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Abstract

Hybrid systems combining mechanical oscillators and ultracold atoms provide novel
opportunities for cooling, detection and quantum control of mechanical motion with
applications in precision sensing, quantum-level signal transduction and for funda-
mental tests of quantum mechanics.

In this thesis I present experiments performed with a hybrid atom-membrane
system, in which the vibrations of a Si3N4 membrane in an optical cavity are cou-
pled to the motion of laser-cooled atoms in an optical lattice. The interactions are
mediated by the lattice light over a macroscopic distance and enhanced by the cavity.

Via the coupling to the cold atoms, the fundamental vibrational mode of the
membrane at 2π × 276 kHz is cooled sympathetically from room temperature to
0.4(2) K, even though the mass of the mechanical oscillator exceeds that of the
atomic ensemble by a factor of 4 × 1010. In other systems, sympathetic cooling
of molecules with cold atoms or ions has been limited to mass ratios of up to 90.
Previous theoretical work has shown that our coupling mechanism is able to cool the
membrane vibration into the ground state and to perform coherent state transfers
between atomic and membrane motion.

Under certain experimental conditions, the atom-membrane system shows self-
oscillations, which arise from an effective delay in the backaction of the atoms onto
the light. This retardation drives the system into limit-cycle oscillations if the cou-
pling is large. I study the dependence of this instability on several system parameters
and find that a larger atom number and a smaller atom-light detuning make the sys-
tem less stable. Further, the stability of the coupled system in presence of a delay is
investigated theoretically and a modified expression for the sympathetic cooling rate
is derived. This model allows to fit the measured atom number dependence with a
delay of τ = 88(1) ns. Moreover, direct measurements of the atomic backaction onto
the lattice light are presented. These show phase lags exceeding 180◦ in parameter
regimes where the instability is observed, proving that the retardation arises within
the atomic ensemble. Finally, I present the results of numerical simulations, which
show that collective atomic effects within the atomic ensemble in an asymmetric
lattice are able to induce the observed phase lag in the atomic backaction.

i



ii



Contents

Abstract i

Introduction 1

1 Theory of atomic and membrane oscillators coupled with light 5

1.1 Atom-light interaction . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Polarizability of a two-level atom . . . . . . . . . . . . . . . . 6

1.1.2 Scattering rate, scattering cross section and optical depth . . 8

1.1.3 Laser cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.4 Optical dipole traps . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.5 Temperature, density distribution and ballistic expansion . . 12

1.1.6 Atoms as optical element - Transfer matrix formalism . . . . 13

1.2 Membrane-in-the-middle optomechanics . . . . . . . . . . . . . . . . 19

1.2.1 Mechanical resonators . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Membrane-in-the-middle of a cavity . . . . . . . . . . . . . . 22

1.2.3 Optomechanical Hamiltonian and coupling strength . . . . . 27

1.2.4 Optical spring effect and optomechancial damping . . . . . . 28

1.2.5 Tbath in presence of laser noise . . . . . . . . . . . . . . . . . 29

1.2.6 Displacement sensing . . . . . . . . . . . . . . . . . . . . . . . 30

1.2.7 Minimal phonon occupation number and optomechanical co-
operativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Hybrid atom-membrane system . . . . . . . . . . . . . . . . . . . . . 32

1.3.1 Coupled equations of motion . . . . . . . . . . . . . . . . . . 33

1.3.2 Coupling Hamiltonian and coupling strength . . . . . . . . . 35

1.3.3 Sympathetic cooling . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.4 Ensemble-integrated sympathetic cooling rate . . . . . . . . . 37

1.3.5 Ground state cooling and atom-membrane cooperativity . . . 38

2 A membrane oscillator in a cavity 41

2.1 Stochiometric SiN Membranes . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.2 Mechanical frequencies . . . . . . . . . . . . . . . . . . . . . . 42

2.1.3 Q-factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iii



Contents

2.2 Cavity design and vacuum setup . . . . . . . . . . . . . . . . . . . . 44

2.2.1 Design criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2.2 Cavity design and vacuum setup . . . . . . . . . . . . . . . . 45

2.3 Optical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.1 Light preparation . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 PDH-lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.3 Homodyne detection . . . . . . . . . . . . . . . . . . . . . . . 51

2.3.4 Coupling and cooling light . . . . . . . . . . . . . . . . . . . . 52

2.3.5 Cavity transmission . . . . . . . . . . . . . . . . . . . . . . . 52

2.4 System characterization and optomechanical performance . . . . . . 52

2.4.1 Static optical properties . . . . . . . . . . . . . . . . . . . . . 53

2.4.2 Optomechanical behavior . . . . . . . . . . . . . . . . . . . . 56

2.5 Comparison with first-generation setup . . . . . . . . . . . . . . . . . 60

3 Preparation of cold and dense atomic clouds 63

3.1 87Rubidium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Vacuum system and magnetic fields . . . . . . . . . . . . . . . . . . 64

3.3 Laser system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Coupling lattice potential . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Absorption imaging of dense atomic clouds . . . . . . . . . . . . . . 70

3.5.1 Main imaging system . . . . . . . . . . . . . . . . . . . . . . 70

3.5.2 Imaging along the coupling lattice . . . . . . . . . . . . . . . 71

3.5.3 Principle of absorption imaging . . . . . . . . . . . . . . . . . 72

3.5.4 Calibration of α . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.5.5 Imaging very dense clouds . . . . . . . . . . . . . . . . . . . . 74

3.6 Experimental control . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Characterization of experimental sequences . . . . . . . . . . . . . . 77

3.7.1 Standard MOT and molasses generation . . . . . . . . . . . . 77

3.7.2 Preparation of ensembles with very high OD . . . . . . . . . 81

4 Sympathetic cooling of a membrane oscillator in a hybrid mechanical-
atomic system 83

4.1 Experimental setup of the hybrid system . . . . . . . . . . . . . . . . 83

4.2 Time-resolved sympathetic cooling with red and blue detuning . . . 85

4.2.1 Experiment 1 - First observation of sympathetic cooling . . . 85

4.2.2 Experiment 2 - Repetition of the results with the new setup . 87

4.2.3 Experiment 3 - Sympathetic cooling in a blue-detuned lattice 90

4.3 Spectrally-resolved sympathetic cooling . . . . . . . . . . . . . . . . 90

4.3.1 Experiment 4 - Studying the resonant behavior . . . . . . . . 90

4.3.2 Experiment 5 - Repetition of the results with the new setup . 92

4.4 Experiment 6 - Atomic density dependence of sympathetic cooling rate 94

4.4.1 From rates expected versus observed cooling factor . . . . . . 95

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iv



Contents

5 Self-oscillations in a delay-coupled atom-optomechanical system 101
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2.2 Frequency domain . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Theory of a coupled atom-membrane system with delay . . . . . . . 109
5.3.1 Stability analysis of equations of motion with delay . . . . . . 110
5.3.2 Modified sympathetic cooling rate . . . . . . . . . . . . . . . 114
5.3.3 Fit to measured total damping rate . . . . . . . . . . . . . . . 115
5.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.4 Retardation between the systems . . . . . . . . . . . . . . . . . . . . 116
5.4.1 Varying the propagation distance . . . . . . . . . . . . . . . . 117
5.4.2 Non-atom-induced instability . . . . . . . . . . . . . . . . . . 119
5.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.5 Influence of system parameters . . . . . . . . . . . . . . . . . . . . . 123
5.5.1 Red versus blue-detuned lattice . . . . . . . . . . . . . . . . . 123
5.5.2 Lattice parameter dependence . . . . . . . . . . . . . . . . . . 126
5.5.3 Repump power dependence . . . . . . . . . . . . . . . . . . . 129
5.5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.6 Atomic backaction onto the light . . . . . . . . . . . . . . . . . . . . 130
5.6.1 Measurement setup . . . . . . . . . . . . . . . . . . . . . . . . 130
5.6.2 Expected behavior from existing theory . . . . . . . . . . . . 131
5.6.3 Application of the stability criterion . . . . . . . . . . . . . . 134
5.6.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.7 Collective atomic effects in an asymmetric lattice . . . . . . . . . . . 146
5.7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.7.2 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . 148
5.7.3 Results of the simulation . . . . . . . . . . . . . . . . . . . . 149
5.7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.8 Summary and final conclusion . . . . . . . . . . . . . . . . . . . . . . 156

6 Conclusions and outlook 157

A Sympathetic cooling rate in presence of delay 163

B Acronyms 167

List of Figures 169

List of Tables 173

Bibliography 175

v



Contents

vi



Introduction

The quantum harmonic oscillator is a well-known quantum mechanical problem,
which is part of every physics student’s curriculum [1]. Since the discovery of laser
cooling techniques [2, 3] quantum mechanical harmonic oscillators have been realized
routinely with atoms and ions and are now used for a great variety of quantum
mechanics experiments. For more macroscopic massive harmonic oscillators, there
is not yet a standard procedure to bring the vibrations into the quantum regime.
However, it is a desirable goal. As its mechanical motion can be coupled to electric,
magnetic and optical fields, a mechanical oscillator in a low-entropy quantum state
can be an extraordinary sensor for small forces [4, 5] or can be functionalized as a
signal transducer in a quantum circuit [6, 7, 8, 9]. Further, macroscopic quantum
mechanical oscillators allow tests of quantum mechanics in a radically new parameter
regime [10, 11].

The relatively young research field of optomechanics develops techniques to gain
coherent quantum control over mechanical motion using the radiation pressure force
[12]. Various mechanical systems are being investigated including cantilevers with
mirrors [13, 14], membranes in optical [15, 16, 17] or microwave [18, 19, 20, 21]
cavities, torroidal resonators [22], levitated particles [23, 24, 25, 26], photonic crystal
nanobeams [27], clouds of atoms [28, 29, 30, 31], piezo-electric mechanical oscillators
[32] or nanobeams [33, 34]. By now, several milestones have been achieved such as
ground state cooling [32, 27, 18, 17, 35], strong coupling between light and mechanics
[36, 22, 37], the observation of radiation pressure noise [38] or squeezing of light
[39, 40] and the mechanical motion [20, 21, 41].

One branch of the mechanics community aims at coupling mechanical oscillators
to microscopic quantum systems [42, 43]. Such hybrid quantum systems are of
particular interest for precision sensing and quantum-level signal transduction as
advantages of different physical systems can be combined. Diverse combinations
including mechanics coupled to NV-centers [44, 45, 46, 47, 48, 49], semiconductor
quantum dots [50, 51], superconducting qubits [32, 52, 53] or atoms [28, 29, 54, 55, 56]
are being explored. Besides optomechanical coupling, also coupling via strain or
magnetic field gradients is investigated.

Ultracold atoms are an extremely well-controlled quantum system. The prepa-
ration of the motional quantum ground state is state of the art in atom and ion
experiments [57, 2, 3]. The internal state of atoms can be coherently manipulated
and detected on a single quantum level [58]. By now, even interactions between
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Figure 1: Illustration of the hybrid atom-membrane system. The membrane
oscillator is placed inside a single-sided Fabry-Pérot-cavity. A laser beam from
the right drives the system and mediates the interactions. It is reflected off the
cavity and creates a lattice potential for the atoms. Figure courtesy of Tobias
Kampschulte.

the atoms can be engineered [59]. Cold atoms have been used extensively to test
the prediction of quantum mechanics e.g. via the well-known realization of Bose-
Einstein-condensation [60, 61]. They are used to define our time standard in atomic
clocks [62], as sensitive detectors of fields and forces [63, 64], quantum simulators
[65, 59] or elements of quantum information circuits [66, 67]. The abilities to control
cold atoms on the quantum level makes them a promising partner in a hybrid system
providing novel opportunities for the coherent manipulation of mechanical motion.
Proposals exist for sympathetic cooling [68, 69, 70, 71], creating atom-membrane
entanglement [72, 71] and controlling the oscillator on the single quantum level [73].

First experiments have shown coupling between atoms and mechanics but the
effects were too weak to manipulate the mechanical vibration significantly. In [54]
and [56] a mechanical oscillator with a magnetic tip was coupled to the spins of an
atomic ensemble. In [28] coupling between a cantilever and a BEC was realized via
surface forces. All three experiments show a modification of atomic properties by
the oscillator but not the backaction of the atoms onto the oscillator. In [29] our
group coupled a membrane oscillator to the motion of an atomic ensemble via optical
forces and showed, for the first time, a modification of the membrane damping rate
in presence of the atomic ensemble. Still, the atomic damping was too weak to
observe a reduction of the membrane temperature.

This thesis describes experiments with an improved atom-membrane hybrid sys-
tem, in which the vibrations of a Si3N4 membrane in an optical cavity are coupled
to the motion of laser-cooled atoms. The interaction is mediated by laser light over
a macroscopic distance. Figure 1 illustrates how a laser beam from the right drives
the system. The back mirror of the cavity is almost perfectly reflective so that most

2



Introduction

of the light leaves the cavity through the input port and interferes with the ingoing
light. If the light is detuned from the atomic transition, the standing wave forms
a lattice potential for the atoms, in which they oscillate with axial frequency Ωa.
A displacement of the membrane inside the cavity detunes the coupling light from
the cavity and induces a phase shift of the reflected light. The vibrations of the
membrane in the cavity at frequency Ωm thus displace the lattice potential wells
periodically. If Ωa ≈ Ωm, this leads to a resonant coupling between membrane and
atom motion. Vice versa, if the atoms move back and forth in the potential wells,
they modulate the power in the lattice beams and by this the radiation pressure
force on the membrane. The presence of the cavity enhances the coupling in both
directions compared to the experiment presented in [29]. If we apply laser-cooling
to the atoms, we can extract energy from the coupled system.

With this setup we could, for the first time, exploit a hybrid atom-membrane
system for a useful task. We sympathetically cooled the fundamental membrane
vibration from room temperature to 650(230) mK [55] and later slightly further down
to 0.4(2) mK via the coupling to the atoms. The cooling is limited by technical noise
on the laser and the cavity piezos.

Under certain experimental conditions, the atom-membrane system shows self-
oscillations, which arise from an effective delay in the backaction of the atoms onto
the light. Most likely this effective delay is caused by collective effects within the
atomic ensemble. It drives the system into limit cycle oscillations if the coupling
is large, demonstrating impressively the ability of the atomic ensemble to influence
the motional state of the oscillator.

Our experiments are a first big step towards a strongly coupled hybrid atom-
membrane system. With further improvements on the membrane and atomic side
such as cryogenic pre-cooling of the membrane, using a low-noise laser and increasing
the atomic optical depth, coherent quantum control of the mechanical oscillator via
an atomic ensemble will be in reach in the not too distant future.

Thesis outline

I start in chapter 1 with a theoretical description of the hybrid system. Subse-
quently, I present and characterize the optomechanical system, chapter 2, and the
atomic system, chapter 3. In chapter 4 the results of several sympathetic cooling
experiments are presented. After that, in chapter 5, I investigate the self-oscillation
phenomenon. Finally, I give an outlook on ongoing and future work in chapter 6.

Contributions to publications

1. A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treut-
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the internal states of an atomic ensemble. New Journal of Physics 17, 043044
(2015).
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Switzerland, Award for Best Contribution
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Chapter 1

Theory of atomic and membrane
oscillators coupled with light

This chapter reviews the theoretical background of our atom-membrane system.
The parameters which will be used later on in this thesis will be introduced and all
important relations will be presented.

The chapter starts with a look at the atomic side of our coupled system. I
investigate the forces an electromagnetic field exerts on a neutral atom and discuss
the two most relevant applications of these forces for this thesis, namely optical
cooling [2, 74] and trapping [75]. Thereafter, I will introduce the transfer matrix
formalism method [76, 77, 78], which allows to describe both, the forces on the atom
as well as the backaction of the atom onto the light field in a unified picture. In
our earlier works [29, 55, 43] we always treated these two aspects of the atom-light
interaction separately.

In the second part, the key parameters and relations for a membrane-in-the-
middle optomechanical system are presented. A detailed description of optome-
chanical coupling in a membrane-in-the-middle (MIM) system is given for instance
in [79] or [80]. Here, I will give only a short summary of the relevant quantities.

