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Abstract

This thesis focuses on the engineering of light-mediated interaction between dis-
tinct quantum system. Specifically, we present experiments on the light-mediated
interaction between a nanomechanical membrane oscillator and a collective atomic
spin. The mechanical oscillator, a silicon nitride membrane mounted in a single-
sided cavity, couples to the light via radiation pressure in a room temperature
environment. The spin oscillator, consisting of an optically pumped ensemble of
cold Rubidium atoms held in a dipole trap, couples to light via the off-resonant
Faraday interaction. By engineering a light mediated interaction between the me-
chanical oscillator and the atomic spin in a loop geometry, we experimentally
demonstrate strong bidirectional Hamiltonian coupling between membrane and
spin. We observe normal-mode splitting and coherent energy exchange oscilla-
tions as signatures of strong coupling. Combining this strong coherent coupling
with the versatile quantum control on the atomic spin we demonstrate for the
first time, coherent feedback cooling of a mechanical oscillator using the atomic
spins as a coherent controller. We explore different coupling regimes, i.e. from
incoherent overdamped cooling to strong stroboscopic coherent feedback. Spin-
membrane state swaps along with stroboscopic spin pumping allows us to cool
our mechanical oscillator from room-temperature to T = 216 mK in 200 µs. More-
over, we study the effect of delays on the cooling performance. In a further ex-
periment, we exploit the strong correlation between the atomic spin and light to
achieve ponderomotive squeezing of light, which is a hallmark of reaching the
backaction dominated regime. The squeezing of light allows one to perform mea-
surements with a precision beyond the standard quantum limit, which has many
strong implications in quantum metrology.
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Chapter 1

Introduction

Quantum technologies have seen an unprecedented development along with in-
creasingly mature control over diverse quantum systems, ranging from photons [1],
atoms [2], ions [3] and solid state spins [4, 5] to mesoscopic superconducting [6, 7]
and nanomechanical devices [8, 9]. During this ongoing effort, it became appar-
ent that no single quantum system serves as a universal quantum hardware to
meet the stringent requirements of all quantum protocols [10]. The plethora of
hybrid systems developed in the past decade that integrate disparate quantum
systems with complementary functionalities [11] might be key to acquire such
multitasking capabilities. Among these hybrid systems, spin-mechanics interfaces
in which a nanomechanical oscillator is coupled to a spin emerge as a prominent
candidate [12–20]. The interest in hybrid systems stems from the fact that hy-
brid systems generally involve distinct quantum systems that combine the overall
strengths while mitigating the possible weakness of the individual systems [11].
For spin-mechanical systems, mechanical oscillators offer a universal interface be-
tween distinct quantum systems owing to their ability to respond to a wide vari-
ety of forces [21]. For example, mechanical oscillators can couple to spin systems
such as atomic ensembles [12–15, 22, 23], quantum dots [24, 25] or solid-state de-
vices [11,16–20,26] via light-, strain-, or magnetically-mediated interactions. At the
same time, the microscopic spins can be used to control, read-out and lend new
functionalities to the macroscopic mechanical device [21]. These hybrid mechani-
cal platforms equipped with multitasking capabilities holds exciting prospects and
a variety of potential applications have already been proposed ranging from fun-
damental physics [27] and quantum communication [10] to quantum information
processing [21, 28].

In our experiment, the hybrid system considered involves atomic spins coupled
to a nanomechanical oscillator via light. Despite the distinct differences between
the two systems, surprisingly, the two systems couple to light in a similar fashion.
Over the years, many similar theoretical concepts [29, 30] and experimental tech-
niques [9] have been developed independently. In the following, we discuss the
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1. Introduction

background of the individual light-matter interfaces in detail.

Atomic ensembles

The first pioneering experiments for coherent control of atoms concerned the
study of light interacting with one or only a few atoms inside an optical cav-
ity [31, 32]. Due to the experimental technical challenge, the interaction between
a spin ensemble and light emerged as a viable alternative to achieve strong, co-
herent light-matter interaction [33]. Although there exist other coupling mecha-
nisms [33–35] between atomic ensemble and light, here we refer to the coupling
of a spin ensemble to light in free space via the Faraday effect [33, 36]. In sim-
ple terms, it corresponds to the rotation of the polarization of light due to the
atomic spin orientation [33]. Over the past decades, the Faraday interface has
seen tremendous progress, in particular it was used to create squeezed states of
light [37] and spin [38] to generate entanglement between two spin ensembles [39]
which finds important applications in quantum metrology [40]. Moreover, state-
of-the-art experiments exploiting the Faraday interaction have also demonstrated
applications in quantum memories for light [41], quantum teleportation [42], con-
tinuous quantum non-demolition of atomic spin ensembles [36] and magnetome-
try [43, 44].

Mechanical oscillator

While quantum control of the motional state of atomic systems has been well-
established for decades [3, 45], it has only been until recent years that, mechan-
ical systems have seen rapid development thanks to the advent of nanofabrica-
tion technology [46, 47]. Mechanical devices with excellent quality factors Qm >
107 − 108 [48,49] allow cavity optomechanical systems to operate at a low thermal
decoherence rates, which paves way to quantum coherent control of mechanical
motion. State-of-the-art optomechanical systems have been used for experiments
on measurement based feedback [50], resolved sideband cooling [51] which have
brought the mechanical oscillator to its quantum ground state, enabling quan-
tum state control and manipulation of the mechanical motion. Moreover, cavity
optomechanical systems have already found important applications covering dif-
ferent fields of physics, including gravitational wave detection [52], precision force
sensing [53], generation of squeezed mechanical states [54, 55] and light [56] and
signal transduction [57].

Hybrid spin-mechanical interface

A further exciting possibility is to couple the atomic ensemble and the mechanical
oscillator using light to realize a hybrid platform. Such hybrid atom-mechanical
systems have been realized in the past decade. Early pioneering experiment in-
volves the sympathetic cooling of a mechanical membrane by coupling to the
center-of-mass of the atomic ensemble via light in Philipp Treutlein’s group at
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Basel [13, 22]. Later, the motional state coupling experiment was also realized at
Christoph Becker’s group in Hamburg by exploiting feedback cooling to a pre-
cooled membrane inside a cryostat [23], which allowed the membrane to reach
a lower temperature. In parallel to these experimental works, Eugene Polzik’s
group at the Neils Bohr Institute demonstrated quantum backaction noise sup-
pression where a mechanical oscillator and a negative-effective-mass spin oscilla-
tor are both coupled to light in a cascaded fashion [12]. In a later experiment, they
also demonstrated the generation of entanglement between the two systems [15].

In previous work of our group, interesting coupled dynamics between the me-
chanical oscillator and the center of mass motion of the atoms in an optical lattice
was observed [58]. However, the broad spread of the atomic motional frequencies
did not offer the possibility for coherent control. To achieve coherent control of
these hybrid system, an important prerequisite i.e. ”strong coupling” has to be
satisfied. This implies the light-mediated coupling strength exceeds the damp-
ing rates of the individual systems. To achieve strong coupling, Karg et al. [30]
derived the condition that permits Hamiltonian interactions mediated by light be-
tween distant quantum systems over a long distance. It turns out that, contrary to
single pass cascaded systems [12,15], to achieve strong, bidirectional Hamiltonian
coupling, the light field needs to interact with the systems twice, and the second
interaction erases the information obtained on the light from the first pass [30].
We successfully demonstrated the first strong reversible, bidirectional Hamilto-
nian coupling by arranging the coupling beam such that it interacts twice with the
spin, thereby the backaction on the spin is evaded [14, 59]. By initializing the spin
to the lowest energy configuration, we observe normal-mode splitting and coher-
ent energy exchange oscillations, a hallmark of strong coherent coupling between
systems.

Building on our strong coupling result, we exploit the strong light-mediated cou-
pling to demonstrate the concept of coherent feedback, which sets the main theme
of this work. Coherent feedback [60,61] involves the coupling of two systems while
preserving the quantum coherence between them. In contrast to the measure-
ment based feedback [62], coherent feedback does not require any measurement,
thereby the associated backaction and decoherence are avoided. In the context of
cooling the mechanical oscillator, previous theoretical studies compare coherent
feedback to measurement based feedback, showing that in a certain parameter
regime, the coherent feedback strategy can outperform measurement based feed-
back leading to more efficient cooling [63,64]. In analogy to classical control theory,
in a coherent feedback platform, the mechanical system would act as the system
to be controlled, i.e. the plant, which is coupled to a noisy thermal environment,
and the spin would play the role of the controller, coupled to a zero-temperature
bath, which steers the mechanical system towards a target state. In this thesis, we
report on the first experimental demonstration of coherent feedback cooling of a
mechanical oscillator using the atomic spins as a feedback controller. The strong
coupling Hamiltonian provides a beamsplitter interaction between the spin and
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1. Introduction

membrane that we use to perform a state swap between them, which transfers the
thermal excitations from the membrane to the spin. By applying optical pumping
to the spin ensemble, we are able to reinitialize the spin to its ground state before
the next state swap takes place. We first observed by applying continuous pump-
ing pulses with varying intensity, the smooth transition from strong coupling to
an overdamped regime. By interleaving the coherent state swap with strong spin
pumping pulses in a timely manner, we reached the phonon steady state faster
than in continuous cooling regime. In principle, our coherent feedback platform
provides an efficient cooling method for low frequency mechanical oscillators in
the bad cavity regime [64]. Moreover, cooling of the mechanical device close to its
ground state could enable quantum protocols such as the generation of nonclassi-
cal mechanical states via state swaps from the atomic system [65]. Furthermore, on
the atomic spin side, recently, in analogy to the ponderomotive squeezing of light
observed in cavity optomechanical systems, we exploited the strong correlations
of the spin-light interaction to generate squeezing of the polarization of light.

The main result of this thesis were published in [14,66]. The structure of this thesis
is organized as follows:

Chapter 2 and 3 introduces the theory of the spin system and the experimental
characterization of the dispersive Faraday interaction between light and the atomic
spin.

Chapter 4 introduces the basic optomechanical theory and the experimental char-
acterization of the membrane in the bad cavity limit.

Chapter 5 introduces the hybrid experimental setup that realizes the light-mediated
interaction between the spin and the membrane and summarizes the strong cou-
pling result as well as the theoretical methods to analyze the spin-membrane co-
herent feedback cooling results.

Chapter 6 presents the experimental realization of coherent feedback cooling of
the nanomechanical membrane with atomic spins.

Chapter 7 contains a conclusion and provides an outlook on future experiments
in the quantum regime.
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Chapter 2

Theory of spin-light interface

This chapter covers the theory of the spin-light interface involved in our hybrid
experiment. We begin with an introduction to the quantum mechanical descrip-
tion of an atomic spin and light, which constitutes the basis for the discussion
of an off-resonant dipole atom-light interaction in the subsequent section. More-
over, we discuss the limits where the atom-light interaction can be reduced to
the Faraday interaction. From this, we establish the input-output relations for
quantum non-demolition (QND) read out of the spin oscillator using a free space
laser beam. Furthermore, we generalize our spin light interface model to describe
non-uniform interaction between the optical mode and the atomic ensemble. In
the end of this chapter, we briefly discuss the spin-light interface in the quantum
regime, including the standard quantum limit (SQL) and the squeezing of light
quadratures using atomic spin. The theoretical models present here should serve
as the basis for the discussion of the experimental result of the spin-light interface
in Chapter 3.

2.1 Atoms

Our collective atomic spin is comprised of an ensemble of cold, neutral non-
interacting 87Rb atoms. The spin degree of freedom originates naturally from the
internal structure of the 87Rb atom in the ground state (see Fig. 2.1). The outer-
most electron carries spin of s = 1/2 and orbital angular momentum l = 0, which
gives rise to the electronic ground state 52S1/2 with total angular momentum of
j = 1/2. Moreover, 87Rb has a nuclear spin of i = 3/2. Due to the hyperfine cou-
pling between the nucleus and electron spins, the ground state 52S1/2 is further
split into two hyperfine manifolds labeled by quantum number f = 1, 2 as shown
in Fig. 2.1 (a).

Each individual atom (labeled by index i) can be seen as a single spin carrying
total angular momentum f(i), with spin length |f(i)| = f . To describe the whole
atomic ensemble, we may introduce a collective spin vector F by summing up the
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2. Theory of spin-light interface

individual spins of the ensemble,

F =
N

∑
i=1

f(i) (2.1)

where the collective spin length |F| = f N for a symmetric state of maximum
collective spin eigenvalue, and N is the number of atoms. The collective spin obeys
the usual commutation relation for angular momentum

[
Fy, Fz

]
= iFx. In this

experiment, the atomic ensemble consists of N ∼ 107 atomic spins well polarized
along the magnetic field in the x direction. Thus we may treat Fx ≈ F̄x as a
classical number (where the bar indicates its mean value), whereas each individual
spin is aligned along x such that the transverse spin components 〈Fy〉, 〈Fz〉 ≈ 0 are
quantum mechanical in nature. Moreover, this highly oriented collective spin F̄x ≈
−N f precesses with a small amplitude around the magnetic field in the x-direction
[see Fig. 2.1(b)]. Therefore, we may use the Holstein Primakoff approximation
(HPA) [67] to describe the transverse components of the spin oscillator in terms
of the position Xs and momentum Ps quadrature of a spin harmonic oscillator,
respectively:

Xs =
Fz√
|F̄x|

=
bs + b†

s√
2

, Ps =
Fy√
|F̄x|

=
bs − b†

s√
2i

(2.2)

where bs, b†
s are the bosonic annihilation and creation operators of the spin excita-

tions. The spin quadratures satisfy the canonical commutation relation [Xs, Ps] =
i. This approximation effectively maps the highly oriented collective spin state
|F = 2, mF = −2〉 to the ground state |0s〉 of the spin oscillator with respect to the
quantization axis along x. The approximation holds well as long as the number
of the spin excitations remain small compared to the magnitude of the collective
spin 〈Ψs|b†

s bs|Ψs〉 � F̄x. Moreover, the Heisenberg uncertainty relation for the
transverse spin components holds,

∆Fy · ∆Fz ≥
|F̄x|

2
, ∆Xs · ∆Ps ≥

1
2

(2.3)

where ∆Fz (∆Xs), ∆Fy (∆Ps) represent the standard deviation of the ground state
fluctuations that follows a Gaussian distribution. As shown in Fig. 2.1(c), the
starting point of most experiments present here involves the preparation of the
spin ensemble in the minimum uncertainty state (also called coherent spin state
(CSS) [68] in the literature), where the noise spread in the amplitude and phase
quadratures are equally distributed. In the outlook (see Chapter. 7), we briefly
touch on the spin squeezed state, which can be achieved via one axis twisting
squeezing Hamiltonian [see Fig.2.1(d)]. In contrast to CSS, this type of spin state
has reduced noise spread in the squeezed spin quadrature at the expense of in-
creased noise spread in anti-squeezed quadrature.
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2.2. Light

(a)

(b) (c) (d)

Figure 2.1: (a) Simplified internal level structure of the 87Rb ground state, the
hyperfine ground states are labeled by quantum number f = 1, 2 and the
magnetic field causes further splitting into Zeeman sublevels. (b) Mapping of
a collective spin (solid dark red circle) to a spin oscillator (dark solid parabola),
and the dark blue arrow indicates the direction of the spin and the black
arrow indicates the magnetic field. (c) Phase space diagram of the minimum
uncertainty state in the vacuum state |0s〉, the grey region indicates the zero-
point fluctuation of the transverse spin components in the vacuum state (d)
Phase space diagram of a spin squeezed state.

2.2 Light

In our experiment, light plays the role as a quantum bus to exchange excitations
between the membrane and the spin oscillator. Moreover, light also plays the role
as a meter which allows independent read out of the state of the individual oscil-
lator. Here, we discuss the general properties of the light, including the quantum
noise of light which becomes convenient when we discuss measurement close to
quantum limit in Sec. 2.9.

For simplicity, here we consider the paraxial mode of a laser beam with wave
vector kL = ωL/c propagating in the z direction, where c is the speed of light. As
found in many textbooks [69], the positive frequency part of the electric field in
the paraxial approximation reads:

E(+) = E0 (a−(ζ)e− + a+(ζ)e+) eikLz (2.4)

= E0
(
ax(ζ)ex + ay(ζ)ey

)
eikLz (2.5)

9



2. Theory of spin-light interface

where E0 =
√

h̄ωL/2ε0cA contains the angular frequency of the light ωL, the di-
electric constant ε0, the mode area of the probe laser beam A. Throughout this
work, the light field is expressed either in the basis of circular polarization, i.e.
e− = (ex − iey)/

√
2 and e+ = −(ex + iey)/

√
2 or in the linear basis (ex, ey).

Moreover, we used the Fourier transform of the electromagnetic mode with polar-
ization σ ∈ (+,−) or σ ∈ (x, y).

aσ(ζ) =
1√
2π

∫
dωaσ(ω)eiωζ/c (2.6)

labeled by the position coordinate ζ. The creation and annihilation operators fol-
low the commutation relations in the position and frequency domains

[aσ(ζ), a†
σ′(ζ

′)] = cδσ,σ′ δ(ζ − ζ ′), [aσ(ω), a†
σ′(ω

′)] = δσ,σ′ δ(ω−ω′) (2.7)

where a†
σ(ζ)aσ(ζ) is the photon flux with σ polarization at position ζ (unit: s−1 =

Hz) and a†
σ(ω)aσ(ω) is the corresponding spectral density at angular frequency

ω (unit: Hz−1), respectively. Often we use the polarization of light to encode
the information imprinted by the spin or membrane oscillator involved in the
experiment. The polarization state of the light can be represented by the stokes
vector S on a Poincáre sphere as shown in Fig. 2.2(a):

(c)

H

V

R

L

A
D

(a) (b)

Figure 2.2: (a) Representation of the Poincáre sphere, the stokes vector points
along Sx, the quantum signals are encoded in Sy and Sz (b) Phase space di-
agram of the minimum uncertainty state in the ground state (c) Phase space
diagram of a ponderomotive squeezed state.

The stokes vector is described by four stokes components, i.e. S = (S0, Sx, Sy, Sz).
The first stokes component is proportional to the total photon flux S0 = ΦL/2,
whereas Sx, Sy, Sz correspond to the differential photon flux for the following
choice of bases, i.e. horizontal (H) vs vertical (V) polarization, diagonal (D) vs
anti-diagonal (A) polarization and right-hand circular polarized light (R) vs left-
hand circular polarized light (L), respectively. For most cases, we assume the input
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2.3. Atom-light interaction

light is described by stokes vector that points along the x-axis (indicated by the
solid red arrow) where Sx ≈ S0 and the Sy and Sz encode the quantum signals
from the spin oscillator. The stokes vector is defined by

S0 =
1
2

(
a†
+a+ + a†

−a−
)
=

1
2
(a†

xax + a†
yay) (2.8)

Sx =
1
2

(
a†
+a− + a†

−a+
)
=

1
2
(a†

xax − a†
yay) (2.9)

Sy =
1
2i

(
a†
+a− − a†

−a+
)
=

1
2
(a†

xay + a†
yax) (2.10)

Sz =
1
2

(
a†
+a+ − a†

−a−
)
=

1
2i
(a†

xay − a†
yax) (2.11)

Note that in these equations, the left hand side refers to the components of the
Stokes vectors on the Poincáre sphere, while the right hand side refers to the x
and y polarization in the lab frame. From the commutation relation of the mode
operators aσ(ζ), the stokes vector also satisfies the angular momentum commuta-
tion relation [Sy, Sz] = icδ(ζ − ζ

′
)Sx and the Heisenberg uncertainty relation reads

∆Sy · ∆Sz ≥ c

∣∣S̄x
∣∣

2
δ(ζ − ζ

′
) (2.12)

where ∆Sy, ∆Sz represent the standard deviation of the white quantum noise that
follows a Gaussian distribution. This noise is also called the shot noise or impre-
cision noise in the literature. We can again make the Holstein-Primakoff approx-
imation for the Stokes vector, for S̄x � 〈a†

yay〉, the amplitude XL and phase PL
quadrature of light are defined as

XL =
Sy√∣∣S̄x
∣∣ = ay + a†

y√
2

, PL =
Sz√∣∣S̄x
∣∣ = ay − a†

y√
2i

(2.13)

where ay is the quantum field in the y-polarization. The light quadratures satisfy
the canonical commutation relation [XL, PL] = icδ(ζ − ζ

′
) and the Heisenberg un-

certainty relation reads ∆XL · ∆PL = cδ(ζ − ζ
′
)/2. As sketched in Fig. 2.2(c), the

input state of light is a coherent state, where the quantum noise in both quadra-
tures are equally distributed. Furthermore, as we will see in Sec. 2.10, it is possible
to create a polarization squeezed state of light by interfering the oscillator response
with the shot noise of the light [see Fig. 2.2 (d)].

2.3 Atom-light interaction

A first principle derivation of atom light interaction that formulates the coupling
between the collective spin of an atom ensemble to the polarization state of light
was well-established and studied in the literature [33, 36, 42, 70]. Here, we revisit
the atom-light formalism and the physical interpretation of the interaction Hamil-
tonian, decoherence effect and discuss their main consequences.

11



2. Theory of spin-light interface

spin ensemble

paraxial scattered
mode

non-paraxial scattered mode

off resonant
probe laser

Figure 2.3: Illustration of the spin light interaction, the paraxial probe mode
interacts with the spin ensemble, the paraxial scattered mode (light pink color)
and the paraxial probe mode (red color) both exit the polarized spin ensemble
in the same direction. The non-paraxial mode (indicated by wavy arrow)
corresponds to the spontaneous emission into vacuum. Upon the light exits
the ensemble, the polarization of the paraxial scattered mode is rotated by
Faraday angle θF via the Faraday effect.

We first consider the simple scenario where the paraxial mode of the probe laser
interacts with one of the atoms in the spin ensemble as shown in Fig. 2.3. This is
well described by the electric dipole interaction Hamiltonian Hs,int = −d · E, where
d is the dipole operator of the atom. In our experiment, we only consider the D2
line of 87Rb at 780 nm. Here we also define ω0 to be the resonant frequency of
the D2 transition and the laser-atom detuning to be ∆ = ωL − ω0. It turns out
that if the probe laser is far off resonant with respect to the hyperfine excited
manifold 52P3/2 f

′
(see Fig. 2.4) with a laser-atom detuning ∆ large compared to

the hyperfine splitting of the excited states i.e. (∆ ∼ 101 − 102 GHz � ∆′h f s ∼ 102

MHz), the ground state atom no longer resonantly absorbs and emits photons.

Instead, the dynamics of the excited states can be adiabatically eliminated [33],
which returns an effective Hamiltonian Hs,int that describes the off-resonant inter-
action between the collective spin and the light field,

Hs,int = −E(−) · α · E(+) (2.14)

where α is the atomic polarizability tensor. Due to the tensor nature of the atom
polarizability, the Eq. 2.14 can be divided into scalar, vector and tensor part Hs,int =
H(0) + H(1) + H(2) which we interpret the individual term in detail below. In
general, the effect of the individual Hamiltonian consists of a spin part couples
to the polarization state of light. Here, we assume the atoms are non-interacting
and a uniform spin-light coupling is assumed. The light induces a polarization
dependent potential to the atom (known as the AC Stark shift or light shift) and
the atom acts on the light field as a spin-state dependent index of refraction.

12



2.3. Atom-light interaction

Figure 2.4: Schematic diagram of the 87Rb energy level structure. The off-
resonant probe laser beam is detuned from the D2 optical transition. The
blue and red solid lines indicate the σ− and σ+ transitions responsible for the
dispersive atom light interaction.

First, the scalar Hamiltonian H(0) reads

H(0) = h̄α01gS0 (2.15)

where α0 is the scalar polarisability and 1g is the projector operator on the ground
state manifold.

α0 =
σπ

2A
γe

∆
=

λ2

2πA
γe

∆
(2.16)

where σπ = λ2/π is the scattering cross section for linear polarization, λ is the
wavelength of the probe laser and γe is the spontaneous emission rate. The scalar
interaction causes a global spin-independent energy shift to the atomic energy lev-
els, depending on light intensity and detuning. For red detuning, the probe beam
creates a trapping potential for the atom, whereas for blue detuning, the probe
beam induces a repulsive trapping potential. On the other hand, the light experi-
ences a trivial phase shift induced by the atom which can change the divergence
of the laser beam.

13



2. Theory of spin-light interface

Secondly, the vector Hamiltonian H(1) responsible for QND readout of the spin
oscillator reads:

H(1) = h̄α1 fzSz (2.17)

where vector polarizability α1 reads

α1 =
σπ

8A
γe

∆
(−1) f =

λ2

8πA
γe

∆
(−1) f (2.18)

where α1 has opposite sign for f = 1, 2. For the vector interaction, the circular
polarization of light acts a fictitious magnetic field that acts along the transverse
direction of the spin, causing differential energy splitting of the hyperfine Zeeman
m f sublevels. During the spin light interaction, this causes a spin rotating around
the z axis by an amount proportional to the circular component of light Sz. On the
other hand, the atoms rotate the polarization of light by an amount proportional
to the fz along the propagation axis of the light. This is a circular birefrigent effect
of the atom, known as the Faraday effect, which will be the dominant interaction
part we use to realize our spin light interface.

Finally, the tensor Hamiltonian H(2) reads:

H(2) = h̄α2

[
tx2−y2 Sx + txySy +

(
f2

3
− f 2

z

)
S0

]
(2.19)

where α
f
2 is the tensor polarizability depending on the hyperfine ground state

f = 1, 2 takes the following expressions in the large detuning limit:

α
f=1
2 ∼ λ2

8πA
γe

∆
−4δ0 + 5δ1 − δ2

4∆

α
f=2
2 ∼ λ2

8πA
γe

∆
−δ1 + 5δ2 − 4δ3

20∆

(2.20)

where δ f ′ are the frequency offsets of the hyperfine levels relative to the excited
state 52P3/2 f

′
. And tx2−y2 , txy correspond to spin alignment tensor terms given by

tx2−y2 = f 2
x − f 2

y =
1
2
(

f 2
+ + f 2

−
)

txy = fx fy + fy fx =
1
2i
(

f 2
+ − f 2

−
) (2.21)

The dynamics of the tensor interaction is less trivial and is discussed in more de-
tail in Sec. 2.6. Here, we provide a qualitative description. The tensor effect is a
linear birefrigence effect, which causes a power dependent quadratic splitting of
the ground state hyperfine Zeeman sublevels (see Sec. 2.6). On the other hand,
for a linearly polarized laser beam, the tensor part of the atom causes the beam
to become elliptically polarized i.e. Sy is rotated into Sz, which could drive the
spin downstream, acting as a source of spin decoherence due to inhomogeneity of

14



2.4. Spin decoherence mechanism

the laser intensity profile. In general, the tensor interaction is interesting and has
practical use e.g. in tomography [70]. However, in this work, we want to minimize
the tensor effect as this degrades our QND interaction for readout of the spin os-
cillator. For this, we work in a large detuning regime and a polarization angle at
which the tensor effect becomes negligible. To conclude this section, we discuss
the scaling of the different ranks of the atom polarizability to justify that the ten-
sor effect can be neglected. In Fig. 2.5, different ranks of atom polarizability are
plotted as a function of laser-atom detuning ∆. We see that the scalar and vector

Figure 2.5: Scaling of different ranks of the atomic polarisability tensor of 87Rb
as a function of detuning ∆ with probe waist of w0 = 50 µm.

polarizability scale as ∆−1 and the tensor polarizability scales as ∆−2, respectively.
Therefore, this implies that a larger detuning is favourable for the desired Faraday
interaction. In this thesis, we work with typical detuning from 10 GHz to 80 GHz,
which well justifies this approximation as α1/α2 ∼ 102 − 103.

2.4 Spin decoherence mechanism

So far, we only discuss the coherent evolution of the spin light interaction, in
practice, our collective spin is subjected to a multiple of decoherence mechanisms.
Here, the individual decoherence mechanisms are discussed in detail below.

2.4.1 Spontaneous scattering

The predominant and most fundamental decay process is due to the photon scat-
tering of the probe field. Suppose we are interested in studying the Faraday in-
teraction contributed by atoms initially prepared in the ground state | f = 2, m f =
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2. Theory of spin-light interface

−2〉. The excited atom can decay to any levels allowed by the dipole selection
rule ∆ f = 0,±1, ∆m f = 0,±1. In general, this happens in two ways to an atom
upon excitation [70] by any driving laser fields as shown in Fig. 2.6. First, the

Figure 2.6: Schematic diagram of atomic decay processes induced by sponta-
neous scattering, the straight arrow shows the transition driven by the probe
laser, the wavy arrows indicate the two possible decay processes.

excited atoms can decay into hyperfine ground state f = 1, for small detuning,
the atom no longer participates in the interaction [70] and at the large detunings
in our experiment, both f = 2 and f = 1 contribute to the Faraday signal (see
Sec. 2.3 and Fig. 2.6). Another way the excited atom can decay is returning to the
same hyperfine ground state f = 2 with a random orientation, i.e. atoms can be
randomly redistributed to different m f sublevels without leaving the f = 2 hy-
perfine manifold. This leads to a depolarization and dephasing of the collective
spin (see Fig. 2.6). Both processes are due to spontaneous photon scattering and
characterized by the spontaneous photon scattering rate γsc [59]:

γsc = α0S0
γe

∆
=

σπ

2A

(γe

∆

)2 ΦL

2
(2.22)

Similar to the tensor coupling, the photon scattering rate γsc also scaled as ∆−2,
whereas our desired vector polarizability scales as ∆−1. Therefore, the deco-
herence due to spontaneous scattering is suppressed by the favourable scaling
γsc/α1 ∼ ∆−1 at large detunings.
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2.4. Spin decoherence mechanism

2.4.2 Spin broadening due to inhomogeneous magnetic field

The spin coherence is also reduced by the inhomogeneity of the magnetic field,
for example, a small uncompensated magnetic field gradient can cause a spread
of Larmor frequencies across the atomic ensemble. As shown in Fig. 2.7, consider
a linear magnetic gradient applied across the Gaussian spatial distribution of the
atomic ensemble, if one adds up the spin oscillator signals Xs,i(t) precessing at
slightly different Larmor frequencies, an exponential decay signal is obtained. The
width of the frequency spread corresponds to the inverse of the spin dephasing
time Tφ in the absence of light. The magnetic field inhomogeneity sets the intrinsic
spin linewidth γs,0 = 1/Tφ and is negligible when spin broadening is dominated
by spontaneous scattering i.e. γs = γs,0 + γsc ≈ γsc.

