing of 
ξ2 = −6.5(2) dB and a contrast of C = 0.94(1), in good agreement with 
the experiment, given that we did not subtract any technical noise (47).

The variances Var
(
θ1,2

)
 that we obtained with our protocol equal 

the harmonic average σH of the eigenvalues of the covariance matrix 
Cov

(
θ
k
, θ

l

)
 of the local estimators θ

k
= S

z

k
∕
⟨
S
x

k

⟩
 in the initial, sym-

metrically split, spin-squeezed state. The harmonic average is smaller 
than or equal to the arithmetic average corresponding to the trace of 
the covariance matrix, and we identified it here as the relevant figure 
of merit [see (47), sections 3.2 and 3.3].

A

B

C D

Fig. 3. Joint estimation of two local parameters enhanced by nonlocal squeezing. (A) Measurement results of θ+ (teal) and θ− (violet) for different applied rotations θ2. Error 
bars, standard deviation (SD) of measurement outcomes; solid lines, linear fit to SD; shaded areas, SQL for an ideal coherent spin state. (B) Joint estimation of θ1 (orange) and θ2 
(green) from properly weighted measurements of θ+ and θ−, as described in the text, with error bars and solid lines indicating SD as in (A). Dashed lines, SD obtained if intersensor 
entanglement is ignored; shaded areas, SQL. (C) Comparison of quantum gains for estimating θ1 and θ2 using different strategies: Unentangled atoms (gray and light gray), local 
measurements ignoring intersensor entanglement (pink and blue), and joint estimation using nonlocal entanglement (orange and green). Solid lines indicate the corresponding 
theoretical expectations. The square points in teal and violet show the quantum gain for estimating only θ+ or only θ−, respectively. The teal line represents initial squeezing. All error 
bars represent standard errors of the mean. (D) Histograms of the measurements of θ1 and θ2 at an applied θ2 = 0 using the same colors as in (C). The top histograms show results 
for unentangled atoms. The histograms in the middle and bottom rows show data from the same experimental runs with entangled atoms. In the middle row, local estimators only 
make use of local entanglement within each sensor. In the bottom row, joint estimation also makes use of the nonlocal entanglement between the sensors.
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For an ideal spin-squeezed state with a large number of atoms, it 
can be further shown that σH reaches the harmonic average is the ei-
genvalues of (μF)−1, where μ is the number of system preparations, and 
F is the multiparameter quantum Fisher information matrix. This 
shows that this strategy, which is demonstrated in this work experi-
mentally, is the optimal strategy for the resources at hand (a spin-
squeezed state split symmetrically between the sensors) in that it 
saturates the corresponding Cramer-Rao bound [see (47), section 3.3].

In certain measurement tasks, only a single linear combination of 
local parameters n ⋅ � is of interest, such as in field gradiometry or, 
more generally, in measuring a particular multipole moment or 
Fourier component of a field with a sensor array. In this case, the 
optimal measurement configuration requires a specific distribution 
of resources to the sensors (49), which, in our case, amounts to a 
particular distribution of local atom numbers Nk (47). We experimen-
tally demonstrated this for the case of two sensors and different dis-
tributions of atoms. In the ideal case, this strategy allows exploitation 
of the full enhancement ξ2 provided by the initial spin-squeezed state. 
In the experiment, we obtained about −5.5-dB enhancement for all 
investigated nonlocal parameter combinations (fig. S2).

More than two entangled sensors
We extended our multiparameter metrology scheme to larger sensor 
arrays, which raised fresh conceptual questions on the optimal use 
of the entanglement in the nonlocal squeezed state. For M sensors 
containing Nk = N/M atoms each, estimating the parameters (θ1, 
θ2,…,θM) with a globally squeezed state, the question arose as to what 
sensor configurations should be prepared, i.e., which of the sensor 
spins should be subject to π rotations prior to parameter imprinting. 
We can show that the estimation strategy based on the Hadamard 
matrix of order M, whose elements ±1 define which sensor spins 
should be rotated, is optimal (27), as discussed in (47), section 3.3. 
However, Hadamard matrices can only exist for dimensions one, two, 
and multiples of four. For other dimensions, we must resort to a 
truncated version of the next-higher Hadamard matrix, whose rows 

define the sensor configurations. The simplest case that demon-
strates this concept is M = 3, where four different configurations of 
the sensor array have to be prepared to jointly estimate the three local 
parameters (θ1, θ2, θ3) in an optimal way, corresponding to the rows 
of a Hadamard matrix of order four with one column truncated. The 
theoretically expected uncertainty is Var

(
θ
k

)
=

M

μN
⋅

Mξ2

1+ (M−1)C2ξ2
, where 

the first factor is the SQL, and the second factor the quantum gain, 
as discussed in (47), section 3.4.

