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Zusammenfassung

Die kontrollierte Erzeugung von Verschränkung bildet die Grundlage für den noch jungen
Forschungszweig der so genannten ,,Quantentechnologien”, zu denen z. B. die Quanten-
Simulation, -Informationsverarbeitung oder -Metrologie zählen. In der Quanten-Metrologie
wird untersucht, ob vielteilchenverschränkte Zustände, wie z. B. gequetschte Spinzustände,
dazu verwendet werden können das so genannte ,,Standard-Quantenlimit” zu unterschrei-
ten. Dieses hat seinen Ursprung im Quantenrauschen, das jeder Messung an einer endli-
chen Anzahl unverschränkter Teilchen innewohnt, und begrenzt die Genauigkeit der besten
heutigen Atomuhren. Atomchips verbinden hervorragende kohärente Kontrolle ultrakalter
Atome mit einem kompakten und robusten Experimentaufbau; sie scheinen daher ide-
al geeignet für Quanten-Metrologie mit transportablen Atomuhren und -Interferometern.
Ein großer Nachteil von Atomchips ist jedoch, dass Techniken zur Kontrolle von zwische-
natomaren Wechselwirkungen, die zur Erzeugung von Verschränkung nötig sind, bisher
experimentell nicht zur Verfügung standen.

In dieser Doktorarbeit präsentiere ich Experimente, in denen wir zum ersten Mal
Vielteilchenverschränkung auf einem Atomchip erzeugen. Wir tun dies, indem wir elasti-
sche atomare Kollisionen mit Hilfe eines zustandsabhängigen Potentials kontrollieren. Wir
verwenden diese Technik um gequetschte Spinzustände eines zweikomponentigen Bose-
Einstein Kondensates zu erzeugen und zeigen, dass diese dazu verwendet werden könnten,
die Genauigkeit einer interferometrischen Messung um 2.5 dB im Vergleich zum Standard-
Quantenlimit zu verbessern.

Wir erzeugen das zustandsabhängige Potential mit Hilfe eines Mikrowellennahfeldes,
das in der Umgebung eines coplanaren Wellenleiters entsteht, welcher in unserem Atom-
chip integriert ist. Wenn ein Bose-Einstein Kondensat aus 87Rb Atomen in dieses Nahfeld
gebracht wird, verschieben sich aufgrund des AC-Zeeman-Effektes die atomaren Hyperfein-
Energieniveaus. Die starken Feldgradienten können dann dazu verwendet werden, das Mi-
nimum einer statischen magnetischen Atomfalle zustandsselektiv zu verschieben und so
ein Ensemble von Atomen, die in einer Superposition zweier Hyperfeinzustände präpariert
wurden, kohärent aufzuspalten.

Während dieses Prozesses führen nichtlineare atomare Wechselwirkungen zur Entste-
hung eines gequetschten Spinzustands. Wir können diesen Zustand tomographisch analy-
sieren, seine Wignerfunktion rekonstruieren und zeigen, dass er eine Verschränkung von
mindestens vier Teilchen aufweist.

Wir vergleichen unsere experimentellen Ergebnisse mit einer dynamischen Multimo-
densimulation, welche nicht nur atomare Bewegung und die Dynamik der internen Zustände,
sondern auch Teilchenverluste berücksichtigt, und finden gute Übereinstimmung. Darüber
hinaus verwenden wir die Resultate um technische Rauschquellen in unserem Experiment
zu identifizieren, welche die momentan mögliche Reduktion des Quantenrauschens be-
grenzen, und zeigen Wege auf, wie diese in zukünftigen Experimenten vermieden werden
können.

Unser Methode kann im Prinzip sehr starke Verschränkung erzeugen und kann in
einer Vielzahl atomarer Systeme angewendet werden, insbesondere bei Zustandspaaren,
für die keine Feshbachresonanz existiert. Wir sehen eine zukünftige Anwendung unserer
Technologie in transportablen Atomuhren und Interferometern, die jenseits des Standard-
Quantenlimits operieren. Des Weiteren ist unsere Methode ein wertvolles Werkzeug für
Experimente zur Vielteilchenverschränkung und könnte Quanteninformationsverarbeitung
auf Atomchips ermöglichen.





Abstract

The controlled generation of entanglement forms the basis for currently emerging
‘quantum technologies’, such as quantum simulation, computation and metrology. In the
field of quantum metrology, multi-particle entangled states, such as spin-squeezed states,
are investigated as a means to improve measurement precision beyond the ‘standard quan-
tum limit’. This limit arises from the quantum noise inherent in measurements on a fi-
nite number of uncorrelated particles and limits today’s best atomic clocks. Atom chips
combine exquisite coherent control of ultracold atoms with a compact and robust setup,
suggesting their use for quantum metrology with portable atomic clocks and interferom-
eters. A severe limitation of atom chips, however, is that techniques to control atomic
interactions and to generate entanglement have not been experimentally available so far.

In this thesis, I present experiments where we generate for the first time multi-particle
entanglement on an atom chip. We achieve this by controlling elastic collisional inter-
actions with a state-dependent potential. We employ this novel technique to generate
spin-squeezed states of a two-component Bose-Einstein condensate and show that they
are a useful resource for quantum metrology, as they could be used to improve an inter-
ferometric measurement by 2.5 dB over the standard quantum limit.

We create the state-dependent potential with the help of a coplanar microwave guide,
which is integrated on our atom chip. In the vicinity of this waveguide a microwave near-
field is formed. When a Bose-Einstein condensate of 87Rb is brought into this near-field,
the hyperfine energy levels of the atoms are shifted differentially due to the AC Zeeman
effect. The strong gradients in the field can be used to state-selectively shift the minimum
of a static magnetic atom trap and thus coherently split an ensemble of atoms which have
been prepared in a superposition of two internal states.

During this process, nonlinear atomic interactions lead to the formation of a spin-
squeezed state. We can tomographically analyze the produced state, reconstruct its Wigner
function, and deduce that it is at least four-particle entangled.

We compare our results with a dynamical multi-mode simulation which takes not only
the atomic motion and internal state dynamics but also particle losses into account and
find good agreement. Moreover, we use this comparison to identify technical noise sources
in our experiment, which currently limit the achieved amount of squeezing, and make
suggestions on how to eliminate them in future experiments.

Our method can in principle create a very large amount of squeezing and entanglement
and is applicable to a wide variety of atomic systems, in particular to those for which no
convenient Feshbach resonance exists. We envisage the implementation of this technique
in portable atomic clocks and interferometers operating beyond the standard quantum
limit. Furthermore, it is a valuable tool for experiments on many-body quantum physics
and could enable quantum information processing on atom chips.
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The most exciting phrase to hear in science,
the one that heralds new discoveries, is not
’Eureka!’ but ’That’s funny...’

Isaac Asimov

Introduction

Some outstanding technological advances have the power to bring about rad-
ical changes in society: think, for example, of the transistor that ushered in
the digital age in which we live today. But technological progress is always
a result of long years of diverse and thorough scientific research. Naturally,
this research has to start with investigating fundamental questions before
attention can be directed to possible applications, and in its early stages its
impact is difficult to foresee. In 1931, in two seminal papers, Alan H. Wilson
applied the band theory to explain the difference between insulators, metals,
and semiconductors and to elucidate the mechanism of conduction in semi-
conductors [1, 2]. The foundation for today’s technological marvels was laid
only sixteen years later when Bardeen, Brattain, and Shockley made their
breakthrough discovery of the transistor [3]. How could any of them have
imagined a world where we call our friends on their iPhones to arrange a
visit to the newest computer-animated 3D blockbuster movie?

Fifteen years have passed, since the experimental realization of Bose-
Einstein condensation [4, 5, 6] has opened up a new chapter in atomic physics,
allowing the study of a broad range of quantum mechanical phenomena on
a macroscopic scale. While in the first years fundamental questions, e. g.
on long-range phase coherence [7] or vortex formation [8], were investigated,
we are currently experiencing a gradual shift of research interest to possible
applications of coherent matter waves. Although far be it from me to evoke
an impact of cold atoms similar to that of semiconductors, these are clearly
exciting times for our field.

Quantum metrology

One direction researchers are pursuing is to find ways to exploit the quantum
nature of ultracold atoms. Entanglement – one of the most intriguing con-
cepts of quantum mechanics – lies at the heart of newly emerging technologies
such as quantum simulation, computation, and metrology. Particularly, the
field of quantum metrology [9, 10] has recently gotten a lot of attention from
theorists and experimentalists alike. Here, multi-particle entangled states,
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Introduction

such as spin-squeezed states, are investigated as a means to improve mea-
surement precision beyond the standard quantum limit [11]. This limit arises
from the quantum noise inherent in measurements on a finite number of
uncorrelated particles and limits today’s best atomic clocks [12].

The concept of spin-squeezed states was introduced in 1993 by Kitagawa
and Ueda [13], along with the one-axis-twisting Hamiltonian, which can be
used to produce them. The name ‘spin squeezing’ originates from the fact
that N two-level atoms can be described by an N/2 pseudo-spin, and the
fluctuations of one spin component can be reduced at the cost of increasing
the fluctuations of an orthogonal one – a concept similar to that of squeezed
light [14]. A year later, Wineland et al. [15] introduced a criterion to experi-
mentally identify spin squeezed states as a useful resource for metrology. In
2001, Sørensen et al. [16] proved that the same criterion is also an entangle-
ment witness and showed how squeezing can be generated in Bose-Einstein
condensates.

Many experiments on spin squeezing have been performed in a variety
of atomic systems since the late nineties [e. g. 17, 18, 19, 20, 21], but until
recently, none could satisfy Wineland’s criterium. Finally, in 2008, three
groups independently produced spin squeezed states in ensembles of neutral
atoms and proved that they were a useful resource for quantum metrology.
The group around Eugene Polzik performed two different experiments, in
one of which entanglement was generated between the atom’s nucleus and
electrons [22]. In the other, a quantum non-destructive (QND) measurement
was used to generate useful spin squeezing on an internal state pair of thermal
atoms [23]. At about the same time, a different kind of QND measurement
was employed by the group around Vladan Vuletic, attaining a comparable
amount of squeezing [24]. The group around Markus Oberthaler, on the
other hand, used nonlinear atomic interactions in a BEC, splitting a small
condensate with an optical lattice potential. They showed that not only the
relative number fluctuations between neighboring wells was reduced below
the shot noise limit, but also the phase coherence between the wells remained
sufficiently high. Parallel to the work in our group [25], which is presented in
this thesis, the Oberthaler group recently also showed useful spin squeezing in
a BEC on an internal state pair using a Feshbach resonance and demonstrated
a short interferometric measurement using the produced state [26]. Similarly,
the Vuletic group measured the lifetime of their squeezed state and operated
a rudimentary atomic clock with it [27].

Currently, it is still an open question as to how much spin squeezing can
improve actual interferometric measurements, but being still in the begin-
ning, it surely shows great potential. Compared to experiments on squeezed
light for example, where it took decades to achieve 10 dB of squeezing,
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progress is made much faster. Many groups are setting up new experiments
and the recent results have sparked a renewed interest of theorists, making
quantum metrology a rapid growing field in atomic physics. The knowledge
gained by this research will also be beneficial to related entanglement-based
technologies and might even provide new insights into entanglement itself.

Atom chips

Another big area of research is driven by the desire to reduce the complexity,
size, and ultimately also the cost of cold atom experiments. Only if this
is achieved will such experiments become attractive for real-life applications.
The most promising candidates today are so called atom chips [28, 29, 30, 31],
where magnetic fields produced by microfabricated wires on a substrate are
used to trap the atoms. Microfabrication allows for compact, robust and scal-
able setups with tailor-made trap geometries. The strong atom confinement
possible on atom chips facilitates evaporative cooling and thus allows shorter
cycle times and relaxed vacuum requirements. Portable and extremely robust
atom chip setups that can withstand accelerations of up to 50 g have been
demonstrated [32, 33] and key components are now commercially available
[34].

Besides these technological advantages, the ability to create complex traps
close to the chip surface has also enabled a broad range of new research. Atom
chips have been used in experiments on diverse topics such as low-dimensional
quantum gases [35], cavity quantum electrodynamics [36], atom-surface inter-
actions [37, 38, 39], and chip-based atomic clocks [40, 41] and interferometers
[42, 43]. The high degree of control over quantum states in a compact setup
makes atom chips thus perfect candidates for the implementation of quantum
technologies. A severe limitation of atom chips, however, is that techniques
to control atomic interactions and to generate entanglement have not been
experimentally available so far.

This thesis

In this thesis, I present experiments where we generate for the first time
multi-particle entanglement on an atom chip. This is achieved by controlling
elastic collisional interactions with a state-dependent microwave near-field
potential. We employ this technique to generate spin-squeezed states of a
two-component Bose-Einstein condensate and show that they could be used
to improve an interferometric measurement by 2.5 dB over the standard quan-
tum limit. We also prove that the produced state is at least four particle
entangled and reconstruct its Wigner function. Thus, the work described in
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this thesis lies at the intersection of the two endeavors of harvesting entangle-
ment for new technologies and bringing cold atom physics closer to real-life
applications.

The technological workhorse of our experiments is a coplanar microwave
guide which is integrated on our atom chip [44, 45]. In the vicinity of this
waveguide a microwave near-field is formed. When a Bose-Einstein conden-
sate of 87Rb is brought into this near-field, the hyperfine energy levels of
the atoms are shifted differentially due to the AC Zeeman effect. By tuning
the microwave frequency and power, the strong gradients in the field can be
used to state-selectively shift the minimum of a static magnetic atom trap.
Combined with good control over the internal state of the atoms, this is used
to realize a trapped atom interferometer with internal state labeling of the
interferometer arms.

While the BEC is split, atomic interactions lead to one-axis-twisting and
thus the formation of a spin-squeezed state [25]. The splitting distance and
duration are adjusted to achieve the maximum amount of squeezing possible
for our chosen experimental trap. We tomographically analyze the produced
state, reconstruct its Wigner function, and deduce the amount of entangle-
ment [46].

Since our scheme involves atomic motion as well as internal state dy-
namics, a simple two-mode model is insufficient to describe it quantitatively.
Our theoretical collaborators Alice Sinatra and LI Yun from the Laboratoire
Kastler Brossel in Paris have developed a many-body theory [47] taking both
motion and internal dynamics as well as particle losses into account and have
simulated our experiments. We compare our results with their simulations
and find good agreement. Moreover, we use the results to identify technical
noise sources in our experiment which currently limit the achieved amount
of squeezing.

Our method can in principle create a very large amount of squeezing
and entanglement and is applicable to a wide variety of atomic systems, in
particular to those for which no convenient Feshbach resonance exists. We
envisage the implementation of this technique in portable atomic clocks and
interferometers operating beyond the standard quantum limit and it could
be directly applied in chip-based atomic clocks which are currently being set
up [41]. Furthermore, it is a valuable tool for experiments on many-body
quantum physics and could enable quantum information processing on atom
chips [48].

The thesis is organized in the following way: In the first chapter, I outline
the theoretical concepts behind the tools which we use to state-selectively
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manipulate atoms on the chip. This includes the interaction of atoms with
static and oscillating magnetic fields, the standard methods to magnetically
trap atoms with microfabricated wires, and some theory on two component
Bose-Einstein condensates.

The second chapter covers the theory of atomic clocks and spin squeez-
ing. I start with the basic working principles of atomic interferometers and
clocks and derive the standard quantum limit. I then turn to the ‘one-axis-
twisting scheme’ in the two mode model and how we evolve coherent spin
states into spin-squeezed states using the state-selective potentials to tune
the wave function overlap of our two states. Finally, I briefly cover our col-
laborator’s advanced theory which takes into account motion and internal
state dynamics as well as atom losses and technical noise.

Our experimental setup is described in the third chapter, with a special
emphasis on the imaging system which enables the high atom number res-
olution needed for the detection of fluctuations at and below the standard
quantum limit.

In the fourth chapter, I present our results and compare them with
theoretical predictions. From this comparison, combined with detailed mea-
surements of technical noise in our experiment, I derive modifications of our
setup which should be implemented to improve future measurements.

Finally, I provide an outlook on future experiments possible with our
setup and our technique in general.
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Chapter 1

Bose-Einstein condensates on
atom chips

This chapter covers the basic theoretical concepts lying behind the techniques
we use to manipulate ultracold atoms in our experiment. I start with the
interaction between atoms and electromagnetic fields, then briefly cover the
basic principles of the atom chip, and finally discuss Bose-Einstein conden-
sation of a two-component gas.

1.1 Atom-field interaction

In our experiment, we use light, static magnetic fields, and high frequency
oscillating magnetic fields to manipulate the atoms. A solid understanding
of how the atom interacts with external electromagnetic fields is therefore
required. In this section, I provide a basic outline of the theory of atom-field
interaction. For a detailed derivation, see [49] and references therein.

As in most experiments on atom chips, the atomic species used in our
experiment is 87Rb in the 5S1/2 electronic ground state. For the scope of
this thesis, we are mostly interested in the description of an atom in a static
magnetic field B and a microwave field

Bmw(t) =
Bmw

2
(εe−iωt + ε∗eiωt). (1.1)

The electric part of the microwave field only shifts the energy of the complete
electronic ground state which results in a constant offset for all sub levels and
can be neglected for our purpose. The Hamiltonian describing the coupled
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Bose-Einstein condensates on atom chips

atom-field system is

Ĥ = ĤBR + Ĥmw

with ĤBR = Ahfs Î · Ĵ+ μB(gJ Ĵ+ gI Î) ·B
Ĥmw = μB(gJ Ĵ+ gI Î) · B̂mw + �ω(â†â+

1

2
), (1.2)

where μB is the Bohr magneton, Ĵ and Î are the electron’s and the nucleus’
angular momentum operators, respectively, gJ ≈ 2 and gI ≈ −1 · 10−3 their

Landé factors, B̂mw =
√

�ωμ0

2V
(εâ + ε∗â†) is the quantized microwave field

operator, and â† (â) is the creation (annihilation) operator of the microwave
field mode of frequency ω in a quantization volume V . ĤBR is the Breit-Rabi
Hamiltonian for an atom in a static magnetic field and Ĥmw describes the
interaction with the microwave. In the following, I will cover the individual
terms in more detail.

1.1.1 Hyperfine structure of 87Rb

Without any external field (Ĥ = Ahfs Î · Ĵ), the atom can be described in
the basis of Eigenstates |F,mF 〉 of F̂2 and F̂z, where F̂ = Ĵ + Î is the total
angular momentum of the atom. The nuclear spin of I = 3/2 and the angular
momentum J = 1

2
of the single valence shell electron result in two hyperfine

manifolds F = 1 and F = 2 which are separated by Ehfs = 2Ahfs = �ωhfs =
h · 6.834 682 611GHz [50].

The influence of a weak magnetic field B on the atom can be treated
pertubatively. It results in an energy shift of the hyperfine states, the first
order magnetic Zeeman shift

EZ = μBmF gF , (1.3)

where gF is the total angular momentum Landé factor. The Zeeman shift
has the same magnitude but opposite sign for the two hyperfine manifolds
with gF=2 ≈ 1

2
and gF=1 ≈ −1

2
. It leads to a splitting of adjacent mF levels

by 0.7MHz/G. The resulting term scheme of 87Rb in a weak magnetic field
is shown in figure 1.1.

1.1.2 Breit Rabi formula

For high precision measurements, such as spectroscopy or interferometry,
the first order Zeeman shift is not sufficient to describe the states’ nonlinear
energy dependence in a magnetic field and we have to return to the Breit-
Rabi Hamiltonian of equation 1.2. It can be analytically solved for J = 1

2
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1.1 Atom-field interaction

F = 1, 
 gF = -1/2

F = 2, 
gF = 1/2

mF = -2 -1 0 1 2

Ehfs = h x 6.8 GHz

EZ/B = h x 0.7 MHz/G

|0〉

|1〉

Figure 1.1: Term scheme of 87Rb. The electronic ground state of 87Rb
has two hyperfine levels with F = 1 and F = 2 separated by Ehfs = h ·
6.8GHz. In a weak magnetic fieldB themF -sublevels are split by the Zeeman
energy EZ/B = h · 0.7MHz/G. The clock-states |0〉 and |1〉 are indicated.

and arbitrary I and B. We will restrict ourselves to small magnetic fields, so
that the Breit-Rabi Eigenstates are nearly identical to the unperturbed states
|F,mF 〉. In the following, |F,mF 〉 will thus be used to label the Eigenstates
of HBR. Diagonalizing HBR yields the Eigenenergies given by the Breit-Rabi
formula [50, 51]

EF,mF
= −Ehfs

8
+ μBgImFB ± Ehfs

2

(
1 +mF ξ + ξ2

)1/2
,

where ξ =
μB(gJ − gI)B

Ehfs

. (1.4)

The + sign is for the F = 2 manifold whereas the − sign is for the F =
1 manifold. Neglecting the coupling of the nucleus to the magnetic field
(because | gI

gJ
| < 10−3) and expanding equation 1.4 to first order recovers the

Zeeman shift of equation 1.3 with EF,mF
= −Ehfs

8
± Ehfs

2
+ EZ .

The Breit Rabi formula predicts a small differential energy shift between
the magnetically trapable states

|0〉 ≡ |F = 1, mF = −1〉
and |1〉 ≡ |F = 2, mF = +1〉, (1.5)

which vanishes at a magnetic field of B� = 3.229G and scales as [52]

E|1〉 −E|0〉 = h · 431Hz
G2

(B − B�)2 + EBR, (1.6)
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Bose-Einstein condensates on atom chips

where EBR = 6.834 678 114GHz. As a consequence, a coherent superposition
of states |0〉 and |1〉 can be very robust against magnetic field fluctuations.
Coherence times of up to one minute have been observed [41] which makes
|0〉 and |1〉 ideally suited for atomic clocks on a chip [40, 49, 41, 53] or for
quantum information processing [48]. In this thesis, I will refer to these states
as the two clock states.

1.1.3 Microwave fields

The interaction of the atom with a microwave magnetic field is described
by Ĥmw. The first term in Ĥmw describes the coupling of the atom to the
microwave field whereas the second term describes the energy of the field in
second quantization.

For an approximate solution (for details, see chapter 5.1 of [49]), we con-
sider only the first order Zeeman shift and again neglect the coupling of
the nucleus to the field. Furthermore, because (μBBmw, �Δ) � �ωhfs, with
Δ ≡ ω − ωhfs, we make the rotating wave approximation and get

Ĥ =
∑
m2

(
−1

2
�Δ+ �ωLm2

)
|2, m2〉〈2, m2|

+
∑
m1

(
1

2
�Δ− �ωLm1

)
|1, m1〉〈1, m1|

+
∑

m1,m2

(
1

2
�Ω2,m2

1,m1
|2, m2〉〈1, m1|+ c.c.

)
,

with Ω2,m2

1,m1
=

2μB

�
Bmw〈2, m2|ε · Ĵ|1, m1〉. (1.7)

The first two sums describe the bare states of an uncoupled system which are
identical to the atomic Eigenstates |F,mF 〉 but energetically shifted because
the field energy is taken into account. Here, ωL = μB|gF |B/� is the Larmor
frequency.

The last sum describes the coupling of the atom to the field. Ω2,m2

1,m1
is

the Rabi frequency for a transition coupling the states |1, m1〉 and |2, m2〉
and a measure for the strength of this transition. The angular momentum
matrix elements 〈2, m2|ε · Ĵ|1, m1〉 are generally complex valued and can be
calculated with the help of Clebsch-Gordan coefficients (see appendix B).

Dressed states

Diagonalizing the complete Hamiltonian Ĥ = ĤBR + Ĥmw one obtains the
new Eigenstates of the coupled system, the so called dressed states |K〉. In
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Figure 1.2: Dressed state energies. Eigenenergies EK of the dressed
states as a function of the detuning Δ, calculated by diagonalizing the Hamil-
tonian of equation 1.7 for B = 8G, Bmw = 1G and ε = 1√

3
(1, 1, 1). Line

colors indicate the dominating bare state |F,mF 〉 of each dressed state. The
avoided crossings are labeled with their associated microwave polarization
component. Figure adapted from [49].

figure 1.2 the Eigenenergies EK are plotted as a function of the microwave
detuning Δ for a microwave field with equally strong polarizations. The
dressed states can be expressed as a linear combination of the bare states
|F,mF 〉 and the color indicates which bare state is dominant in each dressed
state for a given detuning.

Far away from a resonance, each dressed state is nearly identical to one of
the bare states. An anticrossing between two states occurs if the correspond-
ing Rabi frequency Ω2,m2

1,m1
is non vanishing, i. e. if (m2 −m1) = (1,−1, 0) for

a (σ+, σ−, π) polarized microwave. Near such an anticrossing, the dressed
states are essentially a linear combination of the involved bare states and
the description can be reduced to that of a two-level system. The energy

11
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splitting between the states is then given by

E+ − E− ≈ �

√
|Ω2,m2

1,m1
|2 + |Δ2,m2

1,m1
|2, (1.8)

where + (−) denotes the upper (lower state).
By smoothly turning on a microwave far off resonance and then sweeping

its frequency slowly over the resonance one can transfer one bare state into
another with close to 100% efficiency. This technique is called rapid adiabatic
passage and the adiabaticity criterion is [54]

1

2
|Ω̇Δ− ΩΔ̇| � (Ω2 +Δ2)3/2, (1.9)

where I used a simplified notation Ω ≡ Ω2,m2

1,m1
and Δ ≡ Δ2,m2

1,m1
, and the dot

symbolizes the derivative with respect to time.
On the other hand, if the microwave is switched on abruptly close to the

resonance the atom undergoes Rabi oscillations, which are treated in more
detail in section 2.1.1.