In the last section, the transfer matrix model is extended to describe the coupled
atom-membrane system using the results from the first two parts. The sympathetic
cooling rate will be derived from the coupled equations of motion and the quantum
limits of sympathetic cooling will be discussed.

1.1 Atom-light interaction

This section treats the effects which the interaction with laser light has on a neu-
tral atom. Within a semiclassical model I will sketch the derivation of the atomic
polarizability, an important quantitiy for the remaining course of this thesis. Fur-
ther, I present the two important forces for laser cooling and trapping of atoms,
the radiation pressure and the dipole force, which we exploit to prepare cold atomic
ensembles in an optical lattice. A rigorous derivation of these forces from the semi-

5



1.1. Atom-light interaction

Figure 1.1: Schematic of a two-level atom. Ground state |g〉 and excited state
|e〉 are separated by the transition frequency ω0. Laser light at frequency ω is
detuned from the atomic transition by ∆LA = ω − ω0.

classical theory is presented in various textbooks and review papers [2, 74, 75, 81].
I will only summarize the results that are relevant for this thesis.

1.1.1 Polarizability of a two-level atom

In the following, the atom-light interaction will be treated within a semiclassical
model, in which the light is described as a classical field and the atom as a quantized
two-level system. Even though the electronic structure of the real Rubidium atom
is much more complicated [82], this model is very powerful. Doppler cooling of
87Rb is performed on the |F = 2,mF = 2〉 ↔ |F ′ = 3,m′F = 3〉 transition. Driven
by circularly polarized light, this so called cycling transition forms an effective two-
level system. For optical dipole trapping with linearly-polarized far-detuned laser
light, the interaction of light with the complicated level structure can be described
by the two-level results with a modified transition strength. Thus, many results of
the simple two-level model are directly applicable to the real atom.

The two-level model specifically refers to an atom with ground state |g〉 and
excited state |e〉 with a transition frequency of ω0 = (Ee − Eg)/~ as depicted in
figure 1.1 and an atomic Hamiltonian ĤA = ~ω0 |e〉 〈e|. The ingoing classical laser
field E = E0 cos(ωt) is detuned by ∆LA = ω − ω0 from the atomic transition. In
dipole approximation the interaction can be described by the following Hamiltonian
[2, 74]

ĤI = −d̂ ·E , (1.1)

where d̂ = −er̂ is the dipole operator and e = 1.6 × 10−19 C the charge of the
electron. One can define the Rabi frequency of the interaction

ΩR =
deg ·E0

~
, (1.2)

where deg = 〈e| er̂ |g〉 the dipole matrix element. In presence of spontaneous emis-
sion, the dynamics of the interaction can be described by the following master equa-

6



Chapter 1. Theory of atomic and membrane oscillators coupled with light

tion for the atomic density operator [83]

dρ̂

dt
=

1

i~
[ĤA + ĤI , ρ̂] + Γ 〈e| ρ̂ |e〉 |g〉 〈g| − Γ

2
(|e〉 〈e| ρ̂+ ρ̂ |e〉 〈e|) , (1.3)

where Γ is the decay rate of the atomic population in the excited state induced by
the coupling of the atom to the vacuum modes of the electromagnetic field. Taking
this coupling to the vacuum modes explicitly into account, one can show that Γ is
connected to the dipole matrix element deg via [84]

Γ =
ω3

0|deg|2

3πε0~c3
. (1.4)

Inserting the Hamiltonian from equation 1.1 into equation 1.3 leads to four cou-
pled differential equations for the entries of the atomic density matrix. Within
the rotating wave approximation, which is applicable if (|∆LA|,ΩR) � ω and in a
rotating reference frame, the so called optical Bloch equations read [2]:

ρ̇ee =
i

2
(Ω∗Rρeg − ΩRρge)− Γρee ,

ρ̇gg = − i
2

(Ω∗Rρeg − ΩRρge) + Γρee ,

ρ̇eg =
i

2
ΩR(ρee − ρgg)−

(
Γ

2
− i∆LA

)
ρeg ,

ρ̇ge = − i
2

Ω∗R(ρee − ρgg)−
(

Γ

2
+ i∆LA

)
ρge = ρ̇∗eg . (1.5)

Setting the left side of the equations to zero and using that the total population
of the atom is conserved, ρgg + ρee = 1, one can find the steady state populations
and coherences

ρst
ee =

|ΩR|2

Γ2 + 4∆2
LA + 2|ΩR|2

,

ρst
gg = 1− |ΩR|2

Γ2 + 4∆2
LA + 2|ΩR|2

,

ρst
eg =

ΩR(2∆LA − iΓ)

Γ2 + 4∆2
LA + 2|ΩR|2

,

ρst
ge =

Ω∗R(2∆LA + iΓ)

Γ2 + 4∆2
LA + 2|ΩR|2

. (1.6)

The steady state solution of the density matrix allows to calculate the average
value of the induced atomic dipole moment in the steady state [74, 85]

〈d̂st〉 = Tr(ρstd̂) = 2 Re(−ρst
egdge)

= Re

(
−2
|dge|2

~
2∆LA − iΓ

Γ2 + 4∆2
LA + 2|ΩR|2

E0

)
!

= Re(αE0) . (1.7)

7



1.1. Atom-light interaction

In the last line of equation 1.7 the complex polarizability of the atom, α, [85, 78] has
been introduced. It will be the the basis for the derivations presented in the suc-
ceeding section 1.1.6. In the limit of large detuning (|∆LA| � Γ) and low saturation
(|ΩR| � |∆LA|) and using equation 1.4, it can be written as

α ' −|dge|
2

~
1

∆LA

[
1 + i

Γ/2

(−∆LA)

]
=

Γ/2

(−∆LA)

3

4π2
ε0λ

3

[
1 + i

Γ/2

(−∆LA)

]
. (1.8)

1.1.2 Scattering rate, scattering cross section and optical depth

According to equation 1.5, the excited state of the atom decays at a rate Γ. The
steady state scattering rate is given by the product of this decay rate and the average
excited state population

Γsc = Γρst
ee =

Γ

2
· s0

1 + (2∆LA/Γ)2 + s0
. (1.9)

Here s0 = 2|ΩR|2/Γ2 is the so called saturation parameter. Using equation 1.4 and
I = ε0c|E0|2/2 it can be written as

s0 =
I

Isat
with Isat =

~ω3
0Γ

12πc2
. (1.10)

If a laser beam with intensity I0 travels along the x-direction through a thin
sheet of thickness dx of atoms with number density n, a fraction of the photons get
scattered out of the beam and the intensity reduces by

dI = −~ωΓscndx ≈ −
σ0

1 + (2∆LA/Γ)2 + s0
nIdx . (1.11)

The approximation holds for ω ≈ ω0, which is fulfilled within the rotating wave
approximation. The parameter σ0 = 3λ2/2π is called the resonant scattering cross-
section of the transition. We exploit this reduction of the intensity to image atomic
clouds as described in more detail in section 3.5. In the low saturation regime (s0 �
1) the intensity dependence of the scattering cross section can be neglected. The
solution of the differential equation 1.11 is then a simple exponential function known
as Lambert-Beer’s law and the intensity behind the atomic medium I1 becomes

I1 = I0e
−OD , (1.12)

with the optical depth

OD =
ODres

1 + (2∆LA/Γ)2
and ODres = σ0

∫
d
ndx . (1.13)

Here, d is the extension of the atomic ensemble. We will see in section 1.3 that the
optical depth is a crucial parameter on the atomic side for a strong atom-membrane
coupling.
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Chapter 1. Theory of atomic and membrane oscillators coupled with light

1.1.3 Laser cooling

If an atom absorbs a laser photon and emits it into a direction different to the
one of the incited photon, the momentum of the atom is altered. Averaged over
many absorption and reemission cycles this effect can be exploited to manipulate
the velocity of the atom along the laser axis. If the laser is red-detuned with respect
to the atomic transition (∆LA < 0), preferentially atoms which move towards the
laser beam absorb the light due to the Doppler shift [86]. As the momentum kick
upon absorbtion is always directed opposite to the motion of the atom, and the
momentum kick upon emission is not directed, scattering of many laser photons
leads to a reduction of the atomic velocity, the so called Doppler cooling. Via
Ehrenfest’s theorem F = 〈F̂ 〉 = d〈p̂〉/dt, the steady state mean value of the force on
the atom F can be calculated from the Hamiltonian and the steady state solutions
of the density operator presented above. For a beam configuration of two counter
propagating laser beams in the low saturation regime s0 � 1, often referred to as
one dimensional optical molasses, one finds for the Doppler cooling force [2, 74]

F = −βv , with β = − 8~k2∆LAs0

Γ(1 + (2∆LA/Γ)2 + s0)2
. (1.14)

The momentum diffusion generated by the random photon emission processes limits
the minimal temperature achievable with this cooling process to the Doppler temper-
ature TD = ~Γ/2kB = 146µK (for 87Rb [82]). However, the minimal temperatures
observed in laser cooling labs are typically lower than the Doppler temperatures.
These sub-Doppler temperatures cannot be explained within the two-level model.
The multilevel structure of the real atom has to be taken into account. One finds
that a slowly moving multilevel atom in a light field with spatially varying polar-
ization experiences additional damping forces. These forces are based on optical
pumping between the atomic levels [2, 81]. For a one-dimensional configuration of
two counterpropagating beams in the low saturation regime s0 � 1 with σ+ and σ−

polarization acting on the |Jg = 1〉 ↔ |Je = 2〉 transition (J is the quantum number
for the total angular momentum of the atom, see [87] chapter 6) of a slowly moving
atom (kv · τP � 1, τP is the optical pumping time) the force on the atom can be
written as [81]

F = −αv , with α = −120

17

∆LAΓ

5Γ2 + 4∆2
LA

~k2 . (1.15)

In presence of sub-Doppler cooling forces the temperature limit is given by the atomic
recoil temperature T = ~2k2/kBm = 360 nK (for 87Rb [82]). A realistic optical
molasses generated by three pairs of counter propagating σ+ and σ− polarized laser
beams as the one in our lab always provides both Doppler and sub-Doppler cooling.

The optical forces presented above allow to damp the motion of the atoms but
do not provide spatial confinement. In a magneto-optical trap (MOT) the Doppler
cooling force is made position-dependent via the Zeemann effect. A magnetic field
with a linear gradient creates a position dependent Zeemann shift. This shift makes

9



1.1. Atom-light interaction

it more likely for an atom to scatter cooling light if it is further away from the center
of the trap [2]. The Doppler cooling force is then position- and velocity-dependent.
For the one-dimensional, circularly polarized beam configuration described above
and a magnetic field with a linear gradient along the axis of the beams B(x) = Ax
acting on the |Jg = 0〉 ↔ |Je = 1〉 transition, one finds the following expression for
the combined cooling and trapping force

F = −βv −Kz , with β as above and K =
µ′A

~k
β . (1.16)

Here µ′ = (geme − ggmg)µB is the difference between ground and excited state
magnetic moment, me and mf are the projections of the total angular momentum
on the quantization axis and gg and ge the Landé-g-factors of ground and excited
state ([87] chapter 14). The typical MOT consists of a pair of Anti-Helmholtz coils,
which generate linear magnetic fields gradients in all three spatial directions, and
three pairs of counter propagating beams with σ+ and σ− polarization. Such a MOT
is the main building block of all laser cooling experiments.

1.1.4 Optical dipole traps

In addition to spontaneous emission, which is the physical mechanism behind the
spontaneous scattering forces, the atom can also emit a photon into the laser mode
via stimulated emission. If the laser field at the position of the atom consists of
several k-vectors, this process can also change the momentum of the atom and thus
exert a force on the atom, the optical dipole force. As the laser cooling force, the
dipole force can by obtained by calculating the mean force on a two level atom via
Ehrenfest’s theorem in the presence of an intensity gradient of the laser field. It is a
conservative force and can therefore be written as the spatial derivative of a potential
F = −∇Udip. This dipole potential, which is the shift of the energy of the atomic
state in presence of the light, can also be determined directly by diagonalizing the
atomic Hamiltonian ĤA + ĤI. If the laser is far-detuned (|∆LA| � Γ), the light shift
can be calculated perturbatively using second-order time-independent perturbation
theory [75]. For the dipole potential of an alkali atom, interacting with linearly
polarized light of a frequency close to the D2-line of 87Rb (|ω−ω0,D2| � |ω−ω0,D1|)
with a detuning which is much larger than the energy splitting of the hyperfine
excited states one finds [75]

Udip =
πc2Γ

ω3
0

I

∆LA
=

~Γ2I

12Isat∆LA
. (1.17)

If the intensity of the light I is position-dependent, there is a force. Our coupling
lattice is generated by two counterpropagating, unequally strong, linearly polarized
beams. The beams propagate along the x-direction, have Gaussian radial intensity
profiles and no significant divergence over length of the the atomic ensemble. The
total intensity reads

I(r, x) = I1e
− 2r2

w2
0 |
√
Rei(kx+Φ) + e−ikx|2 , with I1 =

2P0

πw2
0

. (1.18)
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Chapter 1. Theory of atomic and membrane oscillators coupled with light

Here P0 is the power in the stronger beam coming from the right, R is the lattice
reflectivity, w0 is the waist of the laser beams and Φ is an additional phase on
the beam from the left. Inserting equation 1.18 into equation 1.17 gives a dipole
potential of

Udip(r, x) = e
− 2r2

w2
0 [Vd − Vm sin2(kx+ Φ/2)] , (1.19)

where

Vm = 4
√
RV0 , Vd = (1 +

√
R)2V0 and V0 =

~Γ2

12∆LA

I0

Isat
. (1.20)

For red (blue) detunings ∆LA < 0 (∆LA > 0) the axial dipole force F =
−dUdip(r, x)/dx pulls the atom towards the maxima (minima) of the intensity distri-
bution. For small displacements around the maxima (minima) the dipole potential
can be approximated by a harmonic potential Udip(r, x) ' Vd + 1

2mΩ2
ax

2 ± 1
2mΩ2

rr
2

with axial and radial trapping frequencies

Ωa(r) =

√
2|Vm|k2

m
e
− r2

w2
0 ≡ Ωa(0)e

− r2

w2
0 ,

Ωr =

√
4|Vd|
mw2

0

for ∆LA < 0 and

Ωr =

√
4(Vd − Vm)

mw2
0

for ∆LA > 0 . (1.21)

The plus holds for red and the minus for blue detuning. Note that in the blue case
the radial potential is anti-trapping. The axial trapping frequency at the center of
the trap, Ωa(0), depends on the incoming laser power P0, the detuning ∆LA and
the reflectivity R, which vary between different measurement in our lab. It can be
written as

Ωa(0) = ε
4
√
R

√
P0

|∆LA|
with ε =

√
4

3

~Γ2k2

mπw2
0Isat

. (1.22)

In far-detuned optical dipole traps the radiation pressure force is negligible com-
pared to the dipole force. However, the finite scattering rate introduced in equa-
tion 1.9 presents a heating mechanism and limits the lifetime of the atoms in the
trap. For a far-detuned dipole trap of linear polarized light close to the 87Rb D2

line as described above, one finds a scattering rate of

Γsc(r, z) =
πc2

~ω3
0

(
Γ

∆LA

)2

I(r, z) . (1.23)

Note that this value is a factor 2/3 lower than the two-level results of equation 1.9
due to a lower transition matrix element [75, 2].

In every scattering event (absorption or emission) the atom can gain one recoil
energy Erec = ~2k2/2m. In [75] they find that the average energy increase per
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1.1. Atom-light interaction

scattering event in a three-dimensional trap is 2Erec. For a simple estimate of
the trap lifetime one can assume that the atom at the bottom of the trap needs
to scatter Udip(0, 0)/2Erec photons to gain enough energy to leave the trap. If it
scatteres photons at a rate Γsc(0, 0) and the energy increase is distributed equally
over the three different spatial axes, it will leave the trap after the time [75]

tLT ≈ 3
1

Γsc(0, 0)

Udip(0, 0)

2Erec
. (1.24)

For this lifetime estimate only heating due to scattering events is considered. Ad-
ditional heating due to fluctuations of the dipole potential from technical and shot
noise on the laser intensity is not taken into account.