In Fig. 4, we present data demonstrating joint multiparameter es-
timation with M = 3 entangled atomic sensors. We split the spin-
squeezed BEC into three clouds with N1 = 630(30), N2 = 420(20), and 
N3 = 620(30), retaining −4.9(3) dB of squeezing in the global spin 
Sz = S

z

1
+ S

z

2
+ S

z

3
 after splitting (47). We prepared four different sensor 

configurations by applying local π rotations to the Sk, as indicated 
in Fig. 4B. For each configuration, we observed a quantum gain of 
around −4 dB beyond the SQL for the linear combination of parameters 
that matched the sensor configuration. For this dataset, these combina-
tions were 

(
±0.644 θ1±0.431 θ2+0.632 θ3

)
 because of the imbalance 

in Nk (47). Combining the data from all four settings, we could jointly 
estimate all three local parameters 

(
θ1, θ2, θ3

)
 with quantum gains of 

[−1.7(2), −0.8(2), −1.8(2)] dB beyond the SQL for the same overall 
resources N and μ. If we omitted any of the four prepared sensor 
configurations in the analysis, then we obtained lower quantum gains 
in all three parameters for the same overall N and μ, confirming the 
quantum advantage of four sensor configurations over three in the 
case M = 3.

Discussion and outlook
In this work, we have experimentally demonstrated quantum-enhanced 
multiparameter sensing with arrays of up to three atomic sensors. The 
theoretical analysis shows that our estimation protocol can be ex-
tended to an arbitrary number of entangled sensors. Although the 
protocol is optimal for our resources, as the number M of jointly esti-
mated parameters increases, the quantum gain for each parameter 
decreases with M, reflecting the fact that only a single collective mode 

A B

Fig. 4. Joint multiparameter estimation with M = 3 entangled atomic sensors. (A) Schematic of the three entangled sensor spins on which three local parameters are 
imprinted (top) and an absorption image of the three atomic clouds (bottom). (B) Matrix of metrological gains compared with the SQL for four different sensor preparations and 
four estimated parameter combinations. Each row corresponds to a different preparation with π pulses applied to the spins (S1, S2, S3), as indicated. Each colum corresponds to 
the estimation of a different linear combination 

(
±0.644 θ1±0.431 θ2+0.632 θ3

)
 with signs (±, ±, +), as indicated. Quantum gain is observed on the diagonal, where the 

sensor configuration matches the parameter combination.
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of the array is squeezed in each experimental run but used to enhance 
all M parameters.

An intriguing perspective for multiparameter estimation with larger 
sensor arrays is compressed sensing (27), also called multiparameter 
estimation with nuisance parameters (50, 51), where one is only inter-
ested in a subset LH of all possible nonlocal parameter combinations, 
with L

H
≪ M ≪ N . By specifically preparing sensor configurations 

that enhance the LH linear combinations of interest, substantial quan-
tum gains can be achieved, which is particularly relevant for field 
imaging and pattern recognition applications (27).

Our experiment demonstrates multiparameter estimation using 
globally squeezed states. This technique could be transferred to state-
of-the-art atomic precision sensors, such as optical lattice clocks (16), 
where entanglement between subensembles in different lattice sites 
could improve the measurement of gravitational redshifts at short 
length scales or the characterization of spatially dependent systematic 
effects. More generally, our results lay the groundwork for future dem-
onstrations of intriguing sensing schemes, such as the entanglement 
of distant atomic clocks (52), opening up possibilities to study gravi-
tational decoherence (53) and long baseline gravitational wave detec-
tion using atom interferometry (54). Furthermore, our experimental 
system with collective spins of spatially separated atomic ensembles 
entangled by one-axis twisting evolution is also well-suited for the 
realization of recent proposals for vector magnetometry (24), which 
involve simultaneous sensing of orthogonal magnetic field compo-
nents for which the Hamiltonians do not commute and the optimal 
measurements are incompatible.
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