Far detuned microwave

If the microwave is far detuned from all transitions, |Δ2,m2
1,m1

| � |Ω2,m2
1,m1

| for
all m1, m2, the microwave field can be treated pertubatively. The dressed
states are nearly identical to the unperturbed states and their energies are
AC Zeeman shifted by an Energy Emw. For the F = 1 manifold

|K〉 ≈ |1, m1〉 ∓
∑
m2

Ω2,m2
1,m1

2Δ2,m2
1,m1

|2, m2〉, E1,m1
mw = �

∑
m2

|Ω2,m2
1,m1

|2
4Δ2,m2

1,m1

, (1.10)

while for the F = 2 manifold

|K〉 ≈ ±|2, m2〉+
∑
m1

Ω2,m2

1,m1

2Δ2,m2

1,m1

|1, m1〉, E2,m2
mw = −�

∑
m1

|Ω2,m2

1,m1
|2

4Δ2,m2

1,m1

, (1.11)

where the top sign is for all Δ2,m2

1,m1
< 0 and the bottom sign for all Δ2,m2

1,m1
> 0.

The dressed states have small admixtures of other states which are connected
to them by microwave transitions and the total energy shift of a state is the
sum of the individual shifts caused by these transitions. For an intuitive
understanding of the experiments described in this thesis, this level of ap-
proximation is usually sufficient. For a quantitative analysis, as required for
the simulation of our potentials, however, we numerically solve the dressed
state Hamiltonian 1.7.

12



1.1 Atom-field interaction

F = 1

F = 2

mF = -2 -1 0 1 2
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Figure 1.3: Two-photon drive. The states |0〉 and |1〉 can be coupled
via a two-photon transition, consisting of a microwave and a radio frequency
oscillating magnetic field. The microwave is detuned by Δint from the tran-
sition |0〉 ↔ |2, 0〉.

By choosing the microwave frequency and polarization appropriately, the
energy shifts for states |0〉 and |1〉 can be different or even opposing. For ex-
ample, for a highly blue detuned microwave (Δ � 0), state |0〉 will be shifted
upward in energy while state |1〉 will be shifted downward. Combined with
strong microwave intensity gradients this leads to a state selective potential
as described in section 1.3.

1.1.4 Two-photon transition

The two states |0〉 and |1〉 can be coupled using a combined microwave and
radio frequency two-photon transition (see figure 1.3). It consists of a mi-
crowave of frequency ωmw, blue detuned by Δint with respect to the transi-
tion |0〉 ↔ |2, 0〉 and a radio wave of frequency ωrf such that ωmw + ωrf =
(E|1〉 −E|0〉 +Els)/�. Here, E|0〉 and E|1〉 are the energies of the unperturbed
states and Els takes into account level shifts induced by the off-resonant mi-
crowave of the two-photon drive described by equations 1.10 and 1.11. Level
shifts due to the linearly polarized radio frequency radiation are common
mode for |0〉 and |1〉 and are neglected in the following [49].

For (|Ωmw|2, |Ωrf |2) � Δ2
int, the population of the intermediate state |2, 0〉

is small and the three-level system can be treated as an effective two-level
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system with the two-photon Rabi frequency [55]

Ω2p =
ΩmwΩrf

2Δint
, (1.12)

with Ωmw ≡ Ω2,0
1,−1 =

√
1
8
μB

�
Bmw and Ωrf =

√
3
8
μB

�
Brf .

1.2 The atom chip – a quantum lab on a chip

The achievements of cooling and trapping of neutral atoms [56, 57], which
culminated in the generation of Bose-Einstein condensates (BECs) of dilute
atomic gases [4, 5, 6], have given us – more than half a century after the
formulation of quantum mechanics – a powerful tool to study the very basis
of this theory. Things like the particle in a box, pure quantum states, or
the quantum harmonic oscillator are no longer only theoretical concepts but
can be investigated experimentally. Moreover, we can now engineer complex
quantum systems in simplified and controlled environments to gain an under-
standing of few- and many-body physics which could not have been reached
by pure observation of natural phenomena.

Standard BEC apparatus are highly complex machines which fill up com-
plete laboratories, often require more than one person to run them, and
typically produce BECs at a rate of one per minute or less. The desire
to simplify and speed up cold atom experiments led to the development of
atom chips [28, 29, 30, 31]. On atom chips, the magnetic fields used to trap
atoms are created by current carrying micro-fabricated wires (less commonly
also by structured permanent magnetic materials on the chip [58, 59, 60] or
superconducting wires [61]) instead of large current coils. Thus, more ver-
satile traps can be realized. Trap frequencies of up to several kHz increase
thermalization rates significantly and therefore shorten the time needed for
evaporative cooling from minutes to seconds [33]. Besides enabling high rep-
etition rates, the requirements on ultra high vacuum are thus greatly reduced
so that experiments can be done in compact and robust [32] single-chamber
setups.

In addition to these technical advantages, atom chips also open up new
areas of physics. Trap geometries can be varied from nearly isotropic to
very elongated traps, which enables the study of ultra-cold atoms in one
dimension [35, 62]. The traps can be positioned with a few nanometer pre-
cision [39], even close to the chip surface [37]. The atoms can then be used
as highly sensitive, high resolution probes for weak electromagnetic fields
[63, 64] or surface forces [65, 37, 39]. Also, more complex trap geometries
such as double-wells [66, 43], magnetic lattices [60], conveyor belts [67, 68],
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atom guides, beam splitters [69, 66, 43] and state-selective beam splitters
[44] for atom optics and atom interferometry have been realized, using dc
[70], radio frequency [43], and microwave frequency [44] currents on the chip.
In addition to the supreme control over external degrees of freedom, the in-
ternal state of the atoms can be manipulated with coherence times of up
to a minute [40, 41]. Recently, single atom preparation and detection [71]
using an integrated fiber cavity has been demonstrated, and in this thesis, a
method to produce entanglement on a chip [25] is presented.

In recent years, we have entered a new phase in ultra-cold atoms re-
search. Experiments are not anymore only aimed at gaining deeper insight
into fundamental physics, but also at developing new technologies which
harness the peculiar features of quantum mechanics for more precise mea-
surements, faster computation, more secure communication, and the sim-
ulation of quantum effects in other physical systems. The wide range of
sophisticated methods to manipulate atoms, combined with the scalability
of micro-fabrication processes, and their simple, compact, and robust exper-
imental setups makes atom chips ideal candidates for the implementation of
such quantum technologies. Over the years, atom chips have developed from
technological playgrounds to full grown quantum labs.

1.2.1 Magnetic trapping on atom chips

The basic building block of our (and almost all other atom chip experiments)
is the wire trap, which is described in detail in several atom chip reviews
[28, 29, 30, 31] or in [72] and [49]. In the following, I will briefly outline the
general methods to trap atoms with on-chip wires. I assume that the reader
is familiar with the basic principles of magnetic trapping of neutral atoms
(for a review, see for example [56]).

In short, in a magnetic field B(r), an atom with magnetic moment μ =
μBgFmF experiences a Zeeman shift EZ = μBgFmFB (see eq. (1.3)). A
spatially varying field thus exerts a force FZ(r) = −∇EZ(r) on the atom
which then can be trapped in a magnetic field minimum if it is a so called
low field seeker, i. e. if gFmF > 0.

The wire guide

Consider an infinitely long, infinitely thin wire which carries a current I
(figure 1.4). The current produces a circular magnetic field around the wire
which falls off radially like 1/r. Applying a homogeneous magnetic field Be

perpendicular to the wire leads to a line parallel to the wire with vanishing
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wire field
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z

total field
(2D quadrupole trap)

z

I
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I
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Figure 1.4: Principle of the wire guide. The superposition of a circular
magnetic field around a current carrying wire and a homogeneous magnetic
field leads to a magnetic field minimum above the wire. Figure adapted from
[28].

magnetic field at a distance

z0 =
μ0I

2πBe
. (1.13)

The magnetic field around the minimum can be approximated by a two-
dimensional quadrupole with gradient

B′ = − μ0I

2πz20
= −2πB2

e

μ0I
. (1.14)

Thus, by varying I and Be, one can in principle produce atom guides with any
desired transversal confinement at any desired distance from the wire. On
an atom chip, the wire is usually lithographically patterned on the substrate
and has a finite width w and thickness d which limit the maximum current
that can be applied due to resistive heating. As long as z0 � w, d the field is
well approximated by that of an infinitely thin wire, but more complicated
analytical formulas, which take into account the actual wire dimensions, exist
for traps close to the surface [72]. To close the guide in its axial direction
and transform it into a three dimensional trap one either bends the wire or
crosses it with a second wire to form a so called dimple trap.

‘U’- and ‘Z’-shaped wires

When bending the wire to a ‘U’-shape (figure 1.5) the fields of the lead wires
compensate each other in the trap center and form a quadrupole field along
the x-direction. The uncompensated component in the z-direction results in
a small shift of the trap along y. The vanishing field in the trap center can
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Figure 1.5: Quadrupole and Ioffe-Pritchard wire trap. a, Bending
the wire in a ‘U’-shape results in a quadrupole trap with vanishing magnetic
field in the trap center. b, Bending the wire in a ‘Z’-shape leads to a Ioffe-
Pritchard trap with finite magnetic field in the center. Here, length L =
250μm, wire-width w = 50μm, current I = 2A, and homogeneous magnetic
field Be = 54G (dashed lines) and 162G (solid lines). Figure adapted from
[30].

lead to atom losses due to Majorana spin flips (see section 1.4.3) which is
why quadrupole traps are only used for relatively hot atom clouds where the
atoms spend only very little time in the trap center. Bending the wire in a
‘Z’-shape solves this problem and a Ioffe-Pritchard trap [73] is formed with
a finite magnetic field in the center along x.

Dimple trap

A dimple trap essentially results from crossing two magnetic guides (figure
1.6). The first guide along x with a wire carrying a current I0 and a field Be,y

determines the distance of the trap from the chip surface z0 ≈ μ0I0
2πBe,y

and the

magnetic field gradient B′ in the yz-plane. The second guide, with a current
I1 � I0 and a magnetic field Be,x, raises the field in the trap center and
determines the axial confinement. The resulting trap is of Ioffe-Pritchard
type with [72]

B = B0

⎛
⎝ 1

0
0

⎞
⎠+B′

⎛
⎝ 0

−y
z

⎞
⎠ +

B′′

2

⎛
⎝ x2 + (y2 + z2)/2

−xy
−xz

⎞
⎠ (1.15)
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Figure 1.6: Dimple trap. Two crossing waveguides form a dimple trap.
The solid black line indicates a trace through the magnetic field minimum
which is twisted with respect to the unperturbed quadrupole line (dashed
line). Figure adapted from [28].

and

B0 = |Be,x + μ0I1/2πz0| (1.16)

B′ = μ0I0/2πz
2
0 (1.17)

B′′ = μ0I1/πz
3
0 . (1.18)

The trap frequencies are then approximately

ωx =

√
μ

m

μ0I1
πz30

and ω⊥ =

√
μ

m

μ2
0I

2
0

4π2z40 · |Be,x + μ0I1/2πz0| , (1.19)

where μ and m are the atomic magnetic moment and mass (note, that Be,x

has the opposite sign to I1). Raising I1 results in a twisting of the trap;
if desired, one can thus turn the main trap axis from x to y by adjusting
the currents and fields accordingly [28]. Using several crossing wires, more
complex double- and multi-well traps can be created.
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1.3 Microwave near-field potentials

The generation of entanglement in a BEC requires good control not only over
the motional and internal degrees of freedom but also over collisional inter-
actions (see section 2.2.6). In particular, for our experiment, exact control
over the wave function overlap between state |0〉 and |1〉 is required, thus a
state selective potential is needed.

Since the clock states have the same magnetic moment, such a potential
cannot be produced by static magnetic fields. A well known technique is the
use of optical dipole traps [74], which make use of the AC Stark effect. Here,
state selectivity is achieved by tuning the frequency and/or the polarization of
the trapping laser. However, a far detuned laser does not provide the needed
state selectivity for our states whereas light close to a resonance can easily
be absorbed and heats the atoms through photon scattering. Additionally,
optical traps are hard to integrate on an atom chip because of diffraction
on the chip surface and the required high light intensities. Also, versatile,
non-periodic trapping geometries are hard to achieve. In section 1.1.3 it was
shown that microwave radiation leads to a differential AC Zeeman shift of
hyperfine states very similar to the AC Stark effect in dipole traps. Microwave
potentials generated by far-field radiation were already studied in the 1990s
[75, 76], but hundreds of kilowatts of circulating microwave power inside a
cavity were necessary, because the centimeter wavelength of the microwave
prevents tight focusing and thus limits the attainable potential gradients.

Atom chips present a natural solution to this problem. Using microwave
near-fields, generated by micrometer-sized waveguides, it is possible to realize
much stronger gradients with only milliwatts of power. This is because near-
field gradients do not depend on the wavelength, but instead on the transverse
waveguide dimensions and the distance from the waveguide. In addition, this
enables tailoring of the potentials on the micrometer scale. In a similar way,
radiofrequency fields were used to generate potentials on atom chips [77].
By comparison, microwave potentials have the important advantage that the
different transitions are split by the Zeeman effect, which we make use of to
adjust the state dependence of the potentials simply through the microwave
frequency.

State selective potentials

To state selectively manipulate the atoms, we have integrated a coplanar
waveguide (CPW) on our atom chip [45]. The microwave field amplitude
falls off rapidly around the waveguide and the strong gradient is used to state
selectively shift the position of a magnetic trap above it. A schematic of this
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Figure 1.7: Schematic of the state-selective microwave potential.
The combination of a static magnetic trap (black dotted) with a microwave
near field (green) around the CPW (not to scale) results in a state selective
shift of the trap. The inset shows the 87Rb term scheme with a π polarized
and strongly blue-detuned microwave, leading to opposite energy shifts of
the clock states. The dotted lines represent the unperturbed energy levels.
The trap for state |0〉 (blue) is pushed away from the waveguide while the
trap for state |1〉 (red) is pulled toward it. Note that in the experiment, all
mw polarizations are present.

technique is shown in figure 1.7. The microwave frequency for the squeezing
experiments reported in this thesis is strongly blue detuned (Δ ≡ Δ2,0

1,0 =
2π × 12MHz) with respect to the transition |1, 0〉 ↔ |2, 0〉. The energy shift
of the clock states can thus be described in good approximation by (1.10) and
(1.11), taking into account that all three polarization components are present
in the microwave near-field. In this configuration, both states experience a
microwave potential of opposite sign, and with different magnitude due to
the different hyperfine transition strengths. State |0〉 is a low-microwave-
field-seeker and is pushed away from the coplanar waveguide while state |1〉
is a high-microwave-field-seeker and pulled toward the waveguide. For details
on the resulting shifted traps and the atomic motion, see chapter 4.
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1.4 Two component Bose-Einstein condensates

1.4.1 Bose-Einstein condensation

Bose-Einstein condensation (BEC) was predicted in 1925 by Einstein [78],
based on ideas by Bose, for a system of a fixed number of indistinguishable
and non-interacting bosonic particles. It is characterized by a macroscopic
occupation of the single-particle ground state below a certain temperature
and arises solely from statistical considerations. BEC was first thought of as
a purely theoretical construct since no non-interacting particles were known
(except photons, where number is not a conserved quantity) and it was hard
to imagine how any ensemble of interacting particles should undergo BEC
before regular condensation. However, when superfluidity in (strongly inter-
acting) 4He was discovered, London soon suggested that it was a manifesta-
tion of BEC. Today, we know that the two phenomena are closely related,
as are also BCS superconductivity and the laser. It took more than 70
years until BEC in its original sense was realized for the first time in dilute
atomic gases [4, 5, 6], which led to an explosion of research in the field of cold
atoms and quantum physics in general. The breakthrough was achieved with
alkali atoms where elastic collisions (so called ‘good collisions’, as they are
needed for thermalization) dominate over inelastic (‘bad’) collisions that lead
to molecule formation and atom loss. There exist numerous reviews and text
books on the historical and both the theoretical and experimental aspects of
BEC of which only a few are listed in the references [79, 80, 81, 82].

For the understanding of BEC, the concept of indistinguishability plays
a key role. Consider 10 balls (atoms) which we would like to distribute
between 10 buckets (states). If the balls are distinguishable (as particles
are in classical physics) there exist 10 possibilities to put all balls into one
bucket but 10! = 3 628 800 possibilities to fill each bucket with one ball. On
the other hand, if the balls are indistinguishable (as quantum mechanical
bosons are), there are still 10 possibilities to put all in one bucket but only
one possibility to distribute them equally. The possibility that all balls are
in the same bucket (all atoms in the same state) has a much larger relative
weight. This so called bunching is a fundamental property of bosons. It
becomes important when the number of particles N is equal to or larger than
the number of accessible states p (the degeneracy condition) and eventually
leads to BEC.

In a gas, each atom can be described as a quantum mechanical wave
packet with an extent given by the de Broglie wavelength λdB = h/

√
2πmkBT ,

where m is the atomic mass, and T is the temperature of the gas. λdB can be
considered as the position uncertainty associated with the thermal velocity
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of the atoms. When the gas is cooled below a critical temperature Tc, the
wavelength becomes larger than the average particle separation n−1/3, the
indistinguishability of the atoms becomes relevant, and BEC sets in. For
a uniform three-dimensional gas the transition temperature and the atomic
density n are related as nλ3dB = 2.612.

In a harmonic trap with ωho = (ωxωyωz)
1/3, the critical temperature can

be estimated in a simple way. The mean density of single particle states
per unit energy ε is given by dp

dε
= ε2/(�ωho)

3. The degeneracy condition is
reached when the number of particles N is about equal to the number of
states p that can be thermally occupied

N � p =

∫ kBTc

0

ε2/(�ωho)
3dε ⇔ kBTc � �ωhoN

1/3. (1.20)

A full length calculation [79], including the Bose-Einstein distribution of non-
interacting particles in thermal equilibrium and the Gaussian shape of the
harmonic oscillator ground state, yields

kBTc = 0.94 �ωhoN
1/3. (1.21)

The number of atoms in the ground state as a function of temperature is
then

N0(T ) = N(1 − (T/Tc)
3). (1.22)

These results are obtained for kBT � �ωho and N � 1 in three dimen-
sions. Finite size effects (N � ∞) reduce the condensate fraction, lower the
transition temperature, and make the transition less sharp [83].

It should be noted that in lower dimensions ultra cold bosons behave in
general differently than described here. For example, in very elongated 1D-
traps, the atoms first undergo a transition to a so called quasi-condensate [84]
with a density profile known from the 3D-case but phase fluctuations along
the long axis. At lower temperatures and low density they can even enter the
regime of the so called Tonks gas where they behave as impenetrable Bosons,
in many ways similar to Fermions.

1.4.2 The Gross-Pitaevskii equation

So far, we have mainly discussed non-interacting particles. However, for
many phenomena the inter-particle interactions play a decisive role. In our
experiment, we produce very cold ensembles with T � Tc and undetectable
thermal occupation. We can therefore in most cases approximate them as
pure BECs at T = 0 which have been shown to be well described by the
Gross-Pitaevskii or mean-field theory [79, 81].
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Spinless GPE

The mean field theory is a Hartree-Fock theory where the many-body wave
function ΦN (r1...rN) of the BEC is simply the product of normalized single
particle states. To find the ground state of the condensate (for now neglecting
that the atoms can be in different hyperfine states) we write it as

ΦN(r1...rN ) =
N∏
i=1

φ(ri), (1.23)

where φ(r) is the single-particle wave function (or mode function of the con-
densate) to be determined. The mean expectation value of the energy in an
external potential Vext is then given by

〈H〉N = N

∫
dr

(
�
2

2m
|∇φ(r)|2 + Vext(r)|φ(r)|2

)

+
1

2
N(N − 1)g

∫
dr|φ(r)|4 (1.24)

with effective interaction constant g = 4π�2a/m and a the s-wave scattering
length. The first term corresponds to the kinetic and potential energy of
N single particles in the external potential. The second term takes into
account the interaction between the condensate atoms. Despite complicated
interatomic potentials, the mean-field interaction is well described by s-wave
scattering. Each of the N atoms can interact with (N−1) other atoms raising
the total energy by the elastic scattering energy g (the factor 1

2
arises from

the indistiguishability of the scattering partners). For large atom number
N(N − 1) ≈ N2.

Minimizing the functional 1.24 with respect to φ, subject to the constraint
of the normalization of φ, and dividing by N yields:(

− �
2

2m
∇2 + Vext(r) +Ng|φ(r)|2

)
φ(r) = μφ(r) (1.25)

where μ = δ〈H〉N/δN is the chemical potential. In the literature, one finds
this non-linear Schrödinger equation rewritten in terms of the condensate’s
order parameter Φ(r) =

√
Nφ(r) as the famous Gross-Pitaevskii equation

(GPE) (
− �

2

2m
∇2 + Vext(r) + g|Φ(r)|2

)
Φ(r) = μΦ(r). (1.26)

For non-interacting gases (g = 0) in a harmonic trap, the solution is
simply the single-particle ground state wave function of that trap

Φ(r) =
√
N

(mωho

π�

) 3
4

exp
(
−m

2�
(ωxx

2 + ωyy
2 + ωzz

2)
)
, (1.27)
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with an average extent aho =
√

�

mωho
which is independent of N.

Thomas-Fermi approximation

In interacting gases, especially in large condensates, the kinetic energy is
often much smaller than both the potential and the interaction energy and
can be neglected. This is the so called Thomas-Fermi approximation which
directly gives the atom density distribution:

n(r) = |Φ(r)|2 = 1

g
(μ− Vext(r)) for Vext(r) < μ

n(r) = 0 for Vext(r) ≥ μ (1.28)

The density profile thus follows the inverse trapping potential, bounded by
the surface on which Vext(r) = μ. In a harmonic trap the normalization
condition on

∫
dr3 n(r) = N yields

μ =
�ωho

2

(
15Nas
aho

) 2
5

(1.29)

and one finds the Thomas-Fermi radii to be RTF,i =
√

2μ/(mω2
i ) with i ∈

{x, y, z}.
For small condensates, the kinetic energy term can be taken into account

perturbatively and the condensate radius lies between aho and RTF. Also,
for highly elongated traps, the Thomas-Fermi approximation has to be ex-
tended. An approximate analytical solution for small condensates in traps
with arbitrary aspect ratio can be found in [85]. We use this approximation
for analyzing our experiment in chapter 4.

Time dependence

It is not entirely straight forward to generalize the mean field theory to the
time dependent case, and only possible when N(t) = N(0) i. e. no particle
losses are assumed [81]. The result however is – as one intuitively expects –
that the chemical potential is simply replaced by the time derivative. The
time dependent GPE is thus

i�
δΦ(r, t)

δt
=

(
− �

2

2m
∇2 + Vext(r, t) + g|Φ(r, t)|2

)
Φ(r, t). (1.30)
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The two component GPE

If the atoms in the condensate can occupy two different internal states, the
mean field theory has to be extended. In general, the interaction gii between
two atoms in state |i〉 differs from the interaction gjj of two atoms in state
|j〉 which again differs from the inter-state interaction gij = gji. This leads
to a pair of coupled GPEs

i�
δΦi(r, t)

δt
=

(
− �

2

2m
∇2 + Vext(r, t) + gii|Φi(r, t)|2 + gij |Φj(r, t)|2

)
Φi(r, t).

(1.31)
with i �= j.

For the states |0〉 and |1〉 of 87Rb the inter- and intra-state scattering
lengths are equal within 5%: a00 : a01 : a11 = 100.40 a0 : 97.66 a0 : 95.00 a0
[86] where a0 = 0.53 Å is the Bohr radius. Nevertheless, this small difference
can have considerable consequences. In a mixture or superposition of the two
states, state |0〉 tends to form a lower density shell around a higher density
core of state |1〉 to minimize the total energy. While in large condensates
this can lead to almost complete phase separation [87], the effect in small
ensembles (N ∼ 1000) is that of a slight broadening of the wave function of
state |0〉 and a compression for state |1〉 by a few percent.

1.4.3 Atom losses

The duration of an experimental cycle, i. e. how long an ensemble of atoms
can be held in a magnetic trap, is limited by several loss mechanisms. Namely,
they are Majorana spin flips and inelastic collisions between the atoms and
with thermal background gas. Losses due to interaction with the surface
can be neglected for our traps (distance from surface z0 ≈ 40μm). Besides
limiting the lifetime of the trapped atoms, losses also cause a change of the
differential collisional energy shift between the clock states over time. Since
loss is a random process, it is thus a source for phase noise (see section 4.4.2).

Majorana spin flips

An atommoving in a magnetic trap traverses over time different regions of the
trap with varying magnetic field magnitude B and direction θ. The atom’s
spin precesses around the trap field and follows small changes adiabatically
if the rate of change of the magnetic field is smaller than the atom’s Larmor
frequency

dθ

dt
� ωL = μB|gF |B/�. (1.32)
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If, on the other hand, the magnetic field changes too fast, the atom can be
transferred into a different magnetic sublevel mF . It then becomes either
untrapped or experiences a sudden change of the trapping potential which
results in heating and subsequent loss. This process is called Majorana spin
flip [88, 89] and happens in regions with small or vanishing magnetic field. It
is the main reason why magnetic traps are almost always Ioffe-Pritchard traps
and not quadrupole traps which have a ‘magnetic hole’ in the center. An
upper limit for the rate of change of the magnetic field is the trap frequency,
so that tighter traps require a larger magnetic field in the center. The traps
used in our experiments have sufficiently large magnetic fields, such that
Majorana spin flips can be neglected.

Collisional losses

Elastic collisions in a BEC lead to an additional mean field potential, which is
well described by the Gross-Pitaevskii theory (see previous section). Inelastic
collisions, however, can change the state of the involved collision partners and
thus lead to trap loss. For a single state ensemble of N atoms, collisional
loss is well described by the following rate equation

1

N

dN

dt
= −γbg −K〈n〉 − L〈n2〉, (1.33)

where n(r) is the density of the atom cloud.