1.1.5 Temperature, density distribution and ballistic expansion

The phase-space distribution f(r,p) describes the probability density for an atom
to be at position r and to move with a momentum p. If the cloud is in thermal
state with a temperature T , the phase space density is determined by the Boltzmann
factor [88]

f(r,p) = Ce
−E(r,p)

kBT , with C =

(∫ ∫
e
−E(r,p)

kBT d3pd3r

)−1

. (1.25)

Here E(r,p) = p2/2m + V (r) is the total energy of the atom. Integrating the
probability distribution over the entire space yields a Gaussian velocity distribution
f(v) = C ′exp(−m|v|2/2kBT ) with width ∆v =

√
kBT/m. Integrating over the

momentum space gives the number density of the atomic ensemble. In presence of
a three dimensional harmonic potential V (x, y, z) = 1

2m(Ω2
xx

2 + Ω2
yy

2 + Ω2
zz

2) the
atomic number density is Gaussian as well

n(x, y, z) = n0e
− 1

2

(
x2

σ2
x,0

+ y2

σ2
y,0

+ z2

σ2
z,0

)
. (1.26)

where

n0 = NΩxΩyΩz

(
m

2πkBT

)3/2

and σi,0 =

√
kBT

mΩ2
i

. (1.27)

After a sudden release of the atoms from the trap, the cloud will fall down and
expand isotropically. If the expansion is ballistic, meaning that interactions between
the atoms are negligible, the density distribution at a time t after the release can
be found by a convolution of the initial density distribution 1.27 with the velocity
distribution [89, 90]. If both distributions are Gaussian, one finds a new Gaussian
distribution with width

σi(t) =

√
σ2

i,0 +
kBT

m
t2 . (1.28)

Hence, by measuring the width of the atomic density distributions at different times
after a sudden turn-off of the trapping potential, the so called times of flight (TOF),
one can learn about the temperature of the atomic ensemble.
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Chapter 1. Theory of atomic and membrane oscillators coupled with light

1.1.6 Atoms as optical element - Transfer matrix formalism

In the previous part of this section we got introduced to the interaction of an atom
with an electromagnetic field. I derived the atomic complex linear polarisability α
given in equation 1.8, which plays an important role in the following description of
atoms as linear scatterers.

One-dimensional problems of linear scatterers interacting with light can be de-
scribed with the so called transfer matrix approach [76, 77, 78]. Using this descrip-
tion will allow us to treat the coupled atom-membrane system in a straightforward
way.

In this section I will introduce the transfer matrix formalism and apply it to
re-derive the light forces on an atomic scatterer and the backaction of the scatterer
onto the light field for the specific beam configuration of our coupling lattice (one
far-detuned beam impinging onto the atoms from each side). In section 1.3 I will
refer to these results when I describe the coupling between atoms and membrane.

Transfer matrix Formalism

Throughout this chapter I will treat the atom as a two-level system. In the end
I will comment on how the result has to be modified for a real 87Rb atom. The
lattice light is detuned from the atomic transition and therefore generates a po-
tential for the atoms. If it is blue-detuned (∆LA = ω − ω0 > 0), the atoms will
be attracted to the intensity minima. If it is red-detuned (∆LA < 0), they will
accumulate at the intensity maxima. In both cases, the atoms will form a stack
of pancake-shaped clouds. In general the light-mediated interactions between the
different atomic pancakes have to be taken into account [78]. Such a general treat-
ment will be done in section 5.7. If the detuning is large compared to the atomic
linewidth Γ, the pancake-pancake interactions are strongly suppressed [78]. As this
is the case in most of our sympathetic cooling experiments, I neglect the interactions
for the moment and assume that all the atoms sit in one pancake. This pancake
will be modeled as an infinitisimally thin plane of linearly polarizable material, see
figure 1.2. The spatial part of the 1D wave equation for a monochromatic plane
wave E(x, t) = Re[E(x)e−iωt] incident normally on a polarizable plane at x = xa

reads [76, 77, 78]

(
∂2

∂x2
+ k2

)
E(x) = −k2η

α

ε0
δ(x− xa)E(x)

= −2kζδ(x− xa)E(x) , (1.29)

where k = ω/c is the wave vector, δ(x−xa) is the Dirac-delta-function and η = N/σL

is the area density of atoms in the plane with σL being the transverse mode area
of the beam and N the number of atoms in the pancake. In the second line the
dimensionless scattering parameter ζ = kη α

2ε0
got introduced. In the large detuning
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1.1. Atom-light interaction

Figure 1.2: Sketch of the atomic ensemble at position xa, which is modeled
as thin sheet of polarizable material interacting with plane waves incident from
both sides.

(∆LA � Γ) and low saturation regime (s0 � 1) one finds with equation 1.8

ζ = −N
2

σ0

σL

Γ/2

∆LA + iΓ/2
. (1.30)

Here σ0 = 3λ2/2π is the resonant scattering cross-section and Γ the full-width-half-
maximum atomic linewidth. The solutions of the wave equation 1.29 on the left and
the right side of the thin sheet are superpositions of plane waves, see figure 1.2

Ex<xa(x) = A0e
−ikx +B0e

ikx = A(x) +B(x) ,

Ex>xa(x) = C0e
−ikx +D0e

ikx = C(x) +D(x) , (1.31)

with complex amplitudes A0, B0, C0, D0 ∈ C.
Integrating eqn. 1.29 over x leads to the following boundary conditions

E|x→x−a = E|x→x+
a
,

∂E

∂x

∣∣∣∣
x→x−a

− ∂E

∂x

∣∣∣∣
x→x+

a

= 2kζ E|x=xa
. (1.32)

Inserting the ansatz 1.31 into the boundary conditions 1.32 leads to simple algebraic
relations between the mode amplitudes on each side of the sheet

A0 = rB0e
2ikxa + tC0 ,

D0 = tB0 + rC0e
−2ikxa , (1.33)

and respectively the fields at the position of the beam splitter

A(xa) = rB(xa) + tC(xa) ,

D(xa) = tB(xa) + rC(xa) , (1.34)

with complex reflection and transmission coefficients

r =
iζ

1− iζ
and t =

1

1− iζ
. (1.35)
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Chapter 1. Theory of atomic and membrane oscillators coupled with light

The atomic cloud thus acts as a beam splitter at position x = xa with complex
reflectivity r and transmission t. This can also be written in a matrix notation with
transfer matrix MBS or scattering matrix SBS[

A(xa)
B(xa)

]
= MBS

[
C(xa)
D(xa)

]
=

[
1 + iζ iζ
−iζ 1− iζ

] [
C(xa)
D(xa)

]
,[

A(xa)
D(xa)

]
= SBS

[
B(xa)
C(xa)

]
=

[
r t
t r

] [
B(xa)
C(xa)

]
. (1.36)

For more complex systems, for instance several atomic stacks, the relations between
the in- and outgoing mode amplitudes can easily be derived from a multiplication
of the transfer matrices of the elements of the system, making this formalism very
elegant.

Force on the atoms

The force of the light on the atomic ensemble can be calculated from the Maxwell-
stress tensor [91]

Txx(x, t) = −ε0
2

(|E(x, t)|2 + c2|B(x, t)|2) . (1.37)

The force is the rate of extraction of momentum from the electromagnetic field by
the medium. It is given by the surface integral of the stress tensor over the surface
of a volume which encloses the atomic medium [77, 78]

Fa(xa) =

∮
S
〈Txx〉dS = σL(〈Txx(x→ x+

a )〉 − 〈Txx(x→ x−a )〉) . (1.38)

The parentheses 〈〉 stand for the average over one optical oscillation period, which is
much shorter than the timescale of the atomic motion. In the last step the infinites-
imal thin volume V = σLdL around the atomic pancake was chosen. Plugging in
the plane wave solution 1.31 and averaging over one optical period (〈|E(x, t)|2〉 =
1/2|E(x)|2) gives

Fa(xa) =
ε0σL

2
(|A(xa)|2 + |B(xa)|2 − |C(xa)|2 − |D(xa)|2) . (1.39)

In the following I will consider the case of two incident plane waves, one from
the right C(x) = C0 exp(−ikx) and one from the left B(x) = B0 exp(ikx+ iΦ) with
C0, B0 ∈ R. The beam from the left carries an additional phase Φ which might be
imprinted onto the beam by an electro-optic modulator (EOM) in the beam path
or the motion of the membrane (Φ = (4/κ)Gxm, see section 1.2) if the beam is
reflected off the membrane-cavity system. These two cases will appear later in the
experimental parts of this thesis. For most of this theoretical section I will use the
general expression Φ. The zero-point of the coordinate axis has been chosen so that
the global phase of this beam is zero at x = 0. This ensures that the restoring force
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1.1. Atom-light interaction

from the lattice pulls the atoms to the zero-point of the coordinate system in the
absence of the additional phase Φ, which is convenient. Further, I treat the general
case of different amplitudes coming from left and right. A situation like this occurs
in our coupled system: A beam impinges on the atoms from the right and is almost
completely transmitted because the atomic reflectivity is small. Then it travels to
the membrane-cavity system and is reflected back to the atoms. Due to optical
losses the amplitude of the backreflected beam is reduced.

For a rigorous treatment of the coupled atom-membrane-system the entire system
including the membrane has to be modeled within the transfer matrix formalism.
This will be done in the last section of this chapter. I anticipate already here that, if
the atomic reflectivity is small (|r|2 � 1), the resulting force on the atoms as well as
the backaction from the atoms onto the light will be equal to the one generated by the
two individual beams described in this paragraph. This means that for small atomic
reflectivities higher-order effects such as atom-atom interactions via the reflection
at the membrane-cavity system can be neglected.

The intensity of the beam configuration reads

I(x) = I0 + I1 + 2
√
I0I1 cos(2kx+ Φ) , (1.40)

where I1 = ε0cC
2
0/2 and I0 = ε0cB

2
0/2 are the beam intensities. We see that the

coordinate system has been chosen so that the intensity maximum, where the atoms
accumulate in the red-detuned case, lies at x = 0 if all additional phases of the beam
from the left are zero as mentioned above. The outgoing fields at x = xa can be
calculated from the ingoing fields via equation 1.34.

Inserting these relations into equation 1.39 gives the following force on the sheet
of atoms

Fa(xa) = 2σL
I0 − I1

c

Im ζ

|1− iζ|2
− 4σL

√
I0I1

c

Re ζ

|1− iζ|2
sin(2kxa + Φ)

+2σL
I0 − I1

c

|ζ|2

|1− iζ|2
. (1.41)

The first term in expression 1.41 describes the ”radiation pressure” force on a resting
atom due to absorption of light in the atomic ensemble. It is independent of the
position of the atoms and points towards the weaker beam. If the motion of the
atom is taken into account, the Doppler cooling force 1.14 can be re-derived from
this term.

The second position-dependent term is the ”gradient” or ”dipole” force, which
generates the trapping potential for the atoms and the atom-membrane coupling.
It is caused by absorption of light from one beam followed by stimulated emission
into the other beam. Note that for red detuning Re ζ > 0, so that the dipole
force attracts the particles towards the position of highest intensity, whereas for
blue detuning Re ζ < 0 so that the atoms are expelled from the region of highest
intensity as expected.

The third term is generated by incoherent reflection at the atomic cloud.
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Chapter 1. Theory of atomic and membrane oscillators coupled with light

Parameter Value

Atom number N 107

Beam waist w0 280µm
Beam area σL πw2

0/2
Laser-atom detuning ∆LA −2π × 1 GHz
Atomic linewidth Γ 2π × 6 MHz
Scattering parameter ζ 0.0358 + 0.0001i
|ζ|2 0.0013

Table 1.1: Typical parameters in our experiment. Note, that ζ here refers to the
polarisability of the entire ensemble wheres in [78] ζ refers to the polarisability
of one pancake. At a radius of w0 the intensity of the beam has dropped by a
factor of e−2 compared to the maximal value in the center of the beam.

The derivation above has been done for an atomic cloud resting at x = xa. In
[77], Xuereb et al. treat the more general case of a moving atom for which Doppler
shifts have to be taken into account. I find that in our parameter regime of large
detuning ∆LA � Γa and small velocities v � c all velocity dependent terms, which
they derive, are small compared to the three velocity independent terms given in
equation 1.41.

If |ζ| � 1 and |∆LA|/Γa � 1 as in our experiment, see table 1.1, the second term
in equation. 1.41 is the dominant one and |1− iζ|2 ≈ 1. Further, the first and third
term have no spatial dependence. They only cause a small constant displacement
of the position in direction of the stronger beam. Therefore, I will neglect these
two terms in the following. For small atomic displacements and small additional
phases (caused for instance by a small displacement of the membrane) the sine in
equation 1.41 can be expanded

Fa(xa) ' −8kσL

√
I0I1

c
Re ζ

(
xa +

Φ

2k

)
= −8kσL

√
I0I1

c
Re ζ

(
xa +

2Gxm

κk

)
. (1.42)

Here the last line treats the case in which the additional phase comes from a motion
of a membrane inside a cavity. The first line treats the more general case, in which
the additional phase could also come from an EOM in the beam path or an additional
propagation distance. For ∆LA � Γa the force can be rewritten in the following way

Fa(xa) = −NmΩ2
a

(
xa +

Φ

2k

)
, with Ωa =

(
2k

√
I0I1

c

σ0

m

Γ

∆LA

)1/2

. (1.43)

This result is equal to the derivative of the dipole potential of a two-level atom
presented in [75]. The axial trapping frequency of the dipole potential presented
in section 1.1.4 equation 1.19 is a factor of 2/3 lower. There the specific case of a
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1.1. Atom-light interaction

real 87Rb atom interacting with far-detuned, linearly polarized laser light is treated,
for which the effective dipole matrix element is lower by a factor of 2/3 compared
to the two-level value. In the full expression in equation 1.41 an additional factor
|1−iζ|2 appears in the dipole force term because the atomic backaction onto the light
makes the trapping potential a little less stiff. This is neglected in the perturbative
calculations of section 1.1.4 and [75]. Hence, the derivation presented here is more
general.

To sum up, we see that the dominant term in the force from the light onto the
atoms consists of two parts. One part is the restoring force, which generates a trap
for the atoms. The second part arises if one of the beams carries an additional
phase, which moves the position of the intensity maximum and therefore the point
to which the restoring force pulls the atoms. This part can be used to couple to the
motion of the atoms from the outside via phase shifts on the lattice light.

Backaction onto the light field

Of particular interest for our experiments is the backaction of the atoms onto the
light field. Equation 1.34 tells us how the optical fields that leave the interaction
volume look like. From this equation and the relation I = ε0c|E|2/2 the intensity of
field A, which travels e.g. back to the membrane or the EOM, can be calculated

IA(xa) =
1

|1− iζ|2
I1 +

|ζ|2

|1− iζ|2
I0 −

2
√
I0I1

|1− iζ|2
Re ζ sin(2kxa + Φ)

− 2
√
I0I1

|1− iζ|2
Im ζ cos(2kxa + Φ)

= |t|2I1 + |r|2I0 −
2
√
I0I1

|1− iζ|2
Re ζ sin(2kxa + Φ)

− 2
√
I0I1

|1− iζ|2
Im ζ cos(2kxa + Φ) . (1.44)

This intensity consists of four terms. The transmitted part of the beam from the
right, the incoherent reflection of the beam from the left, a position dependent part
caused by the stimulated emission processes which are responsible for the dipole
potential and a term describing the incoherent scattering out of the beam due to
absorption. The first two terms are independent of the position of the atoms, xa,
and the additional phase of beam B, Φ. For the physics we are interested in, they are
therefore not very interesting. If beam A impinges on a membrane-cavity system,
this constant intensity leads to a shift in the membrane steady-state position and
eventually causes optomechanical effects (if the light is detuned from the cavity,
see section 1.2). For the motional atom-membrane coupling, this light will not be
relevant. I will therefore neglect the first two terms in the following. Further, in
the regime of large detuning |∆LA|/Γa � 1 and small atomic polarizability |ζ| � 1,
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absorption effects can be neglected so that the intensity reduces to

IA(xa) ' −2
√
I0I1 Re ζ sin(2kxa + Φ) ≈ −4k

√
I0I1 Re ζ

(
xa +

Φ

2k

)
. (1.45)

In the last step I assumed that the atomic amplitude xa and the additional phase Φ
are small. We see that if the atomic position or the additional phase are modulated
periodically, the intensity of beam A is modulated as well. The corresponding power
modulation reads

PA = σLIA = −4kσL

√
I0I1 Re ζ

(
xa +

Φ

2k

)
=
c

2
Fa . (1.46)

I will repetitively use this result throughout the thesis. Note that here I use the
symbol PA for the power modulation not for the total power (all four terms in equa-
tion 1.44) as only the power modulation matters for the atom-membrane coupling.
I will point out that I refer to the modulation of the power whenever the symbol
will appear later on. Summing up, I note that the transfer matrix formalism gives
us an elegant tool to calculate the relevant features of the atom-light interaction,
namely the force on the atoms and the backaction onto the light field. It allows to
describe dispersive as well as absorbtive effects in a joint manner via the complex
polarisability parameter ζ.