Figure 2.7: Schematic diagram of spin broadening induced by inhomogeneous
magnetic field gradient. The first four pair of time and frequency data show
examples Xs1-Xsi where atoms at different locations with respect to a linear
magnetic gradient precess at a different Larmor frequency. By summing the
spin signals contributed by atoms at different locations over the continuum,
this leads to dephasing of the collective spin.

2.4.3 Spin broadening due to inhomogeneous light field

Since the probe laser beam has a Gaussian spatial distribution, atoms at different
locations experiences a different amount of vector or tensor light shift. Similar to
the inhomogeneous broadening due to magnetic field discussed in Sec. 2.4.2, for a
constant light intensity, the non-uniform intensity profile also leads to a spread of
Larmor frequencies and acts as a source of dephasing mechanism.
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2. Theory of spin-light interface

2.5 Input-output relation

As discussed in Sec. 2.3, in the large detuning limit, the QND Faraday interaction
dominates. We may now consider the collective spin (see Eq. 2.1) couples to light
via the dominant Faraday interaction Hs,int = h̄α1FzSz, this allows one to map the
collective spin state onto the light field via the input output relation.

S(out)
x = S(in)

x − α1S(in)
y Fz

S(out)
y = S(in)

y + α1S(in)
x Fz

S(out)
z = S(in)

z

(2.23)

we see that S(out)
y effectively reads out the Fz spin component. We also define the

Faraday angle θF to be the rotation angle of the linearly polarized light in the lab
frame. Equivalently, on the Poincáre sphere, the Sy is rotated into Sx by 2θF around
Sz [71]:

θF =
Sy

2S̄x
=

1
2

α1Fz (2.24)

The Faraday angle θF relates to the on-resonance optical depth d0 = Nσπ/A for
linearly polarized light, which is an important figure of merit to quantify the
strength of the spin light interaction. For an ensemble fully polarized along z, we
have Fz = 2N,

θF = d0
γe

8∆
(2.25)

Similarly, we may compute the equation of motion for the spin (ignoring quantum
noises but including the oscillator dynamics):

Ḟy(t) = −ΩsFz −
γs

2
Fy(t) + α1FxSz(t)

Ḟz(t) = +ΩsFy −
γs

2
Fz(t)

(2.26)

Solving the coupled equations for the spin in frequency space, we may write the
steady state of the spin component Fz in response to the drive S(in)

z (ω),

Fz(ω) = χs(ω)α1F̄xS(in)
z (ω) (2.27)

where the spin susceptibility is defined as

χs(ω) =
Ωs

Ω2
s −ω2 − iγsω

(2.28)

2.6 Effect of tensor light shift on atoms

In this section, we discuss the influence of tensor interaction on the spin dynamics.
As discussed in Sec. 2.3, tensor polarizability is a linear birefrigence effect, which
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2.6. Effect of tensor light shift on atoms
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Figure 2.8: (a) Basis transformation in Jones basis. (b) Basis transformation in
Stokes basis.

depends strongly on the orientation of linear polarization. For this, we define the
laser polarization relative to the x-axis in the lab frame. The polarization of light
can be rotated by θ (see Fig. 2.8) with the aid of a half waveplate, the positive
frequency part of the electric field with input polarization θ reads

E(+) = E0
[
ax′ex′ + ay′ey′

]
eikLz (2.29)

where the polarization field operators are represented by ax′ →
√

ΦL + ax′ and
ay′ , respectively. The corresponding basis vector for the x-polarized local oscillator
along ex and the y- polarized quantum field along ey transform as ex′ = cos(θ)ex +
sin(θ)ey and ey′ = − sin(θ)ex + cos(θ)ey, respectively. Under the basis rotation,
the stokes vectors transform accordingly,

Sx = + cos(2θ)Sx′ − sin(2θ)Sy′

Sy = + cos(2θ)Sy′ + sin(2θ)Sx′
(2.30)

where the prime variable refer to the stokes vector fixed to the frame of laser field.
For convenience, from here onward, we consider the spin light interaction in the
rotated polarization basis and we drop the prime variable of the rotated stokes
operator. Here, the input field has a strong coherent amplitude along the rotated
linear polarization 〈Sx〉 ≈ S̄0 = ΦL/2 and 〈Sy〉 = 〈Sz〉 = 0. Here, fx ≈ − f , where
the well-oriented atom aligns opposite to the magnetic field along the positive x
direction. Following the derivation in [59], the tensor Hamiltonian from Eq. 2.19
can be simplified to

H(2) = h̄α2

[
(

3 cos(2θ) + 1
2

) f 2
x S̄0 + (1− 2 f ) fy

[
cos(2θ)Sy + sin(2θ)Sx

]]
(2.31)
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2. Theory of spin-light interface

The first term inside the bracket corresponds to a quadratic splitting h̄δΩ2m2
f of

the Zeeman sublevels due to the tensor light shift

δΩ2 = α2S̄0
3 cos(2θ) + 1

2
(2.32)

Since the quadratic shift δΩ2 is proportional to laser intensity S̄0, and the atoms
are distributed across the non-uniform laser beam profile, this induces inhomoge-
neous spin broadening as discussed previously in Sec. 2.4.3. Therefore we typi-
cally work with θ ≈ 55◦ with respect to the magnetic field where 3 cos(2θ) + 1 ≈ 0
to minimize the inhomogeneous spin broadening due to tensor effect. We re-
mark that it is possible use the quadratic Zeeman tensor shift to cancel out the
quadratic Zeeman shift induced by large biased magnetic field [72], however, this
can induce spatial inhomogeneities due to spatial dependence of S0. Finally, to
gain intuition of the dynamics generated by the tensor Hamiltonian, it is in-
sightful to write down the input-output relation generated from the last term
h̄α2(1− 2 f ) fy(cos(2θ)Sy + sin(2θ)Sx) of the tensor Hamiltonian Eq. 2.31 in addi-
tion to the Faraday interaction:

S(out)
x = S(in)

x − α1FzS(in)
y + α2(1− 2 f )Fy cos(2θ)S(in)

z

S(out)
y = S(in)

y + α1FzS(in)
x − α2(1− 2 f )Fy sin(2θ)S(in)

z

S(out)
z = S(in)

z − α2Fy(1− 2 f )[cos(2θ)S(in)
x − sin(2θ)S(in)

y ]

(2.33)

First, the cos(2θ)Sy term in Eq. 2.31 causes a rotation in Sx-Sz plane, this opens
up a noise channel that allows the technical amplitude noise of the laser to couple
to the circular component Sz that drives the spin. Whereas, the sin(2θ)Sx term in
Eq. 2.31 corresponds to a linear birefringence effect, which rotates the stokes vector
in Sy-Sz plane. Due to Faraday rotation, the imprinted spin signal S(out)

y ∝ Fz
can be converted back to Sz that started the Faraday interaction. For the spin
side, the observable of interest Fz is rendered non-QND as S(out)

z 6= S(in)
z . For the

above arguments, it is reasonable apply a large atom-light detuning to suppress
the higher order dynamics which violates the simple Faraday interaction picture.

2.7 Non-uniform atom-light interaction

In the previous sections, we considered the idealized case where the probe laser
beam uniformly couples to the atomic ensemble. However, in reality, both the
probe laser beam and the atomic ensemble are described by their individual spatial
mode functions. Moreover, to enhance the spin-light interaction strength, the laser
beam is typically focused to a waist size comparable to the transverse waist of the
atomic ensemble, this means non-uniform coupling would occur since the light
field is not uniform across the volume occupied by the atoms. To gain a better
intuition, we illustrate the role of non-uniform coupling with various examples of
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2.7. Non-uniform atom-light interaction

probe-atom geometries as shown in Fig. 2.9 [73]. In Fig. 2.9(a), the mode matching
is poor, due to the large 4π solid angle of the light scattered from the atoms, only
a small portion of light scatters back into the paraxial mode in the forward axis
parallel to the propagation axis. Fig. 2.9(b) contains an uniform slab of atoms
interacts with the light but the optical depth is very small, only Fig. 2.9(c) and
(d) that compromise between the optical depth and mode matching maximizes
the efficiency of the atom light coupling. To take the above mode matching into
account, we follow the theoretical framework in [74] to describe the non-uniform
coupling between the probe mode and the ensemble mode.

(a) (b)

(c)                                                  (d)

Figure 2.9: Schematic diagram of various probe-atom geometries. The red
solid lines indicate the scattered mode whereas the black solid line corre-
sponds to the spatial profile of the probe mode. (a) A point like atomic en-
semble that scatters in all directions (b) A thin disk cloud that radiates into
the probe mode but the OD is small. (c) The pencil shaped atomic ensemble
match well or (d) poor [adapted from [73]]

First, we introduce the modified Faraday Hamiltonian that generalizes our uni-
form spin-light Hamiltonian 1 to the non-uniform coupling case [74]:

H̃int,s = h̄α1ΣN
i=1η

(i)
s f (i)z Sz (2.34)

where each atom couples to the probe laser field with a weighting coefficient η
(i)
s ,

proportional to the local intensity each individual atom sees. In this formulation,
the α1 is defined such that the weighting coefficient η

(i)
s = 1 evaluated at the peak

intensity of the optical mode function, where max(u(r)) = 1 and the mode area A
is defined as the integral over the spatial mode function

A =
∫ ∫

|u(r)|2d2r (2.35)
1The word “generalizes” is used here, because the framework includes the simple case of uni-

form atom-light coupling if we simply set the weight coefficient to 1 (see equation below)
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2. Theory of spin-light interface

As an example, the vector polarizability that defined previously for the uniform
coupling description lies within the non-uniform coupling theory. There the spa-
tial mode of the probe is a flat top-hat spatial mode function α1 = 1

8A
λ2

π
γe
∆ where

A =
∫ 2π

0

∫ ∞
0 1 [0, w0] (r)rdrdφ = πw2

0 where w0 is the beam radius. The spin oper-
ators are replaced by the effective spin operators which is defined as [74]:

F̃α = Σi
η
(i)
s

ηeff
f (i)α (2.36)

, where f (i)α is the single hyperfine spin operator of the i th atom, where α = x, y, z.
To preserve the spin commutation relation and Heisenberg uncertainty principle,
i.e. [F̃y, F̃z] = ih̄F̃x, the effective coupling strength ηeff is introduced as

ηeff =
Σiη

(i)2
s /N

Σiη
(i)
s /N

=
〈η2

s 〉
〈ηs〉

(2.37)

where the usual commutation relation between uncorrelated individual spins was
assumed:

[ f (k)l , f (j)
m ] = iεlmnδkj f (k)n (2.38)

, where εlmn is the Levi-Civita symbol. One can also write the above Hamiltonian
Eq. 2.34 in a form equivalent to the uniform coupling case [74]:,

H̃int,s = h̄α̃1F̃zSz (2.39)

where the effective coupling strength ηeff is now absorbed into our effective vector
polarizability, i.e. α̃1 = ηeffα1, and the light is now coupled to the z-component
of the effective spin. In this description, we may see the N atoms coupled to
the light mode ηi locally amounts to an effective spin uniformly coupled to the
light with effective coupling strength reduced by ηeff and a reduced spin length
| ¯̃Fx| = Ne f̄x ≈ Ne f , where the effective atom number Ne is defined as,

Ne =
Σiη

(i)
s

ηeff
=
〈ηs〉
ηeff

N (2.40)

here we assumed a well-polarized spin ensemble f (i)x = fx ≈ f∀i. Analogous to
the uniform coupling case, if the macroscopic effective spin component is large
compared to the transverse spin components, i.e. | ¯̃Fx| ≈ Ne f � 〈Fy〉, 〈Fz〉 (i.e.
where H.P.A holds) [74], we may treat the effective spin F̃ as a harmonic oscillator,
and introduce the position and momentum quadrature for the inhomogeneous
spin wave:

X̃s =
F̃z√

˜̄Fx

=
1√

f ΣN
i=1η

(i)2
s

ΣN
i=1η

(i)
s f (i)z (2.41)
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2.7. Non-uniform atom-light interaction

P̃s =
F̃y√

˜̄Fx

=
1√

f ΣN
i=1η

(i)2
s

ΣN
i=1η

(i)
s f (i)y (2.42)

, which satisfies the usual commutation relation for f (i)x = fx = f∀i :

[X̃s, P̃s] = i
1

f ΣN
i=1η

(i)2
s

ΣN
i=1η

(i)2
s f (i)x ≈ i (2.43)

With the modified Faraday Hamiltonian Eq. 2.39, the input-output relation and
Faraday angle are now defined in terms of effective spin operator and vector po-
larizability [c.f. Eq. (2.24) and Eq. (2.23)]:

S(out)
y = S(in)

y + α̃1F̃zS(in)
x (2.44)

θF =
〈S(out)

y 〉
2S̄x

=
1
2

α̃1F̃z (2.45)

where α̃1 = ηeffα1. For a f = 2 spin ensemble fully polarized along z, i.e. F̃z =

Ne f = 〈ηs〉
ηeff

N f , the Faraday angle reads2:

θF =
1
2

α̃1F̃z = α1〈ηs〉N (2.46)

We can apply the same formalism to derive the effective spin measurement rate.
Starting from the modified Faraday Hamiltonian Eq. 2.34, each spin obeys the
following equation of motion under the non-uniform coupling description:

d f (i)y (t)
dt

= −Ωs f (i)z (t)− γs

2
f (i)y (t) + f(i)y (t) + α1η

(i)
s f (i)x (t)Sz(t) (2.47)

d f (i)z (t)
dt

= Ωs f (i)y (t)− γs

2
f (i)z (t) + f(i)z (t) (2.48)

where the first term on the R.H.S is the Larmor precession of the spin around the x
axis and γs describes the spin damping, the Langevin forces fy and fz are included
to preserve the noise statistics in presence of the damping term.By performing

2In general, for non-uniform coupling, 0 ≤ 〈ηs〉 ≤ 1. One can see that if we assume uniform
coupling, i.e. 〈ηs〉 = 1,we recover the vector polarizability equation (see Eq. 2.18) for the uniform
coupling case.
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2. Theory of spin-light interface

Fourier transform on both sides, we can solve the above coupled equations in the
Fourier domain:

f (i)z (ω) =
(γs

2 − iω)f(i)z (ω) + Ωs[f
(i)
y (ω) + α1η

(i)
s f (i)x Sz(ω)]

(Ω2
s −ω2) + (γs

2 )
2 − iγsω

(2.49)

Substituting the solution into the input-output relation for the output field S(out)
y (ω),

we obtain the symmetrized power spectral density under the non-uniform cou-
pling description:

S(out)
y (ω) = S(in)

y (ω) + α1S̄xΣN
i=1η

(i)
s

(γs
2 − iω)f(i)z (ω) + Ωs[f

(i)
y (ω) + α1η

(i)
s f (i)x Sz(ω)]

(Ω2
s −ω2) + (γs

2 )
2 − iγsω

(2.50)

Before we compute the noise spectrum of the output field, we write down the
noise properties for the input coherent state of light field [75],〈

S(in)
y (ω)S(in)

y
(
ω′
)〉

=
〈

S(in)
z (ω)S(in)

z
(
ω′
)〉

= δ
(
ω + ω′

) S̄x

2
(2.51)

and for spin coherent state, respectively [75]:〈
f(i)y (ω)f(j)

y
(
ω′
)〉

= +
〈

f(i)z (ω)f(j)
z
(
ω′
)〉

= δ(ω + ω′)δij
γs

2

∣∣∣ f̄ (i)x

∣∣∣〈
f(i)y (ω)f(j)

z
(
ω′
)〉

= −
〈

f(i)z (ω)f(j)
y
(
ω′
)〉

= δ(ω + ω′)δiji
γs

2
| f̄ (i)x |

(2.52)

Assuming f (i)x (ω) = f̄x, the symmetrized power spectral density of the output
field S(out)

y (ω) reads:

S̄SySy(ω) =
S̄x

2
+

(α1S̄x)2

[(Ωs −ω)(Ω + ω) + (γs
2 )

2] + (γsω)2

[
ΣN

j=1(
γ2

4
+ω2 +Ω2

s )
γs

2
S̄x

2
η
(j)2
s f̄ (i)x f̄ (j)

x

]
(2.53)

S̄SySy(ω) ≈ S̄x

2
+

( 1
2 α1S̄x)2

(Ωs −ω)2 + (γs
2 )

2

[
ΣN

j=1γsη
(j)2
s | f̄

(j)
x |+

1
2

ΣN
i=1ΣN

j=1α2
1η

(i)2
s η

(j)2
s f̄ (i)x f̄ (j)

x S̄x

]
(2.54)

where in the second line, we applied the narrow band approximation, this ap-
proximation holds well if we have a high-frequency oscillator with a narrow spin
linewidth, i.e. γs

2 , |Ωs −ω| � Ωs.

The form of Eq. 2.54 suggests one to define an effective spin operators of higher
order moment in a similar way to the theoretical treatment in [73], the effective
spin operators of higher order moments are defined as:

F̃ → F̃(n) = ΣN
i=1(

η
(i)
s

ηeff
)n f (i) (2.55)
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2.7. Non-uniform atom-light interaction

while we still have:
α1 → α̃1 = α1ηeff (2.56)

With this generalization, we may write Eq. 2.39 as

H̃int,s = h̄α̃1F̃(1)
z Sz (2.57)

the symmetrized power spectral density of the output field (see Eq. 2.54) can then
be expressed in terms of the effective spin operators of the second order moment:

S̄SySy(ω) ≈ S̄x

2
+

( 1
2 α̃1S̄x)2

(Ωs −ω)2 + (γs
2 )

2

[
γs| ¯̃F(2)

x |+
1
2

ΣN
i=1ΣN

j=1α̃2
1(

¯̃F(2)
x )2S̄x

]
(2.58)

Assuming we can prepare identical spins i.e. f (i)x = fx = f∀i, the first and second
order spin operators are equivalent:

¯̃F(2)
x = ΣN

i=1(
η
(i)
s

ηeff
)2 f (i) =

1
η2

eff
N f 〈η2

s 〉 =
〈ηs〉
ηeff

N f = Ne f = ¯̃F(1)
x (2.59)

We may define an effective spin measurement rate as

Γ̃s := Γ̃(2)
s =

α̃2
1S̄x F̃(2)

x

4
=

α̃2
1S̄x Ne f

4
= Γ̃(1)

s (2.60)

for ¯̃F(2)
x = ¯̃F(1)

x .

Γ̃s =
α̃2

1S̄x Ne f
4

= 〈ηs〉ηeff
α2

1S̄x N f
4

= 〈η2
s 〉Γs (2.61)

Similarly, if we compare to the uniform coupling case, we see that the effective
spin measurement rate is simply rescaled by 〈η2

s 〉. With this definition of the
effective spin measurement rate and the effective spin quadratures we introduced
earlier (see Eq. 2.41 and Eq. 2.42), we can write the Faraday Hamiltonian (see
Eq. 2.39) in the Holstein Primakoff approximation i.e. H̃int,s = h̄

√
Γ̃sX̃sPL within

the non-uniform coupling framework.

Application of the non-uniform coupling model

As we see later in Chapter 3, the non-uniform coupling model is applied to pre-
dict the vector polarizability and measurement rate when the probe and atomic
waist have different transverse sizes. Here, by making simple assumptions of the
probe-atom geometry, we may derive the analytical form of the Faraday angle and
measurement rate in the non-uniform coupling framework. Here, we study the
two common intensity profiles for the probe beam using Eq. 2.35,

For a flat top hat intensity profile ηs(r) = 1 [0, w0] (r):

A =
∫ 2π

0

∫ ∞

0
1 [0, w0] (r)rdrdφ = πw2

0 (2.62)
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2. Theory of spin-light interface

where w0 is the beam radius. We recover the result for the uniform coupling de-
scription. In our experiment, the probe beam is given by the fundamental trans-
verse mode (TEM00), the intensity profile takes the form of a Gaussian distribution
ηs(r) = |u00(r)|2 = exp(−2r2/w2

0),

A =
∫ 2π

0

∫ ∞

0
|u00(r)|2rdrdφ =

πw2
0

2
(2.63)

where w0 corresponds to the beam waist. Note that here we compute using only
the waist at z = 0, this is a very good approximation as long as the rayleigh range
of the probe beam is large compared to the length of the atomic cloud.

For the spatial mode of the atomic ensemble:

n(r, z) =
N
V0

exp
(
−2

r2

w2
a

)
1
[
−L0

2
,

L0

2

]
(z) (2.64)

we can assume the atoms are uniformly distributed in the z-direction, where
V0 = L0πw2

a/2 is the volume that encloses the atomic ensemble. Going to a contin-
uous description, the average over a quantity 〈Q〉 can be obtained by computing
the overlap integral between the atomic and probe mode, i.e. 〈Q〉 = ΣQ/N →
1
N

∫
d3rn(r)Q(r). We get

〈ηs〉 =
w2

0

w2
0 + w2

a
=

1
1 + σ2 (2.65)

〈η2
s 〉 =

w2
0

w2
0 + 2w2

a
=

1
1 + 2σ2 (2.66)

ηeff =
w2

0 + w2
a

w2
0 + 2w2

a
=

1 + σ2

1 + 2σ2 , (2.67)

where σ = wa/w0, in the limit, σ → 0 where wa → 0, we get 〈ηs〉 = 1, 〈η2
s 〉 =

1, ηeff = 1, (equivalent to the uniform case). Whereas, in the opposite limit where
σ → ∞, wa � w0, we get 〈ηs〉 = 0, 〈η2

s 〉 = 0, ηeff = 1
2 , effective coupling. In the

perfect mode-matching case σ = 1, we get 〈ηs〉 = 1
2 , 〈η2

s 〉 = 1
3 and ηeff =

〈η2
s 〉
〈ηs〉 =

2
3 .

The results are summarized below

0 ≤ 〈ηs〉 ≤ 1 (2.68)

0 ≤ 〈η2
s 〉 ≤ 1 (2.69)

1
2
≤ ηeff ≤ 1 (2.70)
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2.8. Quantum regime of spin light interface

0 ≤ Ne ≤ N (2.71)

To sum up, we see that the above results indeed reconcile with the intuitive picture
that the N atoms coupled to the light mode ηi can be understood as an effective
spin with reduced spin length (Ne ≤ N) uniformly coupled to the light with
effective coupling strength reduced by ηeff ≤ 1 as mentioned in the beginning
of this section. The non-uniform coupling model provides one a more accurate
description to predict the measurement rate since possible mismatch between the
probe and the ensemble mode is also taken into consideration.

2.8 Quantum regime of spin light interface

Probing into the quantum regime of the spin oscillator using light highlights an
example of a profound research effort in the field of quantum sensing [12], quan-
tum metrology [40] and gravitational wave detection [52,76]. Here, we present the
theoretical model to identify the different noise processes in a quantum-limited
measurement and discuss the consequences of the polarization squeezing of light
using spin. Before diving into the quantum limits of spin light interface, we briefly
revisit the main concepts in the language of standard quantum limit measurement.

Quantum non-demolition measurement and backaction evasion

Quantum non-demolition measurement [77,78] states that a system observable Os
that we want to measure should not be altered by the free evolution of its intrinsic
spin oscillator Hamiltonian. In quantum mechanics language,

d
dt

Os(t) = −
i
h̄
[Hs,0, Os] = 0 (2.72)

or equivalently the operators for different times ti, tj must satisfy[
Os(ti), Os(tj)

]
= 0 (2.73)

There are two perspectives to this problem. If one measures in the laboratory
frame, it is clear that the spin amplitude quadrature Xs does not satisfy the above
requirement (Eq. 2.73)

Ẋs = −
i
h̄
[Hs,0, Xs] = ΩsPs (2.74)

as the observable evolves under its free evolution. However, a closer look at the
commutation relation between Xs(t) and Xs(t + τ)

[Xs(t), Xs(t + τ)] = i sin(Ωsτ), [Ps(t), Ps(t + τ)] = i sin(Ωsτ) (2.75)

suggests that Eq. 2.73 condition is satisfied for integer multiple of half periods τ =
nπ/Ωs, where n ∈ Z. Therefore, for a harmonic oscillator in lab frame, (Xs, Ps) are
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2. Theory of spin-light interface

called stroboscopic QND variables. Here we introduce the spin measurement rate
Γs = α2

1F̄xS̄x/4, as discussed in Sec. 2.5, the Faraday interaction Hs,int = h̄α1FzSz =
h̄2
√

ΓsXsPL is called the QND interaction for a different reason but a similar one,
the interaction is QND in the sense that the original pair of spin light quadratures
Xs, PL remain unchanged after the interaction given by input-output relation. The
spin and light quadrature P(out)

s , X(out)
L become entangled,

Ẋs = ΩsPs (2.76)

Ṗs = −ΩsXs − 2
√

ΓsP(in)
L (2.77)

X(out)
L = X(in)

L + 2
√

ΓsX(in)
s (2.78)

P(out)
L = P(in)

L (2.79)

For an efficient read out of the spin quadrature using light, we want the measured
observable to be imprinted on the light meter undisturbed with [Hs,int, XL] 6= 0.
The measured observable Xs commutes with the QND interaction Hamiltonian
remains unchanged is known as back-action evading (BAE),

[Xs, Hs,int] = [Xs, 2h̄
√

ΓsXsPL] = 0 (2.80)

whereas the conjugate variable of the measured quadrature is disturbed as a result
of the measurement [Hs,int, Ps] 6= 0 in accordance to Heisenberg principle.

Quantum backaction

Consider a weak continuous measurement of the spin quadrature using light as a
meter. Due to Faraday effect, the spin position quadrature Xs is mapped onto the
light quadrature X(out)

L , simultaneously, the measurement leads to random pertur-
bation on the spin momentum Ps (see sec. 2.8) as discussed above. Therefore, the
term 2

√
ΓsP(in)

L in Eq. 2.77 is known as the quantum backaction (QBA) term [75].
Due to the oscillator dynamics of the spin oscillator, the uncertainty in momentum
Ps is then rotated into uncertainty Xs every quarter of a period which then induces
backaction noise onto the meter. One can see the role of backaction more clearly
in the rotating frame, the rotating frame (X̃s, P̃s) relate to the lab frame operators
(Xs, Ps) as follows

X̃s(t) = +Xs(t) cos(Ωst)− Ps(t) sin(Ωst) (2.81)
P̃s(t) = +Xs(t) sin(Ωst) + Ps(t) cos(Ωst) (2.82)

The equation of motion for the spin reads [75]:

˙̃Xs = +2
√

ΓsP(in)
L sin(Ωst) (2.83)

˙̃Ps = −2
√

ΓsP(in)
L cos(Ωst) (2.84)

28



2.9. Quantum limits

and the input-output relation in the rotating frame reads:

X(out)
L = X(in)

L + 2
√

Γs

[
X̃(in)

s cos(Ωst) + P̃(in)
s sin(Ωst)

]
(2.85)

P(out)
L = P(in)

L (2.86)

In the rotating frame, the role of momentum Ps and position Xs becomes more
symmetric, as the role of the rotating frame spin variable is alternated between Xs

and Ps every π/2 cycle. Therefore, the added noise due to backaction i.e. 2
√

ΓsP(in)
L

affects both X̃s and P̃s which eventually enters our measurement in X(out)
L .