The first term describes losses due to collisions with the background gas
and is proportional to the pressure in the vacuum cell but independent of n.
The background gas molecules are at room temperature and one molecule
impinging on the ultra-cold cloud can kick several atoms out of the trap.
These losses lead to an exponential decay of the atom number over time.

The second and third terms describe losses due to inelastic collisions
of two and three atoms within the cloud, respectively. For a BEC in the
Thomas-Fermi regime the loss rates are

γ2 = K〈n〉 TF∝ ω
6/5
ho N

2/5 (1.34)

γ3 = L〈n2〉 TF∝ ω
12/5
ho N4/5. (1.35)

It is noteworthy that the loss constants for a thermal gas are 2! times
higher in the case of two-body collisions and even 3! times higher for three-
body collisions [90]. This is due to the bunching of atoms in a thermal gas
which is not present in a BEC.
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Two-body collisions Two processes contribute to losses in two-body col-
lisions. The dominant one is spin exchange interaction, the other is spin-
dipole interaction, which is about two orders of magnitude smaller and can
be neglected [82]. Since total mF has to be conserved, spin exchange of the
type |2, 1〉 + |2, 1〉 ⇒ |2, 0〉 + |2, 2〉 can only occur for state |1〉 = |2, 1〉 but
not for state |0〉 = |1,−1〉, because there is no state with mF < −1 in the
F = 1 manifold and transfer of one collision partner into the F = 2 mani-
fold is energetically forbidden. The two-body rate constant for state |1〉 is
K1 = 1.194(19) × 10−13 cm3s−1 [86]. Two-body collisions are the dominant
loss mechanism for this state.

Three-body collisions Momentum conservation prevents molecule for-
mation in two-body collisions. In three-body collisions on the other hand,
two atoms can form a molecule and the released binding energy is converted
into kinetic energy of the molecule and the third atom. Usually, this energy
is larger than the trap depth so that both are lost from the trap. This process
is dominant for state |0〉 with the loss constant L0 = 5.8(1.9)× 10−30 cm6s−1

[90].

Superposition In a superposition of the two states, collisions of the type
|0〉 + |1〉 ⇒ |1, 0〉 + |2, 0〉 are possible which leads to additional two-body
losses. The rate constant for this process is K01 = 0.780(19)× 10−13 cm3s−1

[86].
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Chapter 2

Spin squeezing theory

Long-living atomic states, such as the hyperfine states of the electronic
ground state, have well defined energies. In principle, the energy of such
a state is an intrinsic property of the atom and only depends on natural con-
stants. The energy difference ΔE = �ω0 between two states is thus – leaving
aside the possibility that the natural constants themselves might change over
time – constant. In an atomic clock, a local oscillator with frequency ω is
locked to the atomic frequency ω0, so that δ = ω− ω0 = const. Thereby, the
atomic stability is transfered to the local oscillator.

Of course, in a real experiment, the atomic energy levels are influenced by
external fields (see section 1.1) and other effects, such as collisional, gravita-
tional, or rotational shifts. Atom interferometers are used to measure these
effects with extremely high precision [91]. In atomic clock experiments on
the other hand, one tries to minimize their influence on the atomic energies
because technical fluctuations then lead to clock instabilities. Today’s best
atomic clocks have reduced this technical noise to such a low level that their
stability is now limited by a more fundamental effect, the quantum projection
noise [12]. The standard quantum limit, which is imposed by this effect, can
only be overcome by the use of multi-particle entangled states, such as spin
squeezed states.

2.1 Atomic clocks and interferometers

In this section, I describe the basic working principle of an atomic interfer-
ometer or atomic clock. I also explain the origin of the standard quantum
limit, which lies at the very heart of quantum mechanics.
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2.1.1 Rabi oscillations

Consider an atom with two internal states |0〉 and |1〉, separated by an energy
difference ΔE = �ω0. Near resonant electromagnetic radiation couples the
two states and can be used to prepare the atom in a superposition state
|ψ〉 = c0|0〉 + c1|1〉. (The labels for the 87Rb clock states introduced in
section 1.1.2 are not by accident chosen as |0〉 and |1〉. However, the following
considerations are much more generally applicable to any two-level system.)

The strength of the coupling is characterized by the Rabi frequency ΩR,
which depends on the field strength and the specific transition in ques-
tion. For microwave transitions between magnetic sub-levels of the electronic
ground state, the Rabi frequency is given by equation (1.7) for a one-photon
or by (1.12) for a two-photon transition.

The atom can be prepared in any desired superposition by controlling
ΩR and the duration t of a pulse of electromagnetic radiation of frequency
ω. In a frame, rotating with ω, the atom’s state after the pulse is |ψ(t)〉 =
c0(t)|0〉+ c1(t)|1〉 with [14]

c0(t) = c0(0)

[
cos

(
Ωt

2

)
− iδ

Ω
sin

(
Ωt

2

)]
+
iΩ∗

R

Ω
c1(0) sin

(
Ωt

2

)

c1(t) = c1(0)

[
cos

(
Ωt

2

)
+
iδ

Ω
sin

(
Ωt

2

)]
+
iΩR

Ω
c0(0) sin

(
Ωt

2

)
,

(2.1)

with the detuning δ and the effective Rabi frequency Ω

δ = ω − ω0

Ω =
√
|ΩR|2 + δ2. (2.2)

Starting with an atom in the ground state |ψ(0)〉 = |0〉, the probabilities for
finding it in either state are

p1(t) = |c1(t)|2 = |ΩR|2
Ω2

sin2

(
Ωt

2

)
p0(t) = |c0(t)|2 = 1− |c1(t)|2. (2.3)

On resonance, the atom thus coherently oscillates in time between its two
states and by adjusting Ωt, i. e. the power and length of the electromagnetic
pulse, any desired superposition can be prepared. Particularly, Ωt = π

2
(a

π
2
-pulse) which results in an equal superposition of the type |ψ〉 = 1√

2
(|0〉 +

eiϕ|1〉) will be of further importance.
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2.1 Atomic clocks and interferometers

2.1.2 The Bloch sphere

A useful tool to visualize the atom’s state is a vector operator ŝ defined by

ŝx = (|0〉〈1|+ |1〉〈0|)/2
ŝy = (|1〉〈0| − |0〉〈1|)/2i
ŝz = (|1〉〈1| − |0〉〈0|)/2.

(2.4)

It is equivalent to a spin-1
2
angular momentum operator, since it acts on a

two dimensional complex vector space and the commutators satisfy the same
algebra

[ŝi, ŝj] = iεijkŝk, (2.5)

where εijk is the Levi-Civita symbol. The z-component of ŝ is proportional
to the internal energy operator and its eigenstates with eigenvalues m = ∓1

2

are the states |0〉 and |1〉, respectively. Any pure state |ψ〉 of the two-level
system can be depicted using the expectation value 〈ψ|̂s|ψ〉 as a vector with
length 1

2
and components

sx = 〈ŝx〉 = (c∗0c1 + c∗1c0)/2 =
1

2
sin υ cosϕ

sy = 〈ŝy〉 = (c∗1c0 − c∗0c1)/2i = −1

2
sin υ sinϕ

sz = 〈ŝz〉 = (|c1|2 − |c0|2)/2 =
1

2
cos υ. (2.6)

This is the so called Bloch vector of the state and the set of all pure states
spans the Bloch sphere (figure 2.1). The angles υ and ϕ represent the relative
weight and phase of the two states |0〉 and |1〉 in a superposition.

Operations on the state can be depicted by defining a second vector, the
Rabi vector

Ω =

⎛
⎝ −Re(ΩR)

Im(ΩR)
−δ

⎞
⎠ , (2.7)

which acts as a torsional moment with ṡ = Ω×s. For example, for δ = 0 and
an atom initially in the ground state, the Rabi vector lies on the equator and
the atom’s Bloch vector points to the south pole. When switching on the
Rabi drive, the state vector is turned northward, after a time corresponding
to a π

2
-pulse it lies on the equator and forms a right angle with Ω, after a

π-pulse it points to the north pole, and for longer pulses it is turned back
south. It can easily be seen that if δ �= 0, the north pole is never reached and
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x
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s

Ω ϕ
υ

|1〉

|0〉

Figure 2.1: Bloch sphere. with an Bloch vector s and a Rabi vector Ω
with δ = 0 and ΩR = −i/2. The angles υ and ϕ characterizing the state are
indicated.

the Rabi oscillations have a diminished contrast, as expected from equation
2.3.

In the lab frame, both the Rabi vector and the Bloch vector precess
around the z-axis at a rate ω and ω0, respectively. Throughout this thesis,
transformation into a frame rotating with the frequency ω is made, such
that the Rabi vector is stationary on the Bloch sphere and the azimuth angle
between the Bloch vector and the Rabi vector changes at the rate δ. The
atomic state in the lab frame, expressed using the coefficients of the rotating
frame from equation (2.1), is

|ψ(t)〉lab = c0(t)e
−i(

E0
�
− δ

2
)t|0〉+ c1(t)e

−i(
E1
�
+ δ

2
)t|1〉, (2.8)

where E0 and E1 are the states’ eigenenergies.

2.1.3 Ramsey interferometry

Rabi oscillations can in principle be used to lock the local oscillator fre-
quency to the atom’s frequency and thus realize an atomic clock. However,
the flopping rate Ω is a function not only of the detuning but also of the elec-
tromagnetic field amplitude. Thus, intensity gradients over the atomic cloud
lead to a dephasing of the oscillation in time (an inhomogeneous broadening
of the resonance). Also, the total power of the irradiated field must be kept
extremely stable throughout the measurement. More importantly, system-
atic shifts of ω0 during the pulses prohibit the use of Rabi-spectroscopy for
accurate clocks. In our case, when the two-photon drive is applied, the states
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2.1 Atomic clocks and interferometers

|0〉 and |1〉 become dressed by the off-resonant driving fields and thus are not
only shifted in energy, but also loose their excellent coherence properties.

To avoid these problems, an atomic clock commonly uses Ramsey in-
terferometry, where the drive is pulsed on only for short times, and the
interferometer signal is sensitive to the free atomic evolution between the
pulses. A Ramsey interferometer [92] consists of two π

2
-pulses, separated by

a time TR. Starting with the atom in state |0〉, the first pulse has the role
of a beam splitter in a light interferometer and prepares an equal superpo-
sition |ψ〉 = 1√

2
(|0〉 + |1〉). In the Bloch-picture, the Bloch vector is turned

from the south pole to the equator and forms a right angle with the Rabi
vector. The frequency ω is adjusted such that during the pulses δ = 0, i. e.
ω = ω0 + ωls (see section 1.1.4). Between the pulses, when the drive is off,
δ ≈ ωls �= 0. Therefore, a phase ϕ = δTR between the local oscillator phase
and the atomic phase is accumulated during the Ramsey time TR. The state
now reads |ψ(t = TR)〉 = 1√

2
(|0〉 + eiϕ|1〉). In the Bloch picture, keeping

the Rabi vector fixed, the Bloch vector rotates at a rate δ in the equatorial
plane. A second π

2
-pulse converts the phase difference into a difference in

detection probabilities for |0〉 and |1〉. The outcome depends on the phase of
the second pulse; for ΩR ∈ R

+, the result is:

|ψ(TR)〉 =
1

2

(
(1 + ieiϕ)|0〉+ (i+ eiϕ)|1〉)

⇒ p0(TR) =
1

2
− 1

2
sin(ϕ)

p1(TR) =
1

2
+

1

2
sin(ϕ) (2.9)

Using an ensemble of N atoms, ϕ is thus read out by detecting the atom
number difference n = 1

2
(N1−N0) with N0 = p0N atoms in the ground state

and N1 = p1N atoms in the excited state (see figure 2.2). The Ramsey signal
is most sensitive to variations in ϕ on the slope of the fringe, where δn

δϕ
= N

2

is maximal. Atomic clocks therefore operate at this point.

The standard quantum limit

The state of an atom collapses upon measurement with a probability p0 into
state |0〉 and with a probability p1 = 1−p0 into state |1〉. In an ensemble with
N independent atoms, which have all been prepared in the same state, one
measures on average n = N

2
(p1−p0) = N(p1− 1

2
). Repeating the experiment

several times, one finds a binomial distribution of n with

Δn2 = ΔN2
0 = ΔN2

1 = Np0p1, (2.10)
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Figure 2.2: Ramsey Interferometry. a, The different steps of a Ramsey
interferometer visualized for a single atom on the Bloch sphere. A π

2
-pulse

turns the state vector into the equatorial plane. During the Ramsey time TR
it accumulates a phase which is read out with a second π

2
-pulse. b, Relative

atom number n as a function of the Ramsey phase ϕ for an ensemble of
N = 100 atoms. The highest phase sensitivity is reached where n = 0 and
δn
δϕ

= N
2
. The blue shaded area is the standard deviation of n due to quantum

projection noise.

where Δx2 denotes the variance of the quantity x. Specifically, on the slope
of a Ramsey fringe, with p0 = p1 = 1

2
, one measures n = 0 and Δn2 = N

4
.

This is known as quantum projection noise [11] and is closely related to shot
noise in a laser.

The best achievable phase sensitivity in a Ramsey interferometer operat-
ing with independent atoms is thus

Δϕ2 = Δn2
(δϕ
δn

)2

=
1

N
. (2.11)

This so called standard quantum limit limits today’s best atomic clocks [12].
It arises from the very basic axiom of quantum mechanics that the outcome
of a measurement can only be predicted with a certain probability. However,
it can be overcome by entangling the atoms, thus making the outcome of the
measurement on one atom dependent on the other atoms.
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2.2 Spin squeezing

As described in the previous section, an atomic clock employing independent
atoms is limited to the standard quantum limit by quantum projection noise.
However, by entangling the atoms, it is possible to reduce the quantum noise
in the phase quadrature ϕ at the cost of increasing it in the perpendicular
quadrature, the relative atom number n. To understand this process, it is
useful to treat the N particles as a combined quantum system.

2.2.1 Stationary two-mode model

The internal state of a BEC of N atoms can be described by a collective
spin operator Ŝ =

∑N
i=1 ŝi, the sum of the individual spin operators of each

atom [11]. The direct summation is the only way to combine the individual
spins having the same external wave function such that the resulting total
wave function is symmetric. It is thus unaffected by particle exchange, and
is valid for indistinguishable (Bose-Einstein condensed) bosonic atoms. In
second quantization, the spin operator components can be defined as [16]

Ŝx =
1

2

∫
d3r(Ψ̂†

1Ψ̂0 + Ψ̂†
0Ψ̂1)

Ŝy =
1

2i

∫
d3r(Ψ̂†

1Ψ̂0 − Ψ̂†
0Ψ̂1)

Ŝz =
1

2

∫
d3r(Ψ̂†

1Ψ̂1 − Ψ̂†
0Ψ̂0), (2.12)

where Ψ̂j ≡ Ψ̂j(r) is the bosonic annihilation operator for an atom in state
|j〉 at position r. In a stationary two mode model, we assume that the spatial
degrees of freedom can be described by one spatial wave function for each
component

Ψ̂0(r) = b̂φ0(r) and Ψ̂1(r) = âφ1(r), (2.13)

where φj(r) is the normalized spatial mode function (see 1.4.2) of state |j〉 and
â and b̂ are the bosonic anihilation operators obeying the usual commutation
relations [â, â†] = 1, [b̂, b̂†] = 1, [â, b̂] = 0, and [â, b̂†] = 0. For spatially
completely overlapping states, equation 2.12 reduces to

Ŝx = (â†b̂+ b̂†â)/2

Ŝy = (â†b̂− b̂†â)/(2i)

Ŝz = (â†â− b̂†b̂)/2. (2.14)
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As in the single atom case in section 2.1.2, the atomic ensemble can be
represented by a Bloch vector S = 〈Ψ|Ŝ|Ψ〉 where |Ψ〉 is the many-particle
wave function. Sz = (N1−N0)/2 is half the atom number difference between
the states (which was already introduced and called n in section 2.1.3) and
thus directly measurable.

2.2.2 Coherent spin states

Applying the two-photon drive to a BEC in |Ψini〉 = |0, φ〉⊗N (all atoms in
the internal state |0〉 and in the spatial mode φ), prepares it in a so called
coherent spin state (CSS)

|Ψϕ〉 = (c0|0, φ〉+ c1|1, φ〉)⊗N , (2.15)

where c0 and c1 are in general complex coefficients with |c0|2+ |c1|2 = 1, and
the index ϕ denotes the phase between c0 and c1, as for the single atom (see
equation 2.6). A useful property of a CSS is

e−iαŜz |Ψϕ〉 = |Ψϕ+α/2〉. (2.16)

From this, it can be seen that a Hamiltonian containing Ŝz leads to a pre-
cession of the state around the z-axis.

Expanding a CSS into Fock states |N0 : φ,N1 : φ〉 with well defined atom
numbers in state |0〉 and |1〉 results in:

|Ψϕ〉 =
N∑

N0=0

( N !

N0!N1!

)1/2
cN0
0 cN1

1 |N0 : φ,N1 : φ〉 (2.17)

where N1 = N −N0 and

|N0 : φ0, N1 : φ1〉 =
(b̂†φ0

)N0

√
N0!

(â†φ1
)N1

√
N1!

|vac〉, (2.18)

where b̂†φ0
(â†φ1

) creates an atom in internal state |0〉 (|1〉) and spatial mode
φ0 (φ1). The spatial modes generally depend on N0 and N1 so that after the
state preparation pulse, a time evolution of the condensates spatial mode
sets in. This is treated in 2.2.7. For simplicity, we assume for now that the
spatial mode is unchanged due to the internal state preparation φ0 = φ1 = φ.

The variances of the spin components of a CSS can be calculated directly
using ΔS2

i = 〈S2
i 〉 − 〈Si〉2. However, since the preparation constitutes only

a rotation of the initial state, it is much easier to calculate the variances for
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|Ψini〉 = |N : φ, 0 : φ〉 and then simply apply a coordinate transformation.
The results for |Ψini〉 are:

ΔS2
z =

1

4

(〈(â†â− b̂†b̂)2〉 − 〈â†â− b̂†b̂〉2)
=

1

4

(〈â†ââ†â+ b̂†b̂b̂†b̂− â†âb̂†b̂− b̂†b̂â†â〉 − 〈â†â− b̂†b̂〉2)
=

1

4

(
(02 +N2 − 0 ·N0 −N0 · 0)− (0−N)2

)
= 0 (2.19)

and

ΔS2
x =

1

4

(〈(â†b̂+ b̂†â)2〉 − 〈â†b̂+ b̂†â〉2)
=

1

4

(〈â†b̂â†b̂+ â†b̂b̂†â+ b̂†âb̂†â + b̂†ââ†b̂〉 − 〈â†b̂+ b̂†â〉2)
=

1

4

(
(0 + 0 · (N + 1) + 0 +N · (0 + 1))− (0 + 0)2

)
=

N

4
. (2.20)

Similarly, ΔS2
y = N

4
.

If |Ψini〉 is rotated by a π
2
-pulse, a state of the form |Ψϕ〉 = 2−N/2(|0〉 +

eiϕ|1〉)⊗N is prepared. For ϕ = 0, the mean spin is 〈Sx〉 = N/2 and 〈Sy〉 =
〈Sz〉 = 0, and the variances are ΔS2

x = 0 and ΔS2
y = ΔS2

z = N/4. The
quantum noise is evenly distributed among the spin components orthogonal
to the mean spin, satisfying the Heisenberg uncertainty relation ΔSyΔSz =
|〈Sx〉|/2. We have just derived in a more formal way the quantum projection
noise, which leads to the standard quantum limit.

On the Bloch sphere, a CSS is often depicted as a vector with a fuzzy
area around its tip (see e. g. figure 2.3). This area depicts the uncertainty
of a measurement of the spin components orthogonal to the mean spin.

2.2.3 Squeezing factor

Quantum correlations between the atoms can reduce the variance of one spin
quadrature at the cost of increasing the variance of the orthogonal one, result-
ing in a spin-squeezed state [13]. To quantify its usefulness for metrology,
one introduces the squeezing parameter [15] ξ2 = NΔS2

⊥,min/〈S〉2, where
ΔS2

⊥,min is the minimal variance of the spin components perpendicular to

37



Spin squeezing theory

the mean spin 〈S〉. In case 〈S〉 lies along the x-axis (as for |Ψ0〉), the squeez-
ing parameter is

ξ2 =
NΔS2

θ,min

〈Sx〉2 . (2.21)

The index θ implies that the minimal variance might not lie along the y- or
z-direction but under an angle θmin with the equator. The normalization by
〈Sx〉2 takes into account that improving interferometric sensitivity requires
not only reducing noise but also maintaining high interferometer contrast
C = 2|〈Sx〉|/N .

A state with ξ2 < 1 allows one to overcome the standard quantum limit
in a Ramsey interferometer by a factor ξ with respect to the use of an uncor-
related ensemble of atoms [15]. Furthermore, ξ2 is an entanglement witness,
with ξ2 < 1 indicating at least bipartite entanglement between the conden-
sate atoms (see 2.2.8). In the next section, I describe how such a squeezed
state can be generated through nonlinear evolution on the Bloch sphere.

2.2.4 One-axis-twisting scheme

The internal state evolution of the BEC can be described in good approxi-
mation [47] by the so called ‘one-axis twisting’ Hamiltonian [13]:

Ĥ/� = δŜz + ΩŜϕ + χŜ2
z . (2.22)

The first term in (2.22) describes spin precession around z at the detuning δ,
including BEC mean field corrections (see 2.2.6). The second term describes
spin rotations around an axis Sϕ = (cosϕ)Sx − (sinϕ)Sy due to a coupling
of |0〉 and |1〉 with Rabi frequency Ω and phase ϕ (during the pulse δ = 0).
It vanishes when the two-photon drive is off. The third, nonlinear term of
strength χ arises due to elastic collisional interactions in the BEC. It ‘twists’
the state on the Bloch sphere, resulting in spin squeezing and entanglement.
An intuitive understanding of how this twisting comes about can be gained
in the following way: the operator Ŝz generates a rotation around the z-axis.
Ŝ2
z therefore generates a rotation around the z-axis which is proportional to
mz. Thus, a Fock state with N1 > N0 (Sz > 0) rotates faster, while a state
with N1 < N0 (Sz < 0) rotates slower, than a state on the equator.

To create a spin squeezed state, we prepare a CSS of the form |Ψ0〉 =
(|0〉 + |1〉)⊗N/2N/2 (figure 2.3). This is a linear combination of Fock states
with different relative atom numbers and thus, evolution in time with finite
nonlinear parameter χ leads to a distorted state which has reduced variance
along the angle θmin. To detect this reduction, we turn the state around the
direction of the mean spin by exactly that angle. This is done by applying
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Figure 2.3: Squeezing sequence. Evolution of the BEC internal state
on the Bloch sphere (δ = 0 for illustration). Starting with all atoms in
|0〉, a π

2
-pulse prepares a coherent spin state with mean spin 〈S〉 along x

and isotropic quantum noise in the yz-plane (fuzzy red circle). Subsequent
nonlinear evolution with χS2

z deforms the noise circle into an ellipse, creating
a spin-squeezed state with reduced noise at an angle θmin. To measure the
spin quadrature Sθ = (cos θ)Sz − (sin θ)Sy, a second pulse rotates the state
around −x by a variable angle θ, followed by detection of Sz.

a second pulse for a duration τθ = θ/Ω and with a phase ϕ = π (ϕ = 0) for
turning clockwise (counterclockwise). Finally, we measure Sz by counting
atoms in state |0〉 and |1〉. Repeating the experiment many times, one can
measure 〈Sz〉 as well as ΔS2

z .

Quantum phase diffusion. If the squeezed state is not turned prior to de-
tection, one would measure no reduction in ΔS2

z but only an increase in ΔS2
y ,

or equivalently in Δϕ2. This is sometimes referred to as quantum phase dif-
fusion [93] and usually regarded as a negative effect for interferometry. Only
turning the state into the correct orientation makes it useful for enhancing
interferometry or atomic clocks beyond the standard quantum limit.

Oversqueezing. A typical evolution over time of the squeezing parameter
ξ2 for χ = const is shown in figure 2.4. The twisting of the Bloch sphere first
results in a reduction of ΔSθ,min and thus ξ2. However, eventually the mean
spin decreases faster than the spin noise is reduced because the uncertainty
region starts to wind around the Bloch sphere (see insets in figure 2.4) and
ξ2 increases again. The state has become oversqueezed.

An essential feature of our experiment is therefore the control of the
nonlinearity. It should be active only during a well chosen best squeezing
time to avoid oversqueezing. This is described in section 2.2.6
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Figure 2.4: Oversqueezing. Typical evolution of a coherent spin state
under a constant nonlinearity. The squeezing parameter ξ2 decreases, reaches
a minimum at the best squeezing time Tbest and then increases again until
it becomes larger than 1. The state is then oversqueezed. The insets show
Bloch spheres for different times, looking from the north pole toward the
sphere center, demonstrating the decrease of 〈S〉 over time.

2.2.5 Schrödinger cat state preparation

For long times, the quantized nature of the spin can no longer be neglected.
In fact, it exists a revival time trev where the original coherent spin state is
recovered [97]. To easily see this, let us for now consider Ω = δ = 0 (if δ �= 0
the coherent state is still recovered at trev, but with an overall phase shift);
the Hamiltonian is then simply Ĥ = �χŜ2

z .
An initial CSS with ϕ(t = 0) = 0 evolves during the time trev = π/χ into

|Ψ(t)〉 = e−iχŜ2
z trev |Ψ0〉 = e−iπŜ2

z |Ψ0〉. (2.23)

Suppose we have an even number of particles, thenmz ∈ {0,±1,±2, ...,±N/2},
and m2

z has the same parity as mz. We can therefore replace Ŝ2
z by Ŝz in

equation (2.23) and get

|Ψ(t)〉 = e−iπŜz |Ψ0〉 = |Ψπ
2
〉. (2.24)

For an odd number of particles, however, mz ∈ {±1
2
,±3

2
, ...,±N/2} and we

can replace Ŝz by p̂+ 1
2
where p̂ has eigenvalues mp ∈ {0,±1,±2, ...,±N∓1

2
}.
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We then get

|Ψϕ(t)〉 = e−iπŜ2
z |Ψ0〉 = e−iπ/4e−iπ(p̂2+p̂)|Ψ0〉 = e−iπ/4|Ψ0〉. (2.25)

The last equality arises again because m2
p has the same parity as mp, and

therefore m2
p +mp is always even.