1.2 Membrane-in-the-middle optomechanics

1.2.1 Mechanical resonators

Concept of effective mass and equation of motion

For any mechanical oscillator of interest, in our case a nanomechanical membrane,
the vibrational eigenfrequencies and the corresponding vibrational modes can be
calculated from the linear theory of elasticity [92]. In the context of optomechanics
the focus typically lies on the vibration of one particular eigenmode with eigen-
frequency Ωm and eigenmode ~u(~r, t) = x(t)~u(~r), which dissipates mechanical en-
ergy with a damping rate Γm. If only the global vibration of the mode is of
interest, it is enough to describe the dynamics of x(t) in a one-dimensional de-
scription. Planar vibrating structures like membranes have eigenmodes of the form
xm(x, y, t) = Ψ(x, y)x0 cos(Ωmt), where x and y are locations in the plane, xm(x, y, t)
is the out-of-place displacement, x0 is the global amplitude and Ψ(x, y) the transver-
sal mode shape corresponding to the eigenfrequency Ωm, that is normalized so that
max(Ψ) = 1.

The mechanical amplitude is usually probed with a laser beam with a certain
planar intensity profile I(x, y). Thus, to be able to compare to the experiment, the
best suited global amplitude is not x(t) = x0 cos(Ωmt) but the mean amplitude seen
by the probe beam

xm(t) =

∫
A xm(x, y, t)I(x, y)dA∫

A I(x, y)dA
≈ Ψ(x1, y1)x0 cos(Ωmt) , (1.47)
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where A is the area of the vibrating structure and the last equation holds for a small
probe beam at location x1, y1. An effective mass M can be attributed to the global
amplitude so that the vibrational energy of the 1D system description equals the
actual vibrational energy of the planar oscillator.

U(t) =
1

2
MΩ2

mx
2
m(t) ≡ 1

2
MPhysΩ

2
m

∫
A xm(x, y, t)2dA

A
. (1.48)

From this equation one finds for the effective mass

M = Mphys

∫
A Ψ(x, y)2dA

A

( ∫
A I(x, y)dA∫

A Ψ(x, y)I(x, y)dA

)2

≈
Mphys

4

1

Ψ(x1, y1)2
, (1.49)

where the last equation again holds for a point-like probe beam.
The temporal evolution of the global displacement of the planar structure can

then be described by the simple equation of motion of a damped, harmonic oscillator

Mẍm(t) +MΓmẋm(t) +MΩ2
mxm(t) = Fext(t) , (1.50)

where Fext(t) is the sum over all external forces.

Susceptibility, noise spectra, fluctuation dissipation theorem

Equation 1.50 can be solved easily in frequency space. Using the Fourier transform
x(Ω) =

∫∞
−∞ x(t)e−iΩtdt it can be rewritten as

−MΩ2xm(Ω) + iΩMΓmxm(Ω) +MΩ2
mxm(Ω) = Fext(Ω) . (1.51)

Rearranging the terms gives

xm(Ω) = χ(Ω)Fext(Ω) , with

χ(Ω) = [M(Ω2
m − Ω2 + iΩΓm)]−1

≈
[
2MΩm

(
Ωm − Ω + i

Γm

2

)]−1

. (1.52)

Here the susceptibility χ(Ω) has been introduced, which describes how the membrane
reacts to a force. In the last line the Lorentzian approximation Ω2

m−Ω2 ≈ 2Ωm(Ωm−
Ω) is applied, which is valid if Γm � Ωm. In the lab typically not xm(t) or xm(Ω)
is measured but the single-sided power spectral density (PSD) of the membrane
motion Sx(Ω), which is related to the displacement xm(t) via [12, 79]∫ ∞

0
Sx(Ω)

dΩ

2π
= 〈xm(t)2〉 , (1.53)

where 〈xm(t)2〉 is the variance of the mechanical displacement, which is also called
the mean squared membrane amplitude. The susceptibility from equation 1.52 con-
nects the power spectral density of an external force to the power spectral density
of the membrane displacement [93]

Sx(Ω) = |χ(Ω)|2SF(Ω) . (1.54)
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If the oscillator is resting on a support at a finite temperature Tbath, it is driven by
a fluctuating force Fth. The single-sided power spectral density of Fth is given by
the fluctuation- dissipation theorem [94, 95]

SF,th(Ω) =
4kBTbath

Ω
Im[χ(Ω)−1] ≈ 4kBTbathMΓm . (1.55)

Inserting 1.55 into 1.54 gives

Sx(Ω) =
kBTbathΓm

MΩ2
m

1

(Ωm − Ω)2 + (Γm/2)2
. (1.56)

Using equation 1.53 and 1.56, the root mean squared membrane amplitude of a
membrane driven by the thermal force can be calculated to

xth =
√
〈xm,th(t)2〉 =

√
kBTbath

MΩ2
m

. (1.57)

Integrating the power spectral density over all frequencies gives the mean poten-
tial energy of the oscillator

〈U〉 =
M

2

∫ ∞
0

Ω2Sx(Ω)
dΩ

2π

≈ M

2
Ω2

m

∫ ∞
0

Sx(Ω)
dΩ

2π
=
kBTbath

2
. (1.58)

Once more, the approximation holds for Γm � Ωm. Optomechanical damping (sec-
tion 1.2.4, equation 1.94) and sympathetic cooling via the atoms (section 1.3.3,
equation 1.127) lead to an increased damping rate Γeff in the denominator of equa-
tion 1.56. This reduces the mean potential energy of the oscillator. If quantum
effects are negligible, one can then attribute the following effective temperature to
the oscillator

Teff '
M

kB
Ω2

m

∫ ∞
0

Sx(Ω)
dΩ

2π
=

Γm

Γeff
Tbath . (1.59)

A quantum mechanical harmonic oscillator in a thermal state at temperature
Teff occupies the state |n〉 with probability pn = exp(−n~Ωm/kBTeff)/Z (with Z =∑

n exp(−n~Ωm/kBTeff)). The average phonon occupation number of the oscillator
also referred to as thermal phonon number is given by

n̄th =
1

e~Ωm/kBTeff − 1
≈ kBTeff

~Ωm
, (1.60)

where the last equation holds for large temperatures kBTeff � ~Ωm.
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Mechanical quality factor

If the oscillator motion is excited to a large amplitude xm � xth, the thermal
force Fth in the equation of motion 1.50 can be neglected. The general solution of
equation 1.50 in the time domain is then given by

xm(t) = x0e
−Γm

2
t cos(Ωmt+ φ0) , (1.61)

with x0 and φ0 set by the initial conditions. This trajectory describes an oscillating
signal with decaying amplitude, which we use extensively in the lab to determine the
damping rate of the oscillator. If the rate at which the amplitude or correspondingly
the potential energy U(t) = MΩ2

mxm(t)2/2 decays is low, the oscillator is well-
isolated from undesired dissipation channels. Often not the decay rate Γm but
the dimension-free mechanical quality factor Q is used to describe the quality of
the mechanical oscillation. It is defined via the energy loss per oscillation period
T = 2π/Ωm

Q = 2π ×
(
U

∆U

)
=

2π

1− e−ΓmT
≈ Ωm

Γm
. (1.62)

Here the last approximation is valid for good oscillators Q� 1.

1.2.2 Membrane-in-the-middle of a cavity

Membrane reflection and transmission coefficient

The transmission and reflection coefficient of a dielectric slab with refractive index
n and thickness d can be calculated with the transfer matrices Mn1,n2 corresponding
to Fresnel’s equations at an interface in between materials with n1 and n2 and MP

of propagation in a homogeneous medium ([96] chapter 7.1, adapted to the notation
of section 1.1.6)

Mn1,n2 =
1

2n1

[
n1 + n2 n1 − n2

n1 − n2 n1 + n2

]
MP =

[
einkd 0

0 e−inkd

]
. (1.63)

The optical properties of the entire slab are derived from the product of the corre-
sponding transfer matrices of the air-material interface, the propagation in the ma-
terial and the material-air interface Mm = M1,nMPMn,1. From the matrix product
one can read off the complex transmission t̃m = Mm(2, 2)−1 and reflection coefficient
r̃m = Mm(1, 2)/Mm(2, 2) of the slab [96]

t̃m =
2n

2n cos(nkd) + (1 + n2)i sin(nkd)
,

r̃m =
(1− n2)i sin(nkd)

2n cos(nkd) + (1 + n2)i sin(nkd)
. (1.64)
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Figure 1.3: Schematic drawing of the MIM system. Laser light enters the
system from the left.

Cavity fields, cavity resonances, coupling strength

Figure 1.3 shows a schematic drawing of an entire membrane-in-the-middle (MIM)
system. Calculating the exact scattering matrix of the dielectric mirrors is demand-
ing, see [79] section 3.1.2. However, in order to derive the transmission and reflection
coefficient of the total MIM system up to a global phase in the absence of absorption,
it is sufficient to know the absolute values of mirror reflectivities and to take into
consideration that the scattering matrix must be unitary to provide energy conser-
vation. If it is unitary, the scattering matrix of the mirrors 1 and 2 can be written
in the form [97]

Si = eiφ
[
ri ti
−t∗i r∗i

]
i = 1, 2 ri, ti ∈ C . (1.65)

In the following, I will drop the global phase factor eiφ as it can be absorbed into
the phase of the ingoing light B1. Further I will rewrite the scattering matrix of the
dielectric slab in the same notation

Sm =

[
rm tm
−t∗m r∗m

]
with |rm| = |r̃m|, |tm| = |t̃m| (1.66)

The product of the transfer matrices Mr = MmML,2M2 with

Mi =
1

t∗i

[
tit
∗
i + rir

∗
i −ri

r∗i −1

]
,ML,j =

[
eikLj 0

0 e−ikLj

]
i = (1, 2,m), j = (1, 2) (1.67)

relates the amplitudes that enter and leave the right subcavity A2, B2 and D3. From
Mr amplitude reflection and transmission coefficients of the right subcavity can be
read off

tr =
D3

B2
=

t∗mt
∗
2e
ikL2

1− r2r∗me
2ikL2

,

rr =
A2

B2
= rm −

|tm|2r2e
2ikL2

1− r2r∗me
2ikL2

. (1.68)
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Figure 1.4: Simulation of the cavity transmission |tMIM|2 for a) varying length
of the total cavity L = L1+L2 around the macroscopic length L0 and membrane
position xm = (L1 − L2)/2 and for b) varying length of the subcavities around
their macroscopic length L0/2. L0 = 1 mm, |r1| = 0.90 and |r2| = 0.99.

Replacing the right subcavity by an element with reflection and transmission coeffi-
cent rr and tr, one finds analogously for the reflectivity and transmission of the total
MIM system

tMIM =
D3

B1
=

t∗1t
∗
re
ikL1

1− rrr∗1e
2ikL1

,

rMIM =
A1

B1
= r1 −

|t1|2rre
2ikL1

1− rrr∗1e
2ikL1

. (1.69)

The amount of transmitted light through the cavity, which is proportional to |tMIM|2,
is a quantity we can easily access in the lab. It carries a lot of information about
the optical properties of the system. Figure 1.4 a) illustrates the cavity transmission
|tMIM|2 for small variations in the total length of the cavity L = L1 +L2 around the
macroscopic length L0 and in the membrane position with respect to the middle of
the cavity xm = (L1 − L2)/2 for L0 = 1 mm, |r1| = 0.90 and |r2| = 0.99. Plot b)
shows the transmission for variations of the lengths of the subcavities, which leads
to a rotation of the plot by 45◦.

For a given laser frequency ω = kc and membrane position xm, the length Lc at
which the laser light is resonant with the cavity can be found by maximizing |tMIM|2.
Using equation 1.69 one finds that the |tMIM|2 is maximal if

cos

(
Lω

c

)
− |rm| cos

(
2xmω

c

)
= 0 . (1.70)
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Solving equation 1.70 for L one finds

Lc =
λ

2

[
q − 1

2
[1− (−1)q] +

(−1)q

π
arccos[|rm| cos(2kxm)]

]
, (1.71)

where q ∈ N. Similarly, by solving equation 1.70 for ω, one can find the resonant
cavity frequencies ωc in case of a fixed cavity length [98, 79, 80]. As xm � L
the ω dependence of the second term in 1.70 can be neglected compared to the ω
dependence of the first term. To simplify the calculation, ω in the second term can
be replaced by a rough value of the laser frequency ω = kc.

ωc = ωFSR

[
q − 1

2
[1− (−1)q] +

(−1)q

π
arccos[|rm| cos(2kxm)]

]
. (1.72)

The derivative of 1.72 with respect to xm, the frequency shift per membrane dis-
placement, is the crucial parameter for optomechanical coupling as we will see in
the next paragraph. One finds

G = − dωc

dxm
= (−1)q

2ω|rm| sin(2kxm)

L
√

1− |rm|2 cos2(2kxm)

≈ (−1)qGmax sin(2kxm) , (1.73)

with

Gmax =
2ω|rm|
L

. (1.74)

The approximation in equation 1.73 holds for small membrane reflectivities |rm|2 �
1.