2.9 Quantum limits

We may discuss the theoretical model that describes quantum noise for our spin
light interface. To compute the noise spectrum of the output field, we may start
from input output relation of the light field (Eq. 2.23), neglecting the tensor inter-
action:

S(out)
y (t) = S(in)

y (t) + α1Fz(t)S
(in)
x

S(out)
z (t) = S(in)

z (t)
(2.87)

and the equation of motion for the spin, where the oscillator dynamics and noise
fy, fz of the spin are now included3 (c.f. Eq. 2.26),

Ḟy(t) = −ΩsFz(t)−
γs

2
Fy(t) + fy(t) + α1F̄xS(in)

z (t)

Ḟz(t) = +ΩsFy(t)−
γs

2
Fz(t) + fz(t)

(2.88)

We may solve the above coupled equations readily in the frequency domain. After
performing Fourier transform on both sides, we obtain:

−iωFy(ω) = −ΩsFz(ω)− γs

2
Fy(ω) + fy(ω) + α1F̄xS(in)

z (ω) (2.89)

−iωFz(ω) = +ΩsFy(ω)− γs

2
Fz(ω) + fz(ω) (2.90)

From these equations, by expressing Fy in terms of Fz and substitute into Eq. 2.90,
we get the following expression for Fz as given in [75]:

Fz(ω) =
(γs

2 − iω)fz(ω) + Ωs

[
fy(ω) + α1F̄xS(in)

z (ω)
]

(Ωs −ω) (Ωs + ω) + (γs
2 )

2 − iγsω
(2.91)

Similarly, we may perform Fourier transform on both sides for Eq. 2.87 and insert
the expression for Fz(ω):

S(out)
y (ω) = S(in)

y (ω) + α1S̄x

(γs
2 − iω)fz(ω) + Ωs

[
fy(ω) + α1F̄xS(in)

z (ω)
]

(Ωs −ω) (Ωs + ω) + (γs
2 )

2 − iγsω
(2.92)

3not to be confused with single spin operators
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2. Theory of spin-light interface

Before we compute the noise spectrum of the output field, we write down the
noise properties for the input coherent state of light field [75],〈

S(in)
y (ω)S(in)

y
(
ω′
)〉

=
〈

S(in)
z (ω)S(in)

z
(
ω′
)〉

= δ
(
ω + ω′

) S̄x

2
(2.93)

and for coherent spin state, respectively [75]:〈
fy(ω)fy

(
ω′
)〉

= +
〈
fz(ω)fz

(
ω′
)〉

= δ(ω + ω′)
γs

2
|F̄x|〈

fy(ω)fz
(
ω′
)〉

= −
〈
fz(ω)fy

(
ω′
)〉

= δ(ω + ω′)i
γs

2
|F̄x|

(2.94)

The noise power spectral density of the output field is simply given by Wiener
Khinchin theorem [79, 80]:

SSySy(ω) =
∫ ∞

−∞

〈
S(out)†

y (−ω)S(out)
y

(
ω′
)〉

dω′ =
∫ ∞

−∞

〈
S(out)

y (ω)S(out)
y

(
ω′
)〉

dω′

(2.95)
We may therefore compute the symmetrized power spectral density i.e. S̄SySy(ω) =
[SSySy(ω) + SSySy(−ω)]/2, after some lengthy algebra, we obtain the following
expression as given in [75]

S̄SySy(ω) ≈ S̄x

2
+

( 1
2 α1S̄x

)2

(Ωs −ω)2 + (γs
2 )

2
·
(

γs |F̄x|+
(α1F̄x)2S̄x

2

)
(2.96)

where the first term is shot noise due to the laser, the second term corresponds to
the zero-point fluctuation of the spin oscillator and the last term corresponds to
the quantum backaction noise. The expression can also be written as

S̄SySy(ω) =
S̄x

2
+ (α1S̄x|χs|)2 ·

(
γs |F̄x|+

(α1F̄x)2S̄x

2

)
(2.97)

We may convert the unit in terms of the Faraday angle θF = Sy/2S̄x. Furthermore,
we may integrate across the peak of the spin resonance the noise variance of the
spin, assuming γs � ∆BW � Ωs,

var(θ) ≈ ∆BW

8S̄x
+

πα2
1

16
·
(

2 |F̄x|+
(α1F̄x)2S̄x

γs

)
(2.98)

To conclude, we recover the sensitivity plot for quantum limited measurement (see
Fig. 2.10), the first term is the imprecision noise, which goes down with higher
optical power, i.e. 〈S(in)

y S(in)
y 〉/S̄2

x ∝ 1/S̄x, whereas at higher optical power, the
backaction noise dominates ∝ S̄x. There exists a sweet spot, where the two effects
reach the best compromise known as the standard quantum limit (SQL), which is
the optimal working point for measurement precision if squeezing strategy is not
employed.
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Imprecision noise

Quantum backaction noise

Zero point fluctuations

Figure 2.10: Log-Log plot of Faraday angle variance as a function of S̄x. As
the laser power increases, since PL ∝ S̄x, the imprecision noise falls as 1/S̄x.
However, at high optical power, backaction noise competes with the improve-
ment of sensitivity by lowering the imprecision noise. The S̄x,SQL defines an
optimal working spot where the two effects reach the best compromise if no
squeezing strategy is employed.

2.10 Ponderomotive Squeezing

With sufficiently high optical power, the quantum fluctuations in S(in)
z starts to

drive the spin oscillator, which leads to correlations between the spin response
S(out)

y and the drive field S(in)
z . This effect is analogous to the ponderomotive

squeezing in mechanical oscillator [81]. These correlations can be exploited to
suppress noise at one optical quadrature at the expense of adding noise in the
orthogonal light quadrature. To understand intuitively polarization squeezing of
light using spin, we can perform a Fourier transform on both sides of Eqs. 2.85-
2.86, we may recast the input-output relation in a matrix form in the frequency
domain:

(
X(out)

L (ω)

P(out)
L (ω)

)
=

(
1 4Γsχs(ω)
0 1

)(
X(in)

L (ω)

P(in)
L (ω)

)
(2.99)
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2. Theory of spin-light interface

the spin susceptibility is in general complex, we may split it into real and imagi-
nary part:

χs =
Ωs

Ω2
s −ω2 − iγsω

≈ 1
2∆s − iγs

(2.100)

=
2∆s

4∆2
s + γ2

s
+ i

γs

4∆2
s + γ2

s
(2.101)

= Re[χs] + i Im[χs] (2.102)

where we defined ∆s = Ωs−ω as frequency difference from the spin oscillator fre-
quency Ωs. The approximation on the first line we evaluated around the spin res-
onance ω ≈ Ωs. Moreover, we see that the susceptibility plays an important role,
as the backaction term is directly weighted by the spin susceptibility the χs(ω).
Only the real part of the susceptibility leads to squeezing [56]. More specifically,
we follow the calculation in [81], it turns out that the input-output relation can be
cast in the form of a rotation in the XL-PL phase space plot (see Fig. 2.11) followed
by a squeezing operation, the transformed XL, PL optical quadrature reads

X
′
L = S†(r, φ)R†(−θ)XLR(−θ)S(r, φ) (2.103)

P
′
L = S†(r, φ)R†(−θ)PLR(−θ)S(r, φ) (2.104)

where the rotation operator is defined as:

R(θ) = exp
[
−iθ

(
a†

y(ω)ay(ω) + a†
y(−ω)a†

y(−ω)
)]

(2.105)

the effect of rotation operator on the XL and PL quadrature is:

R(θ)XLR†(θ) = cos(θ)XL − sin(θ)PL

R(θ)PLR†(θ) = sin(θ)XL + cos(θ)PL
(2.106)

and the squeezing operator is defined by

S(r, φ) = exp
[
r
(

ay(ω)ay(−ω)e−2iφ − a†
y(ω)a†

y(−ω)e2iφ
)]

(2.107)

The effect of the squeezing operator on the optical quadrature is:

S(r, φ)XLS†(r, φ) = XL(cosh r + sinh r cos 2φ) + PL sinh r sin 2φ

S(r, φ)PLS†(r, φ) = PL(cosh r− sinh r cos 2φ) + XL sinh r sin 2φ
(2.108)

Using the above relationship, we can derive the rotation angle θ, squeeze angle φ
and squeeze factor r as given in [81]:

θ = arctan(K/2), φ =
1
2

arccot(K/2), r = arcsinh(K/2) (2.109)
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(a) (b)

Figure 2.11: (a) Phase space diagram of the coherent state of light. (b) Phase
space diagram of the ponderomotive squeezed state.

where K is defined as Re[χs]4Γs. For the Faraday interaction, assuming |∆s| =
γs/2, Re[χs] ≈ Im[χs] ≈ 1

2γs
, therefore, we get K ≈ 2Γs

γs
≈ 2Γs

γsc
= Cs, where we

introduce the quantum cooperativity Cs = 2Γs
γsc

. Now, we know what happens
to the output field after the spin-light interaction. We may choose an arbitrary
quadrature angle between Sy and Sz to detect the ponderomotive squeezing,

Sβ = cos(β)Sz − sin(β)Sy (2.110)

where β is the phase quadrature angle. Similar to Sec. 2.9, we may compute the
symmetrized output spectrum of a ponderomotive squeezed state in the rotated
light basis,

S̄SβSβ
(ω) ≈ S̄x

2
+

( 1
2 α1S̄x

)2

(Ωs −ω)2 + (γs
2 )

2
· [sin2(β)(γs |F̄x|+

(α1F̄x)2S̄x

2
) (2.111)

− 2 sin(β) cos(β)∆s F̄x] (2.112)

where the first term corresponds to imprecision noise due to shot noise, since
the shot noise of a coherent state is equally distributed in X(in)

L and P(in)
L it is

independent from the homodyne angle β. The second term is the atomic signal
and the quantum backaction noise term. The last term is a cross term that encodes
the correlation between spin response and the quantum fluctuation in the phase
quadrature of the light, which is responsible for the squeezing.

33





Chapter 3

Experiment implementation of spin light
interface

In this chapter, we present the experiment setup of our spin light interface and the
key characterization techniques we use to characterize our spin ensemble. This
allows us to obtain useful parameter to quantify the spin measurement rate and
spin damping rate used in the hybrid experiment. For an earlier description of this
setup, we refer readers to [59]. The description in this chapter partially follows
this reference. In Sec. 3.7, the new data on the ponderomotive squeezing of light
is presented.

3.1 Experiment setup

The experimental setup of the spin-light interface is shown in Fig. 3.1 and the
apparatus can in general be classified into three categories, namely, preparation,
manipulation and detection of the cold spin polarized atomic ensemble. For the
spin ensemble preparation, the cold atomic beams generated from the 2D MOT
fill the 3D MOT which consists of the anti-Helmholtz coil and the laser cooling
beams propagating from the three orthogonal directions at the center of the glass
chamber. Laser cooled atoms are then captured by the far off-resonant trap pro-
vided by a focused 25 W 1064 nm dipole trap laser beam propagating from the
left. To prepare the collective spin, the atomic ensemble is polarized by the res-
onant 22 Zeeman pumping beam (780 nm) sent from the bottom along a static,
homogeneous DC magnetic field in the x-direction created by the Helmholtz coil.
In addition, compensation coils are installed to cancel out residual stray field and
maintain spin stability. To manipulate the spin state, either AC magnetic field
generated by the RF coils or the circularly polarized light generated by the EOM
can be used to drive the spin into precession. Finally, for detection, an off-resonant
780 nm coupling beam is sent from the right to the left, a polarimeter sensitive to
polarization change of light is used to pick up the spin signal. The CCD cameras
are installed for performing the absorption, florescence and Faraday imaging.
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Figure 3.1: Schematic diagram of the spin-light interface

Optical setup

As shown in Fig. 3.1, the probe laser beam is first amplitude modulated using an
acoustic optical modulator (AOM) before coupling into a polarization maintaining
(PM) fiber. The AOM can be used to switch on and off the beam or create probe
pulses. Then, the laser beam exits from a fiber collimator1 and passes through a
Glan-Thompson polarizer (GTP) to create a clean polarization with an extinction
ratio of 10−8. After that, the probe beam passes through a free space Electro-
optical modulator (EOM)2. The EOM is used to create the circular polarized light
to drive the spin (see Sec. 3.6.4). The probe beam is focused using a singlet lens
with f = 200 mm onto the atomic cloud confined by the dipole trap beam (1064
nm) propagating from the opposite direction. We use a pair of dichroic mirrors on
both sides of vacuum chamber to separate the two laser beams. Since the atomic
signal is very sensitive to change in laser polarization, the compensation waveplate
stack (QWP-HWP-QWP) are installed on both sides to cancel out the bi-refrigence
effect due to the dichroic mirror and the vacuum chamber. After passing through
the atomic ensemble, the coupling beam carrying the spin signal is picked up by
the polarization sensitive polarimeter. The polarimeter consists of a combination
of (QWP-HWP) waveplate and a polarisation beamsplitter. By adjusting the wave-
plates, arbitrary superposition of the Sy and Sz can be measured. Furthermore, to
realize the hybrid spin mechanics experiment, the translation stage (TS) at the in-
put displaces the coupling beam (here the probe beam is referred as the coupling
beam) to intersect the atomic ensemble at an angle. Similarly, the translation stage

1Schäfter & Kirchhoff 60 FC-F-4-A 18-02 or 60 FC-F-4-M 12-10 collimator.
2Free space electro-optical modulator from QUBIG: PCA4R-NIR AC (650 - 1000) nm
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3.2. Laser systems

(TS1) installed for the pick-up mirror can move to a position where the coupling
laser beam is sent to the optomechanical part of our hybrid setup (see Chapter 5.7).

3.2 Laser systems

To control and manipulate the neutral 87Rb atoms, several optical transitions must
be addressed simultaneously with lasers at different frequencies. First, we start
with an overview of the optical transitions relevant to the 87Rb atoms, then we
present the individual laser systems that are used for the experiment.

Optical transitions

The relevant optical transitions for 87Rb atoms are summarized in Fig. 3.2 below.
For laser cooling and absorption imaging of the atoms, the circularly polarized
light are used to address the f = 2, m f = ±2 → f ′ = 3, m′f = ±3 closed cycling
transition. To satisfy the dipole selection rule and the conservation of angular
momentum, the excited atom can only decay to f = 2 hyperfine ground state
for further laser cooling. For spin preparation, σ± circularly polarized light is
applied to address the f = 2 → f ′ = 2 transition, once the atoms reach the
| f = 2, m f = ±2〉 magnetic sub-level, the atom is in a dark state as the next
possible optical transition f = 2, m f = ±2 → f ′ = 3, m′f = ±3 is off-resonant to
the pump laser. During the Zeeman pumping, excited atoms can decay into f = 1
if ∆m f = m f −m f ′ = 0,±1. A σ± circularly polarized repumper laser addressing
f = 1 → f ′ = 2 can bring the atoms back to f = 2 for further Zeeman pumping.
For large laser atom detunings (see Sec. 2.3), the coupling laser induces transitions
allowed by the dipole selection rule.

Diode lasers

We present an overview of the diode lasers used for the preparation and imaging
of the atomic ensemble. As shown in Fig. 3.2, since the f = 1 and f = 2 are
separated by hyperfine splitting ∼ 6.8 GHz, two different homebuilt grating stabi-
lized diode lasers, i.e. MASTER and REPUMPER (see Fig. 3.3) are used to address
optical transitions starting from the different hyperfine state, i.e. f = 2 → f ′ and
f = 1 → f ′. The corresponding hyperfine excited state f ′ are reached by fine
tuning the laser frequency using an AOM. Moreover, the AOM acts as a switch to
turn the beam on and off during the spin preparation sequence or create pumping
pulses for stroboscopic cooling used in the hybrid experiment (see Chapter 5.7).
The diode lasers are frequency stabilized using frequency-modulated (FM) satu-
rated absorption spectroscopy on 87Rb vapor cells. Here, the double pass AOM
configuration is used to provide a wider frequency tuning range, while enabling
fast frequency shift with minimal beam deflection during the MOT cooling stage.
Another diode laser SLAVE is seeded by the MASTER and amplified by a tapered
amplifier BOOSTA to deliver sufficient light (∼ 1 W) for laser cooling and a small
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Figure 3.2: Overview of the optical transitions addressed by different lasers
(arrows) for 87Rb used in the experiment. The frequency splittings of the
hyperfine ground state and excited manifolds are provided.

portion of light ∼ 5 mW goes to imaging beam. The REPUMPER laser is used to
recycle atoms that decayed to f = 1 from f = 2. Moreover, it can also be used to
Zeeman pump atoms to f = 1, m f = ±1 if we work with f = 1 hyperfine ground
state spin. Recently, we also set up a digital phase-locked loop (DPLL)3 to stabi-
lize the frequency offset [82] between an interference filter stabilized diode laser
REPUMPER2 and MASTER laser. The REPUMPER2 is a f = 1 repumper which
brings atoms from f = 2 back to f = 1, this was sometimes used to shorten the
cloud.

Coupling laser

Our coupling laser4 is a widely tunable, continuous wave low noise Ti:Sa laser.
To probe the atomic spins, the laser frequency can be set to a large red detuning
∼ GHz with respect to the 52S1/2 → 52P3/2 optical transition, this renders the

3Analog evaluation circuit board ADF4002
4CW laser from MSquared (SolsTiS)
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3.2. Laser systems

spin light interaction to be dominated by the Faraday effect, while suppressing
higher order tensor coupling (see Sec. 2.3). The laser frequency can be coarsely
adjusted by rotating a piece of birefrigent filter [83] which introduces wavelength
dependent loss into the laser resonator, fine adjustment of wavelength is achieved
by tuning the Etalon spacing. The coupling laser typically outputs up to 1 W of
light at 780 nm when being pumped by a Coherent Verdi laser delivering 7.25 W
of light at ∼ 500 nm. More importantly, for the laser power level (roughly > 1mW)
used in our experiment, the coupling laser is shot noise limited in both amplitude
and phase quadrature for frequencies above 1.5 MHz [59], which is sufficient for
performing quantum measurements.

REPUMPER
       

FM lock

FM lock
TA

3D MOT 
2D MOT 
Imaging 

BOOSTA
22 Zeeman pumping 

Repumper f=2

11 Zeeman pumping

REPUMPER2
    

Frequency offset lock
           (DPLL) 

Double pass
     AOM

PBS

Spec.

Repumper f=1 

Spec.

Flip mirror

Flip mirror

Double pass
     AOM

AOM

AOM

MASTER SLAVE

Figure 3.3: Schematic diagram of the diode lasers system to address different
optical transitions for preparation of a well-polarized 87Rb spin ensemble.

Dipole trap laser

Cold atoms naturally free fall under gravity, in order to hold the atoms in mid-air
for interrogation, we employ a powerful far off-resonant laser to create a scalar
potential to trap cold atoms. The dipole trap laser is a commerical Nd:YAG
laser5with maximum power output of 25 W at λtrap = 1064 nm. An AOM is
installed after the laser to allow control of the trap depth and switching for trap
frequency and time-of-flight (TOF) measurement. Details of the dipole trap char-
acterization are described in [84]. After the AOM, 16 W of the first order diffracted

5Mephisto MOPA from InnoLight with original maximum power output of 40 W
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3. Experiment implementation of spin light interface

beam then propagates in a direction opposite to the coupling beam (see Fig. 3.1)
and is focused by a singlet lens with f = 250 mm down to a small spatial region
with transverse waist of 92 µm. In the large detuning limit, the dipole laser cre-
ates a conservative, state-independent scalar potential Udip(r) to trap laser-cooled
atoms.

Udip(r) =
3πc2

2ω3
0

γe

∆
IL (r, z) (3.1)

where the spatial distribution IL (r, z) of the trap laser reads

IL (r, z) =
2P

πw2
trap (z)

e−2r2/w2
trap(z) (3.2)

where P0 is the peak power at z = 0 and the trap waist is defined as wtrap(z) =

w0,trap

√
1 +

(
z/z0,trap

)2, and z0,trap = πw2
0,trap/λtrap is the Rayleigh range of the

dipole trap beam, where w0,trap is the trap waist at z = 0 . At large red detuning,
the laser beam creates an attractive potential for atoms with trap depth of U0 =
Udip(0) ≈ −kB × 300µK [84] and the spontaneous scattering rate due to dipole
laser γsc = Udip γe/(h̄∆) ∼ 1 Hz is suppressed [84]. At low temperatures kBT �
U0, the atomic number distribution takes the form of a Gaussian distribution with
cylindrical symmetry [84]:

n(r) = n0 exp
(
−

Udip(r)
kBT

)
≈ N

√
1

8π3σ4
r σ2

z
exp

(
− r2

2σ2
r

)
exp

(
− z2

2σ2
z

)
(3.3)

where n0 is the peak number density, σr and σz are the standard deviation spatial
spread of a Gaussian spatial distribution along the transverse and longitudinal
direction, respectively. The widths σr and σz are computed to be 18 µm and 6.3 mm
(using T = 50 µK, trap frequencies ωr = 611 Hz and ωz = 1.73 Hz in their
respective confinement direction [84]). The aspect ratio σz/σr of ∼ 300 gives a
large optical depth which is ideal for strong spin light interaction.

3.3 Atomic ensemble preparation and imaging

In this section, we discuss the experimental technique that are relevant to the
preparation and imaging of the atomic ensemble.

Laser cooling and dipole trap loading

Details of the atomic preparation are discussed in [59, 85, 86]. Here, we provide
a brief account of the physical processes involved in loading a dipole trap. First,
the cold atomic beam generated from 2D MOT is transferred to the center of 3D
MOT chamber, where three mutually orthogonal pairs of opposite circularly polar-
ized counter-propagating laser beams intersect at the center of magnetic quadru-
ple field produced by the anti-Helmholtz coils. In the presence of the spatially-
varying magnetic field, atoms moving away from the center are brought back to
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3.3. Atomic ensemble preparation and imaging

resonance, which gives a momentum kick opposite to the atomic motion due to
photon scattering. In essence, the atoms experience a velocity-dependent damp-
ing force and a position dependent restoring force due to the light. Exploiting the
closed cycle transition of 87Rb between f = 2 → f ′ = 3, on average the atoms
are cooled over repeated cycles of absorption and spontaneous emission. Colder
atoms that scattered into the ”dark” f = 1 hyperfine state are not resonant with
the cooling lasers accumulate in the center, whereas the atoms away from center
gets repumped into f = 2 for continuous laser cooling. The next phase is dark
MOT, the repumper laser intensity is further reduced and MASTER laser is red-
detuned further to reduce the repulsive photon scattering. This process builds up
a compressed atomic cloud in the center overlapped with the dipole trap. The
weak MOT phase acts as a transitory to the Molasses phase, where the magnetic
field gradients are ramped down to zero and the cooling MASTER intensity is re-
duced and red-detuned further to reduce heating of the atoms. Atoms are cooled
to sub-Doppler temperatures ≈ 50 µK further due to polarization gradient cooling
and loaded into dipole trap.

3.3.1 Absorption Imaging

Absorption imaging provides a convenient way to characterize the geometry, num-
ber density distribution and temperature of the atomic ensemble. To obtain an ab-
sorption image of the ensemble, an imaging beam is sent along the short axis of the
cloud. During a typical absorption image sequence (see Fig. 3.4), atoms are Zee-
man pumped to the stretched state

∣∣ f = 2, m f = −2
〉

using circularly-polarized
beam σ− resonant to f = 2 → f ′ = 2 along a small guiding field By ≈ 1 G par-
allel to the imaging axis. Atoms decayed into f = 1 are recycled back to f = 2
using the σ− polarized repumper laser that addresses the f = 1→ f ′ = 2. Subse-
quently after the state preparation, atoms in

∣∣ f = 2, m f = −2
〉

resonantly scatter
the imaging beam on the cycling transition f = 2, m f = −2→ f ′ → 3, m f ′ = −3.

Repumper
Imaging
 beam

Zeeman Pumping

f=2
MOT phase

Dipole trap 

Guiding field

Figure 3.4: Schematic diagram of the absorption imaging sequence, the ar-
row indicates the time span which the dipole trap and guiding field remains
turned on.

As a result, the atoms in the path of the imaging beam cast a shadow on a cali-
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3. Experiment implementation of spin light interface

brated CCD camera. Comparing the absorption image to a reference image with-
out the atoms allows one to obtain the optical depth,

OD(x, z) = − ln
(

Iatoms(x, z)
Iref (x, z)

)
(3.4)

Using the Beer-Lambert law, the optical density is connected to column number
density n2D (integrated along the imaging axis):

OD(x, z) = σ
∫

n(x, y, z)dy := σn2D(x, z) (3.5)

where the atomic scattering cross section in the low saturation limit reads

σ =
σ0

1 + (2∆/γe)
2 (3.6)

depends on the resonant scattering cross section on the imaging transition and the
detuning of the imaging beam ∆. The atom number N is obtained by integrating
the number density of each pixel across the xz-imaging plane.

N =
∫∫

n2D(x, z)dxdz =
∫∫ OD(x, z)

σ
dxdz (3.7)

1 mm

(a)

(b)

0 2

Figure 3.5: Absorption images of the atomic ensemble upon releasing from
the dipole trap with 1 ms of time-of-flight. (a) Long atomic cloud filled with
20 M atoms. (b) Short atomic cloud filled with 10 M atoms. The scale bar on
the top right corner indicates the measured OD along the imaging axis.

After the state preparation, the trap beam can be abruptly switched off for a vari-
able amount of time τtof, this allows the atomic cloud to undergo ballistic expan-
sion before an absorption image is taken. Here, absorption images of a short and
long atomic cloud with fixed time-of-flight τtof duration of 1 ms are included in
Fig. 3.5. Collecting multiple absorption images as a function of τtof is known as
time-of-flight measurement of the cloud, which allows one to determine the tem-
perature of cloud from the expansion of the cloud. As a side remark, we denote
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3.3. Atomic ensemble preparation and imaging

that the above formula only applies to imaging on resonance requires knowledge
of the detuning ∆. After a long period of time (∼weeks), the lock point of the
FM lock could change slightly due to effect such as thermal drift, thus the imag-
ing beam could detune. To correct this, the measured integrated OD is plotted
as a function of the imaging beam AOM voltage as shown in Fig. 3.6. Here, the
detuning of the imaging beam is scanned around the resonance. Each data point
corresponds to an average of 3 independent measurements. In this example, a
Lorentzian function is fitted to the data, the atomic resonance is centered at AOM
voltage of 4.65 V. Moreover, we obtain the FWHM of 0.385 V (with voltage to fre-
quency conversion factor = 0.05 V/MHz) which corresponds to 7.7 MHz which
is slightly larger than the natural linewidth γe = 6.06 MHz. The imaging beam
should be set to resonance to avoid dispersive effect that could distort the image.

Figure 3.6: Plot of the integrated OD as a function of detuning from the imag-
ing transition f = 2 → f ′ = 3. Each blue dot corresponds to an average of 3
independent measurements. The red line is a Lorentzian fit to the measured
data.

Faraday Imaging

We can also image DC Faraday rotation [87] onto a CCD camera (see Fig. 3.8)
by sending the coupling beam along the long axis of the spin ensemble with the
highest OD in the z-direction. The spin is rotated to the propagation axis such
that the Faraday rotation measured the macroscopic spin signal Fz ≈ 2N. The
Faraday imaging setup looks similar to the polarimeter except that the balanced
photodetector is replaced by a CCD camera (see Fig. 3.7). The HWP is set at π/4
such that both arms after the PBS is balanced.
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spin ensembleoff resonant
probe laser
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PBSHWP
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Figure 3.7: Schematic diagram of Faraday imaging setup

This is used to optimize the spatial overlap of the spin ensemble with the cou-
pling beam, typically after a large change in beam alignment e.g. swapping the
collimator of the fiber coupler with a different f . The camera position is adjusted
such that both the image of the atomic ensemble and coupling beam are focused.
Due to the poor signal-to-noise contrast, a small detuning (∆ = −1 to −5 GHz)
is required for the Faraday imaging. Here, both absorption images and reference
images are obtained horizontally polarized and vertically polarized light Iatom

H/V ,
Iref
H/V , respectively. Using the sum and difference of the horizontal and vertical

polarization images thus gives us the spatial distribution of the scalar and vector
signal,

Iscalar =
(Iatom

H − Iref
H ) + (Iatom

V − Iref
V )

Iref
H + Iref

V
(3.8)

Ivector =
(Iatom

H − Iref
H )− (Iatom

V − Iref
V )

Iref
H + Iref

V
(3.9)

An example Faraday imaging measurement with a probe detuning of -2 GHz is
plotted below. For scalar interaction [see Fig. 3.8(a)], the spin-state independent
refractive index of the atomic ensemble leads to focusing of the coupling beam.
From the fits, we can determine the e−2 waist (black dashed circle) of the coupling
beam at the position of the atom to be 48 µm and the transverse radial waist of
the atomic cloud is 27 µm, respectively. For Faraday interaction, the vector part
shows the distribution of the Faraday spin signal across the laser beam. Using
Eq. 2.24 and Eq. 2.25, the on-axis optical depth OD(x, y) per pixel can be computed
[see Fig. 3.8 (c)], the measurement shows a peak optical density of 2000, and an
effective OD (average across the pixels of the beam cross section) yields ∼ 500. We
see that the local spin light interaction strength can vary a lot depending on the
position of the laser beam with respect to the position of atom.

3.4 Spin state preparation

3.4.1 Optical pumping

As discussed in Sec. 2.1, the starting point of our experiment is to prepare the
atoms in the lowest Zeeman sublevel | f = 2, m f = −2〉 to realize a highly oriented
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3.4. Spin state preparation

Figure 3.8: Faraday rotation image of a spin ensemble (obtained with f = 12
mm fiber collimator at -2 GHz). (a) Image of the laser beam focused by the
atomic ensemble due to scalar interaction. (b) Image of DC Faraday rotation
signal from the vector polarizability. (c) On axis OD(x,y) computed from Fara-
day image.

spin state that approximates a spin oscillator. Experimentally, this is achieved by
simultaneously applying two σ− polarized lasers i.e. f = 2 Zeeman pumper and
repumper lasers (see Sec. 3.2) parallel to the static magnetic field in the x-direction.
The pumping process can be divided into two steps. An example is illustrated in
Fig. 3.9, an atom initially occupies | f = 2, m f = 0〉 absorbs a σ− photon from the
resonant Zeeman pump beam. In general, the excited atoms can decay to ground
state via any route (wavy arrows) permitted by dipole selection rule ∆ f , ∆m f =
0, ±1 and conservation of angular momentum. Overall, atoms net polarization
build up because the atom has a higher chance to either move by ∆m f = −1,−2
than ∆m f = 0. More importantly, the stretched state | f = 2, m f = −2〉 is dark
to the pump beam6, this pumping process accumulate atoms into this state until
there is no more scattering of the pump photon. However, the atoms can also
decay to f = 1 ground state (wavy dashed arrows). Therefore, the σ− repump
laser addressing f = 1 → f ′ = 2 repumps atoms that decayed to f = 1 hyperfine
ground state (see Fig. 3.2) while acting as a Zeeman pumper. An important figure
of merit of the spin light interface is the spin orientation,

p =
1
f

f

∑
− f

m · 〈ρm,m〉 (3.10)

where ρm,m is the diagonal density matrix of the spin. A detailed characterization
of the pumping is discussed in Sec. 3.5.3. The pumping process robustly initializes

6Next possible transition f = 2→ f ′ = 3 is off resonant to the pump beam
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spin polarization characterized by spin orientation up to ∼0.9 for B0 = 2.8 G. The
resonant pump beam and repumper beam indeed introduces decoherence, which
broadens the spin linewidth. For typical Faraday rotation characterization, the
resonant pump and repumper beams are switched off to maximize the coherence
time. More importantly, pumping is a flexible knob that allows us to control the
quality factor of our spin oscillator for efficient cooling of the mechanical oscillator
(see Chapter 6).

Figure 3.9: Preparing atoms to the | f = 2, m = −2〉 via optical pumping. An
example (see red circle) above shows an atom starts from the | f = 2, m = 0〉.
Excited atoms can decay into any ground state which satisfies conservation
of angular momentum and dipole selection rule ∆ f , ∆m f = 0,±1. The wavy
(dashed) arrows indicate atom decay into f = 2 ( f = 1) hyperfine state.