Both, for even and odd atom numbers, a coherent state is recovered at
the time trev, but with a phase shift depending on the atom number. In a
simple picture, the Fock states, which the CSS is composed of, rotate with
a different precession rate, depending on mz. However, at the time trev, all
Fock states have rotated a multiple of 2π (plus an additional phase shift for
even N) and a CSS is recovered.

At the time tcat = trev/2 = π/(2χ), half of the Fock states have made one
or several full rotations, while the other half ends up with an effective phase
shift of π. The state at this time is a Schrödinger cat state of the form

|Ψcat〉 = 1

2(N+1)/2

(
(|0〉+ |1〉)⊗N + (|0〉 − |1〉)⊗N

)
, (2.26)

which means that either all atoms are in the symmetric or all atoms are in the
anti-symmetric superposition. The same process responsible for spin squeez-
ing can thus also produce a maximally entangled cat state [16]. However,
already a few particles lost on average during the preparation time result in
a collapse of the cat state into a statistical mixture of the two CSS of which
it is composed. This is an example of the general rule that the more a state
is entangled, the more it is sensitive to decoherence.

2.2.6 Interaction control via wave function overlap

In the stationary two-mode model the nonlinear coefficient [47]

χ =
1

2�
(∂N0μ0 + ∂N1μ1 − ∂N1μ0 − ∂N0μ1)〈N0〉,〈N1〉 (2.27)

depends on derivatives of the chemical potentials

μj = 〈φj|hj|φj〉+
∑
k=0,1

gjkNk

∫
dr3|φj|2|φk|2 (2.28)

of the two BEC components with respect to the atom numbers, evaluated
at the mean atom numbers 〈N0〉 = 〈N1〉 = N/2 after the π

2
-pulse. Here, hj

is the single-particle Hamiltonian including kinetic energy and the trapping
potential. The interaction strength gjk = 4π�2ajk/m between atoms in |j〉
and |k〉 depends on the corresponding s-wave scattering length ajk.
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Figure 2.5: Control of the nonlinearity χ on the atom chip. χ
depends on the difference of intra- and inter-state atomic interactions. Its
dependence on the normalized density overlap λ of the two BEC compo-
nents is shown, calculated from stationary mode functions in potentials of
increasing separation.

If we neglect the dependence of the spatial wave functions on the atom
numbers we end up with a simpler expression

χ =
1

2�

(
U00 + U11 − 2U01

)
with Ujk = gjk

∫
dr3|φj|2|φk|2. (2.29)

As already mentioned in section 1.4.2, for our states, the three scattering
lengths are close, a00 : a01 : a11 = 100.4 a0 : 97.7 a0 : 95.0 a0. If the two BEC
modes overlap spatially, φ1 = φ0, the crossed terms in equations (2.27) and
(2.29) with the minus sign compensate the direct terms with the plus sign.
Thus, by default, χ ≈ 0.

There are two ways to increase χ: one can change the inter-state scatter-
ing length a01 with the help of a Feshbach resonance as was done parallel to
our work in an experiment of M. Oberthaler’s group in Heidelberg [26]. How-
ever, they used a different state pair and for our clock states no convenient
Feshbach resonance exists. The second method – used in our experiment – is
to control the overlap of φ0 and φ1 with a state-dependent trapping potential.
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2.2 Spin squeezing

By spatially separating the two modes, the crossed terms ∂N1μ0 and ∂N0μ1

(the overlap integral (2.29) with j �= k) are set to zero and thus χ > 0. In
figure 2.5, χ is shown as a function of the normalized density overlap

λ =

∫
dr3|Φ0|2|Φ1|2√∫

dr3|Φ0|4
∫
dr3|Φ1|4

. (2.30)

For this figure, we first solve the coupled two-component Gross-Pitaevskii
equations in traps of increasing separation for our experimental parameters
(see section 3.8). For the stationary mode functions thus obtained, λ and χ
are calculated. Controlling the overlap allows us to tune χ in our experiment
by three orders of magnitude.

Derivation of the nonlinear term χ

Expression (2.29) can be derived directly in the following way: We start with
the stationary GPE (1.26) for a single-state BEC. Multiplying 1.26 with φ∗,
integrating over space, and division by N results in

μ =

∫
dr3φ∗(− �

2

2m
∇2 + Vext

)
φ+ gN

∫
dr3|φ4| (2.31)

Assuming once again that the wave function dependence on N is negligible
and using E =

∫
μ dN , we derive the Hamiltonian

H = N

∫
dr3φ∗(− �

2

2m
∇2 + Vext

)
φ+

1

2
N2g

∫
dr3|φ|4

= Nh0 +
1

2
N2U (2.32)

This calculation can be extended to a system with two internal states and
yields

H = Nh0 +
1

2
N2

0U00 +
1

2
N2

1U11 +N0N1U01 (2.33)

The last term describes inter-state scattering between distinguishable scat-
tering partners and therefore does not contain the factor 1

2
. We now replace

N0 =
N
2
− Sz and N1 =

N
2
+ Sz and get

H = Nh0 +
1

2

(N2

4
−NSz + S2

z

)
U00

+
1

2

(N2

4
+NSz + S2

z

)
U11 +

(N2

4
− S2

z

)
U01

= Nh0 +
N2

8

(
U00 + U11 + 2U01

)
+
NSz

2

(
U11 − U00

)
+
S2
z

2

(
U11 + U00 − 2U01

)
. (2.34)
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The first term in (2.34) is the kinetic and potential energy of the non-
interacting condensate, the second term is a total energy offset depending
on the total atom number N . The third term is a differential energy between
states |0〉 and |1〉 which leads to an atom number dependent precession of the
spin. In a Ramsey sequence, this term translates a fluctuation in N due to
preparation fluctuations and losses into phase noise. The fourth term finally,
is nonlinear and the same as in equation (2.29).

2.2.7 Beyond the stationary two-mode model

The stationary two-mode model provides physical insight into the origin of
spin squeezing. However, since our method of controlling χ involves dynam-
ically splitting and recombining the two states, quantitative predictions can
not be made with this simple model and a theory which takes into account
the external degrees of freedom is needed. Our collaborators Alice Sinatra
and LI Yun from the Laboratoire Kastler Brossel at the ENS in Paris have
developed such a theory and applied it to our experiment [47]. They have
also considered the influence of losses [94, 47] and technical noise on the
squeezing. In the following, I briefly outline their theory.

Dynamical model

For the dynamical two-mode model [47] we again decompose a condensate
state into a superposition of Fock states

|Ψ(t)〉 =
N∑

N0=0

( N !

N0!N1!

)1/2
cN0
0 cN1

1 |N0 : φ0, N1 : φ1〉. (2.35)

Compared with (2.17) however, we now allow for different, time dependent
spatial modes

|N0 : φ0, N1 : φ1〉 → e−iA(N0,N1,t)/� × |N0 : φ0(N0, N1, t), N1 : φ1(N0, N1, t)〉.
(2.36)

The time evolution of each Fock state can be split into a phase evolution
and an evolution of the spatial mode. The spatial wave functions solve the
coupled Gross-Pitaevskii equations

i�
∂φj

∂t
=

(
hj +Njgjj|φj|2 +Nkgjk|φk|2

)
φj (2.37)

with φ0(t = 0) = φ1(t = 0) = φ0 and the phase factor solves

dA

dt
= −

∑
j,k=0,1

1

2
NjNkgjk

∫
d3r|φj|2|φk|2 (2.38)
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with (j, k) = (0, 1). This set of equations can be solved numerically and
takes into account the spatial dynamics of the two modes as well as the
internal state dynamics and specifically their dependence on atom numbers.
The approximation made here is that only the two condensate modes are
occupied and thermal occupation of orthogonal modes is not included. This
theory is therefore only strictly valid for T = 0.

Modulus-phase approach

Although solving equations (2.37) and (2.38) can in principle be done, for
large atom numbers and in three dimensions it soon becomes a computa-
tionally demanding task. For an analytical solution one utilizes the fact that
for a coherent spin state with large atom number, only Fock states around
|N0, N1〉 contribute significantly. We split the spatial wave function into a
modulus and phase and use the fact that the density distribution depends
only weakly on atom number. Thus, the variation of |φj| over the distribution
of Nj can be neglected:

φj(N0, N1, t) = |φj(N0, N1, t)|eiϕj(N0,N1,t). (2.39)

We approximate the variation of the phase by a linear expansion around Nj :

φj(N0, N1, t) � φj(t) exp
(
i
∑
k=0,1

(Nk −Nk)
∂ϕj

∂Nk

∣∣∣
(N0,N1,t)

)
(2.40)

where φj(t) = φj(N0, N1, t). The modulus-phase approach thus takes into
account the dependence of the condensate wave function phase on the particle
number, which is exactly the origin of spin squeezing. The expectation values
and variances of the spin operator (2.12) for the coherent state can now be
expressed in terms of only six quantities: the two spatial mode functions
for the mean atom numbers φj and the four phase derivatives

δϕj

δNk
. For

the simulations of our experiment it is sufficient to evolve a few (usually 5)
coupled GPE (2.37) for different values of N0 and N1 around N0 = N1 = N/2
and then numerically calculate the phase derivatives.

Phase noise due to losses

Particle losses fundamentally limit the amount of squeezing which can be
achieved. The ‘experimentalist’s reason’ for this is simple: because losses are
statistical processes they impose an additional shot noise of the order of

ΔS2
z (t) ∼ N0(t = 0)p0(t)[1− p0(t)] +N1(t = 0)p1(t)[1− p1(t)], (2.41)
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where Nj(t = 0)pj(t) is the number of lost atoms in state |j〉 at some time t
with pj(t) the probability for loosing an atom during the time t.

In a more formal way [94, 47], one can evolve the density matrix with
a Monte-Carlo wave function approach [95], where losses are modeled by
quantum jump operators. In the interaction picture, where the jump operator
depends on time, the effect of such a quantum jump at time tjmp on a coherent
spin state is a sudden transfer of the CSS into another with a reduced mean
atom number and a random phase shift proportional to ςtjmp, where ς is
a function of U00, U11, and U01 (why a change in atom number results in
a phase shift can be seen in equation (2.34)). This model can be solved
analytically for one-body losses and for two- and three-body losses within
a ‘constant loss-rate approach’, which is valid for times where only a small
fraction of the atoms are lost. For a symmetric state (N0 = N1) and equal
loss rates Γ(m) (for the two states and for all m-body losses), the reduction
of the squeezing factor, compared to the non-loss case (ξ20(t)), is

ξ2(t) = ξ20(t)
(
1 +

Γsqt

3ξ20(t)

)
, (2.42)

with Γsq =
∑
m

mΓ(m) and Γ(m) = (N/2)m−1Km

∫
d3r|φ|2m where Km is the

m-body rate constant (see 1.4.3). Γsqt is the lost fraction of atoms after a
time t. This confirms our initial guess that the squeezing is limited by losses
with ξ2 ≥ Γsqtbest/3, where tbest is the best squeezing time.

Finite temperature effects

The loss of phase coherence of a one-component homogeneous BEC due to
finite temperature effects has been calculated in [96]. From this, one can
estimate that the thermal contribution to the variance of the relative phase
in a bimodal BEC grows quadratically in time Δϕ2(t) = Δϕ2

0 + AT t
2, with

Δϕ2
0 = Δϕ2(t = 0). The coefficient AT depends on the temperature, on the

interaction strength and on the number of particles. The phase spreading due
to the nonlinear atomic interaction is also quadratical in time [97] Δϕ2(t) =
Δϕ2

0 + (2ΔSz,0χt)
2, with ΔSz,0 = ΔSz(t = 0) the uncertainty in Sz of the

initial state. To estimate the relative importance of finite temperature, we
can thus compare AT with 2ΔSz,0χ.

In our squeezing experiment χ = 0.49 s−1, ΔSz,0 =
√
1250/2 = 17.5,

and kBT � μ. In these conditions, we estimate that thermal effects are
negligible. The theory of finite temperature effects on squeezing is still under
development, for example AT could be – at least quantitatively – different
for trapped BECs. However, since we work with very pure condensates with
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kBT � (kBTC , μ), we are confident that phase spread due to temperature
has only a minor effect in our experiments.

2.2.8 Relation between squeezing and entanglement

The density matrix of any non-entangled, separable state of N atoms can be
written in the form

ρ =
∑
k

pk ρ
(k)
1 ⊗ ρ

(k)
2 ...⊗ ρ

(k)
N (2.43)

where ρ
(k)
i is the density matrix of the ith particle in the kth therm of the

weighted sum. A state is m-particle entangled if ρ cannot be decomposed
into a sum where each density matrix involves less than m particles. In other
words, the sum contains at least one m-particle density matrix ρ

(k)
i...i+m.

It is shown in [16] that a spin state satisfying ξ2 < 1 is at least bi-
partite entangled. In [46], a more general method for the identification of
m-particle entanglement through measurement of the collective variables
ΔS2

θ,min and 〈Sx〉2 is deduced: using the Heisenberg uncertainty relation
ΔSyΔSz ≥ 〈Sx〉/2 and 〈S2

x〉+ 〈S2
y〉+ 〈S2

z 〉 ≤ S(S + 1), one can derive

ΔS2
θ,min ≥

1

2

(
S(S + 1)− 〈Sx〉2 −

√
[S(S + 1)− 〈Sx〉2]2 − 〈Sx〉2

)
. (2.44)

For large S and 〈Sx〉 this inequality gives an approximate bound for the
maximum squeezing achievable in a spin S system. The main result of [46]

is that in a system of N spin-1
2
particles, for a measured set

(
〈Sx〉,ΔS2

θ,min

)
,

there is a minimum spin S satisfying equation (2.44) and the system is thus
at least (2S+1)-particle entangled. For low entanglement (S small) the ana-
lytical formula (2.44) does not give a tight bound and a numerical calculation
produces the corresponding limit (see figure 2.6).

2.3 State tomography

To measure the degree of spin squeezing for a given state, it is sufficient to
measure its mean spin and the spin fluctuations along the angle θmin. How-
ever, much more information about the state can be gained by measuring the
mean spin and its variance not only along one direction but along many an-
gles θ0 ≤ θ < (θ0+π). From such a state tomography one can gain a complete
description of the state in the form of a quasi-probability distribution.
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Figure 2.6: Maximal squeezing for different values of S. Curves
indicating the maximal possible reduction in spin variance as a function of
contrast 〈Sx〉/S for different spins S. The black lines are numerical calcula-
tions for S = (1

2
, 1, 3

2
, 2, 3, 4, 5, 10) (top to bottom), the colored lines are the

solutions of the analytical formula (2.44) for S = 1
2
(green) and S = 10 (red).

The analytical approximation is close to the numerical calculation only for

large S. If a measured data point
(
〈Sx〉,ΔS2

θ,min

)
lies below a (black) S-line

it implies that the ensemble is at least (2S + 1)-particle entangled. Figure
adapted from [46].

Wigner function

The description of mixtures and fluctuations usually requires the use of the
density operator ρ which provides the most general description of a quantum
system. There exists however a different but completely equivalent descrip-
tion in phase space in the form of the quasi-probability distributions such as
the Glauber-Sudarshan P distribution or the Wigner distribution (or Wigner
function) [14, 98, 99]. For an harmonic oscillator the Wigner function is
defined as

W (q, p) =
1

π�

+∞∫
−∞

〈q − y|ρ|q + y〉ei2py/�dy, (2.45)

48



2.3 State tomography

where q and p are position and momentum quadratures, respectively. For a
pure state ρ = |Ψ〉〈Ψ| it becomes

W (q, p) =
1

π�

+∞∫
−∞

Ψ(x+ y)Ψ∗(x− y)ei2py/�dy. (2.46)

Its physical meaning is straight forward: although the Wigner function itself
can have negative values, its marginals are always positive and correspond
to probability distributions. To find the quadrature component distribution
p(x, θ) along an angle θ one simply integrates the Wigner function along a
direction perpendicular to θ [100]:

p(x, θ) =

+∞∫
−∞

W (x cos θ − y sin θ, x sin θ + y cos θ)dy. (2.47)

On the other hand, when the probability functions p(x, θ) for all angles within
a π-interval are known, the Wigner function can be calculated as [100]

W (q, p) =
1

4π2

+∞∫
−∞

dx

+∞∫
−∞

dη

θ0+π∫
θ0

dθ p(x, θ)|η| exp (iη(x− q cos θ − p sin θ)
)
.

(2.48)
This is the inverse Radon transform [101], which is well known from classical
tomography (for example from image reconstruction in X-ray tomographs).
It was for example employed to reconstruct the Wigner function of squeezed
light using optical homodyne detection [102].

The continuous Wigner function, as described above, is defined in a 2-
dimensional, continuous variable phase space. To describe a quantized spin
‘living’ on the Bloch sphere, one generally needs to utilize a discrete Wigner
formalism [103, 104]. However, for large atom numbers and coherent or
mildly squeezed spin states (as it is the case in our experiment), the Bloch
sphere can locally be approximated by a plane and the spin components as
continuous variables (see figure 2.7) so that equation (2.48) is suitable to
reconstruct the approximate Wigner functions.

After we have produced the squeezed spin state we can thus not only
measure ΔS2

θ,min but the probability distribution p(Sθ) along many angles θ
in the yz-plane and use this information to reconstruct the Wigner function

W (Sy, Sz) =
1

4π2

+∞∫
−∞

dSθ

+∞∫
−∞

dη

θ0+π∫
θ0

dθ p(Sθ)|η| exp
(
iη(Sθ−Sy cos θ−Sz sin θ)

)
.

(2.49)
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z

y

Figure 2.7: Local Bloch sphere approximation. For large atom num-
bers and if the spin state does not ‘wrap around’ the Bloch sphere too much,
the Bloch sphere can be locally approximated by a tangent plane and the
spin components as continuous variables. In this plane the Wigner function
can be reconstructed using the inverse Radon transformation (2.49).

In practice we measure p(Sθ) only for a discrete set of angles, with limited
atom number resolution (thus limited resolution of Sθ), and with a limited
amount of data per angle. This imposes limits on the reconstruction accuracy
which will be discussed in chapter 4.

Quantum state tomography is of interest because it gives access to mea-
sures of entanglement, such as the quantum Fisher information [105, 106],
which characterize a more general class of states (including states with ξ2 >
1) that can be used to overcome the standard quantum limit [106].
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Chapter 3

Experimental setup

Our experimental setup is similar to previous and existing atom chip exper-
iments in the groups of Jakob Reichel and Philipp Treutlein. Many details
can therefore be found in the PhD theses of previous group members. The
fabrication and characterization of our microwave atom chip are covered in
Philipp Treutlein’s [49] and Pascal Böhi’s [45] theses. The laser and vacuum
systems are treated in great detail in the diploma thesis of Johannes Hof-
frogge [107], who built them together with myself. Pascal Böhi also describes
the computerized control of our experiment and the hardware used to gener-
ate radiofrequency and microwave currents and radiation in our experiment.
For completeness, I briefly cover all of these topics. The main part of this
chapter is dedicated to the absorption imaging system used to achieve the
high atom number resolution, needed to experimentally demonstrate spin
squeezing. In the last part, I present a typical experimental sequence for the
production of mesoscopic BECs and lifetime measurements in the trap used
for the squeezing experiments.

3.1 Microwave atom chip

The atom chip used in our experiment was designed and built by Philipp
Treutlein and Pascal Böhi. Two features, employed here for the first time,
make it one of the technically most advanced atom chips in existence: first,
two layers of gold, separated by a thin insulating layer, allow for crossing
wires and thus more flexibility in trap design. Second, integrated coplanar
waveguides (CPWs) allow us to inject microwave currents into the chip and
use the CPW near-field for state-selective manipulation of the atoms.

A photograph of the chip is shown in figure 3.1 and a drawing of the wire
layout in figure 3.2. An AlN base chip provides mechanical stability and
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microwave
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on the back

CPW

bond
wires

50 mm

Figure 3.1: Microwave atom chip. Microwave atom chip assembly, in-
cluding the base chip, the science chip, and electrical DC and microwave
connectors, before it is glued to the vacuum glass cell.

easy connection to DC current sources through the socket adapters, which
are soldered onto the chip from the back. Microwave sources are connected
from the front. The electroplated gold wires have a height of 12μm and can
carry DC currents of up to 10A.

A spacer chip is glued onto the base chip, and the so called science chip
is glued onto this spacer chip. Both have the same dimensions and are cut
from a 525μm thick high-resistivity Silicon wafer. The science chip carries
two layers of metalization, separated by a layer of polyimide which is 6μm
thick. The polyimide provides not only electrical insulation between the two
gold layers but also planarization to reduce the bumpiness of the upper layer.
The lower gold layer has a thickness of 5μm and is fabricated in the same way
as the wires on the base chip. The wires on this layer carry static currents
for magnetic Ioffe-Pritchard and dimple traps. The upper layer is fabricated
with a lift-off technique and has a thickness of only 1μm. Some wires on this
layer form CPWs but can also carry DC currents of up to about 100mA. In
the experiment reported here, we use a 5-wire structure. The central three
wires form the CPW indicated in figure 3.2 while the outer two wires can be
used for additional tuning of the position of the static magnetic trap. The
upper layer also features a large gold mirror which is used for the mirror
MOT in the first stages of the experimental cycle. Base and science chip are
electrically connected through gold bond wires.
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Figure 3.2: Wire layout. The wire layout on the base chip (green) and
the lower (blue) and upper layer (red) of the science chip. The right panel
shows a zoom into the experiment region, omitting the gold mirror. There are
several waveguide structures on the chip, but for the experiments reported
in this thesis, only the one indicated is used. The black arrows indicate the
main DC currents used in our experimental sequence, as described in section
3.8.

3.1.1 Characterization of the microwave near-field

Using the Biot-Savart law, it is straightforward to calculate magnetic fields
produced by static currents and thus simulate the expected magnetic trap po-
sitions and frequencies with high accuracy (within a few percent). The simu-
lation of the microwave near-field proves to be much more difficult. Since the
transverse CPW dimensions and the distance of the atoms from the wires are
much smaller than the microwave wavelength (λ = 4.4 cm for fmw = 6.8GHz
in vacuum), we can neglect retardation effects and calculate the microwave
field around the CPW from the microwave current distribution in the wires in
a similar way to the static fields. The difficulty lies in determining the exact
current distribution, since microwave currents can be induced in the adjacent
wires or the wires on the lower layer of the science chip. This and the curva-
ture of the CPW can furthermore lead to an asymmetric current distribution
in the CPW itself. Also, the skin effect leads to an inhomogeneous current
distribution in each wire.

We have devised a method to measure the microwave field distribution
around the waveguide, using the cold atoms themselves as probes [64, 45].
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Briefly, we release a cloud of thermal atoms in state |0〉 close to the waveguide
and let it expand until it fills an extended region around the guide. We then
apply a short microwave pulse in the CPW, resonant with an atomic tran-
sition. We thus coherently transfer some population into the F = 2 states.
The transfer rate at any given point in space depends on the microwave field
strength at that point which therefore can be deduced by state-selective de-
tection of the atoms. The data quality can be improved by scanning the
microwave amplitude to record Rabi oscillations in space. By repeating such
measurements with a static magnetic quantization field pointing along each
coordinate axis, and with the microwave frequency adjusted to drive the π,
σ+, or σ− transition (for a total of 9 data sets), we can reconstruct the
complete microwave field distribution in the region filled by the atoms.

We compare the measured field to the field calculated from the assumed
current distribution, and adjust the latter to maximize agreement. A good
match can be achieved by assuming a small asymmetry in the microwave
currents on the CPW and small induced currents in the two adjacent wires
as well as in the lower science chip layer. We have also simulated the mi-
crowave propagation on the CPW, including the lower science chip layer,
using the software Sonnet and find good agreement between this simulation
and the experimentally found current distribution. As an example, figure 3.3
shows the measured and simulated distributions of the x-component of the
microwave magnetic field.

3.2 Vacuum system

Experiments with cold atoms require ultra-high vacuum (UHV) conditions
to minimize atom loss due to collisions with background gas. The high trap
frequencies achievable with atom chips allow for fast evaporative cooling and
thus reduce the vacuum requirements compared to non-chip setups. Typi-
cally, pressures of p < 10−9mbar yield lifetimes of a few seconds.

Glass cell. Our atom chip is an integral part of the vacuum chamber. It
is glued to a cubic glass cell (see figure 3.4) which in turn is glued to a glass-
to-metal adapter. For best vacuum compatibility we use a UHV certified
epoxy glue1. This configuration is very compact, since no additional electrical
vacuum feedtroughs are needed. The atom chip is oriented upside-down so
that released atoms can fall freely away from the chip surface. The glass cell
is rotated slightly with respect to the science chip axis in order to reduce

1Epo-Tek 353ND
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Figure 3.3: Measured (left) and simulated (right) microwave field
distribution for the x-component of the microwave magnetic near-field
around the waveguide (static quantization field in x-direction and a mi-
crowave resonant with the π-transition used). Since the images are recorded
with a tilted imaging beam, the cloud is imaged directly (bottom) and as a
reflection from the chip surface (top). The insets show the measured pop-
ulation in state |2,−1〉 as a function of the microwave power injected into
the waveguide (blue: data, green: fit used to calculate left image). Figure
adapted from [45].

interference fringes during the imaging of the atoms. Additionally, the glass
cell is anti-reflection coated on the outside. A water cooled copper block is
glued to the back of the base chip, containing a U-shaped copper wire which
can carry several tens of amperes and is used for producing the magnetic
quadrupole field for the first MOT.