Cavity linewidth and finesse

Two other important cavity parameters are the energy decay rate κ and the cavity
finesse F . The linewidth sets the timescale at which light can enter or leave the
cavity, and the finesse measures how often a photon circulates inside the cavity before
it leaves. The two quantities are connected via the free spectral range ωFSR = πc/L

F =
ωFSR

κ
. (1.75)

In an asymmetric MIM system the values of κ and F depend on the position of
the membrane. In principle, all information is contained in the transmission spectra
|tMIM(ω, xm)|2. For F � 1 the transmitted intensity (see equation 1.69) near a
cavity resonance can be approximated by a Lorentzian

|tMIM(ω)|2 =
(κ2 )2

(ωc − ω)2 + (κ2 )2
. (1.76)

Using this approximation we can find an analytic expression for κ = κ0 in the case
where rm = 1, in which all the light stays in the first subcavity. In the more realistic
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case of a finite membrane reflectivity rm < 1 but unity reflectivity of the back mirror
r2 = 1, the only loss channel is still through the incoupling mirror. However, the rate
at which photons are lost from the cavity is modified as the photons spend only a
part of their time in the first subcavity. Multiplication of κ0 with the fraction of light
in the first subcavity |D1|2/(|D1|2 + |D2|2) gives the following simple expressions for
the cavity linewidths at the position of maximal and minimal cavity linewidth κ,
i.e. the slopes of the sinusoidal curves in figure 1.4 a)

κmax =
ωFSR(1− r1)(1 + rm)

π
√
r1

,

κmin =
ωFSR(1− r1)(1− rm)

π
√
r1

. (1.77)

From these results, we interpolate the following expression for the general membrane-
position-dependent linewidth

κ =
ωFSR(1− r1)

(
1 + rm

G(xm)
Gmax

)
π
√
r1

(1.78)

and the cavity finesse

F =
π
√
r1

(1− r1)
(

1 + rm
G(xm)
Gmax

) . (1.79)

In the lab it is relatively easy to determine the cavity finesse at a certain mem-
brane position via the width of the cavity transmission 1.76. If the maximal finesse of
the cavity is known, one can use the finesse measurement to determine the coupling
strength at this membrane position

G(xm) =
Fmax − F − Fmaxrm

Frm
Gmax with Fmax =

π
√
r1

(1− r1)(1− rm)
. (1.80)

Phase of reflected light

One more important parameter for coupling the cavity-membrane system to the
outside world is the phase shift of the reflected light with respect to the ingoing
light. In [12] they use input-output theory [99, 100] to derive the complex reflection
amplitude R of an electromagnetic wave at an optical cavity. For a single-sided
cavity with intensity decay rate κ one finds [12]

R =
−κ/2− i∆
κ/2− i∆

, (1.81)

where ∆ = ω−ωc is the laser cavity detuning. From this one can read off the phase
shift

Φ = arctan

(
κ∆

(κ/2)2 −∆2

)
≈ 0 (1.82)
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and its derivative by the detuning

dΦ

d∆
=

κ

(κ/2)2 + ∆2

≈ 4

κ
. (1.83)

The approximations hold for |∆| � κ as in our experiment. If the membrane moves
inside the cavity, it causes a small change of the cavity laser detuning by ∆ = Gxm,
see equation 1.73. Thus, if the laser is resonant with the cavity for xm = 0, the
membrane motion induces a phase shift of Φ = 4Gxm/κ on the reflected light. This
phase shift can be exploited to detect the membrane motion (section 1.2.6) or to
couple to a distant atomic ensemble (section 1.3).

1.2.3 Optomechanical Hamiltonian and coupling strength

A detailed introduction into the field of cavity optomechanics is given in [12]. In the
following two paragraphs, I will summarize those results which are relevant for this
thesis. The optomechanical coupling between the membrane inside the cavity and
the optical field can be described by the following Hamiltonian

Ĥ = ~ωc(xm)â†â+ ~Ωmb̂
†b̂ , (1.84)

where b̂†(â†) and b̂(â) are the phonon (photon) creation and annihilation operators
of the vibrational (optical) mode. The cavity resonance frequency ωc depends on the
membrane amplitude according to equation 1.72. For small membrane displacements
the resonance frequency can be expanded in xm

ωc(xm) = ωc(xm = 0)−Gxm + ... . (1.85)

using the coupling strength G defined in equation 1.73. Inserting the expansion the
Hamiltonian reads

Ĥ = ~ωc(xm = 0)â†â+ ~Ωmb̂
†b̂+ Ĥint , (1.86)

with the interaction Hamiltonian

Ĥint = −~Gâ†âx̂m = −~g0â
†â(b̂† + b̂) . (1.87)

In the last equation the relation x̂m = xm,0(b̂†+ b̂) with membrane zero point ampli-
tude xm,0 =

√
~/2MΩm is used to define the optomechanical single photon coupling

rate g0 = Gxm,0. From the interaction Hamiltonian the radiation pressure force can
be derived by taking the derivative with respect to x̂m

F̂rad = −dĤint

dx̂m
= ~Gâ†â . (1.88)
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For the optomechanical effects described in this thesis it is sufficient to investigate
the dynamics of the classical averaged quantities α(t) = 〈â(t)〉 and xm(t) = 〈x̂m(t)〉
under the mean radiation pressure force

Frad = ~G|α|2 . (1.89)

I refer to [12, 101, 102] for a theoretical description of the optomechanical coupling
in the quantum regime.

1.2.4 Optical spring effect and optomechancial damping

From the radiation pressure force (see above) and input-output theory, one can
derive the following set of nonlinear differential equations of motion for α and xm

[12]

α̇ = −κ
2
α+ i(∆ +Gxm)α+

√
καin ,

Mẍm = −MΩ2
mxm −MΓmẋm + ~G|α|2 + Fth , (1.90)

where αin is the incoming light amplitude. In our and in many other experiments
the cavity is driven by a strong laser beam. The equations of motion can then be
linearized around the steady state solution in absence of the coupling by setting
α = ᾱ+ δα. Setting ˙̄α and xm to zero, one finds an expression for the steady state
number of photons inside the cavity n̄c = |ᾱ|2

n̄c =
κ

κ2

4 + ∆2

Pin

~ωc
(1.91)

where Pin = ~ω|αin|2 is the ingoing power. Using this result leads to new equations of
motion for the field amplitude fluctuations δα around the steady state solution and
the oscillator amplitude xm with respect to a slightly shifted steady state position.
The radiation pressure from the steady state field shifts the oscillator’s steady state
by ~Gn̄c/MΩ2

m. In the linearized equations of motion the coupling strength G is
enhanced by the steady state field amplitude ᾱ [12]

δα̇ = −κ
2
δα+ i∆δα+ iGᾱxm ,

Mẍm = −MΩ2
mxm −MΓmẋm + ~G(ᾱ∗δα+ ᾱδα∗) + Fth . (1.92)

By Fourier transforming these equations of motion, a modified expression for the
membrane susceptibility can be derived analog to the derivation of expression 1.52
presented in section 1.2.1. For sufficiently weak laser drive Gᾱ� κ and Γm � Ωm,
the modified susceptibility can be written as [12]

χ−1
opt(Ω) = 2ΩmM

(
Ωm + δΩm − Ω + i

Γm + Γopt

2

)
, (1.93)
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with the optomechanical frequency shift δΩm and damping rate Γopt:

δΩm = g2
0n̄c

[
∆ + Ωm

(∆ + Ωm)2 + κ2/4
+

∆− Ωm

(∆− Ωm)2 + κ2/4

]
,

Γopt = g2
0n̄c

[
κ

(∆ + Ωm)2 + κ2/4
− κ

(∆− Ωm)2 + κ2/4

]
. (1.94)

Note that I use a different sign convention in the Fourier transform compared to
reference [12], which changes the sign of the imaginary part of the susceptibility. I
use x(Ω) =

∫∞
−∞ x(t)e−iΩtdt. As mentioned at the end of section 1.2.1, the modified

susceptibility changes the PSD of the membrane amplitude, Sx(Ω). This modifies
its mean potential energy and can be attributed to an effective temperature

Topt =
Γm

Γm + Γopt
Tbath . (1.95)

In the lab we typically measure the optomechanical frequency shift and damping
rate as function of the ingoing power Pin. For this, it is convenient to express them
as

δΩm = c4Pin and

Γopt = Γmc2Pin , (1.96)

where c4 = δΩm/Pin and c2 = Γopt/ΓmPin are constants which are independent of
Pin.

1.2.5 Tbath in presence of laser noise

For small ingoing laser power Ptot the bath temperature in equation 1.95 is given
by the room temperature Tbath ≈ T0. For finite laser power, noise on the laser
intensity and frequency at Ωm couples to the membrane motion via the radiation
pressure force and limits the minimum temperature [103, 104]. Laser frequency noise
is converted into additional intensity noise via the cavity response, see equation 1.91.
To take this heating mechanism into account, we attribute an additional effective
temperature TL to this random driving process and add it to the room temperature
Tbath = T0+TL. The effective temperature TL can be found by comparing the PSD of
the radiation pressure force noise generated by the intracavity intensity fluctuations
to the PSD of a thermal force from a bath at temperature T0 [98]

TL = T0
SF,int(Ωm) + SF,freq(Ωm)

SF,th(Ωm)
, (1.97)

with SF,th(Ωm) = 4MΓmkBT0 and radiation pressure force power spectral densities
generated by laser intensity and frequency noise SF,int(Ωm) and SF,freq(Ωm). Using
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equations 1.89 and 1.91 and assuming Ωm � |∆| � κ the force power spectral
densities can be written as

SF,int(Ωm) = (~Gn̄c)
2SI(Ωm) ,

SF,freq(Ωm) = (~Gn̄c)
2

(
8∆

κ2

)2

Sφ̇(Ωm) , (1.98)

where SI(Ωm) and Sφ̇(Ωm) are the power spectral densities of the relative laser
intensity and frequency noise, which we can measure in the lab.

Both noise terms depend quadratically on the ingoing laser power so that the
resulting bath temperature can be written as

Tbath = T0(1 + c3P
2
in) , (1.99)

with c3 = TL/(T0P
2
in).

1.2.6 Displacement sensing

To detect the motion of the membrane, we exploit the fact that it slightly changes
the cavity resonance frequency, which modifies the phase of the reflected beam Φ.
In section 1.2.2 we found Φ = 4∆/κ with ∆ = Gxm for a resonantly driven cavity
and small membrane displacements.

In our new cavity-membrane setup we detect this phase shift via the beat signal
with a strong local oscillator beam in a homodyne detection scheme. The back-
reflected signal from the cavity and the local oscillator beam are overlapped on a
50 : 50 beamsplitter, see figure 2.5. The signals from the outgoing ports are sent to
two photodiodes whose outputs are subtracted. If the phase of the local oscillator
beam is locked to the point where the slope of the interference fringe is maximal,
the difference signal becomes

εDiff = 4
√
PcPLOΦ . (1.100)

Here Pc is the power which probes the cavity and PLO is the power of the local
oscillator beam, which can be much larger than Pc.

In the old cavity-membrane setup the phase shift was detected via the Pound-
Drever-Hall (PDH) error signal [105]

εPDH = −2
√
PcPsbΦ , (1.101)

where Psb = ξPc is the power in each PDH sideband and Pc the power in the carrier
which probes the cavity. One easily sees that both signals are proportional to xm

through Φ and that the local oscillator scheme allows to generate a much larger
signal for a given power in the detection beam Pdet = Pc + 2Psb.

In both cases, the optical power gets converted into a voltage via a photodiode,
thus creating a voltage proportional to xm, which we detect with a spectrum ana-
lyzer. This device measures the PSD of this voltage SV (Ω), which is proportional to
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Chapter 1. Theory of atomic and membrane oscillators coupled with light

the PSD of the membrane displacement Sx(Ω). Integrating the spectrum analyzer
signal over all frequencies gives the detected temperature Tdet =

∫∞
0 SV (Ω)dΩ/2π,

which equals the membrane temperature Tm up to a constant

Tdet = c1Tm . (1.102)

We calibrate c1 via the assumption that the membrane is at room temperature
if no light is impinging onto the membrane.

Combining the results of the previous paragraphs, namely the equations 1.102,
1.95, 1.96 and 1.99, the detected optomechanical temperature in presence of laser
noise can be expressed as a function of the ingoing power

Tdet =
c1T0(1 + c3P

2
in)

1 + c2Pin
. (1.103)

Operating the spectrum analyzer in zero span mode with a bandwidth larger
than the linewidth of the membrane, BW � Γtot, allows to probe the membrane
power spectrum versus time. We often perform measurements in this temporally
resolved mode as it gives direct access to the membrane damping rate without any
calibration. In thermal equilibrium, the oscillator is driven by a fluctuating thermal
force. As a consequence, the membrane amplitude fluctuates on a timescale of
1/Γtot. Therefore, precise measurements of the PSD, which is given by the mean
value of the membrane displacement, see equation 1.53, have to be performed for
a time much longer than Γ−1

tot. A finite measurement time leads to an error in the
PSD measurement. In [98] section 1.1.2 it was found by numerical simulations that
the resulting uncertainty on the measured temperature is

∆T =
T√

N(1 + τΓtot/2)
. (1.104)

Here τ is the measurement time, N is the number of traces over which the measure-
ment was averaged and T is the measured temperature.

1.2.7 Minimal phonon occupation number and optomechanical co-
operativity

To perform experiments in the quantum regime, the harmonic oscillator must be
close to or in its quantum ground state. In the classical model presented above the
temperature Topt = TbathΓm/(Γm + Γopt) can be reduced to arbitrary low values if
the optomechanical damping rate Γopt is increased. However, at low oscillator tem-
peratures fluctuations of the radiation-pressure force due to photon shot noise and
the coupling to the thermal bath set a limit to the minimally achievable temperature,
which is not taken into account in the simple classical model.

A rigorous quantum mechanical treatment of the optomechanical cooling pro-
cess as presented in [101, 106, 107, 12] results in a minimally achievable phonon
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occupation number of [12]

n̄f =
Γoptn̄min + Γmn̄th

Γopt + Γm
, (1.105)

where n̄min is the minimal occupation number in absence of thermal decoherence
(Γm = 0). In the bad cavity regime (κ � Ωm) the phonon occupation becomes
minimal for ∆ = −κ/2 ( where Γopt(∆ = −κ/2) = 8n̄cg

2
0Ωm/κ

2) resulting in [12]

n̄min =
κ

4Ωm
� 1 , (1.106)

In the so-called resolved-sideband regime (κ� Ωm) the occupation becomes minimal
for ∆ = −Ωm (Γopt = 4n̄cg

2
0/κ) where [12]

n̄min =

(
κ

4Ωm

)2

� 1 . (1.107)

One easily sees that in the bad cavity regime the ground state n̄f ≈ 0 cannot be
reached even in the absence of any coupling to the thermal environment. We will
see in the following section that ground state cooling in the bad cavity regime still
is possible if sympathetic cooling from the atoms is present, which adds additional
cooling but no additional noise.

For large damping Γopt � Γm and in the resolved sideband regime (κ � Ωm)
the final occupation number from equation 1.105 can be written as [12]

n̄f = n̄min +
1

Copt
. (1.108)

Here Copt is the optomechanical multiphoton quantum cooperativity

Copt =
4g2

0n̄c
κΓmnth

, (1.109)

Equation 1.108 shows that optomechanical ground state cooling is possible if the
cavity is in the resolved sideband regime, and if in addition the optomechanical
cooperativity Copt is larger than one.

1.3 Hybrid atom-membrane system

In this final theoretical section I combine the results of the last two sections to
describe the hybrid atom-membrane system. Concretely, I will derive classical equa-
tions of motion for the membrane displacement and the atomic displacement. From
these equations of motion an expression for the sympathetic cooling rate of the
membrane will be derived. Further I will present the corresponding Hamiltonian
and the atom-membrane coupling strength and briefly discuss the quantum limits
of sympathetic cooling.
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Chapter 1. Theory of atomic and membrane oscillators coupled with light

Atomic
ensemble

MIM system

Figure 1.5: Schematic of the coupled atom-membrane system. Atoms and MIM
system are modeled as beamsplitter elements. The system is driven by a single
laser beam from the right.

1.3.1 Coupled equations of motion

Figure 1.5 shows a schematic of the coupled atom-membrane system. Atomic and
membrane system are modeled as beamsplitters with certain complex reflection and
transmission coefficients separated by a distance d. The system is pumped with one
single laser C2(x) = C20 exp(−ikx) from the right. Based on the knowledge from
section 1.2.2, I model the membrane-in-the-middle system as an object with unity
reflection amplitude (see equation 1.81), which shifts the phase of the reflected light
by the membrane position dependent phase Φ = 4Gxm/κ (see equation 1.83). The
position xm is the displacement of the membrane with respect to its steady state
position in the cavity, which is not explicitly drawn in the figure. Within this model
the field, which is reflected off the MIM system, can be written as

D1(xMIM) = ηC1(xMIM)eiΦ . (1.110)

Here xMIM is the position of the cavity incoupling mirror. Further, the coupling
efficiency to the cavity TEM00 mode η ≤ 1 is included. I assume that light which is
not coupled into the TEM00 mode is scattered off the cavity in a divergent optical
mode and does not get back to the atoms.

The ingoing field B2 at the position of the atoms xa is then related to the outgoing
field A2 by

B2(xa) = ηt2eiΦe2ikde2ikxaA2(xa) = ηt2eiΦe2ikxaA2(xa) , (1.111)

where t is the amplitude transmission of the optical path between atoms and cavity.
In the second equation the distance between the two systems has been set to d =
nλ/2, n ∈ N to place an intensity maximum at the zero point of the coordinate
system xa = 0.