3.4.2 Magnetic field control

Since our spin oscillator frequency Ωs is defined by the static magnetic field B0, it
is crucial to maintain a stable and homogeneous magnetic field across the atomic
ensemble. To achieve this, a pair of water-cooled coils with diameter 17 cm is
employed in Helmholtz configuration (see Fig. 3.10) to set a large static bias field
along x direction with a maximum tuning range of 7 G at 3 A. A larger rectan-
gular ∼ 0.7 m compensation coil surrounding the vacuum chamber7 allows for a

7The compensation coil is also employed in Helmholtz configuration.
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3.4. Spin state preparation

homogeneous field to be produced at the atomic site. This allows for fine magnetic
field adjustment with a tuning range of 1.5 G at current up to 5 A. The main role
of the compensation coil is to counteract any stray field8 that might enter the spin
system using closed-loop control. This is set up by placing a low noise fluxgate
sensor 9 as close as possible to the atom. For different magnetic field set values
on the computer, our homebuilt magnetic field stabilization PID system10 then
actively stabilize the difference between a pre-calibrated setpoint and the sensor
detector output to zero. In general, the feedback run in two regimes, i.e., short
and long time scale. For short time scale (∼ ms), the PID takes out noise consists
of the dominant 50 Hz harmonics noise to prevent the spin Larmor frequency to
jitter at kHz frequency during the Faraday measurement. Whereas for long time
scale (∼ mins), the feedback counteracts slow drift due to e.g. thermal drift from
coils such that the same spin oscillator frequency can be reproduced to obtain
measurement statistics for averaging. Upon turning on the closed loop, the spin
linewidth becomes narrower and the long term drift of the spin is reduced. With
our recent improvements in the magnetic field control, we obtain a spin-linewidth
γs ≈ 2π× 50 Hz and a long term rms fluctuation of 42 Hz over a period of an hour.
Here, we explain the calibrate procedure to set up the magnetic field system. The
calibration procedure serves several purposes, it allows one to null out the earth
magnetic field and to establish the closed loop system. Also, this procedure is
necessary after an old piece of equipment is replaced, e.g. a current source. First,
the measured magnetic field is plotted as a function of the applied current across
both the compensation coil and bias coil, respectively (see Fig. 3.11). The mea-
sured magnetic field is converted from the Larmor frequency given by Zeeman
effect (see details in Sec. 3.5.2):

Ωs = γ f |B|

= γ f

√
B2

x + B2
⊥ + δΩsB2

(3.11)

where the gyromagnetic ratio γ f ≈ ±0.7 MHz ( f = 2, 1) and B2
⊥ = B2

y + B2
z are

the magnetic field components perpendicular to the macroscopic static field along
x and the latter term δΩs is the quadratic Zeeman contribution due to large static
magnetic field. The Larmor frequency is then extracted by fitting the spectrum of a
ring down measurement after a RF pulse excitation11. As shown in Fig. 3.11(a), at
zero compensation coil current, the magnetic field is non-zero, this can be nulled
out by introducing an offset Icomp,x0 to the compensation coil i.e. replacing Icomp,x

8Prominent examples of stray field in our lab include earth magnetic field, 50 Hz noise radiation
from nearby electronics, or a powerful ∼ T magnet from other labs.

9Mag-03 Bartington fluxgate sensor low-noise (< 6 pTrms/Hz), 3 kHz bandwidth
10Physics Basel SP 962.
11Here, the RF resonant frequency is calibrated previously. If no previous calibration is per-

formed before, one can estimate the magnetic field strength in Helmholtz configuration (based on
the e.g. number of windings of the coil and current Icoil) to obtain a good estimate or use an external
magnetic sensor to calibrate the gain factor.
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Figure 3.10: Schematic diagram of the magnetic field system

by Icomp,x0 + Icomp,x. The calibration is repeated for y and z direction to null out
the residual perpendicular static field due to environment. Moreover, the slope of
the open loop measurements allow one to calibrate the open loop gain conversion
factor (G/A), which converts the open loop applied current into the applied open
loop Helmholtz coil field in the closed loop calibration measurement included
below (see the x-label of Fig. 3.12).

To operate the magnetic system in the closed loop, as mentioned above, the lock
setpoint of the flux gate sensor has to be pre-calibrated Vsensor using the following
equation:

Vsensor = V0 + GtotBtot + GbiasBbias (3.12)

where V0 is the sensor output at zero field (in presence of the zero-field com-
pensation), Gtot and Gbias are the sensor sensitivity values for the total magnetic
field Btot + Bbias and the Helmholtz magnetic field Bbias. To determine Gtot and
Gbias, the Helmholtz coil field is scanned to determine (Gtot + Gbias) i.e. Vsensor =
V0 + (Gtot + Gbias)Bbias for Btot = Bbias. Similarly, the sensor gain factor of compen-
sation field Bcomp can be determined by measuring the sensor output as a func-

48



3.4. Spin state preparation

(a) (b)

Figure 3.11: Open loop measurement of magnetic field as a function of current
through (a) compensation coil (b) Helmholtz coil after the earth field is nulled
out.

tion of the compensation field at a fixed Helmholtz coil field Bbias i.e. Vsensor =
V0 + Gtot(Bbias + Bcomp) + GbiasBbias . By comparing the two independent calibra-
tions, we can determine Gtot and Gbias. Using the calibrated sensor sensitivity
values, we may operate the magnetic field system in closed loop. In Fig. 3.12, we
plot a closed loop measurement of the Larmor frequency as a function of open
loop bias Helmholtz field. We see that the extracted Larmor frequency is now
centered around the Helmholtz coil field as any offset field from the environment
is well compensated by the compensation coil and the x-axis shows the applied
open loop bias field by using the conversion factor obtained from the open loop
calibration.
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Figure 3.12: (a) Closed loop measurement of the sensor setpoint as a function
of applied open loop Helmholtz coil field. (b) Closed loop measurement of
the Larmor frequency as a function of open loop bias coil field.

Furthermore, since most atoms are distributed along the long axis of the cloud
(∼ 1 cm), a small gradient in magnetic field ∂Bx/∂z would result in dephasing of
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the spin as discussed in Sec. 2.4.2, to compensate the magnetic field gradient along
the long axis of the cloud, an additional set of four parallel wires (see Fig. 3.10) is
placed to create a static gradient field locally to cancel out the gradient field which
improves our minimum spin coherence time from Tφ = 2 ms to 7 ms [59].

3.5 Spin state detection and readout

After introducing the spin preparation, we may take the spin oscillator as the
starting point, and consider the detection of the collective spin precessing around
a biased magnetic field along the x-axis in the lab-frame. Moreover, we further
introduce the formulation for spin spectroscopy which provides the model to fully
characterize our spin in Sec. 3.5.3, which allows us to extract the spin parameters,
such as the spin linewidth and the Larmor frequency. Finally, we discuss the signal
processing that allows one to convert the Faraday signal into the number of spin
excitations. The detailed derivation are discussed previously in [59, 75].

3.5.1 Faraday rotation measurement and spin signal calibration

We first present a simple example of the Faraday spin measurement. The setup
used for the Faraday spin measurement is sketched in Fig. 3.13. The atomic en-
semble is first initialized to the stretched state via optical pumping. The atomic
spin can be driven by either the RF magnetic field produced by the RF coil in the y-
direction, or circularly polarized light produced using an EOM in the z-direction.
The RF drive tone is sent from a lock-in amplifier and the fast electronic switch is
used to control the timing of the RF/EOM drive pulse. Due to the Faraday inter-
action, the spin state is mapped onto the polarization state of the light Sy ∝ Fz(t)
and readout by the polarimeter (see Sec. 2.5). The polarimeter considered here
only consists of a single HWP and a polarization beamsplitter. By setting the
HWP waveplate at angle θH, the balanced photodetector (BpdAtom) measures a
voltage proportional to Sx cos(4θH) + Sy sin(4θH). To compute the Faraday angle
for a given spin signal, we first need to calibrate the voltage for a given photon
flux. Therefore, for θH = 0, the local oscillator S̄x is calibrated by measuring the
DC voltage VSx ∝ S̄x as a function of laser power using an oscilloscope. To detect
the spin signal encoded in Sy, the homodyne angle is set to θH = π/8, such the
local oscillator is balanced on both output after the beamsplitter, the photodetector
outputs a time-varying AC voltage VSy that encodes the spin signal.

VSy(t) ∝ S(out)
y = S(in)

y + α1Fz(t) (3.13)
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3.5. Spin state detection and readout

Signal processing of the spin signal

The time-varying voltage spin signal of the out-going field S(out)
y is further de-

modulated by a lock-in amplifier12 or spectrum analyzer around Ωs. For a spin
precessing in the lab frame , the measured Faraday signal VSy can be expressed in
terms of slowly varying spin components F̃y, F̃z

13

S(out)
y (t) = S(in)

y (t) + α1S(in)
x
[
F̃y(t) sin(Ωst) + F̃z(t) cos(Ωst)

]
(3.15)

The demodulation corresponds to a measurement in the co-rotating frame of the
spin oscillator which returns the in-phase I and the out-of-phase quadrature com-
ponents of the Faraday signal. The lock-in demodulator returns the root mean

Lock-in
amplifier

Output 1

Output 2

BpdAtom

EOM

Demodulated Spin Signal

Polarimeter

Figure 3.13: Schematic diagram of the experiment setup used to detect spin
precesssion signal

12Both the spectrum analyzers and the lock-in amplifiers show excellent noise performance for
our signal processing purpose, however the lock-in amplifier is used more often as the phase co-
herence between the drive and detection is preserved, which provides the phase information of the
spin oscillator. Whereas, the spectrum analyzer is used to measure a signal that requires a wider
bandwidth.

13From the oscillator dynamics, Ḟz = ΩsFy, Ḟy = −ΩsFz, the spin components in the rotating
frame transforms to lab frame as follows

F̃y(t) = +Fy(t) cos(Ωst) + Fz(t) sin(Ωst)

F̃z(t) = −Fy(t) sin(Ωst) + Fz(t) cos(Ωst)
(3.14)
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square (rms) spin signal with slowly varying spin component F̃y(t), F̃z(t),

I(t) =
√

2
〈

VSy(t) cos (Ωst)
〉

t
=

α1√
2

F̃z + WI

Q(t) =
√

2
〈

VSy(t) sin (Ωst)
〉

t
=

α1√
2

F̃y + WQ

(3.16)

where WI , WQ include the input vacuum noise S(in)
y .

Moreover, one can also compute the spin excitation number n̄s from the Faraday
spin signal. Care was taken to ensure the proper normalization of the spin signal,
which is required for a correct estimation of spin excitation. First, the rms ampli-
tude of the demodulated signal (denoted by V50Ω

Sy,rms) is divided by
√

2 to obtain
the peak oscillation amplitude (see Eq. 3.16) and further by a factor 2 due to input
impedance mismatch between the 50 Ω input impedance of the lock-in amplifier
and the high impedance ∼ MΩ of the oscilloscope which was used for the cali-
bration of the S̄x. Including all the factors, we get the slowly varying amplitude
of the Faraday signal θ̄F =

√
2V50Ω

Sy,rms/VSx . By normalizing the spin signal by the
square-root of the total spin length we obtain slowly varying amplitude of the
Xs-quadrature of the spin

X̃s =
F̄z√
〈Fx〉

=
2θ̄F

α1
√

2N
=

2V50Ω
Sy,rms

α1VSx

√
N

. (3.17)

where V50Ω
Sy,rms(t) is the demodulated signal the correction factor is taken into ac-

count. To calculate the number of spin excitations, we can apply the equipartition
theorem

n̄s +
1
2
=
〈Xs(t)2 + Ps(t)2〉

2
= X̄2

s =
2θ̄2

F
α2

1N
. (3.18)

where Xs(t) and Ps(t) are the fast rotating quadratures of the spin oscillator.

3.5.2 Spin oscillator Hamiltonian

Having established the basis for the preparation and the detection of a spin signal,
we provide here an in-depth description of the spin precessing around a biased
field and the inclusion of a drive term for spin spectroscopy. The calculations
present here follows closely to discussion in [59, 75]. As discussed in Sec. 2.1,
each 87Rb ground state spin behaves like a tiny bar magnet where its magnetic
moment consists of an electronic part µj and a nuclear part µi. For sufficiently
weak bias field, the Zeeman interaction can be treated as a perturbation term to
the hyperfine interaction i.e. f remains a good quantum number [88]. Therefore,
the magnetic field B couples to the hyperfine spin in the basis | f , m f 〉 with mag-
netic moment −µBg f f, where g f is the hyperfine Landé g-factor and µB is Bohr
magneton. Consider a bias field along x, the spin oscillator Hamiltonian reads

Hs,0 = h̄Ωs fx + h̄δΩs f 2
x (3.19)
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3.5. Spin state detection and readout

where we introduce the Larmor frequency Ωs = γ f B0 with the gyromagnetic
ratio γ f = µBg f /h̄ ≈ ±0.7 MHz ( f = 2, 1). The second term is the quadratic
Zeeman energy shift which can be derived by Taylor expanding the Breit-Rabi
formula [75, 88]:

δΩs = −
Ω2

s
∆hfs

(3.20)

where ∆hfs is the splitting of the hyperfine levels.

The transition frequency between adjacent Zeeman sublevels | f , m〉 and | f , m + 1〉
are

Ωm,m+1 = Ωs + δΩs(2m + 1) (3.21)

For Larmor frequency Ωs = 2 MHz defined by a biased magnetic field at 2.8 G,
the resulting quadratic Zeeman splitting leads to Larmor peaks equally spaced
by Ωm,m+1 −Ωm−1,m = 2δΩs = 1.1 kHz, and thus can be easily resolved for our
narrow spin linewidth ∼ 100 Hz.

We may now include the coherent drive to excite the spin, which is crucial for
performing the spectroscopy of the spin. As mentioned in Sec. 2.3, an external AC
RF-magnetic field or a fictitious magnetic field generated from a strong circularly
polarized light Bfict ∝ |Sz| can be used to manipulate the spin.

In addition to the oscillator Hamiltonian, we add the drive Hs,drive term that de-
scribes the spin coupled to the AC drive field in the transverse direction. In this
example, we consider a RF-magnetic field oscillating at drive frequency Ω1 ≈ Ωs
in the y-direction.

Hs = Hs,0 + Hs,drive = h̄Ωs fx + h̄δΩs f 2
x + h̄VRF cos (Ω1t) fy (3.22)

where VRF/2 is the Rabi frequency.

Substituting the Hamiltonian Eq. 3.22 into the quantum Liouville equation, in the
rotating frame of the drive Ω1, and we assume we work with the quantization axis
along z, the evolution for spin coherences and population density matrix elements
ρm,m′ = 〈m|ρ|m′〉 are given by [72, 89]:

ρ̇m,m+1 = [i (Ω1 −Ωm,m+1)− γ2] ρm,m+1 −
iVRF

2
C( f , m) (ρm+1,m+1 − ρm,m)

ρ̇m,m = −γ1 (ρm,m − ρ̄m,m)−
iVRF

2
C( f , m) (ρm,m+1 − ρm+1,m)

(3.23)

where C( f , m) =
√

f ( f + 1)−m(m + 1) is the ladder coefficient and ρ̄m,m is the
steady state spin population.

3.5.3 Magnetic resonance spectroscopy

Using the Eq. 3.23 above, we may perform the spin spectroscopy by considering
the coherent drive in two regimes, i.e. continuous and pulsed regime.
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Continuous spectroscopy

For continuous spectroscopy, a continuous RF drive VRF � γ1, γ2 is applied to the
spin such that the state is only weak perturbed around the large biased field along
x. Since γ2 � γ1, the spin population ρm+1,m+1 − ρm,m remains approximately
constant, we obtain the steady state solution

ρm,m+1 ≈
−iVRF

2
C( f , m) (ρm+1,m+1 − ρm,m)

γ2 − i (Ω1 −Ωm,m+1)
(3.24)

As one would expect from a forced damped oscillator, the spin oscillates at the
same frequency as the drive frequency Ω1.

〈 fz(t)〉 =
f−1

∑
m=− f

C( f , m)

2i

[
ρm,m+1e−iΩ1t − ρ∗m,m+1eiΩ1t

]
(3.25)

From the demodulated signal, we obtain a complex fitting function for fitting the
spectrum:

A (Ω1) = A0

f−1

∑
m=− f

C( f , m)2

γ2 − i (Ω1 −Ωm,m+1)
(ρm+1,m+1 − ρm,m) (3.26)

where A0 is a scaling factor. Overall, we obtain a complex fitting function that
allows one to fit the amplitude |A(Ω1)| and phase Arg[A(Ω1)] of the spin response
as a function of the drive frequency Ω1.

Pulsed spectroscopy

For a short, broadband pulse with bandwidth ∆BW = τ−1 � γ1, γ2, δΩs, i.e.
larger than all other rates relevant for the spin dynamics, all transitions can be
addressed simultaneously with equal Rabi frequency VRF/2. Assuming there are
no initial spin coherences ρm,m′ = 0 for m 6= m

′
, the density matrix after the pulse

at t = τ takes the form,

ρm,m+1(τ) ≈
−iVRFτ

2
C( f , m) [ρm+1,m+1 − ρm,m] (3.27)

The spin evolves as 〈 fz(τ + t)〉 ∝ ∑
f−1
m=− f ρm,m+1(τ)e(−iΩm,m+1−γ2)t + h.c. after the

short pulse, the Fourier transform of the spin ring down signal yields

fz(ω) ∝
f−1

∑
m=− f

C( f , m)2

γ2 − i (ω−Ωm,m+1)
(ρm+1,m+1 − ρm,m) (3.28)

We obtain a fitting function to extract the useful parameters e.g. γ2 and spin
populations ρm+1,m+1− ρm,m from the spectrum obtained from pulse spectroscopy.
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3.5. Spin state detection and readout

3.5.4 Magneto-optical resonance spectroscopy

We may perform both the continuous and pulsed spectroscopy to verify that both
models discussed above return consistent characterization results for a spin en-
semble with a given orientation p.

Continuous spectroscopy

For the continuous spectroscopy, a weak continuous RF-magnetic field is applied
to perturb the spin weakly around the bias field during the time which the cou-
pling beam is switched on (see Fig. 3.14). For each drive frequency Ω1, the de-

Spin preparation

RF or EOM 
continuous drive

Probe

Figure 3.14: Schematic diagram of the continuous spectroscopy sequence

modulated spin signal Z(t) = I(t) + iQ(t) is integrated over a chosen time inter-
val to return the spin response. We can plot the amplitude |A(Ω1)| and the phase
Arg[A(Ω1)] of the spin response, respectively as shown in Fig. 3.15. If the chosen
integration time is increased, there is a slight increase depumping of atoms from
| f = 2, m f = −2〉 Zeeman sublevel due to spontaneous scattering, thus the cou-
pling beam power was kept low to minimize light induced decay. The data shows
four Larmor peaks equally spaced by the quadratic Zeeman splitting of ≈ 1.1 kHz
which matches the theory value very well (see Sec. 3.5.2). We fit the spectra using
the model Eq. 3.26. To fit the Zeeman population, we set the m f = 2 level to zero.
This constraint allows one to assign the extracted unnormalized population ρ

′
m,m

in other Zeeman sublevels as population probability, i.e. ρm,m = ρ
′
m,m/ ∑

f−1
m=− f ρ

′
m,m,

the probability sums to unity. Substituting the parameters extracted from the fit
of the spectrum [see Fig. 3.15(a)] yields the Arg[A(Ω1)] phase response as shown
in Fig. 3.15(b).

Pulsed spectroscopy

For the pulsed spectroscopy, a short RF coherent drive pulse is sent to excite the
spin, then we switch on the probe beam to measure the ring down of the spin
precession as shown in Fig. 3.16. The time delay δτRF between the RF pulse and
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Figure 3.15: Example of a continuous spectroscopy measurement where the
atomic orientation was close to unity p = 0.9. (a) Amplitude |A(Ω1)| (b) Phase
Arg(Ω1) of the spin response. The blue points are the measured experimental
data and the red solid line shows the fit to the data.

Spin preparation

 RF or EOM 
 pulse drive

Probe

Figure 3.16: Schematic diagram of the pulse spectroscopy sequence, δτRF be-
tween the RF and the probe beam prevents spurious RF noise to be measured
directly by the balanced detector.

probe beam14 was set to ∼ 10 µs to avoid spurious RF noise directly measured
by the balanced detector. To process the spin signal, Fast Fourier transform (FFT)
is performed over a chosen time interval of the spin ring down signal. The in-
tegration time is chosen such that there is sufficient frequency resolution for the
spectrum but not so long that the spin depumps from f = 2 significantly. We plot
the power spectral density of the spin response as a function of frequency (see
Fig. 3.17). To fit the power spectral density of the spin, we use the model Eq. 3.28
to fit the Zeeman population to extract useful spin parameters. Again, the popula-
tion in m f was forced to zero as in the continuous case. We remark that the Larmor
peaks look slightly non-Lorentzian shape on the wings of the spin spectrum. This
is likely to be caused by the finite bandwidth of the pulse. It was observed that
neither the chosen RF amplitude of the pulse nor the integration time changes the
fit population significantly.

14It was observed that spurious RF noise entered the balanced detector there was no light or
atom, therefore there is a small time delay before the Faraday measurement.
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Figure 3.17: Power spectral density (PSD) of the spin, the pulse spectroscopy
measurement was performed where the atomic orientation was close to unity
p = 0.9. The small peak on the rightmost of the spectrum is contributed by
the f = 1 atoms. The blue points are the measured experimental data and the
red solid line shows the fit to the data.

Comparison between continuous and pulsed spectroscopy

For a spin ensemble with a given orientation p, the two methods should return
consistent optical pumping result. As shown in Fig. 3.18, the relative occupancy of
the magnetic sublevels for both approaches are plotted as a function of pumping
time. For the two methods to be comparable, for both cases, we apply a small RF
pulse and measure with the low probe power PL ∼ 100 µW to avoid depumping at
a atom light detuning of ∆ = −2π× 20 GHz. Also, same integration time interval
10 ms was chosen to ensure both spin experiences same amount of depumping
due to photon scattering. A slight discrepancy was observed for short pumping
duration and for the lower occupied Zeeman sublevels e.g. m f = 1. To study
this further, more average might be required to study the effects at lower pump
duration. However, we mostly work with pump duration from 300 - 500 µs where
the agreement is very good. Despite the two approaches agree very well quanti-
tatively, we also remark that continuous spectroscopy method in general requires
much longer data acquisition time compared to pulsed spectroscopy, as each data
point in the spectrum consists of spin response at a particular spectroscopy fre-
quency Ω1, however, the spectrum is also less distorted and preserved phase infor-
mation. On the other hand, pulsed spectroscopy allows us to probe the Zeeman
population in real time in a single experimental shot. This method is typically
preferred if one wishes to perform a quick spectroscopy measurement. However,
the spectrum tends to be slightly distorted probably due to the imperfection of the
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Figure 3.18: Characterization of the spin orientation p as a function of pump
duration using (a) continuous spectroscopy (b) pulsed spectroscopy. For both
(a) and (b), the data points in different colors correspond to the relative occu-
pation in different Zeeman sublevel m f .

3.6 Characterization of the spin-light interface

So far we introduce the details of our spin-light interface involving the prepa-
ration, manipulation and detection of a cold, well polarized spin ensemble. We
are now ready to exploit these established tools to characterize the dispersive
spin-light interaction and compare our experimental to our theoretical models
discussed in Chapter 2. First, we justify that we can minimize the effect of ten-
sor light shift on our spin which allows us to consider only the Faraday rotation.
Then, we present the experiment methods used to characterize the spin oscillator.

3.6.1 Tensor light shift

As discussed in Sec. 2.3, the tensor light shift caused by the linearly polarized
light induces quadratic Zeeman splittings of the magnetic sublevels by δΩ2 ∝
(3 cos(2θ) + 1), where θ is the laser polarization angle defined with respect to
the bias magnetic field along the x-direction. Here we show a measurement to
demonstrate the dependence of tensor light shift [see Fig. 3.19(a)] as a function of
the polarization angle θ. In this measurement, we first excite the spins towards
the equatorial plane and perform pulse spectroscopy measurement using a strong
RF pulse. In Fig. 3.19(a) measurement, we plot the PSD of the spin spectra, the
spectra are offset for clarity. All spectra are measured at a detuning ∆ = −2π× 20
GHz at a laser power of 400 µW. For θ = 0◦, we observe a quadratic splitting
of approximately 2 kHz. For θ = 51◦, we observe the splitting decreases and
only the quadratic splitting from the magnetic field remains. For θ = 90◦, the
quadratic splittings due to tensor light shift acts against the quadratic shift due
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Figure 3.19: (a) PSD of the spin response. The different traces show measure-
ments with different polarization angles. The solid lines correspond to the fits
to the measured data using the model discussed in Sec. 3.5.4 (b) Plot of fre-
quency shift δΩ2 as a function of the polarization angle. The blue data points
correspond to the extracted resonant frequency from a Lorentzian fit. The red
dashed line is a sinusoidal fit to the data.

to the magnetic field, the lines merge into one Lorentzian peak. To verify the
quadratic splitting dependence as a function of polarization angle, a similar mea-
surement was taken as a function of the polarization angle at a fixed laser power
of 100 µW at a detuning of ∆ = −2π × 10 GHz as shown in Fig. 3.19(b). We
weakly excite the spin to perform pulse spectroscopy, where only the transition
f = 2, m f = −2 → f = 2, m f = −1 transition is excited. The frequency shift is
extracted by fitting a Lorentzian to the spectra. The extracted resonant frequency
is plotted for different polarization angles with respect to the mean which was
centered to zero. The red dashed line is a fit to the data that confirms the sinu-
soidal shape of the tensor light shift dependence. For the rest of the experiment,
we are interested in operating with ≈ 55◦ where tensor light shift is cancelled to
minimize inhomogeneous light broadening.

3.6.2 Transverse and longitudinal decoherence rate of spin

In Sec. 2.3, we discuss several mechanisms that lead to decoherence of the spin.
Here, we consider the most relevant regime i.e. where the spin decoherence is
dominated by spontaneous scattering. For γ1 measurement, we perform the DC
Faraday rotation measurement by scanning the probe power Pprobe at a detuning
of ∆ = −2π × 40 GHz. Four example Faraday DC measurement traces were plot-
ted in Fig. 3.20(a) below. The time traces are fitted with an exponential decay
function. γ1 = T−1

1 is plotted as a function of probe power. γ1 characterizes the
rate at which the longitudinal spin component decays, here, this decay is mostly
dominated by spontaneous scattering which causes the spin to decay into f = 1
or decay into higher m f with same hyperfine number f = 2. For T2 measurement,
the atomic ensemble is initially polarized to the stretched state and excited to a
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Figure 3.20: (a) DC Faraday signal plotted as a function of time, different
traces show measurements with different probe powers. The red dashed lines
show fits with an exponential decay. (b) Plot of longitudinal decoherence γ1
as a function of probe power. The blue data points correspond to the extracted
γ1 determined from the exponential fit to the spin signal. The red dashed line
is a linear fit to the data.

small amplitude θ ≈ π/30 where the quadratic Zeeman effect due to the magnetic
field is minimal, then we measure the ring down of the spin signal using Faraday
rotation. To extract the transverse decoherence rate γ2 [see Fig. 3.21 (a)], we can
perform a Fourier transform of the spin ring down signal and fit the spectrum
with a Lorentzian function where the extracted linewidth yields the transverse de-
coherence rate γ2. The transverse decay γ2 scales linearly as a function of probe
power as shown in Fig. 3.21(b) on the right. The fit to a Lorentzian is not perfect,
this could be due to the fact that the cloud is very long and part of the cloud
dephases faster than the rest of the cloud. One can see that the linewidth extrap-
olates to the γ2,dark at low optical power. We observed that the spin linewidth is
larger than that expected from theory (see Eq. 2.22).
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Figure 3.21: (a) PSD of the Faraday signal, measurements with different probe
powers are plotted in different colors. Each solid line is a Lorentzian fit to the
data. (b) Plot of transverse decoherence γ2 as a function of probe power. The
γ2 is extracted from the fit obtained in (a) and the red line is a linear fit to the
data points, where the linewidth extrapolates to γ2,dark at low optical power.
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3.6.3 Calibration of the vector polarizability

Vector polarizability α1 characterizes the strength of the atom light coupling as
discussed in Sec. 2.3. To calibrate the vector polarizability α1, we aim to detect
the macroscopic spin signal due to a f = 2 spin polarized ensemble via Faraday
rotation. Here, we apply the Faraday angle obtained from the non-uniform cou-
pling theory [see Eq. 2.45 and Eq. 2.46] to account for the overlap of the probe and
ensemble mode:

θF =
〈S(out)

y 〉
2S̄x

=
1
2

α̃1F̃z = α1〈ηs〉N

We see that the vector polarizability α1 can be extracted from the macroscopic
Faraday angle θF if N and S̄x are well calibrated where 〈ηs〉 can be computed with
the given probe-atom geometry parameters. To detect a macroscopic spin signal
such that 〈Fz〉 ≈ 2N, atoms are initially polarized along a weak guiding field
Bx = 1 G in the x-direction, and the magnetic field is rotated slowly such that both
the spins and magnetic field point along the z-direction within 20 ms. We then
send a probe pulse of 10 ms duration to imprint the macroscopic Faraday rotation
signal θF onto the outgoing light field S(out)

y . We show an example calibration
of the vector polarizability with a probe laser detuning of −2π × 40 GHz. To
obtain the Faraday angle, we normalize the outgoing field S(out)

y with the average
photon flux ΦL = 2S̄x determined using a power meter. In Fig. 3.22, the Faraday
angle θF is plotted as a function of atom number in the dipole trap N determined
independently using absorption imaging15. We can apply a linear fit (blue dashed
line) to the Faraday angle as shown in Fig. 3.22. The gradient θF/N = α1,meas〈ηs〉 of
the fit allows one to compute the calibrated vector polarizability if 〈ηs〉 is known.
Substituting the parameters of our probe-atom geometry, w0 = 50 µm and wa =
36 µm, we obtain 〈ηs〉 = 0.66, therefore the α1,meas = θF/(〈ηs〉N) = 1.05× 10−9

which gives a good agreement with the theoretical value α1 = 9.35× 10−10 for the
given detuning and probe beam waist.