Pumps and Gauge. The glass-to-metal adapter is connected through
35mm tubing to a Ti-sublimation pump, a 40 l/s ion pump, and an extractor
pressure gauge (see figure 3.5). During normal operation, the ion pump keeps
the pressure at a level of a few times 10−10mbar. The Ti-sublimation pump
is used only rarely (every few months), when the pressure has built up above
8× 10−10mbar. The pressure gauge is switched off during the squeezing ex-
periments since the light emitted by its glowing filament is detected by our
camera and causes additional imaging noise.

Dispenser. As a rubidium source we use dispensers located in the glass
part of the glass-to-metal adapter. We currently have two dispensers from
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connector of
Cu U-wire

Figure 3.4: Glass cell with atom chip. The atom chip is glued to a glass
cell, which in turn is glued to a glass-to-metal adapter. A copper block glued
to the back of the base chip provides water cooling and a thick wire used for
the first MOT. Figure adapted from [49]

.

SAES Getters2 and one from Alvatec3 built into the experiment. The dis-
pensers contain rubidium chromate mixed with a reducing agent (SAES) or
RbIn alloy (Alvatec), and release rubidium upon heating by sending a current
of approximately four amperes through them. The dispensers are not isotope
enriched, i. e. they contain only 28% 87Rb and 72% 85Rb [50]. Turning on a
dispenser after a pause of more than a week causes the pressure in the vac-
uum chamber to rise briefly above 10−9mbar because contaminations, which
accumulated during this time on the dispenser, are released. However, since
rubidium acts as a getter material, when the dispenser is regularly used, the
pressure falls back to the usual level of a few times 10−10mbar.

The two SAES dispensers are mounted such that the opening of one is
facing toward the chip center whereas the opening of the other faces the wall

2SAES Getters RB/NF/3,4/12FT10+10
3Alvatec AS-RbIn-5-F
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Figure 3.5: Vacuum system. The vacuum system is evacuated by a Ti-
sublimation pump and an ion pump, the pressure is monitored through an
extractor gauge. The front valve can be connected to a turbomolecular pump
for initial evacuation and bakeout. Figure adapted from [49].

of the glass-to-metal adapter. We have used the latter at a current of 3.8A
for several hours daily in the last 3 years, and there is no sign of depletion,
so far.

3.3 Laser system

In our experiments with cold 87Rb atoms we use laser light close to the D2

line (λ = 780.2 nm, natural line width of Γ = 2π×6.1MHz) to cool, optically
pump, and detect the atoms. For each of these steps, light with a different
frequency, driving a different hyperfine transition, is required, as shown in
figure 3.6. The cooling light for the MOT is red-detuned by 2 Γ with respect
to the F = 2 ↔ F ′ = 3 transition. In the molasses, the detuning is increased
to 12 Γ. For imaging, the same hyperfine transition is driven resonantly. If
during cooling or imaging atoms are off-resonantly excited into F ′ = 2 and
fluoresce into an F = 1 state, they are repumped using the F = 1 ↔ F ′ = 2
transition until they fall back into F = 2, where they rejoin the cooling
cycle. After optical cooling, in order to magnetically trap and manipulate
the atoms, we optically pump them into the state |F = 1, mF = −1〉, using
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Figure 3.6: Laser frequencies. The cooling light used during MOT and
molasses is red-detuned with respect to the F = 2 ↔ F ′ = 3 transition
whereas all other light is resonant with the indicated transitions. Figure
adapted from [49].

σ− light on the F = 2 ↔ F ′ = 2 and F = 1 ↔ F ′ = 1 transitions (see also
section 3.7).

We use three diode lasers, two of which are grating stabilized [108] and
locked via Doppler-free saturation spectroscopy [109] to the D2 line (see fig-
ure 3.7). The cooling, imaging, and ‘Pump 2-2’ light are derived from two
lasers in a master-slave configuration. The master laser is locked to the
F = 2 ↔ F ′ = 2, 3 crossover resonance and some light is branched off
to be used for the ‘Pump 2-2’ light. This light is passed twice through
an acousto-optic modulator (AOM) to decrease its frequency by 133.5MHz
and coupled into an optical fiber leading to the experiment. The remain-
ing light is double passed through a second AOM to adjust its frequency by
between (220MHz+5Γ/(2π)) and (220MHz−14 Γ/(2π)) and then seeds the
slave laser. Its light is split into a part for imaging and a second part for
cooling. The imaging light is switched on and off with a dedicated AOM
(f = 86.5MHz) and can be fed into two different fibers, for imaging along
two different axes. The cooling light is switched on and off with another
AOM (f = 86.5MHz), then split up and coupled into 4 different fibers for
the horizontal and diagonal MOT beams.

A third laser is locked to the F = 1 ↔ F ′ = 1, 2 crossover line. It is split
into two parts, which are both switched and frequency shifted (f = 78.5MHz)
in opposite directions via separate AOMs. One part is the ‘Pump 1-1’ light,
which is coupled into the same fiber as the ‘Pump 2-2’ light. The other is
the repump light, which is fed into the two fibers carrying the diagonal MOT
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beams.

An image of the glass cell with the surrounding laser outcouplers is shown
in figure 3.8. We use a mirror MOT [110] which, in contrast to a regular
MOT, requires only four laser beams by making use of light reflected from
the chip surface. Because the gold mirror on the chip is corrugated by the
underlying wire structure, the number of atoms which can be loaded by this
mirror MOT is very sensitive to its position over the chip. When aligned cor-
rectly, the performance of the MOT is just slightly lower than that of mirror
MOTs used in our group in previous experiments, where dielectric mirror
coatings where employed. For magnetic trapping, the atoms are pumped by
the two pump beams while a magnetic field in the x-direction is applied. We
can image the atoms along two directions. For the squeezing experiments,
we image along the y-direction, using a camera with high quantum efficiency
and fast frame transfer, giving high spatial and atom number resolution.
The camera in the x-direction has a much larger viewing angle and is used
to image the first stages of the experiment. For more details on imaging, see
section 3.7.

3.4 Current sources and magnetic shielding

The glass cell is enclosed in three pairs of Helmholtz coils which can create
homogeneous magnetic offset fields in any direction (see figure 3.9). The
coil wires are wound on a water cooled brass frame and generate fields of
(6.6G/A, 9.3G/A, 1.3G/A) in the (x, y, z) directions. For compensation of
the earth’s magnetic field we apply a small bias field with these coils.

For our experiments, we need to produce small BECs with high atom
number stability. The stop frequency of the last radiofrequency evaporative
cooling ramp defines the chemical potential and thus the atom number in
the condensate. A fluctuating magnetic field results in a fluctuating Zeeman
energy shift and thus in a fluctuation atom trap bottom, which in turn leads
to an uncertainty in the effective trap depth defined by the rf stop frequency.
As a result, the atom number in the trap fluctuates between experimental
runs. For example, the chemical potential of a BEC with 1250 atoms in
our condensation trap is h× 5.1 kHz [85]. Correspondingly, a change in the
magnetic field of only 5.1 kHz/0.7 kHz

mG
= 7.3mG would lead to a loss of all

atoms. Magnetic fields must therefore be much more stable than this.

We measure a fluctuation of the ambient magnetic field of up to 33mG
r.m. s. with a characteristic time scale of a few tens of seconds, which is
mainly due to the subway line running close to our laboratory. We enclose
the glass cell and the surrounding Helmholtz cage with a μ-metal shield which
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Figure 3.7: Beam paths in our laser system. The light originating
from the master laser is drawn in red, from the slave laser in green and
from the ‘repump’ laser in blue. White bars represent λ/2-plates, unless
indicated otherwise, grey boxes represent AOMs, and the wedges represent
mechanical beam shutters. The focal lengths of the lenses and the beam
powers at various positions are indicated. The powers directly before the
fiber couplers are measured in the corresponding phase of the experiment
(for example P11 was measured during pumping) and are usually less than
the maximally achievable powers.
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Figure 3.8: Glass cell with laser beams. Schematic drawing of the glass
cell and the laser beams for MOT, molasses, optical pumping, and imaging in
two directions. The polarizations of the MOT beams are indicated (LHP =
left hand polarized, RHP = right hand polarized), polarizing beam splitters
are marked with PBS. Figure adapted from [49].

reduces the fluctuations to about 220μG r.m. s.
Furthermore, we use very stable current sources4, both for the magnetic

coils and for the chip wires, and disconnect all unused wires in the final stage
of the experiment with mechanical or solid-state relays.

An exception is the current source used to produce the magnetic field in
the y-direction5. It is needed to produce high magnetic fields for the first
tight evaporation traps, but it shows a relatively strong residual modulation
of 0.9mA=̂8mG peak to peak at a total output of 590mA=̂5.2G. To first
order, the result of this is not a change of the magnetic field in the trap
center, but a fluctuation of the magnetic trap position, which lead to phase
noise in the squeezing experiments (see section 4.4.2). For the future, we plan
to disconnect this source from the experiment after the second evaporation

4homebuilt bipolar current sources with a stability better than ΔI/Imax < 10−5 and
switching times of typically 15μs (for more information see [107]) and High Finesse
20mA/10V bipolar current sources

5FUG NLN 350M-20
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Figure 3.9: Experimental setup overview. The vacuum glass cell (not
visible) is enclosed by three pairs of Helmholtz coils. The black ribbon cable
carries all on-chip DC currents, and the other wires carry the magnetic coil
currents. The complete setup (except the cameras) can be enclosed in a
μ-metal shield, the base plate of which is visible in the photo.

ramp, using a solid state relay, and to replace it with a stable home built
current source during the later stages.

3.5 High-frequency electronics

3.5.1 State preparation

The states |0〉 and |1〉 are coupled with a combined microwave and radiofre-
quency two-photon drive via an off-resonant intermediate state (see section
1.1.4). In our experiment, in order to achieve a homogeneous field over the
entire atom cloud, both are applied through off-chip antennas.

The radiofrequency antenna is a wire loop, 2.5 cm in diameter and po-
sitioned approximately 2 cm from the glass cell. The polarization of the
radiation is linear and perpendicular to the static magnetic field in the trap
center, thus predominantly σ− and σ+ transitions are driven. The rf current
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3.5 High-frequency electronics

is produced by an Agilent 33250A function generator, fed through a sepa-
rate switch, and amplified to 2W over 50Ω. The relative long-term stability
of the rf amplitude in the π

2
-pulses for state preparation is measured to be

1× 10−3 r.m. s. The same hardware is also used for evaporative cooling.

The microwave source is a microwave horn, placed at a distance of about
7 cm from the glass cell. The microwave radiation is linearly polarized and
perpendicular to the static magnetic field in the trap center. It thus drives
predominantly σ+ and σ− transitions. The microwave radiation is provided
by an Agilent E8257D generator which runs in continuous wave mode and
is switched with an external switch before it is amplified to 4W, which is
radiated from the horn. We measure a relative pulse amplitude stability of
2× 10−3 r.m. s.

All signal generators are phase locked to the oven controlled quartz oscil-
lator of an Agilent E8257D microwave generator (equipped with the UNX
ultra low phase noise option), or alternatively to an ultra stable reference
quartz oscillator6.

The Rabi frequency of the two-photon drive is Ω = 2π × 2.1 kHz at an
intermediate state detuning of Δint = 2π × 360 kHz – much faster than the
motional dynamics in the trap. We find that the microwave radiation induces
currents on the chip [64, 45] which lead to an inhomogeneous microwave in-
tensity distribution over the trapped atoms. As a consequence, Rabi oscil-
lations decay with a time constant of 15ms. Nevertheless, we achieve an
efficiency of a π-pulse of (96± 1)%, as shown in figure 3.10.

3.5.2 On-chip microwave

The microwave for the on-chip CPW is generated by an Agilent E8257D
generator, whose output power is amplified and then stabilized with the help
of an external detector and the generator’s internal PI-controller. The AM
input of the generator is used for amplitude control. We measure a relative
long-term drift of the output power of < 5× 10−4 peak-to-peak. No drifts of
the CPW transmissivity were detected.

The amplitude stability of the on-chip microwave is of great importance:
a fluctuating near-field potential leads to fluctuating level shifts of the clock
states and thus to phase noise. Indeed, we suspect amplitude fluctuations
of the near-field and position fluctuations of the atoms in this near-field to
be the main source of phase noise in our experiment, leading to a reduced

6Oscilloquartz OCXO 8607-BM
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Figure 3.10: Rabi oscillations. Resonant Rabi oscillations of the relative
atom number Nrel = (N1−N0)/(N1+N0), recorded by varying the duration
of the state preparation pulse. The fidelity of a π-pulse is (96 ± 1)%. The
decay with a time constant of 15 ms is due to spatial gradients in Ω near the
structured metallic chip surface which imposes boundary conditions on the
electromagnetic field.

squeezing performance (see section 4.4). For future experiments, we will
therefore employ an improved amplitude stabilization using an external PI-
controller and variable attenuator.

3.6 Experiment control

The BEC production and subsequent experiments on spin squeezing are com-
plicated sequences, involving many steps. Lasers have to be switched on
and off as well as modulated in intensity and frequency, while currents and
magnetic fields need to be adjusted, and radiofrequency and microwave gen-
erators programmed and triggered. About 35 analog and 25 digital control
channels are needed to run the experiment in its present state. We control
the experiment with a desktop computer which is equipped with National
Instruments (NI) analog and digital output cards7. In total, 52 analog and
48 digital channels are available with a time resolution of 10μs. For some

72×PCI-6733, 1×PCI-6723, 1×PCIe-6259
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experimental parameters, nanosecond time resolution is achieved by using a
digital delay generator8, which is triggered by the experiment control. The
sequence can be stopped and synchronized to the power line phase at any
stage to minimize the effect of residual 50Hz modulation on currents and
magnetic fields. We use Goodtime, a program written by Jakob Reichel, to
control the NI hardware and program external devices (e. g. frequency gen-
erators) via GPIB. It also communicates with a second computer which runs
an application to control and read out the cameras. This software, called
Matcam, is written in Matlab and was developed by Pascal Böhi [45].

3.7 Imaging

A crucial ingredient for our experiments on spin squeezing is an imaging
system with high atom number resolution. The standard quantum limit
for our typical BECs (N = 1250) is only ΔSSQL

z =
√
N/2 = 17.7, which

means we need to detect the relative atom number Sz = (N1 − N0)/2 with
a significantly better resolution to be able to detect spin squeezing. On the
other hand, we prepare states with 0 ≤ N0,1 ≤ N , i. e. we need to detect
relatively large atom numbers, which requires a highly dynamical imaging
method. Absorption imaging fulfills both requirements and allows large atom
numbers to be detected with high resolution. It is fundamentally limited by
the photon shot noise of the imaging laser. In the following, I describe the
basic principles of absorption imaging, how to calculate atom numbers from
the camera images, and derive the optimal parameters for low noise imaging.
I then describe our hardware including calibration measurements and image
analysis.

3.7.1 Absorption imaging

If an atomic cloud is illuminated by a laser beam of resonant light, it scatters
some of it and thus casts a shadow in the beam which can be detected by
a camera. Knowing the scattering cross sections of the atoms, the atom
number in the cloud can be calculated from the amount of light absorbed
from the beam.

According to the Beer-Lambert law [111], light traveling along the z-
direction and passing through a thin sheet of atoms with thickness dz is
absorbed, such that the light intensity is decreased by a small fraction

dI

I
= −n(z)σ(I)dz, (3.1)

8SRS DG535
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where n(z) is the number of atoms per unit volume with intensity dependent
scattering cross section σ(I). To determine the atom number per area of an
atom cloud extended along the z-direction, we integrate equation (3.1) to get

dN

dA
=

∫
n(z)dz = −

∫ I1

I0

1

Iσ(I)
dI, (3.2)

where I0 (I1) is the intensity of the light before (after) passing through the
atoms. We apply a magnetic quantization field Bimg and image the atoms
on the |F = 2, mF = −2〉 ↔ |F ′ = 3, m′

F = −3〉 cycling transition (the
frequency of the imaging light is adjusted, such that it drives the transition
resonantly at Bimg). We can thus model the absorption as for a two-level
atom with the cross section

σ(I) =
σ0

1 + I/Isat
. (3.3)

Here, σ0 = 3λ2

2π
= 2.9 × 10−13m2 is the resonant cross section and Isat =

�ωΓ
2σ0

= 1.67mW/cm2 the saturation intensity for the cycling transition [50].
We thus get

dN

dA
= −

∫ I1

I0

1 + I/Isat
σ0I

dI =
1

σ0
ln
(I0
I1

)
+

1

σ0Isat
(I0 − I1). (3.4)

Figure 3.11 shows the dependence of the two terms in equation (3.4) on the
imaging intensity I0. For small intensities I0 � Isat saturation effects can
be neglected and the first term dominates the sum. For large intensities
I0 � Isat the atoms are completely saturated and each atom scatters the
same amount of light. The atom number is then simply proportional to the
total scattered light. For I0 = Isat both terms contribute equally.

In the experiment, the atoms are in the F = 2 manifold, but not necessar-
ily in the mF = −2 sublevel before detection. They thus need to be pumped
to the cycling transition with the first few photons of the imaging beam.
A Monte-Carlo simulation, assuming perfect σ− polarization of the imaging
beam, shows that for Bimg = 2G, an atom in state |F = 2, mF = 1〉 scatters
an average of 5.3 photons and needs 1.6μs (for I = Isat) until it reaches the
cycling transition. An atom in state |F = 2, mF = 0〉 needs 1.0μs and in
state |F = 2, mF = −1〉 only 0.5μs. The main reason for this difference lies
in the different matrix elements of the transitions and not in the different
detunings due to the magnetic Zeeman shift, as one might expect at first.

We take this effect and the possibility of an imperfectly polarized imaging
beam, as well as the Doppler shift due to photon recoil (see below) into
account by replacing σ0 and Isat with effective values σeff < σ0 and Ieff > Isat
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Figure 3.11: Detected atom number as function of imaging inten-
sity I0. The three curves correspond to the fraction of detected atoms as
a function of imaging intensity if the atom number is calculated using the
complete formula (3.4) (solid blue), only the first term (dotted red) or only
the second term (dashed green).

[112]. The second term in (3.4) is not affected by this change since σeffIeff =
σ0Isat = �ωΓ/2 = const, where ω is the frequency of the imaging light and Γ
the natural line width of the D2 line. To determine σeff , we thus repeatedly
prepare atom clouds with the same atom number, measure N for different
imaging intensities, and adjust σeff such that the atom number is independent
of the imaging intensity. For example, if we measure smaller atom numbers
for low imaging intensities than for high intensities, we know that the first
term in (3.4) is too small and therefore σeff is too large.

Figure 3.12 shows measurements of an optically thin thermal cloud for
imaging intensities between I = 0.2 Isat and 4 Isat, analyzed with different
values for σeff . In our experiments we typically measure σeff = 0.9 σ0. As can
be seen from figure 3.12, this method gives good results, but should only be
trusted to determine the atom number with an accuracy of about ∼ 10%.
A more accurate method to calibrate the actual atom number is using the
quantum projection noise, as will be described in section 3.7.5.

Optimal imaging parameters

The only parameters entering equation (3.4) afflicted by noise are the imaging
intensities before (I0) and after the atom cloud (I1). In practice, we take
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0

Figure 3.12: Detected atom number as a function of imaging in-
tensity for different effective scattering lengths. The same images of
an optically thin thermal cloud are analyzed with different values for σeff .
σeff

σ0
= 1 (green), 0.9 (violet), 0.75 (blue), 0.5 (red), and 0.4 (black). Each

data point is an average over 9 experimental runs. The error bars on all but
the red data are omitted for clarity but they are of comparable size. The
large error is due to fluctuations in the atom number preparation which were
exceptionally high at the day of this measurement because of high frequency
noise on the main power line. The solid lines are guides to the eye. For
imaging intensities I < 0.5 Isat the number of detected photons and thus the
image quality becomes poor for our imaging pulse duration of τ = 40μs and
the high magnification M ≈ 10. The steep drop in detected atom number
might partly be due to pumping effects, although it cannot be quantitatively
explained by them.

two images, one with atoms present to determine I1, and a second when the
atoms have fallen out of the field of view to determine I0. The two intensities
fluctuate due to photon shot noise with ΔI2 ∝ I. Thus, the variance of the
atom number is

Δ
(dN
dA

)2

∝ 1

I0
+

1

I1
+

4

Ieff
+
I0 + I1
I2eff

, (3.5)

where I0 and I1 correspond to the mean values. This variance is minimized
for I0 ·I1 = I2eff . Calling t = I1/I0 the average transmittance this indicates an
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optimal imaging intensity of Iopt0 = Ieff/
√
t. For optically thin atom clouds

(f ≈ 1) the optimal intensity is Ieff ; the thicker the cloud, the higher the
optimal intensity. In our experiments with small condensates t ≈ 0.6 and we
typically use I0 = Ieff = 1.1 Isat.

For this analysis we have assumed that σeff and the cloud’s size are con-
stant during the imaging pulse and independent of the imaging intensity.
This is not strictly true, since the scattering of photons leads to a Doppler
shift and an atom diffusion which increases the cloud size. However, I will
show in the next section that these effects are negligible for our imaging
parameters.

Photon recoil effects

During the imaging pulse the atoms scatter many photons. This leads to an
acceleration

a(t) = v̇(t) = vrecRsc(t) (3.6)

of the atoms toward the camera, with the recoil velocity vrec = h/(mλ) =
5.9mm/s and the photon scattering rate

Rsc(t) =
Γ

2

I0/Ieff
1 + (I0/Ieff) + 4(δ(t)/Γ)2

. (3.7)

Here, δ(t) is the detuning of the imaging light, which again depends on the
velocity as δ(t) = δ0 − v(t)/λ because of the Doppler shift experienced by
the accelerated atoms. δ0 is the detuning for atoms at rest and should be
chosen slightly positive (blue-detuned) to compensate the Doppler effect.
Solving the differential equation (3.6), one finds that, during our imaging
pulse duration τ = 40μs and for all imaging intensities I0, the acceleration
is well approximated as constant. For I0 = 1.1 Isat and δ0 = 2π × 1.5MHz,
the atoms scatter 385 photons and are pushed 45μm toward the camera.
At the end of the imaging pulse, the absorption line is Doppler shifted by
v(τ)/λ = 2.9MHz.

The effective scattering cross section

σeff(t) = σeff,0
1 + (I0/Isat)

1 + (I0/Ieff) + 4(δ(t)/Γ)2
(3.8)

changes during the imaging pulse, as δ(t) changes. σeff,0 corresponds to the
effective scattering cross section at δ = 0, smaller than σ0 due to pumping
effects and imperfect imaging beam polarization (see above). Using higher
imaging intensities, the atoms scatter more light, are accelerated stronger,
and gather a higher velocity during the imaging pulse, which leads to a

69



Experimental setup

stronger Doppler shift. One would therefore at first expect that σ̄eff , aver-
aged over the time of the imaging pulse, decreases with increasing imaging
intensity. However, it turns out that the intensity broadening of the absorp-
tion line compensates this effect almost completely. For δ0 = 2π × 1.5MHz,
one achieves 0.9 σeff,0 < σ̄eff < σeff,0 for all imaging intensities.

Besides pushing the atoms toward the camera, the photon scattering leads
also to a random walk of each atom due to the random momentum kicks. An

atom is thus displaced on average by Δrrms =
vrec
3

√
Γτ3

2
[113], which leads to

a blurring of the image. For our experimental parameters, Δrrms = 2.2μm.
The image blurring as well as the translation of the atoms in the line of sight
are tolerable since the camera’s optical resolution is 4.4μm and the Rayleigh
range zR ≈ 80μm (see section 3.7.3).

3.7.2 State-selective imaging

As previously described, we use the F = 2 ↔ F ′ = 3 transition to image the
atoms. If we only shine in light of the corresponding frequency, we image
only atoms in F = 2, in particular in state |1〉. If we shine in repumping
light on the F = 1 ↔ F ′ = 2 transition shortly before or during the imaging
light, we can also detect atoms in the F = 1 manifold, i. e. we detect atoms
in both |0〉 and |1〉.

To state-selectively image atoms in either state [114] we use three images:
we take the first image with solely the F = 2 ↔ F ′ = 3 light, such that only
atoms in state |1〉 are detected. We then wait for 1.7ms, during which the
previously imaged atoms drift out of the focus of the camera by approxi-
mately 4mm due to their recoil acquired during imaging. Because the depth
of field of the camera is only a few tens of micrometers (zR ≈ 80μm) they
are invisible on subsequent images. The second image is taken after an ad-
ditional repumping light pulse of duration 20μs has transfered all remaining
atoms in F = 2. The atoms in state |1〉 have been ‘blown away’ by the first
imaging pulse and we detect only atoms in state |0〉. Finally, after waiting
another 1.7ms during which all atoms fall out of the field of view, we take a
third image which serves as a reference for both previous images to determine
I0 for each pixel. Figure 3.13 shows the resulting state-selective images of a
BEC in a superposition of states |0〉 and |1〉.

By recording Rabi or Ramsey oscillations (see figure 3.14), we find that
the detection efficiency for state |1〉 is typically a factor pd = 0.9 lower than
for state |0〉. A possible explanation is that atoms in state |1〉 need to be
pumped further to the cycling transition at the beginning of the imaging
pulse than atoms in state |0〉. We determine the detection efficiency once
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Figure 3.13: State-selective imaging. State-selective false-color images
of a BEC in a superposition of states |0〉 and |1〉. The images are taken with a
delay of 1.7ms, the reference image is taken another 1.7ms after the second.
The imaging region is bounded by the aperture on the sides and the knife edge
at the top. The FWHM diameters of the imaged atom clouds are 15 μm in the
vertical and 10 μm in the horizontal direction, both larger than the optical
resolution of our imaging system of 4 μm. The maximum optical densities
in the cloud centers for 600 atoms in each state is OD = −ln(t) ≈ 0.5. The
red boxes show typical integration windows for determining N0 and N1. The
green boxes are used to correct for fluctuating laser intensity between the
three images.

every day and multiply N1 by 1/pd before continuing with the analysis.