As in section 1.1.6, I model the atomic ensemble as a beamsplitter with reflectiv-
ity r and transmission t given by equation 1.35. I assume that the reflectivity of the
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1.3. Hybrid atom-membrane system

atoms is small |r| � 1, which is a reasonable assumption in our system. Inserting
equation 1.111 into the first line of equation 1.34 relates the field A2(xa) to the
ingoing field C2(xa)

A2(xa) =
tC2(xa)

1− rηt2eiΦe2ikxa

≈ tC2(xa)(1 + rηt2eiΦe2ikxa) . (1.112)

In the second line the fraction is expanded in the small parameter r up to first
order. Terms scaling with r2 or higher and with this interaction effects of the atomic
ensemble with itself via the MIM system are neglected.

In this approximation the field B2(xa) = [A2(xa)− tC2(xa)]/r becomes indepen-
dent of A2(xa),

B2(xa) ≈ ηt2eiΦe2ikxatC2(xa) . (1.113)

Thus, we recover the situation from section 1.1.6. To calculate the force onto the
atoms and the modulation of the power in the beam which propagates towards the
membrane, we can directly use the results from section 1.1.6 for incoming fields,
C(x) = C0 exp(−ikx) from the right and B(x) = B0 exp(ikx + φ) from the left,
setting B0 = ηt2tC0 or correspondingly I0 = η2t4I1 ≡ RI1. In the last equation, I
dropped the atomic transmission coefficient t, which is very close to one (t ≈ 1) if
r� 1. For small atomic and membrane displacements xa and xm the force onto the
atoms is then given by equation 1.43. Using Φ = 4Gxm/κ it can be written as

Fa = −NmΩ2
axa −Kxm , (1.114)

with coupling spring constant

K = NmΩ2
a

2G

κk
. (1.115)

The motion of the atoms creates a modulation of the power of the beam traveling
towards the membrane given by equation 1.46. This power modulation induces a
force on the membrane because it alters the radiation pressure force 1.89 inside the
cavity. Inserting equation 1.46 and 1.91 into equation 1.89 results in the following
force on the membrane

Fm = −η2t2Kxa − η2t2NmΩ2
a

(
2G

κk

)2

xm . (1.116)

For the power which is coupled into the cavity, the cavity incoupling efficiency η
and the optical path transmission between atom and membrane t are taken into
account. The first term in equation 1.116 is the force from the atoms. The second
term results from an interaction of the membrane with itself via the reflection at
the atomic ensemble. It has the form of a restoring force. For our parameters the
intrinsic restoring force of the membrane Fm,res = −MΩ2

mxm is much larger than
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this second term (MΩ2
m ≈ 350 N/m � NmΩ2

a(2G/κk)2 ≈ 0.0016 N/m ). I will
therefore neglect this second term in the following.

Inserting these forces into the equations of motion for the atomic and membrane
displacement gives the following set of coupled differential equations

Nmẍa = −ΓaNmẋa −NmΩ2
axa −Kxm ,

Mẍm = −ΓmMẋm −MΩ2
mxm − η2t2Kxa + Fth . (1.117)

Here Fth is the fluctuating thermal force originating in the coupling of the membrane
to the environment. As the atomic temperature is negligibly small, the correspond-
ing atomic term is neglected. Γa and Γm are the damping rates of the atomic and
membrane motion.

1.3.2 Coupling Hamiltonian and coupling strength

A quantized description of the coupled system explicitly modeling the atom-light and
membrane-light interaction has recently been published [69]. In their work Vogell et
al. show that the atom-membrane interaction can be described by the Hamiltonian

Ĥ = ~gN

(
b̂m + b̂†m

)(
b̂a + b̂†a

)
, (1.118)

with coupling constant

gN = |rm|Ωa

√
NmΩa

MΩm

2F

π
. (1.119)

Here b̂m (b̂a) and b̂†m (b̂†a) are annihilation and creation operators of the mem-
brane (atomic mode). The coupling constant is connected to the spring constant
gN = Kxm,0xa,0/~, where xm,0 =

√
~/2MΩm and xa,0[N ] =

√
~/2NmΩa are the

quantum mechanical zero point amplitudes of the membrane and atomic center-of-
mass-motion, respectively. Note that the derivation in [69] is done for the point of
maximal optomechanical coupling. If the membrane is placed at a position where
the optomechanical coupling strength G is smaller than Gmax, the atom-membrane
coupling constant is reduced by the same factor. The coupled equations of motion
presented above can alternatively be derived from the Hamiltonian description. Us-
ing equation 1.21 and 1.74, the coupling constant can be rewritten as a product of
the atomic and the membrane coupling to light

gN =
4
√
Nn̄cg0g1

κ
. (1.120)

Here g0 = Gxm,0 is the optomechanical single photon coupling rate introduced in
equation 1.87 and g1 is the single atom, single photon atom-light coupling rate

g1 =
V1

~
kxa,0[N = 1] , (1.121)

where V1 = Vm/n̄c is the depth of the lattice potential per intra-cavity photon.
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1.3.3 Sympathetic cooling

Analog to the derivation of the optomechanical damping rate sketched in section 1.2.4,
one can derive a sympathetic damping rate from the coupled equations of mo-
tion 1.117. Fourier transforming the equations leads to

x̃a(Ω) = χa(Ω)[−Kx̃m(Ω)] ,

x̃m(Ω) = χm(Ω)[F̃th − η2t2Kx̃a(Ω)] , (1.122)

with the mechanical susceptibilities

χa(Ω) ' [2NmΩa(Ωa − Ω + iΓa/2)]−1 ,

χm(Ω) ' [2MΩm(Ωm − Ω + iΓm/2)]−1 . (1.123)

In the last two lines a Lorentzian approximation as in equation 1.52 was made, which
is valid for Ωa � Γa and Ωm � Γm. Note that due to a different sign convention
in the Fourier transform x(Ω) =

∫∞
−∞ x(t)e−iΩtdt the signs of the imaginary parts of

the susceptibilities here differ from the ones in reference [55]. Eliminating x̃a(Ω) in
equation 1.122 one obtains

x̃m(Ω) = χsym(Ω)F̃th(Ω) , (1.124)

with an effective membrane susceptibility

χ−1
sym(Ω) = χ−1

m (Ω)− η2t2K2χa(Ω)

= 2MΩm

(
Ωm − Ω + i

Γm

2
−

η2t2g2
N

Ωa − Ω + iΓa/2

)
. (1.125)

For Γa � gN,Γm, as in our sympathetic cooling experiments, one can replace Ω
by Ωm in the last term resulting in

χ−1
sym(Ω) = 2MΩm

(
Ωm − δΩm − Ω + i

Γsym + Γm

2

)
, (1.126)

with sympathetic damping rate

Γsym[N,Ωa] =
η2t2g2

NΓa

(Ωa − Ωm)2 + (Γa/2)2
(1.127)

and frequency shift

δΩm = (Ωa − Ωm)
Γsym

Γa
. (1.128)

The modified membrane susceptibility leads to a modified membrane displacement
spectrum Sx(Ω) = |χsym(Ω)|2SF,th in analogy to the case of the optomechanical
interaction discussed in section 1.2.1. This results in a different membrane temper-
ature Tsym = TbathΓm/(Γm + Γsym). If in addition to the sympathetic damping also
optomechanical damping is present, as in our experiments, the membrane tempera-
ture becomes

Tsym = Tbath
Γm

Γm + Γopt + Γsym
. (1.129)
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1.3.4 Ensemble-integrated sympathetic cooling rate

In our sympathetic cooling experiments the coupling lattice potential is overlapped
with the molasses cooled cloud with radius Ra, much larger than the waist w0 of the
lattice laser beam. From absorption images we find that the atomic number density
na in the molasses is approximately constant over the lattice volume. During the
molasses phase the presence of the lattice does not seem to change the density
distribution significantly. We will see that in section 4.3.

The Gaussian radial intensity distribution of the coupling lattice leads to the
Gaussian profile of axial trapping frequencies Ωa(r) = Ωa(0)e−r

2/w2
0 given in equa-

tion 1.21 for atoms at different radial positions r. If the atomic density distribution
is constant, as in our experiment, there are atoms at all different radii. They act on
the membrane with different sympathetic cooling rates due to their different axial
trapping frequencies, see equation 1.127.

To determine the total sympathetic cooling rate of the membrane for a given
radial profile of axial frequencies, the contributions to Γsym from all the atoms have
to be added up. To do this, we integrate the single atom sympathetic cooling rate
over the lattice beam profile

Γint
sym = 2Rana

∫ Ra

0
dr2πrΓsym[N = 1,Ωa(r)] . (1.130)

With equation 1.21 this can be converted into an integral over frequency

Γint
sym = Nlat

∫ Ωa(0)

Ωa(Ra)
dΩa

Γsym[N = 1,Ωa]

Ωa
, (1.131)

where Nlat = 2Raπw
2
0na is the number of atoms in the lattice volume. As Ra � w0,

the lower integration limit can be set to zero Ωa(Ra) → 0. Using equation 1.127
and 1.119 one finds

Γint
sym =

4g2
Nr
η2t2

Γaπ

{(
1− Γ2

a

4Ω2
m

)(
arctan

[
2Ωm

Γa

]
+ arctan

[
2(Ωa(0)− Ωm)

Γa

])
+

Γa

2Ω2
m

(
Ωa(0) + Ωm ln

[
Γ2

a + 4(Ωa(0)− Ωm)2

Γ2
a + 4Ω2

m

])}
,

(1.132)

where Nr = Nlat(πΓa/2Ωm) = π2Raw
2
0naΓa/Ωm is the number of resonantly coupled

atoms and gNr = |rm|Ωm

√
Nrm
M

2F
π the corresponding coupling constant. For Γa �

Ωm, as in our sympathetic cooling experiments, equation 1.132 can be approximated
by

Γint
sym '

4g2
Nr
η2t2

Γaπ

(
arctan

[
2Ωm

Γa

]
+ arctan

[
2(Ωa(0)− Ωm)

Γa

])
. (1.133)

This is a step-like function with step width Γa and step height

Γstep
sym =

4g2
Nr
η2t2

Γa
. (1.134)
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1.3.5 Ground state cooling and atom-membrane cooperativity

As in the optomechanical case in section 1.2.4, the description of sympathetic cool-
ing above was fully classical. Quantum noise processes which limit the minimally
achievable temperature are neglected. In the fully quantized description presented
in [69] the relevant dissipation processes are taken into account. Vogell et al. find a
minimal phonon occupation number consisting of four terms

n̄f =
Γmn̄th

Γm + Γsym
+

Γrp
m

Γm + Γsym
+

(
Γcool

a

4Ωa

)2

+
Γdiff

a

Γcool
a

= n1 + n2 + n3 + n4 . (1.135)

The first term originates from thermal decoherence via the coupling to the thermal
bath analog to the second term in equation 1.105 with n̄th = kBTbath/~Ωm. The
second term comes from radiation pressure noise on the coupling beam, which causes
a membrane momentum diffusion rate of Γrp

m = 4g2
0n̄c/κ [12]1. These first two

terms can be summarized introducing the total membrane decoherence rate Γdec
m =

Γmn̄th + Γrp
m

n1 + n2 =
Γdec

m

Γm + Γsym
. (1.136)

The third term is caused by the ”rotating terms” in the coupling Hamiltonian, which
start to play a role if the atomic damping is very strong. The last term comes from
scattering of coupling lattice photons by the atoms. This results in a light-induced
momentum diffusion of the atoms corresponding to an atomic damping rate of [108]

Γdiff
a = (kxa,0[N = 1])2 · Γ Vd

~∆LA
. (1.137)

Here xa,0[N = 1] =
√
~/2mΩa is the zero point amplitude of a single atom and Vd

the depth of the lattice potential, see equation 1.20. This intrinsic damping rate will
always be present on the atomic side even if all additional laser cooling is switched
off. The atomic damping rate in the equation of motion 1.117 is the sum of this
intrinsic damping rate and all additional damping for instance from laser cooling
Γa = Γdiff

a + Γcool
a . For strong laser cooling, as in our laser cooling experiments, the

second term dominates Γa ≈ Γcool
a .

For large sympathetic cooling rates Γsym � Γm and resonant atom-membrane
coupling Ωa = Ωm and using equation 1.127, the first two terms can be written as

n1 + n2 ≈
Γdec

m

Γsym
=

1

Cqu
, (1.138)

where Cqu is the atom-membrane quantum cooperativity

Cqu =
4η2t2g2

N

ΓaΓdec
m

. (1.139)

1Note that the expression given in [69] is too small by a factor 4.
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Thus, the atom-membrane cooperativity must be large (Cqu � 1) to reach a phonon
occupation below unity.

If Γa ≈ Γdec
m , an atom-membrane quantum cooperativity above unity (Cqu � 1)

implies strong coupling g � (Γa/2,Γ
dec
m /2). In this regime, quantum mechanical

state swaps between the atomic and membrane system are possible [12]. In summary,
to perform interesting experiments in the quantum regime with the hybrid system
it is crucial to have a system with a large quantum cooperativity.

In a parameter regime in which one of two coupled oscillators is very broad and
the other one is narrow, meaning gN > Γm and gN < Γa or vice versa, a large cooper-
ativity allows to observe interference phenomena analog to the electromagnetically-
induced transparency (EIT) [12, 109]. The constraint for this is even much weaker
than for ground state cooling. To see interference effects, only the non-quantum
cooperativity C has to exceed one (C � 1) [12], which is defined as

C =
4η2t2g2

N

ΓaΓm
=

Γsym

Γm
. (1.140)

If the membrane decoherence rate is dominated by thermal decoherence Γdec
m ≈

Γmn̄th, the two cooperativities are connected by the thermal bath occupation Cqu =
C/n̄th. In a system with C > 1 the coupling is not strong enough for quantum state
transfers between the coupling partners, but a coherent exchange of energy as in
EIT is possible [70].

Using equation 1.121, the atom-membrane quantum cooperativity from equa-
tion 1.139 can be written as

Cqu = 4η2t2 · 4g2
0n̄c

Γdec
m κ

· 4g2
1n̄cN

Γaκ

= 4η2t2CmCa , (1.141)

with membrane-light cooperativity Cm and atom-light cooperativity Ca. Note that
Cm is equal to the optomechanical quantum cooperativity Copt introduced in equa-
tion 1.109 if the radiation pressure noise is negligible.

In the absence of laser cooling (Γcool
a = 0) the atom damping is reduced to the

intrinsic damping rate Γdiff
a given in equation 1.137 and the atom-light cooperativ-

ity becomes maximal. Using the equations 1.137, 1.20 and 1.23, Ca can then be
rewritten as

Ca =
4g2

1n̄cN

Γdiff
a κ

=
4η2t4

(1 + ηt2)2
σ0
N

σL
=

4η2t4

(1 + ηt2)2
ODres , (1.142)

with the resonant optical depth ODres defined in equation 1.13. Here N/σL =
∫
d ndx

is the atomic area density. Thus, in absence of optical losses (η = t = 1) the atom-
light cooperativity Ca equals the resonant optical depth ODres.
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Note that for ground state cooling via cavity optomechanical damping, sideband
resolution and Copt > 1 is required (see equation 1.108). It can been shown that
also feedback cooling to the ground state in an optomechanical system via classical
feedback requires Copt > 1/8 [70]. In our sympathetic cooling scheme the ground
state cooling criterion is strongly relaxed as only the product of Cm and Ca has
to be larger than one and sideband resolution is not required. The membrane can
be ground state cooled even if Copt � 1 (which implies Cm � 1) if it is coupled
to an optically dense atomic ensemble with Ca � 1 so that 4η2t2CmCa > 1. The
quantum feedback from the atoms thus outperforms optomechanical damping in the
bad cavity regime as well as classical cavity feedback.
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Chapter 2

A membrane oscillator in a
cavity

This chapter provides a description and characterization of the second-generation
membrane-in-the-middle (MIM) system which was used in the second half of this
thesis, more precisely, for all experiments on self-oscillations in chapter 5 and several
of the sympathetic cooling experiments in chapter 4. It was set up as part of the
master’s thesis of Thomas Lauber. A lot of details on the assembly process can
be found in his thesis [110]. The cavity system used for the measurements in this
thesis is not exactly the same as the one described in [110]. It is an almost identical
copy, which was built with slight differences in the assembly process. I will point
out the differences in the corresponding section of this chapter. The first-generation
MIM system, which was used in some of the experiments discussed in chapter 4,
has already been treated in details in [111, 98, 55]. I will therefore focus on the
description of the second-generation setup and just summarize the characteristics of
the first-generation setup at the end. The chapter starts with a short introduction
to the central element of the MIM setups - the membrane oscillator.