3.6.4 Spin response to classical phase modulation tone

In previous sections, various methods used to characterize the spin measurement
rate Γs are based on magnetic field control. Here, we discuss a technique that
allows one to extract the spin measurement rate Γs and spin linewidth γs by
recording the spin response to a weak, circularly polarized light drive. As one
expects from Faraday interaction, an alternative way to drive the spin is to gener-
ate a circular polarization modulation of the light using an electro-optical phase
modulator (EOM)16. The characterization setup is depicted in Fig. 3.23.

15Due to our high optical pumping efficiency ∼ 0.9, we can assume all the atoms occupy | f =
2, m f = −2〉.

16This technique is analogical to optical response of the membrane to an amplitude modulation
of the probe beam present in Chapter 4
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Figure 3.22: Faraday angle θF is plotted as a function of atom number N
measured using absorption imaging. The blue dashed line corresponds to a
linear fit to the data.
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Figure 3.23: Schematic diagram of EOM spectroscopy measurement setup

The EOM consists of a birefrigent crystal where the facets is cut such that an
incident horizontal polarization is 45◦ to the axis of the crystal. By applying a
sinusoidal RF field oscillating at Ω1 to the crystal, the refractive index is altered
to produce polarization modulation in Sz around Larmor frequency Ωs. At the
input of the atomic ensemble, the polarization state of the light after the EOM is
described by the input stokes vector S(in):

S(in) =

 S(in)
x

S(in)
y

S(in)
z

 =

 S̄x
0

βmodS̄x sin(Ω1t + φRF)

 (3.29)
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where βmod is the modulation depth and φRF is the phase of the RF modulation
drive. Similar to the Faraday angle experiment, to account for possible mode mis-
match, we use the input output relation from the non-uniform coupling frame-
work (see Eq. 2.44). Therefore, the output Stokes vector S(out) at the exit of the
atomic ensemble reads

S(out) =

 S(out)
x (t)

S(out)
y (t)

S(out)
z (t)

 =

 S(in)
x (t)

S(in)
y (t) + α̃1S(in)

x F̃z(t)
S(in)

z (t)

 (3.30)

By performing Fourier transform on both sides of Eq. 3.30 for S(out)
y (t) and S(out)

z (t),
we obtain:

S(out)
y (ω) = S(in)

y (ω) + α̃1S̄x F̃z(ω)

S(out)
z (ω) = S(in)

z (ω)
(3.31)

where F̃z(ω) is obtained from Eq. 2.27:

F̃z(ω) = χs(ω)α̃1
¯̃FxS(in)

z (ω) (3.32)

where the spin susceptibility reads χs = Ωs
Ω2

s−ω2−iγsω
. Since we are interested in

measuring the interference between the spin response encoded in S(out)
y (t) ∝ F̃z

and the circular polarized light drive, we setup the polarimeter to detect arbitrary
superposition of the spin response and optical drive tone. This is achieved by
setting up the first QWP at 45◦ relative to the laser polarization and the HWP
angle θH corresponds to a rotation of the stokes vector around Sx axis in the Sy-Sz

plane. The output stokes vector before the detector S(det) after the QWP-HWP
waveplate combination transforms as

S(det) =

 cos(4θH)S
(out)
z − sin(4θH)S

(out)
y

cos(4θH)S
(out)
y + sin(4θH)S

(out)
z

−S(out)
x

 (3.33)

The balanced detector detects the S(det)
x that encodes the spin signal. The homo-

dyne spin signal in the frequency domain can be fitted using the transfer function:

h̃s(ω) = cos(4θH) + 4Γ̃sχs(ω) sin(4θH) (3.34)

which describes the interference between the drive and the spin response, and Γ̃s
is the effective spin measurement rate (see Sec. 2.7). To perform the experiment,
we first prepare the spin coherent state, then a probe laser with Sz modulation is
applied to drive the spin to a small amplitude spin precession. To obtain a good
contrast for the interference, the HWP angle 4θH = 142◦ was chosen such that
Sy, Sz share the same order of magnitude. The measurement was performed at a
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3. Experiment implementation of spin light interface

laser atom detuning of −2π×40 GHz and a beam waist of 50 µm. An independent
absorption imaging is performed to determine the number of atoms N loaded in
the dipole trap. In Fig. 3.24(a), the spin amplitude response was plotted as a
function of the drive frequency. Similar to the continuous RF spectroscopy, each
data point corresponds to an integral of the spin demodulated signal at a specific
drive frequency over a chosen time interval. Here, each data trace corresponds
to a measurement obtained with a different laser power, the individual spectra
are displayed with offset for clarity. For all laser powers, the fits using the model
|h̃s(ω)| from Eq. 3.34 shows good agreement with the data points. From the fits,
the extracted measurement rate and spin damping rate were plotted as a function
of the probe laser power as shown in Fig. 3.24(b). Substituting our experiment
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Figure 3.24: Optical response measurement. (a) Amplitude of the spin re-
sponse plotted as a function of drive frequency. Different traces show mea-
surements with different probe powers Pprobe in µW. The traces are displayed
with a vertical offset for clarity. The solid lines correspond to a fit using the
transfer function (see Eq. 3.34). (b) The rates obtained from the fits to the
data are plotted as a function of probe power. The dashed lines correspond to
the predicted rates obtained from the non-uniform spin-light coupling model
with N = 107.

parameters, N = 1010, ∆ = −2π× 40 GHz, and our probe-atom geometry param-
eters, i.e. w0 = 50 µm and wa = 36 µm, 〈η2

s 〉 = 0.49, we obtain the predicted spin
measurement rate and damping rate expected from the non-uniform spin-light
coupling model (see Sec. 2.7). The spin measurement rate obtained from the opti-
cal response measurement [see [Fig. 3.24(b)] is consistent with the measured vector
polarizability value obtained from Faraday measurement in Sec. 3.6.3. The spin
damping rate was initially dominated by magnetic inhomogeneous broadening
and scales linearly with probe power due to spontaneous scattering. However, the
spin damping rates were observed to be approximately four times above theory
predicted values, the reason for the discrepancy is still under investigation.
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3.7. Ponderomotive squeezing of light

3.7 Ponderomotive squeezing of light

As discussed in Sec. 2.10, with sufficiently high laser power, the quantum fluc-
tuation S(in)

z in the probe laser acts as force which drives the spin and build
up strong correlation between the spin oscillator and light. The ponderomotive
squeezing of light is a clear signature that one can operate the spin light interface
in a backaction dominated regime. To observe the ponderomotive squeezing, the
measurement sequence is similar to that of EOM pulse spectroscopy, except that
the classical modulation tone is disabled and the spin is now driven by the in-
put quantum fluctuation S(in)

z of the probe laser. Using the QWP-HWP waveplate
combination, we may choose a detector basis such that we measure an arbitrary
superposition of the Sy and Sz of light. After preparing a spin coherent state, a
probe pulse with a 20 ms time duration is sent to the atoms, the spin signal is
recorded for the entire duration of the probe pulse using lock-in demodulation. In

Figure 3.25: Phase space histogram of ponderomotive squeezed light, the
black data points correspond to the optical quadratures measurement over
the first 10 ms containing the spin signal, whereas the orange points corre-
spond to the data points accumulated in the last 5 ms after the spin decays
completely. The dashed black (orange) lines indicates the noise covariance el-
lipse with two standard deviation (s.d.) of the squeezed (coherent) state. From
this measurement, one can clearly see the strong correlation built up between
the phase quadrature and amplitude quadrature which contains the driving
force and spin signal, respectively. By comparing the minor and major radius
to the radius of the coherent state, the squeezing factor and anti-squeezing rAS
and rS can be obtained (see the text below).
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3. Experiment implementation of spin light interface

this measurement, we chose a 4θH = 196◦, a laser-atom detuning of ∆ = −2π× 10
GHz and the beam waist is w0 = 35 µm. In the measurement below, 13 million
atoms are loaded into the dipole trap and laser power of 500 µW were used. The
spin measurement can both be visualized both in (X̃L − 〈X̃L〉, P̃L − 〈P̃L〉) phase
space and frequency domain, respectively. We plotted the histogram of the slowly
varying light quadratures (X̃L− 〈X̃L〉, P̃L− 〈P̃L〉) i.e. the in phase and out of phase
quadrature of the demodulated signal, respectively for different interaction time
(see Fig. 3.25). In the first 10 ms of interaction, the uncorrelated input light (coher-
ent state) is sheared to a thin uncertainty ellipse due to the strong correlation built
up between atom and light. In the last 5 ms, the spin damped out due to sponta-
neous scattering, therefore the light returns to a coherent state. By comparing the
major a and minor radius b of an ellipse (squeezed state) to the radius c of the cir-
cle (coherent state), one can compute the anti-squeezing and the squeezing of the
quantum noise. For anti-squeezing (squeezing), we obtain rAS = ln(a/c) = 0.83
and rS = −ln(b/c) = 0.42. By substituting the values of the squeezing factors, one
can compute the cooperativity for the spin as discussed in Sec. 2.10. We obtain the
spin cooperativity Cs = 2sinh rAS/S = 1.85 or 0.86 using the anti-squeezing rAS
and squeezing factor rs, respectively. In the frequency domain, the power spectral

Figure 3.26: PSD of the polarization squeezed light in the frequency domain.
The black data point corresponds to the measured experiment data. The red
dashed line is a fit using the quantum noise model discussed in Sec. 2.10.

density of the spin detector signal is plotted in Fig. 3.26. To compute the squeez-
ing, the amount of squeezing below shot noise is compared to the mean shot noise
level, we obtain -1.3 dB below shot noise level. From the level of squeezing, the
squeezing factor was found to be rS = 0.16 which gives a spin cooperativity of
Cs = 0.32. The maximum achievable squeezing is smaller than anti-squeezing
should not come as a surprise, this can be accounted by noise processes that are
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3.7. Ponderomotive squeezing of light

not correlated with noise in S(in)
z e.g. technical noise of the laser, noise induced

via tensor coupling, and so on. Overall, we observe the strong correlation between
the spin and light in both the phase space and frequency domain. Using spin to
squeeze light is an example of observation of quantum backaction. The genera-
tion of squeezed light using spin can be used to perform measurement beyond the
standard quantum limit.
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Chapter 4

Membrane light interface

This chapter covers the basic aspects of the membrane light interface, the experi-
mental implementations and the characterization of a nanomechanical membrane
inside an optical cavity used in our hybrid experiment. In this work, we operate
our membrane light interface in the bad cavity regime, where information from
the input field can quickly exit the cavity such that the optomechanical coupling
strength is enhanced with negligible propagation delay. We describe this effec-
tive coupling of the mechanical oscillator to the cavity input/output field with
the input-output formalism. Then, the experimental details of the optomechan-
ics setup are introduced. In the end, we revisit the homodyne detection technique
and characterize important optomechanical parameters, including optomechanical
coupling strength, damping rate and the steady state thermal phonon occupation
of the mechanical oscillator system.

4.1 Cavity optomechanics

Cavity optomechanics involves the interplay between mechanical modes and cav-
ity modes via radiation pressure coupling. For simplicity, we restrict our treatment
to a single mechanical mode interacting with a single cavity mode. In this section,
we start by introducing the basic properties of the individual membrane and cav-
ity system. Then, the simple case of an empty cavity driven by a pump field is
considered. Finally, we insert the membrane which leads to the optomechanical
Hamiltonian and input-output relations that describe the membrane light interac-
tion in the hybrid experiment. The membrane part of the setup was mainly built
and characterized by Thomas Karg as described in [59]. It is described here for
completeness.
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4. Membrane light interface

4.1.1 Mechanical oscillator

We introduce our first ingredient, i.e. a single vibrational mode, which is well
described by the harmonic oscillator Hamiltonian Hm:

Hm =
p2

m
2meff

+
meffΩ2

mx2
m

2
(4.1)

where meff is the effective mass of a specific vibrational mode and Ωm corresponds
to its angular frequency. A more convenient notation used in the field of cavity
optomechanics [80] is the dimensionless oscillator quadratures (Xm, Pm), where
the mechanical position xm and momentum pm of the mode are normalized by
their ground state fluctuations (rms spread) in position, xZPF =

√
h̄/2meffΩm and

momentum pZPF =
√

h̄meffΩm/2, respectively. In addition, we define the oscillator
quadrature operators in terms of the annihilation (bm) and creation (b†

m) operators
of a membrane excitation,

Xm =
xm√
2xZPF

=
bm + b†

m√
2

, Pm =
pm√
2pZPF

=
bm − b†

m√
2i

(4.2)

which obeys the commutation relation [Xm, Pm] = i. This allows one to conve-
niently express the membrane Hamiltonian Hm in terms of oscillator quadrature
(Xm, Pm) and the phonon occupation operator nm = b†

mbm, respectively:

Hm =
h̄Ωm

2
(
X2

m + P2
m
)
= h̄Ωm

(
b†

mbm +
1
2

)
≈ h̄Ωmb†

mbm (4.3)

The last approximation sign neglects the contribution from the zero-point fluctu-
ation, since the membrane is coupled to a thermal bath in a room temperature
environment n̄m ≈ 106 − 107. Furthermore, in general, the membrane oscillator is
subjected to dissipation, described by the damping rate γm. For details of dissipa-
tion mechanisms, we refer readers to the review in [9]. It is helpful to introduce a
figure of merit that characterizes the quality of the mechanical oscillator:

Qm = Ωm/γm (4.4)

which roughly corresponds to the number of mechanical oscillations before the
membrane displacement reaches (1/e) of its original amplitude upon excitation.
For a simple mechanical oscillator coupled to a thermal bath, the quality factor is
inversely proportional to the thermal decoherence rate n̄m,bathγm, i.e. the rate at
which phonons enter from the environment and excite the mechanical oscillator
out of ground state [9],

˙̄nm(t = 0) = n̄m,bathγm ≈
kBTm,bath

h̄Qm
(4.5)

where Tm,bath is the temperature of the membrane thermal bath and kB is Boltz-
mann constant. Therefore, a low temperature membrane bath and a large mechan-
ical quality factor are beneficial for performing optomechanics experiment.
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4.1. Cavity optomechanics

4.1.2 Optical cavity

Our second ingredient is an optical cavity. The simplest type of cavity consists of
two parallel highly reflective mirrors separated by a distance lc, where the cavity
resonances angular frequencies are given by ωc = 2πc/λ = mπc/lc, where λc is
wavelength of the cavity field and m is the mode number [9] and c is the speed of
light. Since the laser mode is almost perfectly matched to the cavity, we restrict our
consideration to a single cavity mode frequency ωc . The oscillator Hamiltonian
(ignoring zero point energies) that describes a cavity system reads:

Hc ≈ h̄ωcc†c (4.6)

where c(c†) are the annihilation (creation) operators of intracavity photons, which
obey [c, c†] = 1. We may also define the amplitude (Xc) and phase quadrature (Pc)
for the cavity system:

Xc =
c + c†
√

2
, Pc =

c− c†
√

2i
(4.7)

where the cavity quadratures obey the commutation relation [Xc, Pc] = i. In gen-
eral, the cavity is subjected to losses, a photon therefore stays in the cavity only
for a finite lifetime τc, and we can introduce the cavity decay rate κ = τ−1

c .

4.1.3 Optical cavity without membrane driven by a laser

For simplicity, we first consider the optical cavity driven by a laser in the absence of
a membrane to introduce the nomenclature. We use a single sided cavity, and the
cavity is driven by an external drive field through the in-coupling cavity mirror
at the rate κ. A well established input-output theory formulated in the level of
Heisenberg picture is used to treat the coupling of an open quantum system to a
stochastic noise bath. Here, we consider an optical cavity coupled to a coherent
laser drive field including its quantum fluctuations, i.e. aL = ᾱL + a(in)L . The
external coupling between the laser and cavity is described by the Hamiltonian
[90]:

Hext = ih̄
√

κ
∫ +∞

−∞

dω√
2π

[
a†

L(ω)c− c†aL(ω)
]

(4.8)

where |ᾱL|2 = 〈a†
LaL〉 = ΦL = P/h̄ωL is the photon flux of the laser. For con-

venience, we work in a rotating frame at the laser frequency ωL, the resulting
equation of motion are called the quantum Langevin equation, which includes the
stochastic noise into the evolution of the cavity field operator. Thus, the dynamics
of the cavity field reads

ċ(t) =
(

i∆c −
κ

2

)
c(t)−

√
κaL(t) (4.9)

where ∆c = ωL − ωc is the laser-cavity detuning. The steady state solution of
cavity amplitude i.e. ċ(t) = 0 reads

c(t) = − 1
κ/2− i∆c

√
κaL (4.10)
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4. Membrane light interface

Similarly, we define complex coherent amplitude for the cavity field

c̄ =
√

κ

κ/2− i∆c
ᾱL =

√
n̄ceiφc (4.11)

where φc = arctan(2∆c/κ) is the cavity phase shift and the steady state cavity
photon number n̄c reads

n̄c = |ᾱc|2 = 〈c†c〉 = κ|ᾱL|2
(κ/2)2 + ∆2

c
=

n̄0

1 + 4(∆c/κ)2 (4.12)

where n̄0 = 4|αL|2/κ is the number of intracavity photons when the laser is on
resonance (∆c = 0). Eq. 4.12 simply reflects the dependence of cavity photon
number on laser-cavity detuning ∆c. We may also perform a Fourier transform on
both sides of Eq. 4.9, the solution of the cavity mode c(ω) in the frequency domain
reads

c(ω) = − 1
κ/2− i(∆c + ω)

√
κaL(ω) = −χc(ω)

√
κaL(ω) (4.13)

where we introduce the cavity susceptibility:

χc(ω) =
1

κ/2− i(∆c + ω)
(4.14)

4.2 Cavity-membrane dynamics

Having introduced the cavity-laser dynamics, we may now include the membrane
in the optical cavity. We can consider a mechanical membrane vibrating inside
the cavity, for a small mechanical displacement xm, the cavity length lc changes,
we can Taylor expand the cavity resonance frequency ωc around the mechanical
equilibrium position x̄m = 0:

ωc(xm) ≈ ωc(0) + xm∂ωc/∂xm + . . . (4.15)

In addition to the unperturbed cavity oscillator Hamiltonian Hc,0, the cavity Hamil-
tonian now includes an optomechanical interaction term Hom that describes the
coupling between the mechanical displacement xm to cavity photon number oper-
ator nc = c†c,

Hc = Hc,0 + Hom = h̄ωc(0)c†c + h̄Gxmc†c + . . . (4.16)

where we introduce the frequency pulling parameter G = +∂ωc/ ∂xm|xm=0 which
quantifies the amount of cavity frequency shift over a small change in mechani-
cal displacement. Moreover, we may define the vacuum optomechanical coupling
strength g0 = GxZPF which quantifies the frequency shift induced by a single
phonon. In cavity optomechanics, very often we are allowed to apply the lin-
earized approximation which greatly simplifies Hom, we split the cavity field into
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4.2. Cavity-membrane dynamics

a coherent amplitude part and a quantum part, i.e. c → ᾱc + c. By collecting
the terms with cavity field enhancement and ignoring the second order terms, the
optomechanical Hamiltonian simplifies to

Hom = h̄gom(bm + b†
m)(c + c†) (4.17)

where we define the optomechanical coupling strength gom = g0
√

n̄c and dropped
a static term Hom,s = h̄gom

√
n̄c
(
bm + b†

m
)

(see Eq. 4.21 in Sec. 4.2, this static term is
absorbed into n̄c by redefining x̄m). Collecting all the Hamiltonian terms (Eq. 4.16
and Eq. 4.3) for the membrane cavity system, the overall Hamiltonian Hm,c con-
tains the intrinsic oscillator Hamiltonian of the individual systems and the op-
tomechanical interaction term. For convenience, we again write the Hamiltonian
in a frame rotating at the laser frequency ωL:

Hm,c = Hm + Hc,0 + Hom = h̄Ωmb†
mbm − h̄∆cc†c + h̄gom

(
bm + b†

m

)
c†c (4.18)

The overall Hamiltonian Hm,c is often seen as the starting point of cavity optome-
chanics. From this, we may obtain the equation of motions that describe the dy-
namics between membrane and an optical cavity driven by laser. We may now
study the effect of the dropped static part Hom,s and dynamical part Hom below.

Static phenomena

Here, we briefly discuss the effect of the static part Hom,s, as it does not play an
important role for our experiment, but it does deserve a short explanation as it
highlights the intrinsic non-linear relationship between mechanical displacement
and optical cavity field c [9]. Consider that a photon imparts a radiation pressure
force on the membrane, with a momentum exchange of ∆p = 2h̄k due to reflection
inside the cavity. For simplicity, we assume our cavity behaves as a Fabry-Perot
cavity, the radiation pressure force F̄rad reads [9]

〈Frad〉 = 2h̄k
〈
c†c
〉

τc
= h̄

ω

lc

〈
c†c
〉
= h̄G

〈
c†c
〉

(4.19)

where τc = 2lc/c is the round trip time of an optical cavity. To compute the
influence of the photon on the membrane, we can write down the equation of
motion of a driven mechanical oscillator:

ẍm + γm ẋm + Ω2
mxm = F̄rad (4.20)

where F̄rad = h̄G|αc|2 is the average radiation pressure force due to the coherent
amplitude of the cavity field ᾱc. Since the cavity frequency is detuned by the
displacement of the membrane (see Eq. 4.15), we have

n̄c =
n̄0

1 + 4 (∆c + Gx̄m)
2 /κ2

(4.21)
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4. Membrane light interface

We see that the intracavity photon number depends on the membrane displace-
ment in a non-linear way. We assume that the membrane displacement is very
small and that the cavity quickly reaches the steady state, therefore the radi-
ation pressure force is constant. We can redefine the membrane displacement
equilibrium position xm → x̄m + xm and absorb this static displacement term
x̄m = F̄rad/meffΩ2

m into the laser cavity detuning ∆c → ∆c + Gx̄m.

Cavity membrane dynamics

The dynamics of the optomechanical interaction Hamiltonian is captured by:

Hom = h̄gom(bm + b†
m)(c + c†) (4.22)

By applying the rotating wave approximation (RWA), the above Hamiltonian al-
lows one to access different coupling regime depending on the laser-cavity de-
tuning [9], the optomechanical interaction can realize a beam-splitter interaction
i.e. HBS ∝ b†

mc + c†bm for ∆c = −Ωm, two-mode squeezing HTMS ∝ bmc + b†
mc†

for ∆c = +Ωm and quantum non-demolition (QND) type interaction i.e. Hom ∝
(bm + b†

m)(c + c†) for ∆c = 0. Here, in this thesis, we focus on the discussion of
HBS and Hom which is important for cooling the mechanical motion by coupling
to a cold photon bath and performing QND readout of the membrane motion Xm,
respectively. We may now look at the cavity-membrane dynamics generated by
the optomechanical Hamiltonian Hom, the Langevin equations of motion for the
coupled cavity-membrane dynamics read [90]:

ċ(t) =
(

i∆c −
κ

2

)
c(t)−

√
κa(in)L (t)− i

√
2gomXm(t) (4.23)

Ẋm(t) = ΩmPm(t) (4.24)

Ṗm(t) = −ΩmXm(t)− γmPm(t)−
√

2gom

[
c(t) + c†(t)

]
+
√

2γmF(th)
m (t) (4.25)

where we also include the thermal noise F(th)
m (t) of the mechanical oscillator. The

coupled equations can be solved readily in the frequency domain:

−iωc(ω) =
(

i∆c −
κ

2

)
c(ω)−

√
κa(in)L (ω)− i

√
2gomXm(ω) (4.26)

−iωXm(ω) = ΩmPm(ω) (4.27)

−iωPm(ω) = −ΩmXm(ω)−
√

2gom

[
c(ω) + c†(−ω)

]
+
√

2γmF(th)
m (ω) (4.28)

Using the first two equations Eq. 4.26 and Eq. 4.27 above, we can express the
steady state cavity amplitude c and Pm in terms of Xm, respectively:

c(ω) = −χc(ω)
(√

κa(in)L + i
√

2gomXm(ω)
)

(4.29)

Pm(ω) =
ωXm

iΩm
(4.30)
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4.2. Cavity-membrane dynamics

Substituting Eq. 4.29 and Eq. 4.30 into the equation of motion of Pm (see Eq. 4.28),
we obtain the solution of Xm in the frequency domain,

Xm(ω) = χm,eff(ω)
[√

2γmF(th)
m (ω) +

√
2κF(in)

L (ω)
]

(4.31)

where we define the modified membrane susceptibility χm:

χm(ω) =
Ωm

Dm,eff(ω)
(4.32)

where Dm,eff includes a denominator Dm which contains the intrinsic membrane
susceptibility Dm = Ωm/χm,0 and a correction term Cm that modifies the mem-
brane susceptibility [91]:

Dm,eff = Dm + ΩmCm(ω) (4.33)

where the correction term Cm(ω) is defined as

Cm(ω) = −2ig2
om [χc(ω)− χ∗c (−ω)] (4.34)

and we also define the optical vacuum noise of the laser as

F(in)
L (ω) = χc(ω)gom[a(in)L + a†(in)

L (−ω)] (4.35)

The correction term Cm(ω) arises from the optomechanical interaction between
the laser and the mechanical oscillator. For weak coupling gom � κ, the coupling
to the cavity field effectively modifies the mechanical oscillator frequency Ωm and
damping rate γm by δΩom, δγom, respectively:

δΩom = Re [Cm (ω = Ωom)] /2
δγom = − Im [Cm (ω = Ωm)]

(4.36)

This effect is called the dynamical backaction as the presence of the mechanical
oscillator modifies the cavity field which in turns causes a retarded radiation pres-
sure force that acts back on the mechanical oscillator motion. For the non-resolved
sideband limit i.e. κ � Ωm, this amounts to

δΩom ≈ 8g2
om

∆c

κ2 + 4∆2
c

(4.37)

δγom ≈ −64g2
om

∆cκΩm

(κ2 + 4∆2
c)

2 (4.38)

The above equations deserves some explanations. δΩom indicates an optical spring
effect that changes the spring constant of the mechanical oscillator due to the
optomechanical interaction. Overall, both changes are linearly proportional on
input laser power in front of the cavity. In analogy to classical spring where

75



4. Membrane light interface

stiffness k = meffΩ2
m, it means the mechanical oscillator is either stiffened ∆c > 0 or

softened for red detuning ∆c < 0, respectively. On the other hand, the mechanical
damping rate is dependent on laser-cavity detuning ∆c. For a red detuning ∆c < 0,
δγom > 0, the laser induces damping to the mechanical motion. Whereas for blue
detuning ∆c > 0, we get amplification δγom < 0, which creates heating for the
membrane. As we will see later (see Sec. 4.6.1), the laser cavity lock is stabilized to
the red detuning regime for precooling of the mechanical oscillator (see Chapter 6).

4.2.1 Input-output relation, mechanical spectrum

After introducing the effect of dynamical backaction for non-zero detuning (∆c 6=
0), we may now consider the above cavity-membrane dynamical equations (see
Eq. 4.23 and Eq. 4.24) in the non-resolved sideband limit i.e. κ � Ωm and the laser
resonant to the cavity (∆c = 0). From Eq. 4.23, one can show that the steady-state
solution of cavity field reads

c(t) = − 2√
κ

a(in)L − i2
√

2gom

κ
Xm (4.39)

According to input-output relation a(out)
L (t) = a(in)L (t) +

√
κc(t), the output light

quadrature reflected from the cavity reads:

X(out)
L = −X(in)

L (4.40)

P(out)
L = −

[
P(in)

L +
4gom√

κ
Xm

]
= −

[
P(in)

L + 2
√

ΓmXm

]
(4.41)

where we introduced the membrane measurement rate:

Γm =
4g2

om
κ

=

(
4g0

κ

)2

ΦL (4.42)

Similarly, the equation of motion of mechanical oscillator takes the form:

Ẋm = ΩmPm

Ṗm = −ΩmXm − γmPm − 2
√

ΓmX(in)
L +

√
2γmF(th)

m
(4.43)

The above input output relation for light field and the equation of motion for
membrane are therefore described by the effective optomechanical Hamiltonian:

Hm,eff = h̄2
√

ΓmXmXL (4.44)

Likewise, we can write down the solution in the frequency domain by performing
Fourier transform on both sides for Eq. 4.43 in the non-resolved sideband limit:

Xm(ω) = χm(ω)
[√

2γmF(th)
m (ω)− 2

√
ΓmX(in)

L (ω)
]

(4.45)
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4.3. Experimental setup

Using the Wiener-Khinchin theorem and equipartition theorem [9,59] i.e.
〈

X2
m
〉
=〈

P2
m
〉

, the variance of membrane position quadrature can be easily obtained,

1
2
〈

X2
m + P2

m
〉
=

1
2
+ n̄th +

Γm

γm
(4.46)

The variance is proportional to the membrane temperature, which consists of zero
point energy (1/2), thermal phonons from the room temperature environment
and phonons caused by measurement backaction. Similarly, the variance can be
computed in the time domain (see chapter 5) to obtain the phonon occupation.

4.3 Experimental setup

Here, we discuss the design of our mechanical oscillator and provide a brief de-
scription of our optomechanics setup used in the hybrid atom-membrane experi-
ment. For detailed design of optical cavity and membrane, we refer readers to [59].