3.7.3 Imaging hardware

A schematic of our imaging hardware is shown in figure 3.15. The imaging
light is brought from the optical table to the glass cell via an optical fiber. An
aperture is used to extract the central part of the Gaussian beam profile. The
aperture is then imaged without magnification onto the plane of the atoms.
This guarantees an even illumination of the atoms and prevents unwanted
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Figure 3.14: Determining the detectivity of the atomic states. Rabi
oscillation between the two clock states. Shown is the detected atom number
in state |0〉 (black) and |1〉 (red) as a function of preparation pulse length.
From the fits we determine that for this measurement the detection efficiency
of state |1〉 was a factor pd = 0.9 lower than that of state |0〉.

reflections in the tube of the camera objective, as well as diffraction on the
chip surface. Omitting the lens would cause strong concentric modulation of
the imaging light intensity due to diffraction on the aperture. The originally
linearly polarized light coming out of the fiber is left hand polarized by a
quarter wave plate in order to drive the σ− imaging transition. However,
since the light from the fiber is not perfectly linearly polarized, some imaging
light can also drive the π or σ+ transitions, which is the reason why σeff < σ0.
In future setups, a polarizer before the quarter wave plate will guaranty a
purer polarization and thus a larger σeff .

The camera objective consists of two lenses, placed at a distance of their
focal length from the atoms and the CCD chip, respectively. The front lens is
a diffraction limited Melles Griot laser doublet9 with a focal length of 40mm
and a numerical aperture of NA= 0.32. The second lens is an achromat10

with a focal length of 400mm. The theoretical magnification M is thus

9Melles Griot 06 LAI 005/076 Laser Doublet
10Thorlabs AC254-400-B Near Infrared Achromatic Doublet
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f1 = 40 mm f3 = 40 mm f4 = 400 mm2 f2 = 80 mm 2 f2 = 80 mm

L1

F

A

W L2 C

G

L3 L4

CCD

KE

Figure 3.15: Schematic drawing of our imaging setup. The linearly
polarized laser light is brought to the experiment through an optical fiber F ,
collimated with a lens L1, cut with an aperture A and circularly polarized
with a λ/4-wave plate W . The aperture is imaged with lens L2 onto the
plane of the atoms in the glass cell G to reduce fringes due to diffraction.
The atoms are imaged with an objective consisting of the lenses L3 and L4.
The objective is tilted very slightly upward (exaggerated in the schematic)
so that the part of the CCD not covered by the knife edge KE is exposed.

10. With the help of an 1951 USAF optical calibration target we measure
M = 10.17. Because of this high magnification, the optical properties of the
first lens are much more critical for good optical resolution than those of
the second. According to the Rayleigh criterion [111], the objective would
in theory allow a resolution of 1.5μm, but in practice the atom chip surface,
which clips the imaging beam, limits the numerical aperture and the glass
wall of the vacuum chamber causes aberrations. We measure a resolution
better than 228 lp/mm, or 4.4μm (see figure 3.16).

If parts of the imaging system vibrate, the two images taken to deter-
mine the atom number will not be perfectly aligned on the camera CCD
chip. Although we try to illuminate the atoms as evenly as possible, residual
modulation of the imaging intensity over the image cannot be avoided. These
modulations then cause artificial modulations in space in the atom number.
It is therefore crucial for a good imaging quality to mount the camera as
rigidly as possible and minimize the time between the two images. It also
turned out to be indispensable to secure the objective close to its front lens
by clamping it to a sturdy post.

Our camera is an Andor Ikon-M back illuminated deep depletion CCD
with a quantum efficiency of q = 0.9 at 780 nm. We use it in a fast frame
transfer (FFT) mode, where only the top third of the pixels is illuminated
and repeatedly shifted down for storing the first two images. To make sure
that the ‘storage area’ of the CCD is not exposed, we cover it with a knife
edge, placed as close as possible to the chip, which in turn is covered with a
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Figure 3.16: Imaging resolution, measured with an 1951 USAF optical
calibration target. The group indicated by the red circle consists of three
lines, each 2.2μm wide and spaced by 2.2μm (228 lp/mm) and can still be
resolved by the objective. Reflections of the laser light used to image the
target on the glass substrate result in double images (especially pronounced
at the number 7 in the top right corner). The circular intensity modulation of
the imaging light (centered around the lower right corner) is due to diffraction
of the laser light on the aperture, since this image was taken before we
introduced the lens L2 (see figure 3.15).

sheet of black cardboard to reduce reflections from it. The reason for using
the FFT mode is that shifting a region of the CCD can be done with a
high speed of 6μs/line whereas the readout of the whole image (1024× 1024
pixels) takes about a second due to the slow A/D conversion. The FFT
mode enables us to image both atomic states plus a reference image within
one single experimental cycle and thus determine the total and relative atom
number for each shot. This allows us to take out the fluctuations of N in
determining Sz.

3.7.4 Image analysis

So far, I have derived all expressions with the physical meaningful imaging
light intensity I. The camera measures counts per pixel k, which can be
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translated into intensity as

I =
�ωk

qgApxτ
, (3.9)

where q = 0.9 is the quantum efficiency of the camera, g = 1.1 the gain of
the camera amplifier, and Apx = (1.28μm)2 is the area of a camera pixel in
the plane of the atoms (including magnification). Thus, Isat corresponds to
4300 counts. Even if no imaging light is falling onto the CCD, the camera
has a dark count rate due to ambient stray light and the camera electronics.
We minimize the stray light by closing all holes in the μ-metal shield with
black tape and switching off the pressure gauge. The camera chip is cooled
to −80◦C and the remaining dark count rate is very constant over time (shot
to shot fluctuation ≈ 9 counts r.m. s. on 4350 dark-counts, dominated by an
electronic offset). It is therefore sufficient to take a dark image once every
day, for which we run a usual experimental sequence but omit the imaging
pulses.

The number of atoms per pixel can then be calculated as

N

Apx

=
1

σeff
ln
(k0 − kd
k1 − kd

)
+

2

qgApxΓτ
(k0 − k1), (3.10)

where k0, k1, and kd are the counts per pixel for the reference image, the
image with atoms, and the dark image, respectively.

To calculate the total number of atoms in an atomic cloud, we define
a rectangular area, called the image area, in which the atoms per pixel are
summed up. Since the variance of the imaging noise due to photon shot noise
is proportional to this area, it should be chosen as small as possible while
covering the entire region where atoms are present. We usually use an image
area of 30 μm× 30 μm for our small condensates (see figure 3.13). To take a
possible fluctuation of the imaging laser intensity from the image with atoms
to the reference image into account, we define a second area which contains
no atoms and use it to normalize the counts (see figure 3.13). To measure the
noise in the image area, we place a third area of same size close to the atoms,
or use the image area itself while blocking one of the MOT beams and thus
not trapping any atoms. We typically measure a noise of ΔNj,im ≈ 10 atoms
r.m. s. between different experimental cycles. Calculating the expected shot
noise from the observed imaging light intensity gives similar results.

Detecting both states within one shot allows us to eliminate fluctuations
in the atom number preparation from our analysis. We first discard shots
where the total atom number differs by more than 150 atoms from the mean
atom number. We then define for each shot corrected atom numbers as

Nj,corr =
Nj

N0 +N1

(
N 0 +N 1

)
=

Nj

N0 +N1
N, (3.11)
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where the mean is taken over all shots (which were not discarded) in an
experimental run. The corrected z-component of the collective spin is then

Sz,corr =
N1,corr −N0,corr

2
=
N1 −N0

N0 +N1

N

2
. (3.12)

The imaging noise contribution on the two atom numbers is independent
whereas the projection noise is correlated. We can calculate the additional
noise in Sz due to imaging noise as

ΔS2
z,im =

1

N
2

(
N

2

0ΔN
2
1,im +N

2

1ΔN
2
0,im

)
. (3.13)

In the case of equal atom numbers N 0 = N 1 = N/2, ΔSz,im is thus a factor of√
2 smaller, compared to the imaging noise in the individual atom numbers

ΔNj,im. From now on, the experimentally measured noise in Sz is defined as

ΔS2
z ≡ ΔS2

z,corr −ΔS2
z,im, (3.14)

i. e. corrected for atom number fluctuations and imaging noise. This value
can be compared directly with the theoretical prediction. For a summary of
the processing applied to the raw atom numbers, see appendix C.

3.7.5 Atom number calibration using projection noise

For our experiments, it is crucial to know the total atom number N = N0+N1

accurately. Introducing an effective scattering cross section σeff , as described
in section 3.7.1, provides a first calibration of our imaging system, but it can
suffer from systematics, e. g. due to a dependence of the pumping efficiency
on the imaging intensity.

An independent test of the atom number calibration can be obtained by
observing the scaling of projection noise with the total atom number for
a coherent spin state. As shown in section 2.2.2, the variance in the z-
component of the collective spin Sz = (N1−N0)/2 scales linearly with N for
such a state, ΔS2

z = N/4. Figure 3.17 shows ΔS2
z , measured directly after

a π
2
-pulse as a function of N . The constant offset due to imaging noise is

subtracted as described in the previous section. The error bars are calculated
as Δ(ΔS2

θ ) =
√

2/MΔS2
θ , where M is the number of measurements for each

total atom number N [115]. The observed linear behavior confirms that
projection noise ΔS2

z ∝ N dominates over technical noise which generally
scales as ΔS2

z ∝ N2. A linear fit to the data in Fig. 3.17 yields a slope
of 0.22 ± 0.01. This agrees with the theoretically expected slope of 1/4 to
better than 15%. The difference lies within the error of our atom number
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Figure 3.17: Projection noise as a function of atom number. A
measurement of the variance ΔS2

z directly after a π
2
-pulse is shown as a

function of total atom number N , where N is independently calibrated using
σeff . The dashed line shows the expected linear scaling with a slope of 1/4,
the blue line is a linear fit to the data which yields a slope of 0.22±0.01. The
red line is a quadratic fit with ΔS2

z = aN+bN2. It yields a = 0.22±0.02 and
b = (0.06 ± 1) × 10−5, confirming the linear scaling expected for projection
noise.

calibration using σeff . As the dependence of ΔS
2
z on N can be very accurately

determined from Fig. 3.17, we use it to calibrate the total atom number by
rescaling N so that the slope of the linear fit is 1/4.

3.8 Experimental sequence

An experimental cycle consists of several MOT phases, where atoms are
loaded from the background gas and pre-cooled, a molasses phase for sub-
Doppler cooling the atoms, an optical pumping phase to bring the atoms
into state |0〉, several magnetic traps in which the atoms are evaporatively
cooled and condensed, and finally the experiment trap. A cycle takes about
12 seconds. Most of this time is used for the BEC preparation and the actual
experiment lasts only the last few tens of milliseconds.
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MOT phase

We load 87Rb atoms from the background gas with a MOT utilizing the
copper U-wire in the water cooled copper block behind the chip (I = 48A)
and a magnetic field in the y-direction (By = 7.7G). Fields in the x and z
direction are used to position the MOT where the corrugation of the gold
mirror is least perturbing. The magnetic quadrupole minimum is about
3mm from the chip surface. The cooling lasers are red-detuned by 2 Γ and
we typically load 6− 8× 106 atoms within 7 s.

We briefly turn off the lasers while switching from the copper wire to
a U-wire on the base chip (I = 9.2A) and then reduce this current within
15ms to 2.8A to bring the atoms closer to the chip surface. During this
ramp, we also increase the detuning to 14 Γ and decrease By to 3.3G. The
atoms are now 400μm from the chip surface.

Molasses phase

We then switch off all currents and magnetic fields, keep the laser detuning
at 14 Γ, and reduce the laser powers to about half of their maximum. For
an efficient sub-Doppler cooling, it is crucial that the laser beam power is
balanced between the counter propagating beams and that all magnetic fields
at the position of the atoms are compensated to zero. We achieve the latter
by performing a Hanle type spectroscopy, where we use the F = 2 ↔ F ′ = 2
transition for imaging [116]. After typically 3ms, the atoms reach a temper-
ature below 10μK.

Optical pumping

After the molasses, the atoms are distributed in the F = 2 manifold and
we optically pump them into the magnetically trappable state |0〉. For this,
we first switch off all lasers and switch on a quantization field of Bx = 2G.
We then switch on the two pump lasers for typically 500μs. Both lasers are
σ− polarized and reduce the mF quantum number of the atoms. The 2-2
pumper transfers the atoms to the F = 1 manifold while the 1-1 pumper
brings them into the correct Zeeman sublevel |1,−1〉. During this process,
the temperature of the atoms is increased by 2− 3μK.

Magnetic Ioffe traps

We now turn off all lasers and capture the atoms in a Ioffe-Pritchard trap,
using the Z-shaped wire indicated in figure 3.2 (Iz = 2.65A) and a field in
the y-direction (By = 12G). A good test for the overlap of this trap with
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shot number

Figure 3.18: Total atom number N for 5000 subsequent measure-
ments. A slow drift over time is observed, possibly due to drifting chip
currents or magnetic fields. The red line is an adjacent average over 200
measurements to guide the eye. The mean atom number in this series of
measurements is N = 1243± 47.

the Molasses position and a successful laser cooling is provided by holding
the atoms in this trap for half a second and waiting until the residual motion
has damped out. We are typically left with 3.5 × 106 atoms. In the normal
sequence this trap is used for only 2ms.

We then compress the trap within 200ms by ramping up By to 55G
while slightly decreasing Iz. The new trap has a distance of 76μm from
the chip surface and has a radial trapping frequency of 3.8 kHz. This tight
trap enables fast thermalization rates for the first radiofrequency evaporative
ramp (duration 500ms, rf frequency ramped from 50 to 20MHz). After this
ramp, 1× 106 atoms remain.

We decrease Iz and By again to relax the trap and bring it even closer to
the chip surface (d = 47μm). Then, we ramp down the current in the Z-wire
and at the same time increase the current in the so called long Ioffe wire.
We turn on the dimple wire to ‘dig’ a dimple into this elongated trap. The
dimple trap has again high trapping frequencies, and we carry out a second
rf evaporation ramp from 19 to 1.8MHz. All remaining atoms (N ≈ 3×104)
have thermalized into the dimple trap and their temperature is close to, but
still above, the condensation temperature Tc.
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Figure 3.19: Schematic close-up of the experiment region. Static
currents on the microwave CPW and on the wires on the lower science-chip
layer are labeled; the arrows indicate the directions of the currents. The
experimental trap has a distance of d = 44μm from the chip surface and is
displaced in the x-direction by 12μm with respect to the middle of the CPW.

In the next step, we smoothly replace the dimple wire current by the three
CPW wire currents of 15mA each (one current is reversed with respect to the
others). The result is a slightly more relaxed trap in which we do the final
evaporative ramp (rf frequency from 2MHz to ∼ 1.4MHz) to Bose-condense
the atoms. We cut into the condensate to define the atom number and end
up with a small, pure BEC with typically N = 1250± 45. Figure 3.18 shows
the total atom number for 5000 subsequent measurements.

Finally, we adiabatically modify the currents in the CPW and the Long-
Ioffe wire as well as the magnetic fields within 150ms and end up with our
experimental trap.

Experimental trap. This trap has trap frequencies of (ωx, ωy, ωz) = 2π×
(109, 500, 500)Hz and a magnetic field in the trap center of B0 = 3.36G, close
to the ‘magic field’ at which the magnetic moments of |0〉 and |1〉 are equal.
It is located at a distance of 44μm from the chip surface and is displaced by
12μm in the x-direction with respect to the middle of the CPW (see figure
3.19).

For detection, after the experiment has been performed, we ramp the
atoms within 30ms into a relaxed trap, 200μm from the chip surface. From
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Figure 3.20: Lifetime of a BEC in our experimental trap. Experi-
mental data (filled circles) and results from a Monte-Carlo simulation (solid
lines) for a BEC initially in either state |0〉 or |1〉, or in an equal superposition
of the type 1√

2
(|0〉+ |1〉).

there, the atoms fall and freely expand for 4.5ms before we take the first
image to detect state |1〉.
Table 3.1 gives an overview over all stages of the magnetic trapping sequence.

3.9 Trap lifetimes

Figure 3.20 shows a measurement of the lifetime of a BEC in the experimental
trap. The losses in state |0〉 are dominated by background gas collisions
whereas the losses in state |1〉 are much stronger due to two-body losses (see
section 1.4.3). In a superposition, two-body inter-state collisions open an
additional loss channel. We adjust the loss rates in a Monte-Carlo simulation
to fit the measured data: γbg = 0.2 s−1, K1 = 0.70 × 10−13 cm3s−1, K01 =
0.50 × 10−13 cm3s−1, and L0 = 6 × 10−30 cm6s−1. These rates are slightly
different from the literature values, possibly because we calculate them using
the wrong atom density, which we calculate for our trapping parameters but
do not measure independently. We use the measured rates to model losses
in our spin squeezing analysis.
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Chapter 4

Experimental results: spin
squeezing and entanglement

In this chapter, before turning to the main results of this thesis, I present
a series of measurements aimed at the characterization of the microwave
near-field potentials. We first demonstrate the state-selective splitting of
small BECs and determine the dependence of the splitting distance on the
microwave power injected into the CPW.We then analyze a dynamic splitting
method, where the traps for |0〉 and |1〉 are abruptly separated and the
states oscillate in the shifted potentials. We find that the atomic motion
for small splitting distances is governed by mean-field effects which can be
reproduced well by our simulations. A high degree of coherence is maintained
during this process, which is crucial for the use of our technique in an atomic
interferometer and for the generation of entangled states.

Finally, we tomographically analyze the BEC after state-selective split-
ting and recombination to show that the resulting multi-particle state is spin
squeezed and a useful resource for quantum metrology. Following a detailed
noise analysis, leading to suggestions for future improvements of our experi-
mental technique, the Wigner function of the squeezed state is reconstructed.

4.1 State-selective splitting of a BEC

To characterize the state-selective potential we split an atomic ensemble em-
ploying various microwave powers, detunings, and splitting schemes. We
start by preparing a small BEC with a few hundred atoms in our experimen-
tal trap (fx = 109Hz, fy = fz = 500Hz, z0 = 44μm, see also section 3.8).
At the position of this trap, the microwave near-field has a strong gradient
along x and z. To split the BEC, we first apply a π

2
-pulse to create an equal
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Experimental results: spin squeezing and entanglement

F = 1

F = 2

mF = -2 -1 0 1 2

|0〉

|1〉

|2〉 Δ

Figure 4.1: Level scheme for adiabatic and large dynamic splitting.
The microwave in the CPW is blue-detuned by Δ ≡ Δ2,−1

1,−1 from the transition
|0〉 ↔ |F = 2, mF = −1〉 ≡ |2〉, leading to an energy shift of states |0〉 and
|2〉. The magnitude of Δ is exaggerated for clarity. State |1〉 is very weakly
affected because the microwave is far detuned from all transitions connecting
to this state.

superposition of the two states. We then ramp up the microwave power
launched into the waveguide and subsequently image the atoms in situ, i. e.
with a TOF = 0.2ms. For the following experiments, the microwave is blue-
detuned by Δ ≡ Δ2,−1

1,−1 from the transition |0〉 ↔ |F = 2, mF = −1〉 ≡ |2〉,
where Δ is on the order of a few tens to hundreds of kHz. Since the Zee-
man splitting between the mF -sublevels is 2.3MHz � Δ/(2π), this couples
mainly the states |0〉 and |2〉, which are both shifted in energy (see figure
4.1). Atoms in state |1〉 are essentially unaffected by the microwave because
it is far off resonance for all transitions connecting to this state. Therefore, in
a microwave intensity gradient, only the trap for state |0〉 is shifted whereas
the trap for state |1〉 remains at the position of the static magnetic trap.

For our parameters |Ωmw|2 � |Δ|2, so that the energy shift of state
|0〉 is well approximated by equation (1.10), i. e. it is proportional to the
microwave power Pmw and inversely proportional to the detuning Δ. For
quantitative calculations, we simulate the microwave near-field using the mi-
crowave current distribution found in 3.1.1 and find the resulting energy
shifts by diagonalizing the full dressed-state Hamiltonian (1.7).
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4.1 State-selective splitting of a BEC
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Figure 4.2: Adiabatic splitting. a, Absorption images of the adiabati-
cally split BEC (Pmw = 120 mW, Δ(rm) = 2π× 150 kHz). By imaging both
hyperfine states simultaneously (top), only F = 1 (middle), or only F = 2
(bottom), the state-selectivity of the splitting is established. b, Measured
splitting distance s as a function of Pmw/Δ for different values of Δ, as indi-
cated. The solid line is the result of a simulation using the microwave current
distribution found by our field-imaging method (see section 3.1.1).

4.1.1 Adiabatic splitting

In a first set of experiments, we ramp up the microwave power within 150ms,
which is slow compared to the trapping frequencies. The two states can thus
adiabatically follow the change in their respective trapping potentials. We
measure the resulting splitting of the two states as a function of Pmw and Δ.
Figure 4.2 shows the in-situ images of a split condensate and the splitting
distance as a function of Pmw/Δ. The curves lie on top of each other for
different Δ, which confirms that we are in the regime |Ωmw|2 � |Δ|2.

The splitting is mainly due to the strong gradient of |ΩR(r)| at the po-
sition of the magnetic trap rm, whereas the variation of Δ(r) is comparably
weak. Although we know from the microwave field characterization and sim-
ulations that the gradients along the x and z-direction are of comparable
magnitude, the cloud is almost solely split along x. This is because the
trap frequency along x is five times weaker than along z which leads to a
25 times larger effect in this direction. The splitting along z is below our
imaging resolution. The maximally applied Pmw = 120mW corresponds
to Ωmw(rm) = 2π × 122 kHz, which we measure independently by driv-
ing resonant Rabi oscillations with the microwave near-field. Note that for
Δ > 0, the repulsive microwave potential pushes state |0〉 into regions where

85



Experimental results: spin squeezing and entanglement

a b

π

Figure 4.3: Dynamic splitting. a, Sequence used to record the dynamic
splitting: after preparing an equal superposition of |0〉 and |1〉, the microwave
power is ramped up within 50μs, fast compared to the trap frequencies. State
|0〉 starts to oscillate in its suddenly shifted trap. After a time T, we ramp
down the microwave again within 50μs and image the atoms in situ. b,
Position of the two states as a function of time. Shown are experimental
data (c.o.m. position) together with the result of a dynamical simulation of
the coupled Gross-Pitaevskii equations (longitudinal density integrated along
the tight confinement axes of the cylindrical trap).

Ωmw(r) � Ωmw(rm) so that |Ωmw|2 � |Δ|2 is satisfied.

Our simulation matches the experimental data well, confirming the accu-
racy of the field imaging method.

4.1.2 Dynamic splitting

In order to split and recombine a BEC in shorter times, comparable to the
trap frequencies, we use a dynamic splitting method. For this, we ramp up
the microwave within 50μs, which is slow compared to the internal state
dynamics but fast compared to the trap frequencies and thus the motion of
the atoms.

Large splitting distance

For Δ = 2π×600 kHz and Pmw = 120mW, the trap for state |0〉 is shifted by
s = 4.3μm. The atoms in state |0〉 suddenly ‘see’ a modified potential and
start oscillating in the shifted trap (figure 4.3) with the frequency of this trap
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4.1 State-selective splitting of a BEC

f̄x = 116Hz and with an amplitude of 2s. After each full oscillation, the two
states overlap again and due to collisions some momentum is transfered to
state |1〉. Our collaborator LI Yun has simulated the atomic motion by solv-
ing the quasi-3D coupled Gross-Pitaevskii equations (rotationally symmetric
traps, f⊥ = 500Hz, fx = 116Hz, splitting only along x). The calculations
reproduce the experimental findings very well; the results are shown in figure
4.3 b.

For the spin squeezing experiments, the distance by which the two states
are separated can be much smaller, what counts is the wave function overlap.
On the other hand, it is crucial to minimize the admixture of other states
(with a different magnetic moment) to the clock states to keep their good
coherence properties. For the experiments on spin squeezing we therefore
perform a slightly different splitting sequence as described in the following.

Small splitting distance

As can be seen from equations (1.10) and (1.11), the admixture of other
states to the clock states is inversely proportional to the detuning. For this
reason, for the following experiments, we choose a large blue detuning Δ2,0

1,0 =
2π × 12MHz with respect to the |F = 1, mF = 0〉 ↔ |F = 2, mF = 0〉
transition. Thus, the dressing is very small and the admixture is on the
order of only one percent. However, as a consequence, also the achievable
splitting distance between the two traps is significantly smaller. Because
the microwave is blue detuned for all hyperfine transitions, both states are
affected and their traps are shifted in opposite directions in the near-field
gradient. Along x, the trap for state |0〉 is pushed by 0.13μm away from
the waveguide whereas the trap for state |1〉 is pulled by 0.39μm toward
the guide, resulting in a total splitting of s = 0.52μm. For all following
experiments, we use a BEC with N = 1250 and the splitting is much smaller
than the BEC radius of 3.9μm [85]. The shift in z-direction for both states
is on the order of 0.02μm. We have not imaged the motion of the two states
in situ, but we know from simulations that for such small trap separations
the trapping frequencies do not change.