2.1 Stochiometric SiN Membranes

The mechanical object of interest in our hybrid system is a stochiometric silicon
nidride membrane. These membranes are used in a growing number of optomechan-
ics experiments [80, 16, 29, 112, 113, 9, 8, 19]. While the main reason for this are the
exceptionally high qualitiy factors of these membranes (Q > 106) combined with de-
cent optical reflectivities (rm ≈ 0.4 at 780 nm), they are also commercially available,
rather cheap and due to their large size relatively easy to handle and functionalize
[8, 19, 9].
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Figure 2.1: a) Membrane production process and photograph of membrane.
b) Vibrational wavefunctions of lowest order membrane modes. Figure adapted
from [98] .

2.1.1 Production

We purchase our membranes from Norcada Inc.1. A short summary of the process
used by Norcada to fabricate the membranes and a photograph of the final membrane
are shown in figure 2.1 a). To fabricate the membranes, a thin (tens of nm) layer
of Si3N4 is deposited by low-pressure chemical vapor deposition (LPCVD) onto a
silicon wafer. Due to the lattice constant mismatch between the Si and the Si3N4

the silicon-nitride layer is under a high tensile stress (S ≈ 1 GPa). Subsequently,
a part of the the silicon is etched away from the backside creating a suspended
square membrane. Previous experiments of our and other groups [29, 114, 15] used
non-stochiometric SiN membranes with relatively low stress S ≈ 100 MPa [114]. At
equal dimensions these low-stress membranes have lower frequencies and therefore
a smaller quality factor. They also show higher optical absorption. Taking all that
into account makes them less attractive for optomechanical experiments.

2.1.2 Mechanical frequencies

The suspended square membrane can oscillate out of plane like a square drum with
frequencies [115]

Ωi,j =
π

l

√
S

ρ
(i2 + j2) , (2.1)

1www.norcada.com
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Parameter Value

Mass density ρ 2700 kg/m3[16, 116]
Tensile stress S0 930 MPa
Refractive index Ren 1.98[79] 2.0[117]
Absorption Imn < 4× 10−6 at 780 nm[55]

Side length l 1.5 mm
Thickness d 39.1(40.6) nm
Wafer dimensions 5 mm×5 mm×200µm
Effective mass M 117(140) ng
Fundamental frequency Ωm 2π × 276.3(274) kHz
Amplitude reflectivity rm 0.404(0.4148)
Quality factor Q 1.8(3.0)× 106

Table 2.1: Properties of the membranes in the second (first)-generation setup.
The values for l and the wafer dimensions are company specifications. Other
numbers without quotations were measured in our lab. The first-generation
membrane numbers are adapted from [98]. Ωm, M and Q refer to the (1,1)-
mode. Parameters of the (6,6)-mode can be found in section 2.4.2.

where ρ = 2700 kg/m3 [16, 116] is the mass density, S is the tensile stress in the
material, l is the side length of the membrane and i and j are integer numbers.
Figure 2.1 b) illustrates the corresponding membrane wave functions for the lowest
frequency modes. Table 2.1 summarizes the physical parameters of the membranes
used for the experiments in this thesis. The tensile stress can be inferred from a
measurement of the fundamental mode frequency (i = j = 1). I will refer to the
fundamental mode frequency as Ωm in the following.

2.1.3 Q-factor

For quantum-optomechanics experiments it is desirable to have a mechanical oscilla-
tor with a large Q-value as this reduces undesired decoherence processes originating
from coupling to the environment. A larger Q-value reduces for instance the mini-
mally achievable phonon occupation number given by equation 1.108. With typical
Q-values larger than 106 stochiometric SiN membranes are at the upper end of
the spectrum of mechanical oscillators used in various optomechanical setups [12].
The mechanisms which limit this high oscillation quality and the question of how
to further improve it are subject of current research [116, 118, 119, 114, 120, 121,
122, 123, 124, 125]. A major limitation of the mechanical Q-factor is air damp-
ing (Qat air ≈ 1). When reducing the pressure, the Q-factor typically saturates at
pressures around 10−6 mbar [111]. The biggest limitation of the Q-factor is then
in many experiments given by radiation losses through the supporting substrate
[114, 120, 116, 123, 122, 16, 102, 121]. The Si frame of the membrane is often glued
or clamped to a supporting structure. This leads to a strong coupling between
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the vibrational modes of the frame and the support, which broadens the modes of
the frame. If the membrane mode of interest lies close to a frame mode, it then
couples to the supporting structure via the frame. This creates a dissipation chan-
nel for the motion of the membrane mode. A minimization of the clamping often
leads to the highest Q-factors [16, 111]. Moreover, symmetric (i,i) modes, espe-
cially higher order ones, typically have higher Q-values than antisymmetric modes
[123, 116, 98], which can be explained within a theoretical model of the clamping
losses [126]. Embedding the membrane into a periodic structure allows to create a
phononic bandgap shield, which makes clamping down the membrane a less deli-
cate procedure [120, 123]. The limitation of Q is then ultimately given by internal
loss mechanisms [127, 122, 128, 119, 129], which still have not been completely un-
derstood. The highest quality factors observed with stochiometric silicon nidride
membranes are in the range of several tens of millions. It seems that the Q-factor
rises for increasing side length l and decreasing membrane thickness d [98, 116].
Furthermore, it has been observed that higher Q-values are reached in a cryogenic
environment [120, 130].

2.2 Cavity design and vacuum setup

The SiN membranes have impressive Q-factors, but their reflectivity (rm ≈ 0.4 at
780 nm) is too low to use them as a vibrating end mirror in an optomechanical sys-
tem. However, placing the membrane inside an optical cavity from highly reflective
bulk mirrors, a configuration pioneered by the Harris group in Yale [80, 15, 130],
called membrane-in-the-middle (MIM) system, creates a powerful optomechanical
system. We make use of this cavity enhancement in our hybrid setup. Theoretical
details are presented in section 1.2.

2.2.1 Design criteria

For the designated task of coupling the membrane efficiently to the motion of the
atomic ensemble, the membrane cavity system must fulfill a range of requirements:

• The cavity must be asymmetric as all the light shall be reflected back to the
atoms. Thus, one mirror of the cavity should have a reflectivity as high as
possible.

• The phase shift of the reflected light induced by the membrane motion Φ =
4Gxm/κ = 8|rm|kxmF/π (see section 1.2.2) and thus the cavity finesse F
is supposed to be high so that the membrane motion has a large effect on
the atoms. A high finesse also increases the influence of quantum laser noise
on the membrane compared to the influence of undesired technical laser noise.
Coupling to the motion of the atoms sets limits to the minimum power outside
the cavity because the resonance condition Ωa = Ωm needs to be fulfilled, see
section 1.3. As the membrane has a small but finite absorption, this limits
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Chapter 2. A membrane oscillator in a cavity

the maximally acceptable intra-cavity power and therefore the cavity finesse.
In [55] we estimate that ground state cooling in our system in presence of
absorption is feasible with a finesse around F = 1000. The reflectivity of the
second cavity mirror is therefore chosen to create a cavity finesse close to this
value (based on equation 1.79).

• For optimal performance of the coupling scheme presented in section 1.3, the
cavity linewidth κ must be large compared to the frequency of the membrane,
so that information gets exchanged quickly between atoms and membrane. For
a given cavity finesse, this means that the cavity must be rather short. A large
linewidth also serves the purpose of reducing the importance of laser frequency
noise, which we found as a limiting factor to the optomechanical behavior of
our first-generation system [55, 98].

• The entire cavity setup should be small enough for potential cryogenic pre-
cooling of the membrane.

• The cavity system shall be very stable. Our first-generation cavity-membrane
system turned out to be too shaky. The cavity was rather long (L = 27 mm,
see section 2.5 or [111, 98] for more details). Most importantly, the membrane
was mounted on a stack of attocube positioners2 with a resonance frequency
in the 100 Hz regime. This made the cavity system extremely sensitive to low
frequency vibrations. Any acoustic noise in the lab was visible on the cavity-
frequency lock signal. It was only possible to run the experiment with several
layers of vibration insulation material around the cavity-membrane setup [111].
Still, slamming drawers and doors made the cavity-frequency stabilization fall
out of lock, so that all the data presented in [55] had to be taken late at
night. Furthermore, the position of the membrane was drifting by significant
fractions of the laser wavelength on the timescale of hours, probably caused by
the torque resulting from the gravitational force on the membrane positioned
at the end of a lever, see figure 4.1 in [98]. Driven by these inconveniences, the
second-generation cavity-setup was designed for maximal stability. This was
mostly realized by reducing the length scales and giving up degrees of freedom.
As in an atom-membrane coupling experiment the coupling laser frequency is
typically set by the atomic ensemble, the cavity needs at least one degree of
freedom to adjust the cavity resonance frequency to the laser frequency.

2.2.2 Cavity design and vacuum setup

Figure 2.2 a) and b) illustrates the second-generation cavity setup. The bottom
mirror (r2

2 = 99.99%, R = 30 cm) is attached to a titanium ground plate. The
membrane is glued3 to a thin4 aluminium holder, which is separated from the ground

2Attocube, ANGp101, ANGt101, ANPz101
3UV glue (OG 142), Epoxy Technology
4Thickness 400µm, ∅15 mm
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Figure 2.2: a) Technical drawing of the cavity system. b) Photograph of the
cavity in the vacuum chamber. In the second assembly run the electrical con-
tacts were not soldered on the piezo elements but attached with conducting glue
(EJ189, Exopy Technology) as the piezos in the first run potentially had been
damaged by the soldering process. c) Technical drawing of the cavity mount-
ing in the vacuum chamber. The cavity is resting on a stack of massive steel
cylinders, which are separated by viton rods for vibration insulation. The upper
surface is tilted by 2◦ with respect to the viewports to prevent reflections. The
entire block is resting on an aluminum holder, that is attached to the bottom
flange of the vacuum chamber.
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Figure 2.3: a) Vacuum system. The stainless steel chamber (MCF450-SphSq-
E2C4, Kimball Physics, produced by Swiss Vacuum) has six ports. AR-coated
viewports (CF 40 on CF 63 adapter) are used on the top and bottom port for
optical access to the cavity. One of the four ports on the side (CF 40) is used for
an electric feed-through to control the piezos, one is blank, one is connected to
an ion pump via a valve and the last one is connected to a second valve, which
we initially connect to a turbo pump (HiCube 80 Classic, Pfeiffer Vacuum). The
vacuum chamber is resting on 10 cm stainless steel feet to provide optical access
to the cavity transmission. b) Photograph of the table, carrying the optical
setup.

plate by a ring piezo5 leaving a gap of ≈ 0.5 mm to the bottom mirror. To minimize
clamping losses, the membrane is glued only at one edge. A second equal ring piezo
on top of the membrane mount carries the top mirror holder6 and the top mirror
(r2

1 = 98.54%, R = 30 cm) leaving a gap between top mirror and membrane of equal
size. The two piezos allow to change the lengths of the two subcavities L1 and L2

and with this the total cavity length L = L1 + L2 as well as the position of the
membrane relative to the middle of the cavity xm = (L1 − L2)/2. All components
were glued together to maximize the stability of the system7. During the gluing
procedure the cavity transmission was recorded and the position of the elements
fine aligned to achieve a perpendicular alignment of the membrane with respect to
the cavity mode. Details on this delicate procedure are given in [110]. As pointed
out before, the current cavity is very similar but not identical to the cavity in [110].
In the second assembly run the cavity components were attached via an iris to a
mirror holder, which itself was mounted on a three-axis translation stage during
the alignment process to improve the precision in positioning. We observe that the
incoupling into the cavity has to be re-adjusted whenever one of the piezos is moved.
This indicates an imperfect cylindrical symmetry of the cavity system for instance
from a residual tilt between the wave fronts of the cavity mode and the membrane.

5Piezomechanik GmbH, 3µm/150V, thickness 3 mm, ∅15 mm
6Titanium, thickness 3 mm, ∅outer15 mm, ∅inner5 mm
7Two component epoxy glue, UHU Schnellfest

47



2.3. Optical setup

TAWproW
78dWnm

IFLW
78dWnm

Frequency
stabilization

AOM
g95

AOM
g95

Wavemeter

ToWwavemeter

ToWAtomWsetup

FromWMasterWlaser

ToWMembraneWsetup

LatticeWinthstabh

PDHWinthstabh

TAWSetup

5d:5dWBS

PBS FiberWcoupler

IsolatorPickupWplate

PZTWmirror

PD

ElectricalWsignal

Light

OpticalWfiber

TiltedWPBS

Legend

MasterWout

MainWout

DethWbeam

C
ou

pl
in

gW
be

am
W

Figure 2.4: Coupling and detection light preparation setup. Beam shaping
elements such as lenses are left away for clarity. AOM: acousto-optic modulator,
IFL: interference filter laser, BS: beam splitter, PBS: polarizing beam splitter,
PD: photo diode. The green AOM boxes display the rf-frequency in MHz.
Further details are given in the text.

Figure 2.2 c) illustrates how the cavity system is mounted inside a vacuum chamber.
The entire vacuum system including an ion pump is shown in figure 2.3. Pumping
the chamber down from the ambient air pressure with a turbo pump and the ion
pump without any baking, we reach a typical pressure of ≈ 10−7 mbar.

2.3 Optical setup

The following paragraphs introduce the different elements of the optical setup used to
interact with the cavity-membrane setup, namely the laser source, the frequency sta-
bilization setup, the detection system and the coupling beam. Except for small mod-
ifications the same laser source was used with the first-generation cavity-membrane
setup, but the detection system was different. A short summary of the first-generation
optical setup will be given in section 4.1.
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Chapter 2. A membrane oscillator in a cavity

2.3.1 Light preparation

Two laser beams are required to run the optomechanical system. One couples the
membrane to the atomic ensemble. The other one is used to stabilize the cavity to
the laser frequency and also to read out the membrane motion. Figure 2.4 shows
the optical setup which prepares the two beams. Both beams come from the same
780 nm grating stabilized diode laser8, which is amplified by a tapered amplifier (TA)
within the laser box. Before amplification a fraction of the laser light (≈ 2 mW) is
coupled out of the laser box at the master output. This light is split in two parts.
One part is sent to a wavemeter9 to coarsely determine the atom-laser detuning
∆LA. The other one travels to a frequency stabilization setup, which allows to
reduce the laser frequency noise at the membrane frequency by 8 dB acting back on
the laser current and piezo. Details on this setup are given in [98], section 4.2.4.
The frequency stabilization was in use for the cooling measurements presented in
chapter 4 and not in use for the self-oscillation measurements presented in chapter 5.

The main amplified output of the TA (≈ 1 W) is split into the detection and
stabilization beam (from now on referred to as PDH beam) and the coupling beam
(sometimes also referred to as lattice beam) at the first polarizing beam splitter
cube (PBS). A small fraction of the coupling beam (5 mW) is picked up with a
second PBS cube and overlapped with a second laser beam originated from the
MOT master laser on a beam splitter (BS). The beat-note signal is recorded on a
photodiode10 (PD). As the MOT master laser is locked to the 87Rb F = 2↔ F ′ = 3
crossover, this allows to measure the detuning ∆LA from the beat signal between
the two lasers with a precision much higher than with the wavemeter. The minimal
resolution of the wavemeter is 10 MHz and it can drift by about 50 MHz within a
few hours. The precision of the detuning measurement via the beat signal is limited
only by the small linewidth (100 kHz in 5µs [111]) of the diode lasers. Small atom-
laser detunings ∆LA < 2π × 1 GHz are therefore typically adjusted via the beat
signal. A lock of the detuning is not required as the laser frequency is stable up
to 10 MHz over hours. Both the PDH and the coupling beam powers are stabilized
via an acousto-optic modulator11 (AOM)12. The AOMs are driven by the same low
noise voltage-controlled oscillator (VCO) and the same deflection order is used to
avoid time-dependent interference effects between the two beams inside the cavity.
Behind the AOM the lattice beam passes an optical isolator, which protects the
laser from lattice back reflections. It is overlapped with a beam from a third laser
in the opposite polarization on a PBS cube. This 780 nm laser beam at a slightly
different frequency is used as a ruler to mark the membrane position in the cavity as
described at the end of section 2.4.1. Finally, all beams are coupled into polarization-
maintaining fibers13.