4.4 Silicon-nitride (SiN) nanomechanical membrane

We present a brief overview of the SiN membranes that were designed and char-
acterized by our previous work [59,85,86]. The choice of our mechanical oscillator
is silicon nitride (SiN) membranes [see Fig. 4.1(a)]. Thanks to their high tensile
stress and low thickness (≈ 100 nm), bending or clamping losses are minimized.
Moreover, the SiN film is surrounded by a phononic bandgap [92, 93] structure
made of silicon which effectively shields noise from propagating into our me-
chanical device [see Fig. 4.1(b)]. These factors allow our mechanical oscillators
routinely achieve a high quality Qm > 106 even in a room temperature environ-
ment. The choice of a thinkness of 100 nm which enables high reflectivity rm ≈ 0.6
and low absorption ≈ 10−6 at 780 nm makes these devices an excellent choice for
optomechanics experiments. The vibrating element is the a square SiN film [see
Fig. 4.1(a)] suspended from a Si substrate. In general, an out of plane displace-
ment of the square SiN film excites a superposition of out-of-plane drum normal
modes uj,k(x, y) [see Fig. 4.1(b)] defined by the boundary condition of the Silicon
thin film:

ujk(x, y) = sin(jπx/a) sin(kπy/a) (4.47)

where x, y ∈ [0, a] are in-plane coordinates and (j, k) are mode indices of the
normal modes. The mechanical displacement is given by the sum over all the
normal drum modes:

u(x, y) = ∑
jk

ujk(x, y)zjk (4.48)

where zjk is defined as the out of plane displacement parallel to the optical axis.
Each drum mode can be represented by a harmonic oscillator with displacement
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4. Membrane light interface

Figure 4.1: (a) Photograph of a square silicon nitride (SiN) membrane thin
film (yellow square) suspended from a Silicon (Si) Substrate. The size of the
silicon chip is 5× 5 mm2 and each side of the membrane is 270 µm. (b) A close
up shot of the square membrane is shown as an inset, indicating the square
drum modes supported by the mechanical oscillator. [Figure taken from [14]]

zjk and momentum pjk and their respective annihilation bjk and creation b†
jk oper-

ators. The membrane oscillator Hamiltonian is given by the linear combination of
the individual oscillator Hamiltonians Hjk and can be written as:

Hm = ∑
j,k

Hj,k = ∑
j,k

h̄Ωjk

(
b†

jkbjk +
1
2

)
(4.49)

where Ωj,k are the eigenfrequencies of the square drum modes:

Ωjk = Ω11

√
j2 + k2

2
(4.50)

where Ω11 = π
a

√
2S
ρ ∼ 1 MHz, the fundamental mode of our mechanical oscillator

is determined by density ρ and tensile stress S of the SiN film. In the experiment,
we are interested in coupling light to a particular membrane mode via radiation
pressure. To select a particular membrane mode, it is intuitive to introduce an
overlapping parameter ηjk that describes the mode matching between the cavity
and mechanical mode [59]:

ηjk =

∣∣∣∣∫ a

0

∫ a

0
ujk(x, y)|uopt(x, y)2| dx dy

∣∣∣∣ (4.51)

where
∣∣uopt(x, y)

∣∣2 = 2/πw2
0 exp(−2 x2+y2

w2
0
) is the intensity distribution of the fun-

damental TEM00 cavity mode with waist w0. The experimentally observed op-
tomechanical coupling strength relates to theory by Gexp

j,k = ηj,kGtheory
j,k . We are
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4.4. Silicon-nitride (SiN) nanomechanical membrane

Figure 4.2: Photographs of the optomechanics system. Top left: side view of
the cavity without the membrane. Top right: front view of the cavity with the
membrane inserted. Bottom left: image of the membrane with the fundamen-
tal cavity mode aligned to the membrane (2,2) mode. Bottom right: the back
view of a NORCADA membrane. [Figure taken from [59]]

interested in coupling to a higher order symmetric mode as they have a a higher
quality factor. Therefore, by adjusting the membrane position relative to the cavity
mode carefully without clipping (see Fig. 4.2), we target the symmetric (2,2) mode
with natural frequency of Ωm ∼ 2π × 1.957 MHz. In addition to the mode selec-
tion, the bandgap used in this experiment is centered around the (2,2) mechanical
mode, this means nearby mechanical modes e.g. (1,1), (3,3) and spurious frame
modes are heavily suppressed.

4.4.1 Optomechanics setup

The optical setup used for the optomechanics experiment is sketched in Fig. 4.3.
Overall, there are three laser beams: the cavity lock beam, the optomechanics and
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Figure 4.3: Schematic diagram of the optomechanics setup, the thickness of
the line indicates the power of the laser beam [Figure adapted from [59]]

the coupling beams. The cavity lock beam carrying a phase modulation tone is
sent with a vertical polarization and reflected from the cavity. Part of this reflec-
tion is detected directly on a fast photodiode (DPDH) for cavity locking using
standard Pound-Drever-Hall locking scheme. The part that coupled into the cav-
ity interacts with the membrane and leaks out again before recombining with the
local oscillator of the lock beam to perform independent homodyne detection of
the membrane motion using BHD3. The phase of this interferometer is stabilized
using a piezo mirror on the local oscillator arm. Moreover, the lock beam is red-
tuned from the cavity resonance to provide initial optomechanical cooling to the
membrane oscillator. The optomechanics beam and coupling beam play a simi-
lar role, they are both set to ∆c ≈ 0 to perform QND readout of the membrane
quadrature Xm. The main difference is that the coupling beam carries the atomic
spin signal (see Chapter 5). There is a flip mirror that allows one to switch be-
tween optomechanics beam or the coupling beam. For both the coupling beam
and optomechanics beam, the laser first enters a Mach Zehnder interferometer
where the first half waveplate (HWP1) combined with a polarization beamsplit-
ter (PBS1) controls the amount of LO of the beam versus quantum signal going
into either the optical cavity arm or the reference arm. Similar to the homodyne
detection for the lock beam, the light from the two arms recombine at a second
beamsplitter (PBS 2), the low frequency part (below 10 kHz) of the optical interfer-
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Figure 4.4: Details of the homodyne detection scheme using the cavity-lock
interferometer. [Figure adapted from [59]]

ence are used for feedback stabilization of the phase, whereas the high frequency
part of the signal at Ωm ≈ 2π× 1.957 MHz is used for detection of the membrane
signal. The phase modulation imprinted onto the light is then transduced into an
intensity modulation detectable on a balanced photodetector (BHD2).

4.5 Characterization of mechanical oscillator

As shown in previous sections, the vibrational state of the mechanical oscillator
is imprinted on the phase of the light reflected from the cavity. The conversion
from a phase fluctuation that encodes the membrane to an intensity fluctuation
detectable on a balanced photodiode using a Mach Zehnder interferometer can
be illustrated by a homodyne detection model. The result allows one to calibrate
the phonon occupation n̄m of membrane oscillator and derive an optical transfer
function to extract the important parameters of membrane oscillator e.g. Γm, γm.

4.5.1 Homodyne detection model

The principle of homodyne detection is best illustrated with a Mach Zehnder in-
terferometer, here, we take our cavity lock interferometer as an example (indicated
by the grey lines in Fig. 4.4). The same model also applies for the interferometer of
the coupling or optomechanics beam. At the input of the interferometer, the cavity
lock beam consists of horizontally polarized ax and vertically polarized fields ay,
respectively. Here, we may consider the x-polarized field as a coherent state am-
plitude with its quantum fluctuation i.e. ax = ᾱL + bL and y-polarized field with
quantum fluctuation ay = a(in)L , respectively. The splitting ratio of the orthogonally
polarized fields is determined by the first half waveplate (HWP4) at an angle θH,
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4. Membrane light interface

the above transformation of light fields can be described by(
ãx
ãy

)
=

(
cos(2θH) sin(2θH)
sin(2θH) − cos(2θH)

)(
ax
ay

)
(4.52)

where the (∼) tilde above the polarization modes correspond to the fields after the
first PBS (PBS4). Ideally, the splitting ratio should be chosen such that most input
light goes to the local oscillator arm, however, one must still ensure there is enough
laser power going to the optical cavity for the linearization approximation of the
optomechanical Hamiltonian to be valid (see Sec. 4.2). For a small half-waveplate
angle θH � 1, after the first PBS (PBS4), the transmitted port is dominated
by horizontally polarized coherent state field ᾱLO = cos(2θH)

√
ΦLO ≈

√
ΦLO,

and the reflected light is dominated by vertically polarized y-polarized quan-
tum field a(in)L , respectively. We note the the part of the LO is splitted into
the signal arm, i.e. ᾱL =

√
ΦL sin(2θH), where the photon plus behind the re-

flected port reads ΦL = Φ0 sin2(2θH). Therefore, we label the beam path be-
hind the transmission and reflection ports as local oscillator and signal beam,
respectively. After the first PBS (PBS4), the sum of the photon flux must be con-
served before and after the polarization beamsplitter assuming no optical losses,
i.e. ΦLO + ΦL = Φ0[cos2(2θH) + sin2(2θH)] = Φ0. The LO and signal field propa-
gate in their respective beam paths, the LO field obtains a phase shift from a piezo-
controlled mirror ãx → ᾱLeiφLO , whereas the signal field enters the cavity, interacts
with the membrane and the output field transforms according to the input-output
relation: we get ãy ≈ a(out)

L = a(in)L +
√

κc where c = −χc(0)(
√

κa(in)L + i
√

2gomXm)
obeys Eq. 4.23. Here, we define the phase shift on the signal arm as φL. The two
fields then recombines at a second beamsplitter with 50:50 splitting ratio such that
the two ports of the balanced photodetectors see the same amount of local oscilla-
tor, this allows common mode noise to be rejected. The field operators before each
port of the balanced photodetector (BHD3) reads:(

d
e

)
=

(
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)(
ãx
ãy

)
(4.53)

We may again apply the linearization approximation i.e. ax → 〈αLO〉+ bL, we get

D = d†d− e†e (4.54)

≈
√

2ᾱLO

[
X̃(out)

L cos(∆φ) + P̃(out)
L sin(∆φ)

]
(4.55)

where ∆φ = φLO − φL is the relative phase between the LO and the signal arm.
This result shows that by locking the interferometer at phase ∆φ = 0 or π/2, we
only measure the amplitude quadrature X̃(out)

L or the phase quadrature P̃(out)
L of

the light, respectively. To see how the interferometer transforms the input field,
we may express d, e light field after the last 50:50 beamsplitter in terms of the
original light basis at the input of the interferometer, i.e. we express the rotated
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light quadratures (X̃(out)
L , P̃(out)

L ) in terms of the unrotated light quadrature basis
(X(i)

L , P(i)
L ) where i ∈ (x, y):

D = d†d− e†e

=
√

2ΦLO

[
cos(∆φ)

(
(
√

2〈αLO〉+ X(x)
L ) sin(2φ)− X(y)

L cos(2φ)
)

+ sin(∆φ)

(
P(x)

L sin(2φ)− P(y)
L cos(2φ)−

√
κκ

(κ/2)2 + ∆2
c

gomXm

) ] (4.56)

where ΦLO = Φ0 cos2(2φ) is the photon flux of the local oscillator arm and the op-
tomechanical coupling strength contains n̄c which is proportional to input photon
flux in front of the cavity i.e. ΦL = Φ0 sin2(2φ). Since part of the drive field at cav-
ity input ãy comprises both ax and ay (due to PBS4), the corresponding Xm would
be driven also by quantum fluctuations bL in ax. The result is much simpler to
understand if we consider the special case of ∆φ = 0 or π/2. For ∆φ = 0, only the
local oscillator and its quantum fluctuation in amplitude enter and no membrane
signal is detected i.e. D =

√
2ΦLO

[
(
√

2〈αLO〉+ X(x)
L ) sin(2φ)− X(y)

L cos(2φ)
]
. On

the other hand, for ∆φ = π/2 and ∆c = 0, the amplitude part of LO and the am-
plitude quantum fluctuations of the lasers vanish, only the shot noise of the laser
from the phase quadrature and the membrane signal are observed. The detector
signal, ignoring shot noise reads:

D(∆φ = π/2)(t) = 4
g0

κ

√
2Xm(t)ηcDmax (4.57)

where Dmax = 2
√

ΦLOΦL is the homodyne contrast calibrated in the next section
(see Sec. 4.5.2) and ηc is the incoupling efficiency as not all the signal light enters
the cavity is reflected back from cavity after interacting with the membrane.

4.5.2 Calibration of the membrane signal contrast

Having established the basic homodyne technique, however, the measured homo-
dyne signal V(t) ∝ D(∆φ = π/2) is a time-varying voltage signal that encodes the
displacement Xm of the membrane oscillator. In our hybrid experiment, we are in-
terested in the calculation of the number of membrane phonons n̄m. This requires
one to first convert the raw voltage signal Vm(t) into membrane oscillator quadra-
ture Xm(t). In the following, we continue with the example of measurement using
the cavity lock beam. The calibration factor takes the form as shown in Eq. 4.57, in
practice, to find out the calibration factor i.e. ηcDmax, we first leave the optical cav-
ity unlocked, and move the cavity piezo mirror such that the laser is off-resonant
with the cavity, therefore we see a direct interference between the directly reflected
light from in-coupling mirror from the signal arm and local oscillator in the LO
arm. This gives the maximal homodyne contrast Dmax = 2

√
ΦLOΦL cos(∆φ) as
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4. Membrane light interface

the cavity acts almost as a perfect mirror. Next, instead of scanning the piezo mir-
ror of the local oscillator arm, we can also scan the cavity piezo mirror to sweep
across the cavity resonance to obtain a homodyne contrast. The phase of the in-
terferometer is stabilized at ∆φ = π/2 via closed-loop feedback on the position
of the piezo-mirror in the LO arm. By sweeping across the cavity resonance at
kHz rate, most of the light enters the optical cavity and reflects back with a phase

φc = arctan
[

κ∆c
(κ/2)2+∆2

c

]
, then the light reflects back and interferes with the LO

beam at a 50:50 beamsplitter to give a homodyne contrast Dcavity that has a dis-
persive shape from the phase response of the cavity. Comparing this homodyne
contrast Dcavity with the previously homodyne contrast Dmax, the in-coupling ef-
ficiency ηc was found to be 0.9, the rest are either lost in the transmission or
absorption in the cavity. At the same time, the small part of directly reflected light
that did not enter the cavity and directly interferes with LO field only leads to a
trivial offset which will be canceled by the 50:50 beam splitting ratio before the
homodyne detector (BHD3). In the experiment, we lock our homodyne interfer-
ometer at ∆φ = π/2, and the optical cavity is locked such that the cavity is only
slightly red-detuned with the laser. The membrane imprints a phase shift δφc on
the reflected light and produces a homodyne voltage signal that takes the form of
Eq. 4.57, with the help of the interferometer, the phase shift is converted into an
intensity change detectable by the balanced homodyne detector and demodulated
by our lock-in amplifier. Therefore, to obtain Xm(t), we need to divide D(t) from
Eq. 4.57 by the useful homodyne contrast ηcDmax, we rewrite Eq. 4.56 as

Xm(t) =
D(∆φ = π/2)(t)

Dmax

(
κ

4g0

)(
1√
2ηc

)
(4.58)

We can hence compute the number of phonon occupation (similar to Eq. 4.46) in
the time domain:

〈H(t)〉 = h̄Ωm

〈
Xm(t)2 + Pm(t)2〉

2

= h̄Ωm

(
n̄m(t) +

1
2

)
.

(4.59)

where we applied the equipartition theorem,
〈

Xm(t)2〉
t =

〈
Pm(t)2〉

t and relate to
the variance of the quadrature computed in time domain. As a minor remark,
since the homodyne contrast Dmax is measured using a oscilloscope with a high
input imepedance, and the measured rms membrane signal using lock-in ampli-
fier has to convert to amplitude variation, we require an overall 2

√
2 combined

correction factor. Finally, this yields

n̄m(t) +
1
2
=
〈

Xm(t)2〉
t

=

(
D(t)50Ω

rms
ηcDmax

)2 (
κ

2g0

)2 (4.60)
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, where g0 and κ are independently calibrated from the width of a PDH signal (see
Fig. 2.13 in [59]) and optomechanical response to an amplitude modulation tone,
respectively (see Sec. 4.6.3).

4.6 Characterization of mechanical oscillator

4.6.1 Cooling of the mechanical oscillator via dynamical backaction

Optomechanical damping via dynamical backaction plays an important role in
cooling the room-temperature (298K) membrane from n̄m ≈ 3× 106 phonons to
an initial phonon occupation of 2× 105 phonons with an intrinsic quality factor
of Q ∼ 1.3× 106. Even though optomechanical damping is not a prerequisite for
the main work in Chapter 6, there are a few advantages to have a cooling beam.
First, it allows a fast initialization of our membrane oscillator to a low tempera-
ture, which avoids saturation of the spin oscillator (as the spin can only hold up to
approximately 107 phonons) when coupling the membrane to the atomic spins. At
the same time, the lower temperature allows measurements to be performed with
higher signal to noise ratio and hence fewer measurement repetitions are required
to get a clear signal. To compute the cooling rates due to sympathetic cooling of
the atoms, it is crucial to be able to estimate the phonon occupation of a mem-
brane coupled to a thermal bath from optomechanical damping of the laser beams
alone. For a membrane in thermal equilibrium with its environment, the mean
occupation n̄m at temperature Tm,bath is given by the Bose-Einstein distribution, in
the classical limit kbTm,bath � h̄Ωm:

n̄m,bath ≈ kBTm,bath/h̄Ωm (4.61)

To compute the temperature of a mechanical oscillator, we can compute the noise
spectrum of the output field S̄(out)

PP,L (ω) [59],

S̄(out)
PP,L (ω) = S̄(in)

PP,L(ω) + 4ΓmS̄XX,m(ω)

=
1
2
+ 8Γmγm |χm(ω)|2

(
1
2
+ n̄th +

Γm

γm

) (4.62)

From the membrane displacement signal X(t), one can perform Fourier trans-
form to compute the power spectral density (PSD) of the membrane displacement
Xm(ω). The area under the power spectral density (PSD) of the membrane dis-
placement obeys is proportional to ∝ Tm,bath. For a membrane coupled to a ther-
mal bath in thermal equilibrium, assuming weak damping γm � Ωm, the phonon
occupation of the membrane relates to the total damping rate by

n̄m = n̄m,bath
γm

γm + ∑i γi
(4.63)

where i sums over all the individual processes that leads to additional damping of
the membrane, e.g. optomechanical damping from the cavity-locking beam and
coupling beam.
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Figure 4.5: (a) Time trace of the membrane occupation number after turning
on the coupling beam at t = 0 with only the red detuned cavity lock beam and
almost on resonant (slightly red-detuned) coupling beam. (b) Power spectral
density of the membrane displacement, the membrane is cooled simultane-
ously by the cavity-lock beam and the coupling beam.

As an example, we plot a ring down measurement of a membrane signal both
in the time and frequency domain as shown in Fig. 4.5. shows the time-domain
measurement of the mechanical oscillator in the absence of the spin. Before t = 0,
the -5 MHz red detuned optomechanical damping beam is kept on to lock the
cavity as well as provide an initial cooling to n̄m,bath ≈ 1.4 × 105 phonons and
use as an independent detection of the membrane displacement. To mimic the
actual experiment, at t = 0, the coupling beam is switched on. The coupling
beam is set to be only slightly red-detuned to avoid dynamical backaction, the
combined beams result in a lower membrane phonon occupation n̄m,bath ≈ 2× 104

in the steady state. The initial phonon occupation compares to the final phonon
obeys Eq. 4.63 very well, which matches the mechanical linewidth extracted from
the fit of the spectrum. The mechanical linewidth is found to be broadened to
γm = 2π × 262 Hz.

4.6.2 Ringdown measurement of membrane

The intrinsic quality factor is an important figure of merit as it dictates the rate
at which phonon enters from the environment. The quality factor of a mechani-
cal oscillator can be easily determined by performing a ringdown measurement.
Since we are interested in the intrinsic quality factor of the membrane oscilla-
tor, we position the mechanical oscillator to an intermediate finesse location such
that there is enough laser power for cavity locking and while minimizing dy-
namical backaction effect due to the cavity lock beam. The intermediate coupling
strength should allow one to determine the quality factor Q with decent signal to
noise ratio. To measure the ring down of the membrane signal, a short resonant
amplitude modulated in the cavity lock beam is sent to excite the membrane at
t = 0, at the same time, the optomechanics beam used to detect the membrane
displacement is switched on. The rms envelope of the membrane ring down sig-
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Figure 4.6: Measurement of the membrane ring down signal at low laser
power, the blue data points are the rms envelope of the membrane ring down
signal via homodyne detection and the red solid line is an exponential fit to
the data.

nal |Z| =
√

I2 + Q2. is plotted in Fig. 4.6. The red solid line is a exponential time
decay fit to the experimental data, the extracted quality factor was found to be
Q = 1.3× 106 for the (2,2) mode at frequency of Ωm = 2π × 1.957 MHz.

4.6.3 Characterization of membrane measurement rate

In this section, we present a calibration that relies on the measurement of the
interference between an optomechanical response i.e. PL ∝ Xm(t) to a classical
amplitude modulation XL ∝ A cos(Ωmt + φ) of a laser drive field. To perform
this measurement, following Eq. 4.56 from Sec. 4.5.1, it is clear that one can detect
an arbitrary superposition of the amplitude quadrature XL and phase quadrature
PL of the output field, which encodes the classical drive and membrane signal, re-
spectively. Here, by computing the power spectrum of the rotated light quadrature
basis Eq. 4.56, the transfer function that describes such optomechanical response
between the drive field can be obtained [59]:

|hXa(ω)| =
∣∣∣4Γmχm(ω)e2iθc(ω) sin(∆φ) +

[
2 (ηc − 1) + ηc

(
1 + e2iθc(ω)

)]
cos(∆φ)

∣∣∣
(4.64)

where χm is the mechanical susceptibility and θc(ω) = arctan(2ω/κ) is the phase
angle, that accounts for the delay due to finite cavity response time 2/κ. For this
measurement, the membrane is placed at a high finesse position of the cavity,
the optical cavity is locked such that the cooling beam is red-detuned (∆c ∼ −5
MHz) to provide initial cooling of the membrane and the coupling laser is slightly
red-detuned to avoid instability due to the dynamical backaction. The homodyne
phase of the loop interferometer is stabilized to a well-defined value with feedback
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Figure 4.7: Measurement of the mechanical response to an amplitude modula-
tion (a) Amplitude spectrum (b) Phase response. Each trace corresponds to a
measurement with a different homodyne angle ∆φ. The solid line corresponds
to the fit to the data using the transfer function Eq. 4.64. (c) The extracted rates
are plotted as a function of input laser power. The solid lines are linear fits to
the the individual rates.

control using a piezo mirror. Once the locks are set up, we can apply an amplitude
modulation tone around the membrane frequency to the probe laser, and demod-
ulate the detector signal using a lock in amplifier while sweeping the frequency of
the drive. As shown in Fig. 4.7, we plot the measured optomechanical response in
amplitude and phase as a function of drive frequency, respectively. Each trace in
the plot corresponds to a different measurement with a chosen homodyne phase
angle ∆φ. The homodyne phase angle ∆φ is stabilized to a well-defined value
using closed-loop feedback control on the piezo mirror in the local oscillator arm
(see Fig. 4.3). To vary the homodyne phase angle, we can lock the piezo mirror
at a different position. The experiment data shows the interference between the
drive and the membrane responses across the membrane resonance at 2π × 1.957
MHz. The experimental traces are fitted with the model |hXa | (see Eq. 4.64) glob-
ally with same the same fit parameters. From the fits (indicated by the solid lines),
we obtain g0 = 2π × 224 Hz and κ = 2π× 65 MHz which matches the indepen-
dent calibration from PDH transmission fit (see Fig. 2.13 in [59]) . Moreover, in
Fig. 4.7(b), we also study the membrane measurement rate Γm, damping rate γm
and frequency shift −∆Ωm as a function of laser power. As expected from theory,
we see that a slight increase of membrane damping rate γm and the membrane
measurement rate Γm increases linearly with laser power, and the optomechanical
induced frequency shift is red detuned.
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Chapter 5

Hybrid spin-optomechanics interface

This chapter introduces both the theoretical concepts and experimental implemen-
tations that should set the scene for understanding our main result, i.e. achieving
the coherent feedback cooling of the membrane oscillator using atomic spins in
the next chapter. The material presented here serves as a self-contained reference
that intends to complement the main results. We first consider the coupled spin-
membrane system using an abstract model and present the theoretical analysis of
the coupled dynamics using the Heisenberg-Langevin equations. In the frequency
domain, we may also derive a fit model that describes the spectra beyond the
strong coupling including the sympathetic cooling regime. Lastly, we also present
the Routh-Hurwitz criterion from control theory as a convenient means to access
the stability of our coupled spin membrane systems.

On the experimental side, we introduce the experimental setup of our hybrid spin-
optomechanics interface, then we revisit the spin noise cancellation and strong
coupling experiment [14]. Finally, building on the strong coupling result, we show
that we can manipulate the spin damping rate which makes the spin system a
coherent feedback controller to cool the membrane oscillator as shown in the next
chapter.

The result presented in this chapter has been published in [14] [66] and from the sup-
porting materials of [14] [66] without major modifications. The content presented here is
largely adapted from the manuscript, only minor modifications were made to the notations,
formulas and references.

Theoretical description of the spin-membrane system

The spin-membrane coupling theory was described in a general framework of
cascaded quantum systems that even includes multiple passes of light-matter in-
teractions through the quantum system [30]. It is insightful to first forget the
experiment complexity and to consider to first the spin and membrane interact-
ing with a common traveling electromagnetic mode sequentially as sketched in
Fig. 5.1. This allows one to engineer the light-mediated interaction without re-
stricting ourselves to the experimental complexities. Specifically, we are interested
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5. Hybrid spin-optomechanics interface

in the case where a traveling field aL interacts with the spin first and then with the
membrane and before interacting with the spin the second time in a looped geom-
etry with the loop phase as a control knob (see Fig. 5.1). The cascaded interaction
with the traveling quantum field aL is given by [30]:

Hint = 2h̄
√

ΓsXs [PL (ζ1) + cos(φ)PL (ζ3)− sin(φ)XL (ζ3)] + 2h̄
√

ΓmXmXL (ζ2)
(5.1)

where ζ1 < ζ2 < ζ3 are the spatial coordinates along the optical path for the
cascaded light-matter interactions.

Figure 5.1: Schematic diagram of the coupling scheme. The optical field aL
first interacts with the spin (S) at spatial coordinate ζ1, then to the membrane
(M) at spatial coordinate ζ2 before passing the spin (S) at the second time at ζ3.
Loop phase φ is set to π such that the light passes the spin system the second
time would erase the information obtained from the first pass, therefore the
backaction noise on the spin is suppressed. [Figure adapted from [30]]

It turns out that the cascaded light matter interactions can be brought to an effec-
tive interaction between the spin and membrane upon adiabatic elimination of the
light field [30]. For pedagogical reasons, we can directly apply the final result, i.e.
the master equations (derived in [14,30]) in the Lindblad form, where the coherent
dynamics and the dissipative evolution can be interpreted separately (neglecting
optical loss for simplicity) [30]:

ρ̇ =
1
ih̄

[Heff, ρ] + Leffρ (5.2)

where the effective Hamiltonian reads

Heff = h̄[1− cos(φ)]gXsXm − h̄ sin(φ)2ΓsX2
s (5.3)

where g = 2
√

ΓsΓm is the spin-membrane coupling strength. The collective dissi-
pative part is captured by [30]:

Leff ρ = D[J]ρ = JρJ† − 1
2

(
J† Jρ + ρJ† J

)
(5.4)
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5.1. Heisenberg-Langevin equations

where J = Jm + Js =
√

2ΓmXm + i
√

2Γs
(
1 + eiφ)Xs are the collective jump oper-

ators. Firstly, from the effective Hamiltonian, we can see that it involves a spin-
membrane interaction but also a self-interaction of the spin. The latter can be
exploited as an interaction for unconditional spin-squeezing (see Chapter 7). For
φ = 0, the interaction is dissipative. For this experiment, we are interested in the
loop phase φ = π where we render an effective Hamiltonian interaction between
the spin and membrane i.e. Heff = h̄2gXsXm and we also see that the dissipative
part only affects the membrane, while the spin is decoupled from the input and
output fields i.e. Js = 0.

5.1 Heisenberg-Langevin equations

From the effective Hamiltonian Eq. 5.3, we can write down the Heisenberg-Langevin
equations for the spin-membrane system as shown in Fig. 5.1 [30]. The equation
of motion for the spin and membrane position and momentum operators read

Ẋm = ΩmPm, (5.5)

Ṗm = −ΩmXm − γmPm − 2gXs(t− τ)−
√

4ΓmX(in)
L (ζ2)−

√
2γmF(th)

m , (5.6)
Ẋs = ΩsPs, (5.7)
Ṗs = −ΩsXs − γsPs + 4Γs sin(φ)Xs(t− 2τ) + 2g cos(φ)Xm(t− τ)

−
√

4Γs

[
P(in)

L (ζ1) + cos(φ)P(in)
L (ζ3)− sin(φ)X(in)

L (ζ3)
]
−
√

2γsF(th)
s (5.8)

Here, g = 2
√

ΓmΓs is the spin-membrane coupling strength, τ is the optical propa-
gation delay between the systems which we assume to be equal for either direction,
and

√
2γmF(th)

m and
√

2γsF(th)
s are mechanical and spin thermal noise terms, re-

spectively. Each oscillator is also driven by optical vacuum noise of the input field
quadratures X(in)

L (ζi), P(in)
L (ζi) at the different locations ζi along the optical path.