In spite of the small trap splitting, due to mean field effects, the two
states almost completely separate and the oscillation period of the states
increases compared to 1/fx = 9.2ms. Simulations by LI Yun show that the
condensate is split by 3μm and the wave function overlap λ is reduced to
almost 0. On the other hand, the states overlap again by λ = 90% after
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Figure 4.4: Wavefunction dynamics for small splitting distance.
Longitudinal densities for the two states |0〉 (blue) and |1〉 (red) integrated
along the tight confinement axes of the cylindrical traps, calculated from a
dynamical simulation. The total number of atoms N = 1250, and the trap
frequencies f⊥ = 500Hz, fx = 109Hz. The displacement of the traps for state
|0〉 and |1〉 are 0.13μm and 0.39μm, respectively, leading to an asymmetric
evolution of the two wave functions. Figure adapted from [117].

12.7ms (see figures 4.4 and 4.5). Here, the density overlap is calculated as

λ =

∫
dr3|φ0|2|φ1|2√∫

dr3|φ0|4
∫
dr3|φ1|4

, (4.1)

where φ0 and φ1 are the states’ spatial modes.

Note that the large separation is not a demixing effect due to the slightly
different scattering lengths of the two states but predominantly due to the
mean field repulsion in an asymmetric potential for states |0〉 and |1〉 itself.
This can be seen from a simulation where the inter- and intra-state scattering
lengths have been set equal (asim00 = asim01 = asim11 ≡ a00), and the dynamic is
barely different from that shown in figure 4.4.
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Figure 4.5: Atomic motion and contrast for small splitting distance.
a, Simulated center of mass position of the two states (blue: |0〉, red: |1〉)
in the state-selectively split potential used for the squeezing experiments,
as a function of time. The slightly asymmetric splitting of the potentials
results in an asymmetric oscillation. b, Measured Ramsey fringes in the
normalized population difference Nrel. The splitting and recombination of
the BEC modulates the fringe contrast. The simulated contrast C (red) and
density overlap λ (blue) are shown for comparison.

4.2 Coherence

To test the coherence of the state-selective spitting process, we embed it in a
Ramsey interferometer sequence. For this, we simply apply a second π

2
-pulse

directly after the microwave has been ramped down. Figure 4.5 b shows the
measured Ramsey fringes in Nrel =

N1−N0

N1+N0
as a function of the time between

the two pulses TR. It also shows the calculated contrast

C =
2
∫
d3rΨ̂†

0Ψ̂1∫
d3rΨ̂†

0Ψ̂0

∫
d3rΨ̂†

1Ψ̂1

(4.2)
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Figure 4.6: Ramsey interference fringes. Ramsey interference fringes in
the relative atom number Nrel, recorded by varying the delay TR between two
π
2
-pulses. a, Ramsey fringes in the reference sequence in a static magnetic

trap. The contrast obtained from a sinusoidal fit (blue line) is C = (96±1)%.
b, Ramsey fringes in the squeezing sequence with state-selective splitting and
recombination of the BEC, embedded between the π

2
-pulses. The contrast is

C = (88± 3)%.

and the wave function overlap λ obtained from LI Yun’s simulation. In fact,
since our simulations of the static magnetic traps and microwave potentials
have an uncertainty on the order of 10%, we find the exact longitudinal
trap frequency and splitting distance by maximizing the agreement between
calculated and measured contrast. The corresponding values (fx = 109Hz,
s = 0.52μm) quoted in this thesis are obtained in this way.

As expected, the contrast drops when the two states are separated and
reappears when they overlap again. Note, however, that the revivals of the
contrast are much narrower in time than the revivals of the wave function
overlap. This is because the former is phase sensitive, i. e. it is also decreased
when the states overlap but move with respect to each other.

Figure 4.6 shows a zoom of the first revival and for comparison Ram-
sey oscillations recorded with the same experimental sequence but without
applying the microwave near-field and splitting the BEC (the reference mea-
surement). We observe a contrast of C = (88 ± 3)%, smaller than in the
reference because the overlap of the BEC mode functions after splitting and
recombination is less than unity. The difference to the contrast of 94% pre-
dicted by the dynamical simulation can most likely be explained by small
motion in the transverse direction which is excited in the experiment but not
modeled. The contrast could be increased by optimal control of the atomic
motion rather than abrupt switching of the potentials, as described in [48].
The high contrast at the revival proves that the splitting is a coherent pro-
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cess. The Ramsey sequence used here implements an atomic interferometer
with internal-state labeling of the interferometer arms.

The Ramsey oscillation frequency in the reference measurement is 7.58 kHz,
dominated by the microwave level shifts during the π

2
-pulses: the microwave

and rf frequencies for the pulses are adjusted such that the drive is reso-
nant while the microwave is on (Els �= 0, see section 1.1.4). The energy
difference between the levels in the undriven system accordingly differs by
Els = � δls ≈ h · 7.58 kHz from the local oscillator frequency, which results
in the measured Ramsey oscillations. Furthermore, the oscillation frequency
of the Ramsey fringes decreases to 6.47 kHz in the splitting measurements.
This is because of the differential energy shift experienced by the two states in
the microwave near-field potential, which is therefore δcpwls /(2π) ≈ −1.1 kHz.
This effect can be reproduced by our simulation of the trapping potentials.

Using the method explained in [47], we can calculate the reduction of the
contrast due to quantum phase spreading during the squeezing time [93] and
we find that it only amounts to 2% and is hence negligible.

4.3 Spin squeezing

While the two states are separated, χ �= 0 and the initial coherent state
evolves into a squeezed spin state. To achieve a large amount of squeezing,
the time of the first Ramsey revival should coincide with the best squeez-
ing time. We estimate the latter by calculating the two-mode model spin
squeezing in presence of particle losses for the stationary solution of the
Gross-Pitaevskii equation, with a trap separation s [117]. This corresponds
to a ‘time averaged χ’, since the two states overlap more in the beginning
and the end of the dynamical evolution but less in the middle, compared to
the stationary solution. The calculated nonlinear parameter is χ2m = 0.49Hz
and the best squeezing is reached around Tbest = 14.5ms, with a broad min-
imum and a squeezing parameter ξ2 < 0.1 at the time of the revival.

4.3.1 Spin tomography

To measure the squeezing, we choose the Ramsey time T such that the Ram-
sey contrast is maximal and the Rabi vector and the state vector are aligned
or anti-aligned (see figure 2.3). In practice, we fit the Ramsey oscillations in
relative atom number at the revival with a sine curve, as in figure 4.6, and
choose T where the fitted curve crosses 0 with positive (negative) slope to
turn the state clockwise (anti-clockwise). We find T = 12.706ms in figure
4.6 and similarly for all squeezing measurements T ≈ 12.7ms. We then vary
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Figure 4.7: Experimental squeezing sequence. In between the pulses
for internal-state manipulation (green), the state-dependent microwave po-
tential is turned on (blue; pulse durations and microwave ramp times ex-
aggerated for clarity). It dynamically splits and recombines the two BEC
components, so that χ > 0 during the time T . The simulated center-of-mass
motion of the two states |0〉 (black) and |1〉 (red) is shown as a function of
time. Insets: corresponding BEC mode functions φ0 and φ1 along the split-
ting direction in their respective potentials at the beginning, in the middle,
and at the end of the sequence.

the duration of the second pulse to turn the state around its mean spin by
different turning angles θ (see figure 4.7).

To achieve the highest possible data quality, we let the experiment run
over night, when disturbances on the power line due to other activity in the
building (e. g. running elevators) are reduced to a minimum and our atom
number preparation is stable. To measure the squeezing for a variety of
turning angles with low statistical uncertainty, we need to run the experiment
for several nights. From night to night, our experimental parameters vary
slightly, as detailed in table 4.1. The reason for this is that each evening,
we first do a number of calibration measurements to find the correct atom
number, the relative detectivity, the correct length of a π

2
-pulse, and the

Ramsey phase. It can happen that by the time we start the actual squeezing
measurement, N or 〈Sz〉 are different from what we prepared in the beginning
of the evening. Possible reasons for this are thermal drifts in the laser beam
alignment which lead to drifts in the power in the MOT beams and thermal
drifts of current sources and rf amplifiers. Since adjusting the atom number
requires to redo all other calibration measurements, we usually accept a small
derivation from N = 1250. Note however, that we do not see a significant
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4.3 Spin squeezing

measurement θmin θmax shots per tur- N 〈Sz〉 T Ω/(2π)
night [◦] [◦] ning angle M [ms] [kHz]

05.08.09 -90 0 135 1254 ± 45 -16 12.742 2.040
24.07.09 0 22 370 1243 ± 47 64 12.643 2.025
06.08.09 22 95 73 1276 ± 45 -7 12.642 2.037
16.07.09 179 197 174 1711 ± 73 -201 12.639 2.018
21.07.09 101 130 174 1222 ± 42 -153 12.773 2.010
22.07.09 145 360 165 1473 ± 73 -142 12.691 2.015

26.08.09 0 20 590 1264 ± 63 34 12.627 2.097
24.08.09 30 360 348 1307 ± 46 26 12.627 2.071

Table 4.1: Experimental parameters for different data sets. The
bottom two rows are data for the reference measurement.

dependence of the results on these effects and that for the most relevant data
between −90◦ < θ < 90◦, great care was taken to prepare the correct atom
number and an equal superposition.

The data is analyzed as described in section 3.7, a summary of the proce-
dure can be found in appendix C. In short, we correct the raw atom numbers
by multiplying them with the factors obtained from the imaging calibration,
take out total atom number fluctuations by detecting both states within one
experimental cycle, and subtract the independently measured imaging noise.
In the data for 90◦ < θ < 360◦ a slow drift of Sz is observed. We correct for
this technical drift by subtracting a filtered data set from the respective raw
data, using a second order Savitzky-Golay filter [118] over 300 shots. For
comparison with theory we use N = 1250± 45.

Figure 4.8 shows Sz(θ) for −90◦ < θ < 90◦, obtained during three mea-
surement nights. After statistically analyzing the raw-data we get ΔS2

θ (θ),
which is shown in figure 4.9. Results for a squeezed state are shown in
comparison with results from the reference measurement. I plot the nor-
malized variance ΔnS

2
θ = 4ΔS2

θ/〈N〉 [119], so that ΔnS
2
θ = 0dB corre-

sponds to the standard quantum limit. The error bars are calculated as
Δ(ΔS2

θ ) =
√

2/MΔS2
θ , where M is the number of measurements per turn-

ing angle [115]. Here, I use that the probability distribution of Sθ for any
turning angle is approximately Gaussian for our parameters, as observed in
the measured data.

In the squeezed state, the spin noise ΔnS
2
θ falls significantly below the

standard quantum limit, reaching a minimum of ΔnS
2
θ = (−3.7 ± 0.4) dB

at θmin = 6◦. Together with the corresponding interference contrast of
C = (88±3)%, this results in a squeezing parameter of ξ2 = (−2.5±0.6) dB,
proving that the state is a useful resource for quantum metrology and that
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Experimental results: spin squeezing and entanglement

Figure 4.8: Measured Sz as a function of the turning angle θ. Shown
are the measurements of three nights (red: 5.8.09, blue: 24.7.09, green:
6.8.09) for turning angles −90◦ < θ < 90◦ (compare with table 4.1).

the condensate atoms are entangled. The reference measurement, by con-
trast, stays above the standard quantum limit for all values of θ. This data
corresponds to a state tomography and will be used in section 4.5 to recon-
struct the Wigner function of our produced spin squeezed state. Note, that
the amount of squeezing does not significantly depend on whether we use the
atom number calibration via σeff or via shot noise (section 3.7). Also, even
if we do not subtract the imaging noise, we still achieve a reduction in spin
noise of −2.3 dB.

The spin noise reduction obtained from Li Yun’s simulations is shown
along with the data. The blue line shows the expected squeezing, taking into
account the motional dynamics as well as atom losses (see section 2.2.7). The
maximal reduction in variance expected from the simulation is −12.8 dB,
significantly larger than observed. The red line, which describes our data
well, additionally includes several technical noise sources which I will describe
in detail in the following.
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Figure 4.9: Spin noise tomography of the spin squeezed BEC. Ob-
served spin noise for the spin-squeezed state (solid circles) and for a coherent
spin state (reference measurement, open circles). The normalized variance
ΔnS

2
θ = 4ΔS2

θ/〈N〉 is shown as a function of the turning angle θ, with sta-
tistical error bars. The error in θ lies within the plotted data points. In
the squeezed state, a spin-noise reduction of (−3.7 ± 0.4) dB is observed for
θmin = 6◦, corresponding to ξ2 = (−2.5 ± 0.6) dB of metrologically useful
squeezing for our Ramsey contrast of C = (88 ± 3)%. Solid lines are re-
sults from the dynamical simulation. Blue: squeezed state with losses but
without technical noise; red: squeezed state with losses and technical noise;
black: reference measurement with losses and technical noise.

4.3.2 Multi-particle entanglement

In section 2.2.8, the method of [46] to experimentally determine the amount
of entanglement of a spin squeezed state was presented. If we plot our data
point

(〈Sx〉,ΔnS
2
θ,min

)
together with the limits for multi-particle entangle-

ment calculated in [46], we see that it lies below the S = 3/2 line (see figure
4.10). This implies that the condensate atoms are entangled in clusters of at
least 4± 1 particles.
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Figure 4.10: Experimental determination of the depth of entan-
glement. Reproduction of figure 2.6 with a data point corresponding
to the measured spin noise reduction of ΔnS

2
θ,min = (−3.7 ± 0.4) dB and

contrast of C = (88 ± 3)%. The lines indicate (from top to bottom)
S = (1

2
, 1, 3

2
, 2, 3, 4, 5, 10). The data point lies below the S = 3

2
line, proving

that the produced spin squeezed state is at least 4 ± 1 particle entangled.
Figure adapted from [46].

4.4 Analysis of technical noise

Three major differences between the expected and the measured variance in
Sθ become apparent in graph 4.9. First, the measured ΔS2

θ is larger around
θ = 180◦ than it is around θ = 0◦, both for the squeezing and the reference
measurement. Second, the achieved squeezing at θmin ≈ 6◦ is less than
predicted and third, in the reference measurement ΔnS

2
θ > 0 dB for large

turning angles. All of these differences can be explained by technical noise.

4.4.1 Fluctuating microwave power during pulses

The power of the microwave used for the two-photon drive fluctuates slightly
from shot to shot. As a result, the microwave level shifts and thus the detun-
ing during the pulses fluctuate. On the Bloch sphere, a detuning during the
preparation pulses can be depicted by the Rabi vector not pointing perfectly
on the equator but slightly above or below (see section 2.1.1). The effect
is not noticeable for the first π

2
-pulse but plays an important role for the
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4.4 Analysis of technical noise

second. While for small turning angles (and for θ ∼ 360◦) it is negligible, it
contributes significantly to ΔS2

θ around θ ∼ 180◦: the additional variation
of Sθ due to this effect is ΔS2

θ = [Δδls/ΩR ·N/2 · (1− cos(θ))]2, where ΩR is
the two-photon Rabi frequency.

With a directional coupler directly before the microwave horn and a de-
tector we measure a variation of the power of the microwave used for the two-
photon drive from shot to shot of ΔP

P
= 0.5% r.m. s. The frequency of the

Ramsey oscillations in the reference measurement is determined by the mi-
crowave level shifts during the pulses, which we can therefore estimate to be
δls/(2π) = 7.6 kHz. The level shifts are proportional to the microwave power
and the detuning thus fluctuates by Δδls/(2π) = 5 × 10−3 · 7.6 kHz = 38Hz
r. m s. This leads to an additional variation of ΔS2

θ = 510 = 0.4N for
θ = 180◦ which is the reason for ΔS2

θ not reaching the SQL at θ = 180◦.

A second effect of the fluctuating microwave power is that the turning
angle θ varies by Δθ

θ
= 1

2
ΔP
P

= 0.25% r.m. s. (the factor 1
2
comes from

θ ∝ ΩR ∝ P 1/2). However, from our simulations we find that this effect is
negligible and in figure 4.9, the error bars of θ lie within the data points
plotted.

In the future, we plan to use state |1, 0〉 as intermediate state for the two-
photon transition. Since the transition |1, 0〉 ↔ |2, 1〉 is stronger than the
transition |1,−1〉 ↔ |2, 0〉 by a factor

√
3, we should be able to reduce the

ratio δls/ΩR and thus lessen the effect of the fluctuating microwave power.
Additionally, one could actively stabilize the microwave power. However,
keep in mind that the achievable squeezing for θ ≈ 6◦ is not limited by this
effect but by phase noise, as described in the following section.

4.4.2 Phase noise

A fluctuating phase from shot to shot between the Rabi and the state vector
increases ΔS2

θ significantly. Phase noise can be depicted as a smearing of the
state along the equator of the Bloch sphere and it has the largest absolute
effect for a π

2
- and 3π

2
-pulse, since these pulses translate phase directly into

population Sz. However, the squeezed state is already significantly broadened
in the phase direction and the largest relative effect of phase noise is just for
θ ∼ θmin.

To reproduce the measured data, we have to introduce in our theory an
additional technical phase noise of Δϕ = 3.2◦ for the reference measurement
(black line in figure 4.9) and Δϕ = 8.2◦ for the squeezing measurement
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noise simulated measured fluctuations resulting phase
source sensitivity sensitivity (r.m. s.) noise Δϕ

N (ref) 45 1.0◦

Bx 0.5◦/mG < 1◦/mG 0.2mG < 0.2◦

hf generators see text ∼ 1◦

total reference ∼ 1◦ − 2◦

N (sq) 45 1.9◦

Bx 1.0◦/mG 0.2mG 0.2◦

By 4.0◦/mG 5.0◦/mG see text see text
Bz 0.3◦/mG 0.3◦/mG 0.3mG 0.1◦

ILI 0.15◦/μA 0.18◦/μA ∼ 10μA ∼ 2◦

ICPW,1 1.2◦/μA 1.4◦/μA < 1μA < 1.4◦

ICPW,2 0.9◦/μA 1.1◦/μA < 1μA < 1.1◦

ICPW,3 0.3◦/μA 0.6◦/μA < 1μA < 0.6◦

Pmw 38◦/mW 43◦/mW 60μW 2.6◦

hf generators see text ∼ 1◦

total squeezing > 4◦

Table 4.2: Phase noise budget. Contribution of different noise sources
in the experiment to total phase noise. For the reference measurement (top
four rows), only fluctuations in N , fluctuations in Bx, and high frequency
generator phase noise contribute. For the squeezing measurement (bottom)
a variety of phase noise sources exist. The sensitivities are calculated with
the help of our trap simulation and measured using the squeezing sequence
with θ = θmin.

(red line in figure 4.9). The possible reasons for this noise are manifold
since a fluctuation of the phase of either the Rabi or the state vector has
the same effect, and there are many possible origins of phase fluctuations of
the state. Table 4.2 lists all noise sources identified in the experiment and
their contribution to the total phase noise in the reference and squeezing
measurements. They are described in detail in the following.

Atom number fluctuations

As shown in section 2.2.7, for 87Rb with a00 �= a11, the energy difference
between the two clock states and thus the phase evolution rate depend on
the total atom number. This collisional clock shift can be estimated for the
reference measurement as [52]

νcoll =
�

m
n(a11 − a00), (4.3)
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4.4 Analysis of technical noise

where m is the 87Rb mass and n is the mean density. For our trap parameters
with N = 1250 we calculate n = 7.2 × 1013 cm−3 [85] and thus get νcoll =
15Hz. A fluctuation of the total atom number of ΔN = 45 leads to a phase
noise after TR of Δϕ = 1.2◦ (note that n �∝ N).

In our calculation with the modulus-phase approach, we apply an av-
eraging of N over a normal probability distribution with N = 1250 and
ΔN = 45, where N is taken between 1100 and 1400 atoms (as it is done in
the experiment by post selection). The thus calculated collisional phase noise
is Δϕ = 1.0◦ for the reference measurement and Δϕ = 1.9◦ for the squeezing
measurement. The fluctuations in total atom number have thus little effect
on the attainable squeezing, since it is dominated by other technical phase
noise. This is confirmed in the experiment where tighter (±75 atoms) or
wider (±250 atoms) post selection does not change the amount of squeezing.

Local oscillator phase noise

The phase stability of the Rabi vector is determined by the stability of our
microwave and radio frequency generators used for the two-photon drive.
We use an Agilent E8257D microwave generator (with UNX low phase noise
option) to generate a 10MHz reference signal onto which all other gen-
erators are locked. The absolute phase noise specified for this device is
L = −81 dBc/Hz at 100Hz offset frequency. From this, we can calculate
the phase noise after TR to be Δϕ = 0.4◦ [120]. The radio frequency genera-
tor phase noise is specified as −65 dBc within a 30 kHz band from which we
calculate Δϕ = 4× 10−4◦. The amplifiers and switches add some more phase
noise which is hard to quantify but should be on the same order. The delay
generator used to time the experiment has a jitter of 100 ps, which leads to
a phase noise of Δϕ = 3× 10−4◦.

Besides the specified oscillator phase noise, also a shot-to-shot fluctuation
of the 10MHz reference signal may lead to phase noise. For our experiments,
fluctuations on a timescale of a few seconds (experiment repetition rate) to
a few minutes are most important, since drifts on a longer timescale can be
identified in the data. The relative stability of the reference Δf/f translates
to phase noise as Δϕ = Δf/f ·f0TR, where f0 = 6.8GHz. A relative stability
of Δf/f = 3×10−11 already results in phase noise of Δϕ = 1◦. According to
the specifications of the signal generator, the temperature coefficient for the
relative stability is better than 5 × 10−9/K. Thus, temperature fluctuations
in the lab of only a few percent of a degree Celsius could already lead to
phase noise of a few degrees. Additionally, a fluctuation of the line voltage
of 10% results in a fluctuation of the clock of less than 2× 10−10.

We measure the phase stability of our microwave generator by mixing
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(Gauss)

a b

Figure 4.11: Dependence of Sz on Pmw and By. Dependence of Sz on the
microwave power launched into the waveguide Pmw (a) and the magnetic field
By (b) during the squeezing sequence with θ = 6◦. For Pmw, the sinusoidal
fit (red) yields a phase sensitivity of Δϕ = 43◦/mW at Pmw = 120mW. For
By the fit yields Δϕ = 5.0◦/mG at By,0 = 5.2G

the output of two independently running generators (both Agilent E8257D)
and recording the beat signal for 500 s. The Fourier transformation of this
signal has a width of 0.3Hz (FWHM) which corresponds to a phase noise
of Δϕ ≈ 1◦, assuming that both generators have contributed equally in this
measurement.

In conclusion, it can not be excluded that the high frequency generators
and the reference clock contribute significantly to the phase noise in both the
reference and the squeezing measurement. On the other hand, we have seen
no improvement in either measurement when we used a state-of-the-art oven
controlled quartz1 for the 10MHz reference.

Fluctuations of Pmw in the CPW

As described in section 4.2, the microwave near field induces level shifts of
δcpwls /(2π) = 1.1 kHz. A fluctuation of the microwave power in the waveguide
is translated directly into a differential energy shift between the two states
and thus phase noise. We can measure the influence of a change in Pmw

by performing exactly the same squeezing sequence as described previously
with θ = θmin = 6◦, while systematically varying the power launched into the
CPW. This is a Ramsey-type experiment, but with reduced contrast since
the second pulse is not π

2
.

The result is shown in figure 4.11 a. The phase sensitivity can simply

1Oscilloquartz OCXO 8607-BM
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be calculated as dϕ
dPmw

= k/(2π) · 360◦, where k is the angular frequency of

a sine curve fitted to the data. We obtain a sensitivity of dϕ
dPmw

= 43◦/mW.
Independently, we measure a shot to shot fluctuation of ΔPmw = 60μW,
resulting in a phase noise of Δϕ = 2.6◦.

The microwave power is currently stabilized using the microwave gener-
ator’s internal P-I-controller and attenuator with an external detector (see
section 3.5.2). To improve the microwave stability, we will employ a combina-
tion of temperature stabilized detector, self-built P-I-controller, and variable
attenuator in future experiments.

Fluctuations of the trap position

Similarly to a change in the microwave power on the CPW, any change of
the trap position in the near-field gradient leads to a differential energy shift.
Thus, fluctuations of the trap position induced either by fluctuating chip wire
currents, fluctuating magnetic offset fields, or simply mechanical vibrations
result in phase noise.

We measure a strong dependence of the phase on the magnetic field in
the y-direction dϕ

dBy
= 5.0◦/mG (see figure 4.11 b), which we can reproduce

with our trap simulation. At the same time, we find a large modulation of
the current running through the y-Helmholtz coils during T (see figure 4.12).
The peak-to-peak amplitude of this modulation is 8.5mG and it shows a
periodicity of 100Hz. The width of the current peaks is between one and
a few milliseconds, suggesting that the modulation can resonantly excite
motion of the atoms in the z-direction, since fz = 2500Hz. On the other
hand, the modulation is very reproducible: the shot-to-shot fluctuation of
the mean magnetic field during TR is only 0.06mG r.m. s. and the position
and shape of the peaks is unchanged from shot to shot. It is therefore hard
to quantify how much phase noise is produced by this modulation, but we
believe that it is one of the main effects limiting our squeezing.

The phase is also extremely sensitive to fluctuations in the current running
through the Long-Ioffe wire: dϕ

dILI
= 0.18◦/μA. The shot to shot fluctuation of

ILI are on the order of about 10μA [107], leading to a phase noise of Δϕ ∼ 2◦.

Both, the field in the y-direction and the Long-Ioffe current affect mainly
the z-position of the atoms. We will replace the current source creating By to
get rid of the modulation and, if the need arises, it is also possible to replace
the Long-Ioffe source with a current source whose maximum current output
is matched to ILI in the experimental trap. To lessen the effect of either noise
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Figure 4.12: Fluctuations of By. Oscilloscope trace showing the modu-
lation of the current producing By. The time T during which the squeezing
is performed is indicated. The modulation has a peak-to-peak amplitude of
8.5mG with spikes that are repeated at a frequency of 100Hz.

source in future experiments, it will be essential to use an experimental trap
located at a position above the CPW where the microwave near-field gradient
is predominantly along the x-direction. A fluctuation of the z-position of the
trap is then not translated into a fluctuation of the microwave level shifts. A
positive side effect is that the state-selective splitting will then only occur in
the x-direction and there will be no residual motion along z, which can lead
to a diminished Ramsey contrast.