This leads to quantum back-action of the light that mediates the spin-membrane
interaction onto the coupled systems. For the spin oscillator, the optical input
terms at the two locations ζ1 and ζ3 interfere as can be seen directly in Eqs.5.5-5.8.
For the membrane there is no such interference as it interacts with the light field
only once. Moreover, the two spin-light interactions also enable delayed light-
mediated self-interaction of the spin. The effect of this is a modified frequency
and linewidth since Xs(t − 2τ) ≈ Xs cos(2Ωsτ) − Ps sin(2Ωsτ). We thus have a
spin frequency shift δΩs = 2Γs sin(φ) cos(2Ωsτ) and a shift of the damping rate
δγs = 4Γs sin(φ) sin(2Ωsτ). Since the atom-light coupling strength is inhomoge-
neous across the atomic ensemble, this can also lead to inhomogeneous broaden-
ing of the spin oscillator if φ mod π 6= 0.
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5. Hybrid spin-optomechanics interface

5.2 Fit function for the power spectral density of the cou-
pled oscillators

The above coupled equations of motions can be readily solved in the frequency do-
main. By performing a first Fourier transform of the equations of motion Eqs. 5.5-
5.8 on both sides. The effective susceptibilities read

χm,0(ω)−1Xm(ω) + 2g eiωτXs(ω) = −
√

2γmF(tot)
m (ω), (5.9)

χs,0(ω)−1Xs(ω) + 2g eiωτXm(ω) = −
√

2γsF(tot)
s (ω), (5.10)

where we have defined the individual oscillator susceptiblities as

χi,0(ω) =
Ωi

Ω2
i −ω2 − iωγi

. (5.11)

Solving for Xm and Xs yields

Xm(ω) = χm,eff(ω)
[
−
√

2γmF(tot)
m (ω) + 2g eiωτ

√
2γsχs,0(ω)F(tot)

s (ω)
]
,

Xs(ω) = χs,eff(ω)
[
−
√

2γsF(tot)
s (ω) + 2g eiωτ

√
2γmχm,0(ω)F(tot)

m (ω)
]
,

where we have introduced the effective susceptibilities of the membrane and spin
oscillators as

χm,eff(ω)−1 = χm,0(ω)−1 − 4g2ei2ωτχs,0(ω), (5.12)

χs,eff(ω)−1 = χs,0(ω)−1 − 4g2ei2ωτχm,0(ω). (5.13)

We used this model to fit the power spectral densities of the mechanical dis-
placement spectra [see Fig. 5.5A, C and Fig. 6.2(b)] globally using fit function
a2|χm,eff(ω)|2 where a is a global scaling factor accounting for the noise terms
driving the system. The argument of χm,eff returns the phase response plotted in
Fig. 5.5B and D.

5.3 Derivation of the sympathetic cooling rate

Here, we also derive the sympathetic cooling rate (see Chapter. 6) which is relevant
for the sympathetic cooling of the mechanical oscillator in the weakly coupling
regime given in Eq. (6.3). For this, let us first write Eq. (5.12) explicitly

χm,eff(ω)−1 =
1

Ωm

(
Ω2

m −ω2 − iωγm − 4g2ei2ωτ ΩmΩs
(
Ω2

s −ω2 + iωγs
)

(Ω2
s −ω2)2 + (ωγs)

2

)
,

which can be written in the form of

χm,eff(ω)−1 =
1

Ωm

[
Ω2

m − δΩ2
shift −ω2 − iω

(
γm + γsym

)]
. (5.14)
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Here, we have defined an effective frequency shift δΩshift and the sympathetic
cooling rate γsym, which for ω = Ωm read

δΩ2
shift =

4g2ΩmΩs

(Ω2
s −Ω2

m)
2 + (Ωmγs)

2 ×
[ (

Ω2
s −Ω2

m
)

cos (2Ωmτ)−Ωmγs sin (2Ωmτ)
]
,

and

γsym =
4g2ΩmΩs

(Ω2
s −Ω2

m)
2 + (Ωmγs)

2 ×
[

γs cos (2Ωmτ) +
Ω2

s −Ω2
m

Ωm
sin (2Ωmτ)

]
.

For Ωs ≈ Ωm and large spin damping γs > g, we get a simplified expression for
the frequency shift and sympathetic cooling rate [Eq. (6.3)]

δΩ2
shift ≈

4g2Ωm

4δ2 + γ2
s
[2δ cos (2Ωmτ)− γs sin (2Ωmτ)] , (5.15)

γsym ≈
4g2

4δ2 + γ2
s
[γs cos (2Ωmτ) + 2δ sin (2Ωmτ)] , (5.16)

where δ = Ωs −Ωm.

5.4 Routh-Hurwitz stability criterion of the coupled system

In this section we present a stability analysis in which the Routh-Hurwitz crite-
rion [94] from control theory is applied to our linearly coupled spin-membrane
oscillators. The criterion provides a convenient means to assess the stability of
our linear systems without solving the equations of motion. In this treatment, we
exclude the Langevin noise, as we are interested to see if the delayed coupled os-
cillator dynamics is stable by itself. We then explore the experimental parameter
space to see under which conditions the coupled system becomes unstable. We
take the equations of motion for the delayed coupled system Eqs. (6.1) and (6.2)
neglecting the noise terms

Ẍm + γmẊm + Ω2
mXm = −2gΩmXs(t− τ), (5.17)

Ẍs + γsẊs + Ω2
s Xs = −2gΩsXm(t− τ). (5.18)

Substituting the ansatz Xj(t) = Xj(s) est where s ∈ C yields(
s2 + sγm + Ω2

m
)

Xm(s) = −2gΩm e−sτXs(s), (5.19)(
s2 + sγs + Ω2

s
)

Xs(s) = −2gΩs e−sτXm(s). (5.20)

Solving the simultaneous equations Eqs. (5.19) and (5.20), we obtain the character-
istic equation for non-trivial solutions Xm 6= 0,(

s2 + sγm + Ω2
m
) (

s2 + sγs + Ω2
s
)
− 4g2ΩmΩs e−2sτ = 0. (5.21)
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5. Hybrid spin-optomechanics interface

For clarity, we consider here small propagation delays τ � 1/Ωj and apply a first
order Taylor expansion exp(−2sτ) ≈ (1− 2sτ) (in the actual simulation we keep
terms up to 4th order). We then obtain

0 =s4 + (γs + γm)s3 + (Ω2
m + Ω2

s + γmγs)s2

+ (Ω2
s γm + Ω2

mγs + 8g2ΩmΩsτ)s

+ ΩmΩs(ΩmΩs − 4g2). (5.22)

Having our dynamics in this polynomial form, we can define the polynomial co-
efficients of a fourth order polynomial by

p(s) = a4s4 + a3s3 + a2s2 + a1s + a0 = 0, a4 > 0. (5.23)

In order to apply the Routh-Hurwitz criterion, the so-called Hurwitz matrix con-
taining the polynomial coefficients has to be defined. For a fourth order polyno-
mial this matrix reads

H4 =


a3 a1 0 0
a4 a2 a0 0
0 a3 a1 0
0 a4 a2 a0

 . (5.24)

According to the Routh-Hurwitz criterion, the system dynamics is asymptotically
stable if all the principal minors of the Hurwitz matrix are non-zero and positive.
Application of the Hurwitz criterion leads to the following stability criteria for a
fourth order polynomial system:

∆1 = |a3| > 0, (5.25)

∆2 =

∣∣∣∣a3 a1
a4 a2

∣∣∣∣ = a2a3 − a4a1 > 0, (5.26)

∆3 =

∣∣∣∣∣∣
a3 a1 0
a4 a2 a0
0 a3 a1

∣∣∣∣∣∣ = a1∆2 − a2
3a0 > 0, (5.27)

∆4 = det(H4) = a0 · ∆3 > 0. (5.28)

In our system, the coefficients are given explicitly by

a4 = 1, (5.29)
a3 = γs + γm, (5.30)

a2 = Ω2
s + Ω2

m + γsγm, (5.31)

a1 = γmΩ2
s + γsΩ2

m + 8g2ΩmΩsτ, (5.32)

a0 = ΩsΩm
(
ΩsΩm − 4g2) . (5.33)

Since ΩsΩm � 4g2, all coefficients are positive. Thus, the criterion ∆1 is fulfilled
and the criterion ∆4 depends directly on the criterion ∆3. Therefore, only ∆2 and
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∆3 are left to be checked. In order to get an intuition on the stability for differ-
ent parameters, Fig. 5.2 shows the stable regions as a function of spin damping,
detuning and delay.

Figure 5.2: Evaluation of the stability of the coupled system using the Routh-
Hurwitz criterion: The colored regions (i.e. region above each solid line) show
the sets of parameters for which the coupled dynamics is stable for a given
value of the feedback delay. Without propagation delay, every set of detunings
and spin damping leads to stable dynamics. For τ = 80 ns we have Ωmτ ≈ 1
thus the validity of the Taylor expansion of the exponential function in pres-
ence of small delays reaches its limit. For the stability estimations shown here
we used 2g = 2π × 6.8 kHz, γm = 2π × 262 Hz, and Ωm = 2π × 1.957 MHz.
[Figure taken from [66]]

5.5 Overview of the coupling scheme

As we discussed in the first three chapters, we introduced the individual light-
matter interfaces for the membrane and the spin. From the form of their individ-
ual light-matter Hamiltonian, the atomic spin is sensitive to the phase fluctuation
of the light, whereas the membrane is sensitive to the amplitude fluctuation. This
suggests that in order for the spin and membrane to interact with each other,
the full coupling setup has to be able to convert the polarization dependent spin
signal into an amplitude modulation that the membrane can see. Similarly, the
membrane has to convert the amplitude modulation into a polarization modu-
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5. Hybrid spin-optomechanics interface

Figure 5.3: Simplified sketch of the experimental setup and the path of the
light field used to mediate an effective interaction from the atomic spin ensem-
ble to the membrane oscillator and back. A polarization interferometer maps
between the Stokes vector at the atomic ensemble (shown on the Poincaré
sphere) and the field quadratures of light (drawn as an optical phase space
diagram). Light fields carrying spin signal are drawn as red lines, while light
fields carrying membrane signals are blue. Before the light field returns to
the atomic ensemble, a half-wave plate rotates the Stokes vector about the Sx
axis and introduces a phase shift φ = π on the quantum fields in Sy, Sz which
carry the spin and membrane signals, respectively. [Figure taken from [14]]

lation that the spin sees. Before we discuss the details of the coupling scheme,
we discuss the overview of the coupling mechanism qualitatively below. As dis-
cussed in previous chapters, we see that the atomic spin couples to the circular
polarization of light encoded in Sz and the membrane couples to the amplitude
modulation encoded in Sy. In order for the two systems to interact with each
other, we use the optical setup shown in Fig. 5.3 to convert between these two
polarization states of light. We use a polarization interferometer, which consists
of polarization dependent waveplates and beamsplitter to convert the amplitude
modulation from the spin signal into a polarization modulation that couples to the
spin. In order to mediate a bidirectional Hamiltonian, it is important that after the
first interaction with the spin and then the membrane, the light interacts with the
spin ensemble again. To manipulate the character of the light-mediated coupling,
we can insert a half-waveplate HWP3 in the optical path returning to the spin.
As we will discuss in more detail later, the waveplate allows one to add a phase
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shift φ = 0 or π to the quantum fields carrying the spin and membrane signals to
access different coupling regime between the spin and membrane as discussed in
Sec. 5.

5.6 Detailed description of the coupling scheme

Here, we describe in detail how we connect the two systems using light as a uni-
versal bus as shown in Fig. 5.3. This process involves several chains of signal trans-
duction and it is convenient to designate the polarization of light by its stokes vec-
tor S. We consider our laser to be linearly polarized along x i.e. 〈Sx〉 = S̄0 = ΦL/2,
and we may write the x-polarized light as a strong coherent field and a quantum
field in x polarization i.e. ax ≈

√
ΦL + bL and the interesting field amplitudes (con-

taining the membrane or the spin signals) are encoded in the y-polarized quantum
field with notation ay = aL. The linearization of the stokes vector (dropping the
second order terms) works well as long as

〈
a†

LaL
〉

,
〈
b†

LbL
〉
� ΦL,

S0 =
a†

xax + a†
yay

2
≈ S̄0 +

√
S̄0

2

(
bL + b†

L

)
(5.34)

Sx =
a†

xax − a†
yay

2
≈ S̄0 +

√
S̄0

2

(
bL + b†

L

)
(5.35)

Sy =
a†

xay + a†
yax

2
≈
√

S̄0

2

(
aL + a†

L

)
(5.36)

Sz = −i
a†

xay − a†
yax

2
≈ −i

√
S̄0

2

(
aL − a†

L

)
(5.37)

Here, we will describe the signal transduction of the light. First, the input light
is linearly polarized along x such that 〈Sx〉 = S̄0 = ΦL/2, subsequently the spin
imprints its information onto the outgoing light via Faraday Hamiltonian.

Hs,int = 2h̄
√

Γs/S̄xXsSz ≈ 2h̄
√

ΓsXsPL (5.38)

The spin imprints its transverse component Xs ∝ Fz as the polarization modulation
of the light via the input-output relation.

S(out)
y = S(in)

y + 2
√

ΓsS̄0Xs (5.39)

At the input of the polarization interferometer, a half-waveplate is set to angle θH.
This transforms the polarization as

S
′
x = + cos(4θH)Sx + sin(4θH)Sy (5.40)

S
′
y = − cos(4θH)Sy + sin(4θH)Sx (5.41)

S
′
z = −Sz (5.42)
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This half-waveplate changes the ratio between the quantum signal (Sy) and local
oscillator (Sx) that goes to the signal arm containing the optomechanical cavity
and to the local oscillator arm, respectively. The photon flux in the arm containing
the optomechanical cavity is given by

a′†y a′y = S0 − S′x = S0 − cos (4θH) Sx − Sy sin (4θH) (5.43)

Since the flux a′†y a′y enters the optomechanical cavity, for a broad cavity linewidth,
we may substitute c†c = (4/κ)a′†y a′y by the input photon flux, we get

Hm = h̄
4g0

κ

√
2Xma′†y a′y (5.44)

We may substitute Eq. 5.43, and linearize the stokes vector around the strong
coherent amplitude (Eq. 5.34-5.37) yields

Hm = h̄
4g0

κ

√
S̄0Xm

[(
bL + b†

L

)
(1− cos (4θH))− sin (4θH)

(
aL + a†

L

)]
(5.45)

where the membrane Hamiltonian is now a weighted sum consisting terms aL that
contains the spin signal and a noise term due to the x polarized light that doesn’t
contain any spin signal but interacts with the membrane. To ensure good coupling
of aL to the membrane, the half-waveplate angle is set such that the classical part of
the laser light, i.e. the x polarized light is reflected to the local oscillator arm and
its quantum noise term bL is suppressed to 1− cos(4θH) = 0.1, whereas most of
the quantum field of y polarized light aL is transmitted to the optomechanical cav-
ity with sin(4θH) = 0.5, the backaction rate due to aL over the total backaction rate
due to aL and bL is still high i.e. sin(4θH)

2/[(1− cos(4θH))
2 + sin(4θH)

2] ≈ 0.93.
We recover the optomechanical interaction Hamiltonian Hm ≈ h̄2

√
ΓmXmXL with

the membrane measurement rate given by Γm = (4g0/κ)2 Φm with an effective
photon flux Φm = ΦL sin (4θH)

2 /4 at the optomechanical cavity. The mem-
brane couples to the spin-induced amplitude modulation 2 sin (4θH)

√
ΓsS̄0Xs.

The membrane responds to the changing radiation pressure and changes its posi-
tion producing a phase shift φm = (4g0/κ)

√
2Xm on the beam reflected from the

cavity. We obtain a well defined homodyne phase by locking the relative phase
between the local oscillator arm and the signal arm to the zero crossing of an error
signal of a fringe lock with feedback piezo mirror 1 (see Fig. 5.3). The input stokes
vector after the first HWP and is mapped onto the output stokes vector before the
second HWP as

S′(out)
x = S′(in)x (5.46)

S′(out)
y = cos(φm)S

′(in)
y + sin(φm)S

′(in)
z (5.47)

S′z
(out) = cos(φm)S

′(in)
z − sin(φm)S

′(in)
y (5.48)

After the interferometer, the mean of the output stokes vector S̄ is rotated back
along Sx by setting HWP 2 to the same angle θH as HWP 1 (c.f. Eq. 5.40-5.42). For
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|φm| � 1, 〈S′(in)z 〉 = 0 and 〈S′(in)y 〉 = S̄0 sin (4θH), the polarization modulation due
to the membrane amounts to Sz = 2

√
S̄0ΓmXm, which produces a mean torque

that acts on the spin.

As shown in Fig. 5.3, the key control knob in our hybrid experiment is the loop
phase which is currently realized by the insertion of a third half-waveplate HWP3
before the second atom-light interaction. For the hybrid experiments, the fast axis
of the half-wave plate is aligned parallel to the laser polarization along x. This
allows one to retard the orthogonal y-polarization by phase φ of 0 or π.

5.7 Strong coupling in the Hamiltonian regime

Upon establishing the basis of the spin-membrane coupling, we first present the
result of spin noise suppression which is the key to realize Hamiltonian coupling
in our hybrid experiment. Then, we will summarize the main results of the strong
coupling between the atomic spin and the nanomechanical membrane mediated
in a remote distance. As discussed in the previous section, we focus on the specific
scenario, i.e. by adding a π optical phase on the light returning from membrane
to atomic spins, which exhibits normal-mode splitting, coherent energy exchange
oscillations as signature of strong Hamiltonian coupling. The result constitutes the
basis for achieving coherent feedback cooling of the nanomechanical membrane
oscillator we will discuss in the next chapter.

5.7.1 Spin noise suppression

The details of the spin noise suppression was presented in [14]. Here we pro-
vide a brief summary of the cancellation of spin signal in the output field which
suppresses the quantum backaction on the spin. Since the spin information is pre-
vented from leaking to the environment, the spin evades the quantum backaction.
To perform this measurement, the optomechanical cavity is tuned off resonant to
the laser such that there is no coupling of the spin to the membrane. Upon spin
preparation, a short RF-pulse of 30 µs is sent to excite the spin to a small ampli-
tude. Subsequently, the coupling beam is switched on to detect the Faraday rota-
tion on the balanced homodyne detector (BHD 2 in Fig. 5.3). The waveplate is set
up to detect the XL quadrature which contains the Faraday signal. Fig. 5.4A shows
the measured root-mean-squared spin signal in X(out)

L for three different configu-
rations. Two traces correspond to the double-pass atom-light interface with loop
phases of φ = 0 and φ = π. The third trace shows the spin signal for a single
pass interaction which is realized by moving the laser beam away from the atomic
cloud in the second pass. The data clearly show a strong suppression of the spin
signal for φ = π as compared to φ = 0. Fitting the traces with an exponential
decay including an initial detector rise time (1/e-time 10 µs) allows us to extract
the amplitudes as well as the spin decay rates. First, we note that the double-pass
signal for φ = 0 is 3.3 times larger than the single-pass output, which indicates
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5. Hybrid spin-optomechanics interface

A B

Figure 5.4: Destructive interference of the spin signal in the output field. (A)
root-mean-squared spin signal as a function of time for the three configura-
tions, double pass with φ = π, φ = 0, and single pass. Lines are fits with an
exponential decay. (B) FFT power spectral densities for the same data as in
(A). Lines are fits with a Lorentzian model. [Figure taken from [14]]

a 1.6-fold enhancement of the scattering efficiency in the presence of the second
laser beam. Compared to φ = 0, the spin signal at φ = π is suppressed by a factor
14. This value is in good agreement with ε(0)/ε(π) ≈ 12 for 2Ωsτ = 0.17. In
this measurement, optical delay is only due to optical path length of about 4 m
because the cavity is off-resonant.

5.7.2 Normal-mode splitting

We first investigate the light-mediated coupling in the Hamiltonian regime (φ = π)
and with the spin realizing a positive-mass oscillator. At a magnetic field of
B0 = 2.81 G the spin is tuned into resonance with the membrane (Ωs = Ωm).
In this configuration, the resonant terms in Heff realize a beam-splitter interac-
tion HBS = h̄g(b†

s bm + b†
mbs), which generates state swaps between the two sys-

tems. Here bs = (Xs + iPs)/
√

2 and bm = (Xm + iPm)/
√

2 are annihilation oper-
ators of the spin and mechanical modes, respectively. We perform spectroscopy
of the coupled system using independent drive and detection channels for spin
and membrane. The membrane vibrations are recorded by balanced homodyne
detection using an auxiliary laser beam coupled to the cavity in orthogonal po-
larization. To drive the membrane, this beam is amplitude modulated using an
AOM. The spin precession is detected by splitting off a small portion of the cou-
pling light on the path from spin to membrane. A radio-frequency (RF) mag-
netic coil drives the spin. We measure the amplitude and phase response of ei-
ther system using a lock-in amplifier that demodulates the detector signal at the
drive frequency see (Sec. 3.5.1 and Sec. 4.5.2). After spin-state initialization we
simultaneously switch on coupling and drive and start recording. The drive fre-
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Figure 5.5: Observation of strong spin-membrane coupling. Spectroscopy of
the membrane (A,B) and the spin (C,D), both revealing a normal mode split-
ting if the coupling beam is on and the oscillators are resonant (Ωs = Ωm). For
comparison we show the uncoupled responses of the membrane with coupling
beam off (A,B) and of the spin with cavity off-resonant (C,D). Lines are fits
to the data with a coupled-mode model (see Sec. 5.2). Error bars are standard
deviations of 3 independent measurements. [Figure taken from [14]]

quency is kept fixed during each experimental run and stepped between consec-
utive runs. Figs. 5.5A and B show the membrane’s response in amplitude and
phase, respectively. With the coupling beam off, it exhibits a Lorentzian res-
onance of linewidth γm = 2π × 0.3 kHz, broader than the intrinsic linewidth
due to optomechanical damping by the red-detuned cavity field [9]. For the
uncoupled spin oscillator (Figs. 5.5C, D) with cavity off-resonant, we also mea-
sure a Lorentzian response of linewidth γs = 2π × 4 kHz, broadened by the
coupling light. When we turn on the coupling to the spin, the membrane res-
onance splits into two hybrid spin-mechanical normal modes. This signals strong
coupling [95, 96], where light-mediated coupling dominates over local damping.
Fitting the well-resolved splitting yields 2g = 2π× 6.1 kHz, which exceeds the av-
erage linewidth (γs + γm)/2 = 2π× 2 kHz and agrees with the expectation based
on an independent calibration of the systems (see Chapter 1-3). A characteristic
feature of the long-distance coupling is a finite delay τ between the systems. It
causes a linewidth asymmetry of the two normal modes when Ωs = Ωm, which
we observe in Fig. 5.5. The fits yield a value of τ = 15 ns, consistent with the
propagation delay of the light between the systems and the cavity response time.
We also observe normal-mode splitting in measurements of the spin (Figs. 5.5C
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5. Hybrid spin-optomechanics interface

and D).

5.7.3 Energy exchange oscillations

A B
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Spin

Membrane

Spin Membrane

Spin

C D

Figure 5.6: Time-domain exchange oscillations showing coherent energy trans-
fer between spin and membrane (A) Pulse sequence for excitation of the mem-
brane by radiation-pressure modulation via the auxiliary laser beam. (B) Pulse
sequence for spin excitation with an external RF magnetic field. (C) Oscilla-
tions in the excitation numbers of membrane and spin as a function of the
interaction time, measured using the pulse sequence in A. (D) Data obtained
with pulse sequence B and weaker drive strength than in C. Here, the finite
rise time of the spin signal at t = 0 corresponds to the turn-on of the coupling
beam, which is also used for spin detection. Insets in C,D show the same data
on a log-scale. Lines and shaded area represent the mean and one standard
deviation of five measurements, respectively. [Figure taken from [14]]

Having observed the spectroscopic signature of the strong coupling, we now use
it for swapping spin and mechanical excitations in a pulsed experiment. We start
by coherently exciting the membrane to ≈ 2× 106 phonons, a factor of 100 above
its mean equilibrium energy, by applying an amplitude modulation pulse to the
auxiliary cavity beam (Fig. 5.6A). At the same time, the spin is prepared in its
ground state with Ωs = Ωm. The coupling beam is switched on at time t = 0 µs
and the displacements Xs(t) and Xm(t) of spin and membrane are continuously
monitored via the independent detection. From the measured mean square dis-
placements we determine the excitation number of each system (see Sec. 4.5.2 and
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5.8. Calibration of the spin damping rate

Sec. 3.5.1). Fig. 5.6C shows the excitation numbers as a function of the interaction
time. The data show coherent and reversible energy exchange oscillations from
the membrane to the spin and back with an oscillation period of T ≈ 150 µs, in
accordance with the value π/g extracted from the observed normal-mode split-
ting. Damping limits the maximum energy transfer efficiency at time T/2 to about
40%. The same experiment is repeated but with the initial drive pulse applied to
the spin (Figs. 5.6B and D). Here, we observe another set of exchange oscillations
with the same periodicity, swapping an initial spin excitation of ns ≈ 3× 105 to
the membrane and back. After the coherent dynamics have decayed, the systems
equilibrate in a thermal state of ≈ 3× 103 phonons, lower than the effective op-
tomechanical bath of 1.5× 104 phonons, demonstrating sympathetic cooling [13]
of the membrane by the spin.

5.8 Calibration of the spin damping rate
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Figure 5.7: Measurement of the spin in the absence of coupling to the mem-
brane after it is excited by a weak RF-pulse: (a) Time trace of double pass
measurement of the spin with different pumping powers (range from 0 to
10 µW). The dashed lines show fits with an exponential decay. The spin
linewidth (b) and spin frequency (c) are plotted as a function of the pump
power. The dashed lines in (b) and (c) show a linear fit to the spin linewidth
and resonance frequency. The crosses show the fit parameters extracted from
Fig. 6.2(a) which were used as input for the simulations. The data shown in
(a) is an average over seven experimental realisations and was used to fit the
exponential decay [for (b)] and the Lorentzian peak [for (c)]. The error bars
in (b) and (c) show the fit-error of the corresponding quantity. [Figure taken
from [66]]

We end this chapter to demonstrate that we have flexible control over the spin
damping rate γs which allows one the perform cool the membrane. In order to
measure the spin damping rate in the presence of all lasers but without coupling
to the membrane, we detuned the coupling laser from the cavity resonance (|∆c| �
κ). The laser thus is reflected from the incoupling mirror of the cavity and only
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5. Hybrid spin-optomechanics interface

the spin is probed. For the calibration measurement of the spin damping rate, the
spin was coherently excited by a weak RF-pulse. The spin signal was measured by
detecting the residual spin signal on the light after the second pass via the spin.
It is normalised to occupation numbers [shown in Fig. 5.7(a)]. Each experimental
trace corresponds to a measurement with a different pump power. The damping
rate γs is extracted from the exponential fit to the temporal dynamics [Fig. 5.7(b)]
and the frequency Ωs is extracted from a Lorentzian fit to the spectrum [Fig. 5.7(c)].
For optical pumping power larger than Ppump > 0.7 µW, the spectra were too
broad to provide reasonable fit results [and are therefore not shown in Fig. 5.7(c)].
In Fig. 5.7(b) and (c), fit parameters for the coupled dynamics are shown. We also
observed a systematic shift of the Larmor frequency Ωs with the spin pumping
power, this is likely to be caused by undesired light shift when varying the spin
pump power. To conclude, we can see that the we have flexible control over the
spin linewidth by varying the spin pumping power Ppump in which paves the way
to the main result present in the next chapter.
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Chapter 6

Coherent feedback of a nanomechanical
membrane with atomic spins

Coherent feedback stabilises a system towards a target state without the need of a
measurement, thus avoiding the quantum backaction inherent to measurements.
Here, we employ optical coherent feedback to remotely cool a nanomechanical
membrane using atomic spins as a controller. Direct manipulation of the atoms
allows us to tune from strong-coupling to an overdamped regime. Making use
of the full coherent control offered by our system, we perform spin-membrane
state swaps combined with stroboscopic spin pumping to cool the membrane in a
room-temperature environment to T = 216 mK (n̄m = 2.3× 103 phonons) in 200 µs.
We furthermore observe and study the effects of delayed feedback on the cooling
performance. Starting from a cryogenically pre-cooled membrane, this method
would enable cooling of the mechanical oscillator close to its quantum mechanical
ground state and the preparation of nonclassical states. The result presented in this
chapter has been published in [66] and is included here without major modifications.

6.1 Introduction

Hybrid quantum systems in which a mechanical oscillator is coupled to a spin are
a promising platform for fundamental quantum science as well as for quantum
sensing [10, 21, 97]. The interest in such systems derives from the fact that the
spin – a genuinely quantum-mechanical object – can be used to control, read-out,
and lend new functionality to the much more macroscopic mechanical device. Re-
cently, different spin-mechanics interfaces have been realized, involving the cou-
pling of a mechanical oscillator to (pseudo-)spin systems such as atomic ensem-
bles [12–15, 22, 23], quantum dots [24, 25], superconducting qubits [19, 20, 26], or
impurity spins in solids [11,16–18], using light-, strain-, or magnetically-mediated
interactions.

Coherent feedback is an intriguing concept that can be studied with such sys-
tems [60,61]. In coherent feedback, a quantum system is controlled through its in-
teraction with another one, in such a way that quantum coherence is preserved. In
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6. Coherent feedback of a nanomechanical membrane with atomic spins

contrast to measurement-based feedback [62], coherent feedback does not rely on
measurements, thus avoiding the associated backaction and decoherence. Coher-
ent feedback can under certain conditions outperform measurement-based feed-
back in tasks such as cooling of resonators [63, 64], and it has been implemented
in solid state systems to enhance the coherence time of a qubit [98]. In optome-
chanical systems, it has been theoretically studied as a way to generate large non-
linearities at the single photon level [99, 100], to enhance optomechanical cooling
and state transfer [101], as well as for entanglement generation [101–103].

In the context of spin-mechanics interfaces, the mechanical oscillator can act as the
system to be controlled, i.e. the plant, which is coupled to a noisy thermal bath,
and the spin system as the controller, coupled to a zero-temperature bath. Coherent
feedback is achieved by coupling the two systems, thus reducing the noise in the
mechanical system by transferring it to the spin, where it is dissipated. Additional
coherent control of the spin enhances the cooling performance.

Hybrid systems combining atomic ensembles and mechanical oscillators have been
used for sympathetic cooling by coupling the mechanical vibrations of a mem-
brane to the center-of-mass oscillation of cold atoms in an optical lattice [13, 23].
In these systems the atomic motion was strongly damped and did not offer the
possibility for coherent control. Furthermore, optical traps for atoms cannot reach
MHz trapping frequencies without introducing substantial photon scattering and
dissipation, restricting this cooling scheme to low-frequency mechanical oscilla-
tors. In contrast, collective spin states of atomic ensembles offer long coherence
times and wide magnetic tuning of the spin precession frequency across the MHz
range. Crucially, a versatile quantum toolbox exists that provides sophisticated
techniques for ground-state cooling and quantum control [33, 40]. This makes it
possible to use the atomic spin as a coherent feedback controller, which can be
employed to efficiently cool and control the mechanical oscillator [104], e.g., via a
state-swap [65].

Here, we demonstrate coherent feedback control of a nanomechanical membrane
oscillator with the collective spin of an atomic ensemble and employ it to cool
the membrane. For this, we exploit the coherent control offered by our recently
demonstrated spin-membrane interface, where light mediates strong coupling be-
tween the two systems [14]. Using optical pumping on an internal atomic transi-
tion we can modify the spin damping rate and study the membrane cooling per-
formance in different regimes. We show that coherent state swaps alternated with
spin pumping pulses allow us to extract the noise from the mechanical system
in an efficient way, providing the largest cooling rate and reaching the phonon
steady-state faster than for continuous cooling. Finally, we study the effect of
feedback delay onto the steady-state temperature of the membrane in the light-
mediated coupling between the mechanical and spin systems. Our observations
agree well with a theoretical model.
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6.2. Setup

optical
pumping

Figure 6.1: Sketch of the light-mediated spin-membrane coupling. Light in-
teracts first with the spin, then with the membrane, and then again with the
spin. The propagation of the light leads to a feedback delay τ. On the way
back from the membrane to the spin, a π-phase is imprinted on the light, ren-
dering the spin-membrane interaction effectively Hamiltonian for zero-delay
τ = 0. The systems can be approximated by harmonic oscillators of frequen-
cies Ωm and Ωs with damping rates γm and γs coupling them to a bath with
n̄m,bath and n̄s,bath phonons, respectively. The oscillators are coupled at a rate g.
The spin damping rate can be increased by applying a σ−-polarized pumping
laser.

6.2 Setup

Our hybrid system consists of a mechanical oscillator and a collective atomic spin
coupled by laser light over a distance of 1 meter in a loop geometry (Fig. 6.1).
The mechanical oscillator is the (2, 2) square drum mode of a silicon-nitride mem-
brane [105], which has a vibrational frequency Ωm = 2π × 1.957 MHz and an
intrinsic quality factor Q = 1.4× 106. The membrane is placed in a single-sided
optical cavity of linewidth κ = 2π× 77 MHz, which enhances the optomechanical
coupling to external fields. The cavity is driven by an auxiliary laser beam (not
shown in Fig. 6.1) that is red-detuned from the cavity resonance, providing some
initial cavity optomechanical cooling of the membrane to 2 × 105 phonons [9].
The reflection of this beam is used to stabilize the cavity length and read out the
membrane displacement via homodyne detection (detailed in Sec. 4.5.1).

The collective spin is realised with an ensemble of 1.3× 107 cold 87Rb atoms con-
fined in an optical dipole trap. Strong coupling of the atomic ensemble to the

107



6. Coherent feedback of a nanomechanical membrane with atomic spins
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Figure 6.2: (a) Time traces of the membrane occupation number after turn-
ing on the coupling to the atoms. The different traces show measurements
with different spin damping rates γs. The dashed lines correspond to the sim-
ulation described in the text based on Eqs. (6.1) and (6.2). The dotted line
shows the membrane dynamics without atoms but with the coupling beam
turned on. (b) Power spectral density of the membrane displacement. The
dashed lines show a global fit to the data with the initial phonon occupation
〈b†

i bi〉(t = 0), Ωm, τ, g, and the detector shot noise level as global fit param-
eters and Ωs and γs as individual fit parameters. All other parameters were
taken from independent calibrations. In (a) and (b), solid lines correspond to
the mean and shaded areas to the standard deviation of 355 measurements.

light is ensured by its large optical depth d0 ≈ 300. The atomic spins are op-
tically pumped into the hyperfine ground state |F = 2, mF = −2〉 with respect
to a static magnetic field B0 = 2.8 G perpendicular to the propagation direction
of the coupling laser. The Larmor frequency Ωs ∝ B0 is tuned into resonance
with the membrane frequency Ωm. The spin precession is measured after the first
interaction with the coupling laser by picking up a small fraction of the light (cali-
bration shown in Sec. 3.5.1). The small-amplitude dynamics of the transverse spin
components can be described by a harmonic oscillator of frequency Ωs using the
Holstein-Primakoff approximation [33].

A coupling laser beam interacts first with the spin, then with the membrane, and
once again with the spin, as sketched in Fig. 6.1 and detailed in [14]. The coupling
beam with 1 mW optical power is slightly red-detuned with respect to the mem-
brane cavity and −2π × 40 GHz red-detuned from the 87Rb D2-line. It cools the
membrane further to n̄m,bath = 2.0× 104 phonons, which broadens its linewidth
to γm = 2π × 262 Hz. In presence of the coupling beam, the spin linewidth is
γs = 2π × 2.2 kHz. In the first spin-light interaction, the Xs quadrature of the
atomic spin is imprinted onto the coupling beam via the Faraday interaction [33],
resulting in a modulation of the radiation-pressure force on the membrane. Like-
wise, the membrane displacement Xm modulates the light reflected from the cav-
ity [9] which then creates a torque on the spin in the second interaction. On the
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6.3. Continuous Cooling

way back from the membrane to the spin, the optical field carrying the spin and
membrane signals is phase-shifted by π such that the effective spin-membrane
interaction is predominantly Hamiltonian and the backaction of the light on the
spin is suppressed [30]. Tracing out the light field and neglecting the propagation
delay for the moment, the resonant part of the effective spin-membrane interaction
is described by a beam splitter Hamiltonian HBS = h̄g(b†

s bm + b†
mbs), where bm (bs)

is the annihilation operator of a membrane (spin) excitation and g is the effective
spin-membrane coupling rate [14].

6.3 Continuous Cooling

Recently, we demonstrated strong coupling with this spin-membrane interface,
i.e. 2g > (γs + γm) ≈ γs [14]. Strong coupling is manifested by the hybridiza-
tion of the membrane and spin modes which leads to a normal mode splitting of
2g = 2π × 6.8 kHz in the spectrum as shown in Fig. 6.2(b). In the time domain,
strong coupling gives rise to state swaps between the spin and the membrane at
the coupling rate g. In Fig. 6.2(a) we show the time evolution of the membrane
occupation number after switching on the coupling beam. For 2g > γs, the ther-
mally excited membrane swaps its state with the spin, which is initially prepared
close to its ground-state, in half a period Tß = π/g of the energy exchange os-
cillations. After another half period, the thermal state is swapped back onto the
membrane but the phonon number is reduced due to the damping that occurred
in the spin system, whose linewidth is larger than that of the membrane. The
oscillations dephase after approximately 1 ms and a steady state with a membrane
occupation of n̄m,ss ≈ 2.3× 103 phonons is reached, corresponding to a temper-
ature decrease by two orders of magnitude compared to the initial state. In this
process the membrane is predominantly cooled via its coupling to the cold and
damped spin, reaching a temperature one order of magnitude lower than in the
presence of the optomechanical cooling beams alone.

We now study the effect of increasing the spin damping rate γs on the coupled dy-
namics. To increase γs we apply a σ−-polarized pump laser along the polarization
axis of the spin (calibration in Sec. 5.8). As can be seen in Fig. 6.2(a), increasing
γs first enhances the membrane cooling, until the overdamped regime γs � 2g is
reached where the membrane couples incoherently to a quasi-continuum of cold
spin fluctuations. The membrane decay is then governed by Fermi’s golden rule,
with the occupation number decreasing at the sympathetic cooling rate γsym ≈
4g2/γs, i.e. the cooling becomes less effective as γs is increased further. In this
weak-coupling regime, the modes decouple and the membrane spectrum shows a
single Lorentzian peak, broadened by the interaction with the spin, see Fig. 6.2(b).
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Figure 6.3: (a) Membrane and (b) spin occupation numbers for continuous
cooling at γs = 2g and stroboscopic cooling at γs = 0.6g. The gray shaded
areas indicate the spin pumping pulses (where γs ≈ 60g). Solid lines and
shaded areas correspond to the mean and standard deviation of 70 measure-
ments and dashed lines correspond to a simulation.

6.4 Stroboscopic Cooling

Previous experiments, which coupled a membrane to the motion of cold atoms
[13, 23], lacked both strong coupling and coherent control over the atoms. In con-
trast, our strongly coupled spin-membrane system allows us to implement more
elaborate coherent control schemes. In particular, we can combine strong coupling
and strong spin damping in a stroboscopic fashion in order to cool the membrane
much faster than in the continuous cooling case discussed above. In Fig. 6.3 we
show a comparison between stroboscopic and continuous cooling, where time
traces for (a) the membrane occupation number and (b) the spin occupation num-
ber are shown. In the stroboscopic sequence we perform a coherent π-pulse
(Tpulse = 100 µs, γs = 0.6g) to swap membrane and spin states. Afterwards, we ap-
ply an optical pumping pulse of duration Tpump = 10 µs which increases the spin
damping rate to γs ≈ 60g and depletes the spin occupation on a timescale much
shorter than the state swap (gray pulses in Fig. 6.3(b)). During the pumping pulse
the coupling is kept on. Since the spin is reinitialised close to the ground state,
the next coherent state swap does not transfer thermal energy back to the mem-
brane but only cools it further. It takes two to three such iterations of a coherent
π-pulse followed by a spin pumping pulse to reach the steady state (see Fig. 6.3).
Using this simple sequence, we can reach the membrane steady state temperature
of 216 mK (n̄m,ss = 2.3× 103 phonons) in around 200 µs, approximately a factor of
two faster than for continuous cooling. This exemplarily shows the advantage of
a coherent feedback controller, which enables faster cooling than if the membrane
is coupled with a similar rate to an incoherent, overdamped system.
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Figure 6.4: Steady state occupation of the membrane as a function of (a) spin
damping rate γs (at resonance, δ = 0) and (b) spin-membrane detuning δ =
Ωs −Ωm at γs = 0.6g. The solid (dashed) blue line shows the result of the
simulation with (without) delay. In (a), the red dashed-dotted line indicates
the steady-state number given by the rate in Eq. (6.3) with τ = 15 ns. The red
shaded area shows the region for which the dynamics is found to be unstable
using the Routh-Hurwitz criterion. For this measurement, n̄m,bath ≈ 4.0× 104

phonons and γm = 2π× 94 Hz (independently calibrated without atoms). The
data points with error bars correspond to the mean and the standard deviation
of steady state occupations of 20 (3) experimental realisations in (a) ((b)).

6.5 Theoretical Model

Further insight into the dynamics is gained by solving the equations of motion for
the coupled spin-membrane system [14],

Ẍm + γmẊm + Ω2
mXm = −2gΩmXs(t− τ) +Fm, (6.1)

Ẍs + γsẊs + Ω2
s Xs = −2gΩsXm(t− τ) +Fs, (6.2)

where terms on the left-hand-side describe the internal dynamics of the damped
oscillators and the first term on the right-hand-side describes the state swap dy-
namics including a propagation delay τ between the spin and the membrane. We
included the generalized Langevin forces Fm and Fs that capture stochastic force
terms due to quantum fluctuations, thermal and measurement backaction noise
(detailed in Appendix. A).

We used the following procedures to simulate our experimental results: for the
continuous cooling measurements, we first fitted the spectra for different γs in
Fig. 6.2(b) globally using a coupled-mode model (fit function given in Sec. 5.2).
From this fit, the extracted τ and Ωm were used as the input parameters for the
simulation. We adapted the technique described in [106] to numerically solve
the equations of motion (6.1) and (6.2) and compare the solution to our data (more
details are given in Appendix. A). To generate each time trace in Fig. 6.2(a) (dashed
lines) we fitted the numerical solution to our data with only γs and Ωs as free
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6. Coherent feedback of a nanomechanical membrane with atomic spins

parameters. The fit results show a systematic shift of Ωs with increasing spin
pumping power, likely due to the light shift induced by the circularly polarised
pumping laser (Fig. 5.7), and γs was observed to be larger than in the independent
calibration of Sec. 5.8.

For the stroboscopic cooling measurements, we took the fit parameters from the
continuous cooling measurement and ran the simulation with a time dependent
spin damping rate which was taken to be γs = 0.6g during the state swaps and
γs = 60g during the pumping pulses. The fit is shown for membrane and spin in
Fig. 6.3 as a dashed line. The good agreement between fit and data shows that our
model includes all the relevant factors which govern the coupled dynamics.

6.6 Delayed Feedback

Our hybrid spin-membrane system constitutes a coherent feedback network [64],
in which delayed feedback can give rise to instabilities [58, 107, 108]. In our ex-
periment, such instabilities show up as a spontaneous coupled oscillation of spin
and membrane, which we observe for certain values of the spin-membrane de-
tuning δ = Ωs −Ωm. Even at resonance, we have to include the feedback delay
to predict the experimentally measured steady state occupation of the membrane
accurately. In Fig. 6.4 we plot the measured and simulated occupation numbers
of the membrane in steady state as a function of γs [Fig. 6.4(a)] and δ [Fig. 6.4(b)].
At resonance and for Ωmτ � 1 (as in our system), the effect of the feedback delay
is most apparent in the limit of small γs. The model without delay (light-blue
dashed line) predicts a significantly smaller occupation number compared to both
what we observe in experiments and what is predicted by our model including
the feedback delay (blue solid line). In the large γs limit, the sympathetic cooling
rate is modified to

γsym ≈
4g2

4δ2 + γ2
s
[γs cos(2Ωmτ) + 2δ sin(2Ωmτ)] (6.3)

(see Sec. 5.3 for derivation). In this limit, the steady state occupation is given
asymptotically by 〈b†

mbm〉ss = n̄m,bathγm/(γm + γsym), shown as the red dashed-
dotted line in Fig. 6.4(a). The theory of coupled oscillators without delay predicts
optimal sympathetic cooling at the critical damping of γs = 2g (faded vertical
dotted line in Fig. 6.4). Including the feedback delay in the model, the mini-
mal occupation number shifts to larger γs (dark vertical dotted line), because the
self-oscillations have to be compensated by a higher spin damping rate. The ex-
perimental data confirms this theoretical prediction.

Furthermore, we find that the presence of delay lifts the symmetry in δ, as inferred
theoretically from Eq. (6.3) for large γs and shown both experimentally and the-
oretically in Fig. 6.4(b) for small γs = 0.6g. We see that the minimal steady state
occupation of the membrane is obtained for positive detuning δ, i.e. Ωs > Ωm,
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6.7. Discussion

Figure 6.5: Simulated steady state occupation of membranes for varying cryo-
stat temperature and different mechanical Q factors. Here, γs = 2g, δ = 0 and
τ = 15 ns. The insets show the current membrane with phononic shield used
in these experiments and a soft-clamped membrane for which Q ≈ 5× 107.

which is true in general for a feedback system with a delay of τ < π/(2Ωm).
For large enough negative δ, we observe that the coupling drives the system into
limit cycle oscillations, see Fig. 6.4(b). With our model we can attribute these self-
oscillations to the feedback delay. In this self-driven regime, the resulting mem-
brane occupation of 6.8× 107 exceeds the spin length by around a factor of three.
The emergence of such instabilities can be characterised using the Routh-Hurwitz
stability criterion [94], which indicates whether the real part of one of the normal
modes of the system reverses its sign (shown in Sec. 5.4). In Fig. 6.4 we indicate
such unstable regions for our coupled system by a shaded area. Our calculations
show that the precise value of δ at which the driving due to the loop delay exceeds
the damping of the coupled system depends on γs. Even at resonance [Fig. 6.4(a)]
self-oscillations are predicted for small enough γs.

The propagation delay is an interesting tuning knob for coherent feedback ex-
periments, which gives access to Hamiltonian and dissipative dynamics: We can
induce self-oscillations of the system, tune the dependence of the steady state on
system parameters such as damping rate and detuning, or even render the delay
negligible by tuning 2Ωmτ to a multiple of 2π.

6.7 Discussion

In our experiment, the cooling rate of the membrane due to its coupling to the
spin exceeds the cavity-optomechanical cooling rate by more than one order of
magnitude. The lowest achievable phonon occupation of the membrane is thus

113



6. Coherent feedback of a nanomechanical membrane with atomic spins

given by the competition of cooling the membrane with the spin and heating due
to its coupling to the room-temperature environment. In Fig. 6.5 we show the ex-
pected membrane steady state occupation for varying environment temperature
and two different membrane designs. In this calculation we include the cavity-
optomechanical cooling of the membrane (which has a negligible effect), the light-
mediated coupling to the spin including backaction of the light, as well as thermal
and quantum mechanical ground state fluctuations of both systems. The higher
quality factors Q > 5× 107 of soft-clamped membranes [48,109] would reduce the
thermal decoherence rate by a factor 25 and allow us to prepare the mechanical
oscillator close to its ground state in a 4 K environment. These technical improve-
ments would realize a mechanical oscillator whose phonon occupation is limited
by quantum backaction instead of thermal noise. While in the current coupling
scheme the double pass eliminates backaction on the atomic spin, a large mem-
brane quantum cooperativity Cm > 1 would favor a double pass scheme with
coherent cancellation of quantum backaction on the membrane. This would lead
to a higher quantum cooperativity for the spin-membrane coupling [30]. Further,
the feedback control of the membrane could be improved by increasing the quan-
tum cooperativity of the spin system. This involves gaining a better understanding
of the spin decoherence sources and achieving a larger spin-light coupling rate.

In this work we implemented a relatively simple coherent feedback sequence
based on coherent state swaps of pulse area π interleaved with short spin pumping
pulses. In the future, it would be interesting to explore more elaborate feedback
sequences to optimize the cooling in a specific situation. For example, the duty
cycle of the stroboscopic cooling sequence could be changed over time to cool a
mechanical oscillator with a high initial occupation that exceeds the spin length.
Initially, short coupling pulses of pulse area � π could remove excitations with-
out saturating the spin, and once the phonon number is sufficiently reduced, the
pulse area could be increased to minimize the final temperature.

Our coherent feedback cooling scheme is a rather general technique that can be
applied to any physical system with a strong light-matter interface. This includes
cavity optomechanical systems or mechanical oscillators without an optical cavity.
Moreover, similar cooling schemes could be implemented in the microwave do-
main with electromechanical oscillators [26] coupled to solid-state spin systems.
The macroscopic distance between the feedback controller and the target system
enables modular control schemes in analogy to classical feedback in electrical en-
gineering. This opens up the new possibility to use coherent feedback control in
quantum networks.

The coherent control and bidirectional Hamiltonian coupling employed in this
work pave the way towards more elaborate quantum protocols such as the gen-
eration of non-classical mechanical states via state swaps [65] as well as further
studies of coherent feedback in the quantum regime [60–63].
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Chapter 7

Conclusion and Outlook

In this thesis, we reported on the demonstration of coherent feedback cooling
of a nanomechanical membrane using atomic spins [66]. The coherent feedback
builds on and exploits the strong, bidirectional Hamiltonian coupling between the
two systems [14, 30, 59]. We were able to access different cooling regimes with the
control on the spin damping rate and developed a more efficient cooling strategies
using the concept of coherent feedback.

In Chapter 6, we showed that we can exploit the spin-membrane state swaps and
combine with the coherent control pulsed pumping on the spin to achieve more
efficient cooling [64, 66] than the overdamped cooling regime. Nevertheless, our
result only constitutes an example of an experimental implementation in the vast
field of quantum coherent feedback [61, 62, 64]. Specifically, the discussion of the
role of propagation delay in our main result (see Sec. 6.6 in Chapter 6) hinted to
a more rigorous experimental study of the double pass via the individual spin
membrane light-matter interface. We can send laser light twice through the spin
or membrane and study the effect of varying length of the optical fiber or the loop
phase between the two passes. For example, we can send light on the spin twice to
study the effect of dynamical backaction in analogy to cavity optomechanics using
the retarded nature of the feedback force. Moreover, such double pass scheme also
allows the study of one-axis twisting Hamiltonian Hs,int = h̄2ΓsX2

s [30,110], which
is an important ingredient to generate spin-squeezed state and entanglement for
quantum metrology [40].

Another important goal of our experiment is to achieve quantum coherent cou-
pling between the spin and membrane, which is a stronger condition than strong
coupling [96]. The coupling strength g must exceeds the thermal decoherence rates
of both systems. To achieve this, the individual spin/membrane interface need to
be upgraded. On the membrane side, we are currently exploring the new soft-
clamped membranes which have demonstrated quality factor of Qm ≈ 107 − 108

[48] at room temperature. With the higher quality factor and the aid of cryogenic
pre-cooling, we can attempt sympathetic cooling of the membrane to the ground
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7. Conclusion and Outlook

state using the spin. On the spin side, we still need to understand the mismatch
between the observed spin damping rate to that expected from spontaneous emis-
sion. One possibility is that there is inhomogeneous broadening resulted from the
vector or tensor light shift. In addition, it is worth to vary the atomic ensemble
and probe beam geometry experimentally to verify if the spin measurement rate is
consistent with the non-uniform atom-light coupling description as discussed in
the Chapter 3 [73]. It would be interesting to study the quantum limits of the indi-
vidual coherent feedback systems and eventually the quantum coherent coupling
between the spin-membrane system.

To sum up, we have demonstrated the first application of our strong coupling
control offered by our spin-membrane system, i.e. to use the spin as a quan-
tum feedback controller to cool a nanomechanical membrane [66]. Such cooling
strategy has already been put forward to be an interesting alternative solution to
experimental systems to perform cooling without the need of an optical cavity as
an interesting application [64]. Our results only marks the beginning of an in-
teresting exploration in the field of coherent feedback. With future endeavor and
progress towards realizing the spin membrane interface in the quantum-limited
regime, our coherent hybrid platform can find interesting applications for quan-
tum control such as hybrid quantum network [111], state swaps of squeezed states
from the spin to the membrane and entanglement [60–63].
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Appendix A

Simulation of the spin-membrane
dynamics

We present a theoretical simulation algorithm [106] that enables one to fit the
time trace of the coupled spin membrane dynamics including the stochastic noise
terms. From the Heisenberg-Langevin equations Eqs. 5.5-5.8, we present how
we adapt the algorithm in [106] to perform stochastic simulation for our spin
membrane system. The stochastic simulation are required to correctly account for
the number of excitations of the coupled oscillator in the time domain of our main
sympathetic cooling result. For the purpose of context, we consider the equations
of motion for Xj and Pj with j ∈ (m, s) restricted to loop phase of φ = π:

Ẋm(t) = ΩmPm(t) (A.1)
Ṗm(t) = −ΩmXm(t)− γmPm(t)− 2gXs(t− τ)−Fm(t) (A.2)
Ẋs(t) = ΩsPs(t) (A.3)
Ṗs(t) = −ΩsXs(t)− γsPs(t) + 2g cos(φ)Xm(t− τ)−Fs(t) (A.4)

where we have introduced the generalized noise forces Fj(t) =
√

2γjF
(tot)
j (t). The

total force noise F(tot)
j (t) includes the thermal noise F(th)

j (t) and the back-action

noise F(ba)
j (t) which itself depends on the optical vacuum noise F(in)

j (t). Thus, it
is given by

F(tot)
j (t) = F(th)

j (t) + F(ba)
j (t)

= F(th)
j (t) +

√
2Γj

γj
F(in)

j (t)
(A.5)

where Γj is the measurement rate of the individual systems. To further simplify
the above equations, we move to a frame rotating at the membrane frequency Ωm

X̃j = Xj cos (Ωmt)− Pj sin (Ωmt)

P̃j = Xj sin (Ωmt) + Pj cos (Ωmt)
(A.6)
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A. Simulation of the spin-membrane dynamics

Let’s work through a single example e.g. ˙̃Xm(t)

˙̃Xm(t) = Ẋm(t) cos(Ωmt)− XmΩm sin(Ωmt)− Ṗm(t) sin(Ωmt)− PmΩm cos(Ωmt)
= γm sin(Ωmt)Pm(t) + 2g sin(Ωmt)Xs(t− τ) +Fm sin(Ωmt)

(A.7)
Here, we consider the limit where the propagation delay is small compared to
other timescales involved in the coupled dynamics (i.e. τ � γ−1

j , g−1, δ−1), where
we introduced the spin-membrane detuning δ = Ωs − Ωm. Therefore, we may
approximate1 Xs(t− τ) ≈ Xs cos(Ωsτ) + Ps sin(Ωsτ). Substituting the lab frame
operators Xj, Pj by slow varying operators X̃j, P̃j, and applying the rotating wave
approximation (i.e. dropping 2Ωm term),

cos2(Ωmt) =
1 + 2 cos(2Ωmt)

2
≈ 1/2

sin2(Ωmt) =
1− 2 cos(2Ωmt)

2
≈ 1/2

cos(Ωmt) sin(Ωmt) =
sin(2Ωmt)

2
≈ 0

(A.9)

The slow varying membrane position quadrature ˙̃Xm(t) now reads

˙̃Xm(t) = −γmP̃m/2 + g[sin(Ωmτ)X̃m(t) + cos(Ωmτ)P̃m(t)] +Fm sin(Ωmt)
(A.10)

Repeating similar calculations, we get the new equations of motion in slowly vary-
ing operators

d
dt


X̃m(t)
P̃m(t)
X̃s(t)
P̃s(t)

 = −M


X̃m(t)
P̃m(t)
X̃s(t)
P̃s(t)

+


− sin (Ωmt)Fm(t)
cos (Ωmt)Fm(t)
− sin (Ωmt)Fs(t)
cos (Ωmt)Fs(t)

 , (A.11)

where we have split the dynamics into the 4 × 4 time independent dynamical
matrix

M =


γm/2 0 −g sin (Ωmτ) −g cos (Ωmτ)

0 γm/2 g cos (Ωmτ) −g sin (Ωmτ)
−g sin (Ωmτ) −g cos (Ωmτ) γs/2 −δ
g cos (Ωmτ) −g sin (Ωmτ) δ γs/2

 (A.12)

1Using the general oscillator solution for Xs(t) and Ps(t),

Xs(t− τ) = Xs(0) cos(Ωs(t− τ)) + Ps(0) sin(Ωs(t− τ))

= Xs(0)[cos(Ωst) cos(Ωsτ) + sin(Ωst) sin(Ωsτ)] + Ps(0)[sin(Ωst) cos(Ωsτ)− cos(Ωst) sin(Ωsτ)]

≈ Xs(t) cos(Ωsτ) + Ps(t) sin(Ωsτ)
(A.8)
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and the stochastic noise part, which is now entering both X̃j and P̃j. The noise

terms F(ν)
j (t), ν ∈ (th, in) can be expressed explicitly in terms of the product of a

noise amplitude and a zero mean, delta correlated noise f (ν)j (t):

F(th)
j (t) =

√
n̄j, bath +

1
2

f (th)j (t),

F(in)
m (t) =

√
η2

2
f (in)m (t),

F(in)
s (t) =

√
1− η4

2
f (in)s (t),

(A.13)

where η2 ≈ 0.82 is the power transmission coefficient of the light between the spin
and the membrane and n̄j,bath is the number of thermal phonons in the individual
system. The number of thermal phonons of the membrane of the membrane n̄m,bath
was measured by homodyne detection in presence of all laser beams but without
loading the atoms. This calibrated value agrees very well with an estimation from
comparing the spectral linewidth in presence of the cooling and coupling beams
with the spectral linewidth of the uncooled membrane and the calculated room
temperature occupation of the membrane. We assumed the spin pumping to be
perfect such that the spin oscillator environment is in its quantum mechanical
ground state (i.e. n̄s,bath = 0).

Stochastic simulation algorithm

The approach given in [106] allows for an exact simulation of the stochastic dy-
namics for a single oscillator for arbitrary time steps, which we extend to the case
of two coupled oscillators with delay. This is done by calculating for each time
step the coherent evolution and the noise separately:

X̃m(ti+1)
P̃m(ti+1)
X̃s(ti+1)
P̃s(ti+1)

 = e−M∆t


X̃m(ti)
P̃m(ti)
X̃s(ti)
P̃s(ti)

+


∆X̃ti→ti+1

m

∆P̃ti→ti+1
m

∆X̃ti→ti+1
s

∆P̃ti→ti+1
s

 , (A.14)

where ∆t = ti+1− ti is one simulation time step, and ∆X̃ti→ti+1
j , ∆P̃ti→ti+1

j are terms
for the stochastic noise which enters the system in between time ti and ti+1. We
performed the simulation at time steps comparable to the oscillation period Ω−1

m .
Thus, the noise terms ∆X̃ti→ti+1

j and ∆P̃ti→ti+1
j are correlated which is taken into ac-

count by following the calculation of noise variances and covariances in [106]. Be-
cause the coupling between the two oscillators is much slower than the simulation

2For perfect transmission, i.e. no optical losses η2 = 1, and the optical vacuum noise destructively
interferes.
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A. Simulation of the spin-membrane dynamics

time step g� Ωm ≈ ∆t−1 we neglect the correlation of noise building up between
the oscillators during one simulation step. Thus, we can treat the noise of both
oscillators separately. In order to simulate the system more efficiently, we perform
the simulation in time steps of multiples of one frame rotation ∆t = k · 2π/Ωm,
k = 1, 2, 3... such that the noise amplitudes [proportional to sin(Ωmt), cos(Ωmt),
see Eq. (A.11)] are the same for each the step of the simulation.
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Michael Köhl, and Tilman Esslinger. Cavity QED with a Bose–Einstein con-
densate. Nature, 450(7167):268–271, November 2007.

[35] A. E. Kozhekin, K. Mølmer, and E. Polzik. Quantum memory for light. Phys.
Rev. A, 62:033809, Aug 2000.

[36] Ivan H. Deutsch and Poul S. Jessen. Quantum control and measurement of
atomic spins in polarization spectroscopy. Optics Communications, 283:681–
694, 2010.

[37] E. M. Eugeniy and I. Novikova. Low-frequency vacuum squeezing via po-
larization self-rotation in rb vapor. Optics Letters, 33, 2008.

[38] A. Kuzmich, L. Mandel, and N. P. Bigelow. Generation of spin squeezing via
continuous quantum nondemolition measurement. Phys. Rev. Lett., 85:1594–
1597, Aug 2000.

[39] B. Julsgaard, A. Kozhekin, and E. S. Polzik. Experimental long-lived entan-
glement of two macroscopic objects. Nature, 413:400–403, 2001.
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