Fluctuations in the DC currents in the CPW, on the other hand, lead to
fluctuations of the trap position along x and to fluctuations of B0, and will
therefore always contribute to phase noise. The sensitivities for each wire are
on the order of dϕ

dIcpw
∼ 1◦/μA. The required currents are much lower and thus

the absolute stability of the current sources ΔICPW < 1μA is better than
that of the Long-Ioffe wire. The phase noise contribution from the three DC
currents in the CPW wires combined is Δϕ < 2◦.

Very hard to quantify is the contribution of mechanical vibrations to phase
noise. Our simulation shows that a position shift in the z-direction of only
10 nm results in a phase shift of Δϕ = 3.4◦. On the other hand, shot-
to-shot drifts of the chip position will not result in different positions of the
atoms in the microwave near-field because the trap will always be at the same
position relative to the chip. Vibrations at frequencies comparable to the trap
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frequencies have the largest effect, since they can resonantly excite motion
of the atoms. For the experiments presented here, our setup was rigidly
mounted on the optical table which in turn was not floated or vibrationally
isolated in any other way. To quantify the amount of mechanical vibrations
one could mount a solid state accelerometer on the back of the chip. A first
step to reduce vibrations will obviously be to float the optical table, but also
the cooling water running through the chip and wires leading to the chip are
worth investigating.

Magnetic field noise

In the squeezing measurement, due to the microwave near field, the two clock
states become dressed, which result in a differential magnetic moment and
thus deteriorates their coherence properties. Phase noise can thus be caused
by fluctuating magnetic fields in the laboratory. The magnetic field in the
trap center of B0 = 3.36G points in the x-direction and consequently only
changes in Bx and in the CPW wire currents (see above) significantly change
the amplitude of the total field felt by the atoms. We measure a sensitivity
of dϕ

dBx
= 1.0◦/mG and the measured fluctuations of the magnetic field inside

the μ-metal shield are ΔBx = 0.2mG, leading to a magnetic field induced
phase noise of Δϕ = 0.2◦.

In the reference measurement, because the atoms are not dressed, the
phase noise due to magnetic field noise is even smaller. Using the Breit-Rabi
formula (1.4) and B0 = 3.36G, we calculate a sensitivity of 0.5◦/mG.

Conclusion

In conclusion, the only sources of phase noise in the reference measurement
known to us are atom number fluctuations, magnetic field noise due to the
quadratic Zeeman shift, and phase noise in the high frequency electronics.
Although the latter is hard to quantify, the amount of noise these sources
produce seems compatible with the phase noise needed to explain the data
in figure 4.9.

The phase noise sources in the squeezing measurement are manifold and
the largest contributors have been identified as fluctuations of the on-chip
microwave power and of the trap position. By eliminating these two sources
as described above, a threefold reduction of the phase noise should be feasible,
greatly improving the squeezing performance.
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Figure 4.13: Histograms of Sθ for θ = 0◦ (blue) and θ = θmin = 6◦ (red)
shown together with fitted Gaussian distributions. The reduction of ΔS2

θ for
θmin can be clearly seen.

4.5 Wigner function reconstruction

As described in section 2.3, the measured histograms of Sθ for angles −90◦ <
θ < 90◦ are tomographic data that allow us to reconstruct the Wigner func-
tion W (Sy, Sz) of the squeezed BEC, using the inverse Radon transform
(equation (2.48)). The reconstruction is done on a tangent plane to the
Bloch sphere, which for our case does not lead to significant distortion, since
the Wigner function’s extent is only about a tenth of the Bloch sphere’s
circumference (see figure 4.15).

Figure 4.13 shows as an example two histograms of the squeezed state
for θ = 0◦ and θ = θmin = 6◦, together with fitted Gaussian distributions.
Note that for the Wigner function reconstruction, the imaging noise cannot
be subtracted as it was done for figure 4.9, since the complete distributions
of Sθ and not just the variances are needed. The obtained Wigner function is
thus strictly speaking a convolution of the state’s real Wigner function and
a Gaussian distribution with a width ΔSz,im given by the imaging noise (see
also section 3.7).

For the reconstruction, we should ideally use a great number of high res-
olution probability distributions p(Sθ), requiring thousands of measurements
per turning angle θ for hundreds of turning angles. In practice, we can take
only a limited number of measurements (see table 4.1 and figure 4.8) at turn-
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Figure 4.14: Choice of dη and ηmax for reconstruction. If the step
size of the integration variable dη is chosen too large, the Wigner function is
repeated periodically (top left). If the summation boundary ηmax is chosen
too small, the Wigner function is artificially broadened (bottom left), if it is
chosen too large, interference effects occur (top right). For comparison, the
reconstruction with optimized values for dη and ηmax is shown (bottom right,
for high resolution image, see figure 4.15).

ing angles which are spaced between 1.5◦ < dθ < 5◦. While the number of
turning angles seems to be sufficient for an artifact-free reconstruction, we
have to apply some processing of the histograms for each angle to achieve
satisfactory results.

First, because the data for the reconstruction was gathered in three dif-
ferent measurement nights, 〈S〉 is not exactly the same for all turning angles.
To compensate this, we center all histograms around 0, i. e. for each angle we
subtract 〈Sθ〉 from the measured data. We then ‘normalize’ the histogram
width by multiplying the data by

√
1250/N where N is the average total

atom number in the corresponding measurement night. This results in a
Wigner function which is centered around [Sy, Sz] = [0, 0] and where a 1/

√
e

radius smaller
√
1250/2 indicates squeezing.

Next, we have to choose an appropriate bin size dSθ for the histograms.
Smaller bins provide a higher resolution in Sθ while larger bins reduce the
error in p(Sθ). We find a good compromise by choosing the total number of
bins to be around

√
M , where M is the number of measurements per turning

angle.
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Figure 4.15: Reconstructed Wigner function using (a) the reconstruc-
tion method where each histogram bin is divided into 6 sub-bins and (b) the
method where a θ-dependent ηmax is used. The two contour lines indicate
where the Wigner functions of our squeezed state and of an ideal coherent
spin state (with the same N and with added imaging noise) have fallen to
1/
√
e of their maximum.

Finally, there are some technical subtleties when numerically calculating
the Wigner function from our data. The integrals in equation (2.48) become
discrete sums and while the values of θmin, θmax, dθ, and dSθ are determined
by our data, the step size of the variable dη and the summation boundaries
ηmax and ηmin = −ηmax still have to be found. η is not independent because it
is the conjugate variable of Sθ [100]. Thus, too large values for dη will result
in a periodic repetition of the Wigner function (see figure 4.14). The step
size dη should be chosen such that dη · Smax � π, where Smax is the extent
of the Wigner function.

The correct summation boundaries ηmax are different for each turning an-
gle and depend on the bin size dSθ of the corresponding histogram. While
too small values artificially broaden the Wigner function along θ, interference
effects occur for ηmax · dSθ > π (figure 4.14). In practice, this means that
we cannot find an ηmax which provides good enough resolution to see the
squeezing along θmin and at the same time is small enough to prevent inter-
ference along θ ≈ 90◦. There are two ways how to cope with this problem:
we can decrease dSθ in each histogram by dividing the bins into sub-bins and
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determining the probabilities for each sub-bin by fitting a spline through the
original histogram. We usually choose 6 sub-bins. We can then choose ηmax

as an effective low-pass filter, cutting off modulations of Sθ on a scale smaller
than the imaging noise ΔSz,im. This method was used in [25]. Alternatively,
we execute the summation over η first and choose an appropriate ηmax (and
dη) for each turning angle. With this method, the low-pass filter given by
ηmax is dependent on the angle, but it is computationally much less demand-
ing. In both cases, the resolution of the Wigner function is limited by dSθ,
i. e. by the atom number resolution of the imaging system.

A comparison of the two methods is shown in figure 4.15. The two contour
lines indicate where theWigner functions of our squeezed state and of an ideal
coherent spin state (with the same N and with added imaging noise) have
fallen to 1/

√
e of their maximum. Both methods reveal similar information

about our squeezed state, the second method seems to bring out a little
bit more detail. As expected, the spin squeezed state is squeezed along the
direction θmin and anti-squeezed along the perpendicular direction. Due to
losses and technical noise, it is not a minimal uncertainty state anymore; the
area of the squeezed state’s contour line is about 4 times that of the coherent
spin state’s.
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Conclusion and outlook

In this thesis, I have presented experiments where we have for the first time
created multi-particle entanglement on an atom chip. Our experiment uses
a novel chip-based method for entanglement generation employing state-
selective microwave near-field potentials. We have produced a spin squeezed
state with a reduced spin noise compared to the standard quantum limit by
ΔnS

2
θ = −3.7 dB, which is a resource that could improve an interferometric

measurement by ξ2 = −2.5 dB. We were able to reconstruct the Wigner func-
tion of the produced state and prove that it is at least 4-particle entangled.

Although our experiment was designed to generate entanglement between
two separate BECs, using nonlinear effects, we were at first not aware that
state-selective splitting of a single condensate could already lead to entangle-
ment. However, when analyzing the data of our trapped atom interferometer,
we found that technical noise alone seemed insufficient to explain the phase
noise we were measuring. In a discussion about the original proposal, Alice
Sinatra suggested that spin squeezing might occur in the current experiments
and that this might be the cause of the additional noise. We only had to
detect it, and we should be able to do this by simply adjusting the length of
the second Ramsey pulse.

In practice, a lot of work was required before we were able to confirm the
predicted squeezing and we had to learn many subtleties involved in these
high-precision experiments. We kept the experimental trap but adjusted the
microwave frequency to reduce the magnetic field sensitivity of the dressed
states and to decrease the splitting and thus lessen influences of uncontrolled
motion. We also improved the atom number resolution of our detection
system and the experiment’s over-all stability.

To gain a better understanding of the limitations of our method, we
developed the microwave near-field imaging method and performed a detailed
analysis of possible noise sources. We now have a clear idea of the next
steps needed to improve the squeezing performance. First, we will exchange
the current source producing By, isolate the experiment from mechanical
vibrations, and stabilize the on-chip microwave power Pmw better. Probably
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Figure 4.16: Sequence of an atomic clock using a squeezed state.
The spin squeezed state is first prepared as described in this thesis and turned
by θmin to align the anti-squeezed axis with the equator. It is then transfered
to a shallow trap to reduce phase noise during the clock interrogation time
Tcl. The atomic clock sequence consists of two π

2
-pulses separated in time by

Tcl.

the most important step toward higher squeezing, however, is to shift the
experimental trap to a position in the microwave near-field where no gradient
along z is present. Also, to improve the squeezing as well as the reference
measurement, a closer investigation of the phase noise contribution of the
high frequency electronics is advisable.

While achieving larger squeezing is in itself ‘only’ a technical advance,
the gained control over the atoms with less technical noise will be essential
for the next experiments which we are planning to do with our setup.

Atomic clock beyond the SQL

A logical next experiment is to use the squeezed state in an atomic clock
sequence and demonstrate the increased precision compared to using a CSS.
This is technically very demanding because the state is turned such that the
squeezed direction is aligned with the equator of the Bloch-sphere during
the clock interrogation time Tcl. Thus, phase noise affects the squeezing in
the clock sequence stronger by a factor 1/ sin(θmin) ≈ 10 compared to the
sequence that is used to produce the squeezed state. The high sensitivity to
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Figure 4.17: Squeezing lifetime in a clock sequence. Results of a
Monte-Carlo simulation on how the squeezing evolves under particle losses
and the residual nonlinearity in a shallow trap which could be used in a
clock experiment. The dashed line indicates the standard quantum limit.
The state remains squeezed for clock interrogation times Tcl of up to 0.6 s in
this trap.

phase noise is the reason why in previous experiments [27, 26, 121] Tcl could
not be increased beyond a few μs before the squeezing was lost.

Our atom-chip based setup has the advantage that we can easily transfer
the squeezed state into a different trap, which is optimized for low phase
noise and low losses, before applying the two π

2
-pulses for the clock operation.

Also, since no microwave near-field is applied during the clock interrogation,
the main sources of technical phase noise are eliminated. The proposed
sequence is shown in figure 4.16. We prepare the squeezed state as described
in this thesis and turn it by θmin to align the anti-squeezed direction with the
equator. This makes it robust against phase noise in the subsequent transfer
step. Let us for now assume that all technical fluctuations can be eliminated
(corresponding to the blue curve in figure 4.9), such that the prepared state
is squeezed by ξ2 = 4× 10−2.

We then transfer the atoms into a shallow trap (flong = 10Hz, fax =
50Hz) with reduced atom density. Here, the atom loss rates and the sensi-
tivity to total atom number fluctuations are greatly reduced. The residual
nonlinearity in this trap is χ = 5×10−5Hz, so that quantum phase spreading
has a negligible effect. Phase fluctuations accumulated during the transfer
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lead to a broadening of the state in the anti-squeezed direction and could
at worst decrease the Ramsey contrast slightly. Note that in the experi-
ments presented in this thesis, we are already transferring the atoms into the
shallow detection trap within 30ms and we see no difference compared to
releasing the atoms directly from the experiment trap.

To start the clock, the state is rotated by applying a π
2
-pulse, so that

its squeezed axis is oriented along the equator of the Bloch sphere. After a
variable clock time Tcl, during which the interferometer phase ϕ is accumu-
lated along the squeezed direction, another π

2
-pulse is applied to read out the

clock.
Figure 4.17 shows ξ2 as a function of Tcl, calculated using the Monte-Carlo

method presented in 2.2.7, i. e. taking into account the residual nonlinearity
and atom losses but no technical noise. The use of our squeezed state in such
a trap would improve the sensitivity compared to a classical interferometer
with a coherent spin state as input for Tcl of up to 0.6 s.

Quantum phase gate and entanglement of two BECs

The original idea behind the microwave near-field potentials was to develop
a chip-based tool with which one could state-selectively manipulate and en-
tangle atoms and then use this tool to build a quantum phase gate on an
atom chip [48, 49]. The proposed gate works as follows: the two qubits are
represented by two atoms in a superposition of states |0〉 and |1〉 which are
trapped each in one well of a magnetic double well potential. For the gate
operation, the microwave near-field is used to state selectively increase or re-
move the barrier separating the atoms (see figure 4.18 a). State |0〉 is shifted
further out while state |1〉 starts to oscillate in the resulting single well. Only
if both atoms are in the state |1〉, they collide and pick up a collisional phase
shift. By tuning the trap frequency and the number of oscillations, the col-
lisional phase can be adjusted to be π and the corresponding truth table is
then that of a universal quantum gate.

An alternative scheme consists essentially of two trapped atom interfer-
ometers next to each other (figure 4.18 b). Here, the atoms collide only if
the left atom is in state |1〉 and the right atom is in state |0〉.

The high accuracy of our simulations of the static traps as well as the
microwave near-field has been verified in our experiments. It therefore seems
relatively straight forward to implement the simulated gate potentials with
our setup. However, for a gate operation as originally envisioned, single
atoms instead of BECs must be used. A new chip is therefore needed, which
combines a coplanar waveguide with fiber cavities developed in the group of
Jakob Reichel for single atom detection and preparation [36, 71].
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Figure 4.18: Proposed collisional phase gate. Collisional phase gate as
proposed in [48] (a) and with an alternative scheme (b). The static (black)
and the combined static and microwave potential (red for state |0〉, blue for
state |1〉) are shown together with the qubit wave functions during the gate
operation. The indices a and b label the wells from which the states originate.

With our current setup and a similar scheme, it is possible to investigate
entanglement between two BECs. Although the collisional phase shift would
be interesting to observe (if only as a proof-of-principle experiment for the
gate operation), the mean phase shift in itself is not a signature of entangle-
ment. However, such a signature can probably be found in the variances of
combined quantities, such as (Na

1 −N b
0)/(N

a
1 +N

b
0) where a and b denote the

two condensates and 0 and 1 the internal states. To see the entanglement,
one would thus look at the noise correlations between the spins of the two
BECs.

Schrödinger cat state preparation

The experimental technique employed for the generation of spin squeezed
states can also be used to generate Schrödinger cat states (see section 2.2.5
and [122]). However, for a large BEC, a separation of the two clock states
for very long times would be needed (for our parameters with N = 1250,
χmax = 3Hz, therefore trev =

π
χ
≈ 1 s), and losses would unavoidably prohibit

the emergence of the fragile entangled state.

For small atom numbers (N ∼ 10) on the other hand, the atom density
and thus the loss rates are greatly reduced. At the same time, χ is increased
by several orders of magnitude, resulting in revival times of a few millisec-
onds. In principle, Schrödinger cat state preparation in small BECs seems
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therefore possible with our technique. However, not only is a determinis-
tic preparation and detection of small atom numbers needed (which could
again be provided by integrated fiber cavities), but also a much better control
over phase noise than for the squeezing measurements. Although technically
very demanding, the successful implementation of such an experiment would
certainly be a milestone in cold atom physics.

Further applications of our technique

The clock operation and the entanglement of two BECs seem to be the ob-
vious next experiments for our setup, but there are many ideas how our
technique could be used in other contexts.

A coplanar waveguide could replace the microwave horn to deliver mi-
crowave pulses for the two-photon transition. This enables a very well defined
microwave field at the position of the atoms, which results in higher pulse
stability over long times. Especially for a portable atomic clock on a chip
[53] this would be beneficial. A possible downside could be steeper gradients
across the atom cloud which would lead to inhomogeneous dephasing.

A recent proposal suggests the use of microwave radiation instead of static
magnetic fields to induce a Fano-Feshbach resonance and thus tune the scat-
tering lengths of alkali atoms [123]. The width of the resonance is propor-
tional to the power of the microwave and for 87Rb, microwave magnetic fields
on the order of a few Gauss are needed to achieve practicable tuning of the
scattering lengths. With our coplanar waveguide, such high microwave mag-
netic field strengths are easily achievable at a distance of about 10μm from
the chip. In [123], one-photon microwave transitions are investigated and
the technique is thus not one-to-one applicable to our state pair. However,
according to the author of the proposal [124], the theory can probably be
modified to include the two-photon transition. This would open up the pos-
sibility to tune the inter-state scattering length a01 of our clock states for
which no ‘classical’ Feshbach resonance is known.

The techniques developed in our group have potential applications not
only in science but also in industry. A trapped atom interferometer, using
microwave near-fields for internal-state labeling of the interferometer arms,
is investigated for the implementation in commercial atom chip based gyro-
scopes [125]. Our microwave field imaging method could e. g. be employed to
characterize the microwave field distribution in the interaction region of state
of the art fountain clocks. Since our method can be extended to frequencies
used in communication technologies, it could also help to characterize proto-
types of monolithic microwave integrated circuits (MMICs), which are a key
ingredient in today’s communication devices.
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In conclusion, the experiments presented in this thesis enable new excit-
ing research in the fields of quantum metrology and quantum computation.
Cold atom physics is indeed past the stage of purely fundamental research:
entanglement generation on atom chips opens a path to real-life applications,
harvesting the mysteries of quantum mechanics.
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Appendix A

Fundamental constants and
useful 87Rb data

Fundamental constants

Planck’s constant
h 6.626 068 96(33)× 10−34 J s

� = h/2π 1.054 571 628(53)× 10−34 J s

Bohr magneton μB
9.274 009 15(23)× 10−24 J/T
h · 1.399 624 604(35) MHz/G

Speed of light c 2.997 924 58× 108 m/s (exact)
Permeability of vacuum μ0 4π × 10−7 N/A2 (exact)
Permittivity of vacuum ε0 = (μ0c

2)−1 8.854 187 817 . . .× 10−12 F/m
Bohr radius a0 0.529 177 208 59(36)× 10−10 m

General 87Rb properties
Atomic mass m 1.443 160 648(72)× 10−25 kg
Nuclear spin I 3/2
Relative natural abundance 27.83(2)%

D2 transition (52S1/2 ↔ 52P3/2) optical properties
Wavelength (vacuum) λ 780.241 209 686(13) nm

Natural line width Γ
38.117(11)× 106 s−1

2π · 6.066 6(18) MHz
Saturation intensity

Is 1.669 33(35) mW/cm2|F = 2, mF = ±2〉 ↔ |F ′ = 3, mF
′ = ±3〉

cycling transition (σ±-polarized light)
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Fundamental constants and useful 87Rb data

52S1/2 ground state properties

Zero-field hyperfine splitting
Ehfs h · 6.834 682 610 904 290(90) GHz

= 2Ahfs

Electron spin g-factor gJ 2.002 331 13(20)
Nuclear spin g-factor gI −0.000 995 141 4(10)
Static polarizability α0 h · 0.0794(16) Hz/(V/cm)2

S-wave scattering lengths values from [86]
|1,−1〉 – |1,−1〉 a00 100.40 a0 = 5.3129 nm
|2, 1〉 – |1,−1〉 a10 97.66 a0 = 5.1679 nm
|2, 1〉 – |2, 1〉 a11 95.00 a0 = 5.0272 nm

All values taken from [50] if no other source is specified.
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Appendix B

Angular momentum matrix
elements

In the Hamiltonian describing the coupling of the atom to a microwave field
(section 1.1.3), we encounter the matrix elements

〈2, m2|ε · J|1, m1〉 ≡ 〈F ′ = 2, mF
′ = m2|ε · J|F = 1, mF = m1〉, (B.1)

where ε = (εx, εy, εz) is a unit polarization vector, whose components may be
complex. Using Jx = 1

2
(J+ + J−) and Jy = − i

2
(J+ − J−), we express ε · J as

ε · J = εxJx + εyJy + εzJz =
1
2
(εx − iεy)J+ + 1

2
(εx + iεy)J− + εzJz. (B.2)

The matrix elements 〈2, m2|Jq|1, m1〉, (q = +,−, z) can be calculated as
described in [49]. The result is (listing only the non-vanishing elements):

〈2, 2|J+|1, 1〉 =
√

3
4

〈2, 1|J+|1, 0〉 =
√

3
8

(B.3)

〈2, 0|J+|1,−1〉 =
√

1
8

〈2, 0|J−|1, 1〉 = −
√

1
8

〈2,−1|J−|1, 0〉 = −
√

3
8

(B.4)

〈2,−2|J−|1,−1〉 = −
√

3
4

119



Angular momentum matrix elements

〈2, 1|Jz|1, 1〉 = −
√

3
16

〈2, 0|Jz|1, 0〉 = −
√

1
4

(B.5)

〈2,−1|Jz|1,−1〉 = −
√

3
16
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Appendix C

Data analysis recipe

In order to achieve the highest possible data quality, we process the recorded
raw-data before calculating 〈Sθ〉 and ΔS2

θ . This is to make sure that the
detected atom number is accurate and that minimal additional noise due to
technical effects distort the results. The processing involves many steps,
which are described throughout the main text. Here, I give a compact
overview in the form of a recipe:

• Calibrate the imaging hardware. Assuming the camera’s quantum ef-
ficiency and gain are known from the manufacturer’s spec sheet, de-
termine the objective resolution and magnification with the help of a
USAF calibration target (see figure 3.16). The resolution should be
higher than the diameter of the imaged atom clouds. Do this when-
ever you change the camera objective. Focus the camera on small BEC
clouds.

• Measure the effective scattering cross section σeff by varying the imag-
ing intensity I0 and adjusting σeff such that the detected atom number
is independent of I0 (see figure 3.12). Do this whenever you change the
polarization or tilt of the imaging beam or change the position where
the atoms are imaged (by changing the last trap position or the TOF).
From now on, use this effective scattering cross section in the image
analysis.

• Determine the relative detectivity between states |0〉 and |1〉 by record-
ing Rabi or Ramsey oscillations (see figure 3.14). Assume the detection
efficiency for |0〉 is 100% and from the sinusoidal fits deduce the detec-
tion efficiency pd < 1 of state |1〉. Do this daily. The result should be
the same from day to day within 10%. From now on, multiply N1 by
1/pd to compensate the detection efficiency difference.
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Data analysis recipe

• Calibrate the actual atom number using quantum projection noise. For
different N , measure ΔS2

z after a π
2
-pulse (analyze the data using σeff

and pd). Plotting ΔS
2
z versus N and fitting it with a straight line should

result in a slope s of 1/4 (see figure 3.17). In practice, we obtain a
slope which differs by ∼ 10% from the ideal result. This confirms that
the atom number calibration obtained from σeff is already a very good
estimate. If the slope is too small, the real atom number is higher than
the detected one by a factor 1/(4s) and vice versa. Do this whenever
you determine σeff . From now on, correct N0 and N1 accordingly.

So far, all corrections were made to achieve accurate atom numbers N0 =
N raw

0 /(4s) and N1 = N raw
1 /(4s · pd), where N raw

, are the atom numbers de-
termined using σeff .

• Now, eliminate the influence of shot-to-shot fluctuations in the total
atom number by calculating (see section 3.7.3)

Nj,corr =
Nj

N0 +N1

(
N 0 +N 1

)
. (C.1)

• Discard experimental runs where the total atom number differs signif-
icantly from the target atom number. We typically use a window of
±150 atoms. Check that the window is small enough so that the exact
choice of its size does not influence the results.

• Calculate Sz,corr = (N1,corr−N0,corr)/2. If Sz,corr shows a slow drift over
long times, this drift must be of technical nature and can be eliminated
by subtracting a filtered data set, using a second order Savitzky-Golay
filter [118] over many shots.

• Subtract the imaging noise from the relative atom number noise, as
described in section 3.7.3, by calculating

ΔS2
z = ΔS2

z,corr −ΔS2
z,im. (C.2)
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