8Toptica, TA pro, 1.5 W
9WS-7, High Finesse

10ZX85-12G-S+, Mini Circuits
11Crystal Technology, 3080-120 & 3110-120
12See figure 2.6 and table 2.2
13PM780HP, Thorlabs
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Figure 2.5: Optics assembly for cavity stabilization, membrane readout and
atom-membrane coupling. For a legend see figure 2.4. Details are given in the
text.
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Figure 2.6: a) PDH stabilization rf-setup. VCO: voltage-controlled oscillator,
EOM: electro-optic modulator, PD photo diode, LP: low pass filter, OC: optical
circulator. We can adjust the phase between the inputs of the mixer by fine tun-
ing the frequency of the VCO by a control voltage. b) Coupling (lower branch)
and PDH (upper branch) beam power stabilization rf-setup. AOM: acousto-
optic modulator. Part numbers of the electrical components are summarized in
table 2.2.
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a) Parameter Value b) Parameter Value

VCO ZX-95-1600W-S+ VCO ROS-95-419
Splitter Z-FSC-2-5 Splitter ZMSC
Amplifier 1 Sat-8 + ZHL 1217 HLN Variable attenuator ZAS-3+
EOM 4441 1.3GHz New Focus Switch ZASWA-2-50-DR+
PD ZX85-12G-S+ Amplifier ZHL-3-5WF+
Amplifier 2 AMF-4F-01200160-04-13P Miteq PD+PI controller see [111], section 5.1.2
Mixer ZEM-4300+ AOM driver box AOM2-100 (slave mod.)
LP home built PD DET10A/M Thorlabs
PI controller SIM 960 SRS PI controller Noise Eater 3V2 TEM

Table 2.2: Rf-components shown in figure 2.6. a) PDH stabilization. b) Cou-
pling (top) and PDH beam (bottom) power stabilization. If not mentioned
otherwise, all components are from Mini Circuit.

2.3.2 PDH-lock

The cavity frequency is stabilized to the laser frequency by Pound-Drever-Hall
(PDH) stabilization [105]. In this scheme, optical sidebands, which do not enter
the cavity, are modulated onto the carrier light. The phase relation between carrier
and sidebands in the reflected light carries information about the deviation between
the carrier frequency and the cavity frequency [105]. Demodulated back to DC, this
signal can be used to lock the laser-cavity detuning in the range −κ/2 < ∆ < κ/2
around the cavity resonance.

The optics for cavity stabilization and readout of the membrane motion are
placed on a small table on top of the vacuum system. Figure 2.3 b) depicts a
photograph of this table and figure 2.5 a schematic drawing of the optics assembly.
The lower dashed box shows the optics on the little table. Again, beam shaping
elements are not shown (see [110] or [111] for details on spatial mode matching into
the cavity). The PDH light arrives via a fiber to the left of the dashed box. The
beam is split with an aspect ratio of 10 : 1 into a local oscillator (LO) beam (1 mW)
and the actual PDH beam (0.1 mW), which probes the cavity. A small fraction is
split off the local oscillator beam and sent to a photo diode for intensity stabilization
(see figure 2.6). An electro-optic modulator (EOM) modulates the sidebands onto
the PDH beam. The beam then enters the cavity, is reflected back and picked up at
an optical isolator. A small fraction of this reflected light is picked up and sent to a
fast PD to generate the error signal. Figure 2.6 a) shows the electronics of the PDH
stabilization circuit. The demodulated error signal [105] is low-pass filtered and sent
to a PI controller, which gives feedback to one of the ring piezos of the cavity. The
part numbers of the rf components mentioned in this paragraph are summarized in
table 2.2. The second ring piezo receives a fixed voltage (0 − 32 V) from a power
supply.

2.3.3 Homodyne detection

In the first-generation cavity setup the membrane motion was detected via the high
frequency (> 100 kHz) part of the PDH error signal, see equation 1.101 and [98],
section 4.2.1, or [111], section 6.6. To enhance the signal-to-noise ratio, a balanced
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homodyne detection scheme was implemented into the second-generation setup, see
equation 1.100. For this, the major part of the cavity backreflection in figure 2.5 is
overlapped with the strong LO beam on a 50:50 BS. The outputs of the BS are sent
to a balanced PD 14. One part of the difference signal is low-pass filtered and used
to stabilize the phase of the local oscillator via a mirror on a piezo element (PZT).
The other part is used to record the membrane signal with a spectrum analyzer15 or
an oscilloscope. Figure 2.12 shows exemplary membrane spectra recorded with the
homodyne detection. The signal-to-noise ratio of the peak on the very right is 1000
at a membrane temperature of ≈ 50 K. In a similar measurement taken with the
first-generation setup ([98], figure 4.11 a)), the signal to noise ratio was 133 at an
even higher membrane temperature of 200 K. Thus, the detection via the strong local
oscillator clearly improved the signal-to-noise ratio as expected from equations 1.101
and 1.100.

2.3.4 Coupling and cooling light

The coupling light passes the atomic setup before it enters the cavity system. The
upper dashed box in figure 2.5 sketches the relevant optical setup. Before passing
the vacuum chamber which contains the atomic ensemble, a part of the coupling
beam is picked up for intensity stabilization, see figure 2.6 b). The beam arrives at
the membrane setup via a second fiber. The beam is overlapped with the PDH beam
at a PBS cube. Thus, coupling and PDH beam are in different polarization modes
when they enter the cavity and are split again on the same PBS on their way back.
We found that we have to introduce a λ/2 plate between the PBS and the cavity to
suppress back reflections of coupling light into the PDH path. This indicates that
the cavity is slightly birefringent. If no atomic ensemble is prepared, the coupling
beam can be used for optomechanical cooling experiments, see section 2.4.2.

2.3.5 Cavity transmission

A small amount of light will leak through the highly reflective back mirror of the
cavity. We use half of this light to monitor the cavity modes with a CCD camera
and the other half to measure the amount of transmitted power with a photodiode,
see figure 2.5. This is an important tool to characterize the optical properties of the
cavity.

2.4 System characterization and optomechanical per-
formance

In the next two paragraphs the static optical properties and the optomechanical
behavior of the second-generation membrane system are characterized before the

14New Focus, 2107
15FSVR or FSV, Rohde&Schwarz
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Figure 2.7: Exemplary cavity transmission signal. The red line shows the
result of a Lorentzian fit. The optical sidebands, which are used to calibrate the
horizontal axis, are not included into the model. Therefore, the sideband area
without the red line is excluded for the fit.

system is compared to the the first-generation setup.

2.4.1 Static optical properties

The optical properties of the membrane cavity system, more precisely the free spec-
tral range ωFSR, the cavity finesse F and the reflectivity of the membrane rm can
be determined from the cavity transmission. To measure the free spectral range,
the frequency of the laser is tuned over a large range by moving the laser grating
until the second next longitudinal mode enters the cavity. The frequency difference
between the two modes is measured with the wavemeter to 2π×330 GHz resulting in
a free spectral range of ωFSR = 2π×165 GHz. This corresponds to a cavity length of
L = πc/ωFSR = 0.91 mm, which is close to the design length of 1 mm meaning that
the thickness of the cavity mirror substrates matches the specified value. A mea-
surement of the frequency difference to the second next (n+2) longitudinal mode is
necessary as the frequency shift from the membrane of the next longitudinal mode
(n+1) has opposite sign (see equation 1.72 and figure 1.4).

To determine the finesse of the cavity, the length of one of the subcavities is
scanned over the cavity resonance and the linewidth of the resulting Lorentzian
in the transmission of the PDH beam is extracted. The x-axis is calibrated via
the known PDH sideband frequency as depicted in an exemplary measurement in
figure 2.7. The thinnest FWHM linewidth which we observe is κ = 2π × 232 MHz
corresponding to a maximal finesse of F = ωFSR/κ = 711.

The membrane reflectivity rm and with this the optomechanical coupling strength
G can be extracted from a measurement of the transmission spectra in which the
lengths of both subcavities L1 and L2 are scanned. We can apply voltages between 0
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Figure 2.8: Measured cavity transmission spectra. a) Recorded cavity trans-
mission versus the voltages applied to the two ring piezos. The yellow lines
indicate the axes along which the membrane position xm and the cavity length
L are varied. b) Data between the red lines in a) in a distorted view, in which
the yellow axes from plot a) are perpendicular to each other. L0 ≈ 0.9 mm is
the macroscopic length of the cavity. c) Zoom into the white box of plot b).
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Figure 2.9: a) Resonant cavity length extracted from Lorentzian fits to the data
in figure 2.8 c) and fit of theoretical expectation 1.71. b) Corresponding coupling
strength G from equation 1.73. c) Finesse extracted from the Lorentzian fits
and the theoretical expectation 1.79.

and 100 V16 to the ring piezos corresponding to changes in length of 2µm. Figure 1.4
b) and a) in section 1.2 illustrates the expected spectrum as well as the spectrum in
which the axes are converted to a change in the total length L = L1 + L2 and the
membrane mosition xm = (L1 − L2)/2. Compared to the theoretical expectation,
the measured spectrum in figure 2.8 a) looks very distorted. We suspect the ori-
gin of the distortion either in crosstalk between the piezos or in missing cylindrical
symmetry of the cavity-membrane system. We also observe that the angle of the
ingoing beam has to be re-optimized whenever the piezo voltages are changed. This
means that the optical mode in the cavity tilts and suggests that the cavity system
is indeed not cylindrically symmetric.

By hand one can find the axes along which the membrane position and the
cavity length are varied (yellow lines). If the data is transferred into a coordinate
systems in which the two yellow axes are perpendicular to each other, the expected
behavior is recovered as shown in figure 2.8 b). From Lorentzian fits to the vertical
direction of the spectra in the white box (see equation 1.76), the resonant cavity
length and the finesse for varying membrane position can be extracted. Figure 2.9
a) depicts the resonant cavity length versus membrane position together with a
fit of formula 1.71, in which the membrane amplitude reflectivity has been fitted
to rm = 0.4039(29). As expected, this is almost the same value as measured for

16 using HV amplifiers, built in house by electronic workshop, Physics Basel SP908
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the membrane in the first-generation setup (rm = 0.4148, see table 2.1), which
had the same specified dimension. Using equation 1.64 the membrane thickness
corresponding to this reflectivity d = 39.1 nm can be determined. Plot b) shows the
optomechanical coupling strength G = dωc/dxm (see equation 1.73) corresponding
to the fitted reflectivity with maximum value Gmax = 2rmωc/L = 2π×342 MHz/nm.
Plot c) depicts the dependence of the cavity finesse on the position of the membrane.
Due to the coarse resolution of the scan the data quality is very poor. Nevertheless,
the theoretically predicted behavior from equation 1.79 is consistent with the data.
For the theoretical curve the reflectivity of the input mirror (the only remaining free
parameter in formula 1.79) has been set to r2

1 = 0.9854 (slightly higher than the
specified value r2

1 = 0.98) to reproduce the maximal finesse of F = 711.

The distorted cavity transmission spectra make a reproducible positioning of the
membrane difficult, especially on positions of intermediate coupling strength. To
simplify this positioning in everyday lab life, we introduced an additional ”ruler”
laser, depicted in figure 2.4. If a desired membrane position is chosen, the frequency
of this laser can be chosen in such a way that it also enters the cavity in the sub-
sequent axial mode. As the frequency separation between successive axial modes in
the MIM system depends on the position of the membrane (see figure 2.8, figure 1.4
and equation 1.72), the knowledge about the frequency separation can be used to
adjust the desired membrane position again.

2.4.2 Optomechanical behavior

Q-Factor of fundamental mode

In our lab Q-factors of a larger set of membranes are typically determined in a test
chamber [111, 131] by means of ringdown measurements, see equation 1.61. The best
oscillator is implemented into the main experimental setup. In the test chamber the
membranes are already glued to the membrane holder. Roughly one out of ten
glued membranes has a Q-factor above 3 × 106. For the fundamental mode of the
current membrane a Q-factor of 4.5 × 106 was measured in the test chamber. As
the Q-factor might change during the setup of the cavity, for instance by a long-
term exposure to ambient air, we check the Q-factor again inside the cavity. As it
is technically difficult to run the cavity exactly on resonance with the laser light,
small optomechanical damping effects are very hard to avoid. We therefore simply
measure the damping rate for a series of ingoing powers Pin and extrapolate the
linear dependence of Γtot(Pin) = Γm + Γopt(Pin) on Pin ( see equation 1.94) back to
the zero power value. The membrane is placed at a position with relatively weak
optomechanical coupling during this measurement to improve the sensitivity of the
offset measurement. To measure the total damping rate for a given ingoing power,
the membrane motion is excited to a large amplitude by a modulation of the voltage
on one of the ring piezos. The damping rate is extracted from the ringdown of
the membrane amplitude after a sudden stop of this excitation, see equation 1.61.
We use the spectrum analyzer in its zero span mode and record the power in a
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Figure 2.10: a) Exemplary ringdown measurement. The area under the mem-
brane power spectral density SX is plotted versus time. The membrane motion
is excited to a large amplitude. After the stop of the driving, it goes back to the
thermal amplitude with rate Γtot. b) Damping rate Γtot = Γm + Γopt extracted
from ringdown measurements versus the ingoing power into the cavity Pin.

bandwidth around the membrane frequency versus time to measure the ringdown
signal. The bandwidth is chosen large enough to enclose the entire membrane peak
(BW � Γtot). Figure 2.10 a) depicts an exemplary ringdown signal. Plot 2.10 b)
shows the measured total damping rate versus the ingoing power. The offset of a
linear fit to the data (red line) yields Γm = 0.96(2) s−1 corresponding to a quality
factor of Q = 1.81(4) slightly lower than outside the cavity. The frequency of the
fundamental mode also decreased slightly, from 2π × 276.8 kHz to 2π × 276.3 kHz.

Optomechanical damping and optical spring effect

From the theory of optomechanical coupling we expect to see a power dependent fre-
quency shift, an increased damping rate (equation 1.94) and a corresponding reduc-
tion in the mode temperature (equation 1.95). Figure 2.11 summarizes the optome-
chanical behavior of our MIM system for two mechanical modes, the (1,1)-mode with
Ωm = Ω1,1 = 2π × 276.31(1) kHz and the (6,6)-mode with Ω6,6 = 2π × 1657.9 kHz.
Unless otherwise noted, membrane properties such as Ωm, Γm or Q in this thesis refer
to the (1,1)-mode. For the measurement the membrane was placed at the location
of maximum finesse (F = 711) and the laser cavity detuning was set to ∆ = −0.05κ.
Plot a) depicts the damping rate of the 11-mode extracted from ringdown measure-
ments as described above. The slope of the fitted linear dependence 1.96 contains
the single-photon optomechanical coupling strength g0 as only free parameter. The
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Figure 2.11: Optomechanics of the (1,1)- and (6,6)-modes. a) and d) Damping
rate Γtot = Γm+Γopt. b) and e) Membrane frequency Ωm = Ω1,1 and Ω6,6 respec-
tively. c) and f) Mode temperature T . The inset in plot c) shows the measured
laser intensity noise SI. a) - c) (1,1)-mode. d) - f) (6,6)-mode. The light-blue
points mark the positions of the exemplary spectra shown in figure 2.12.
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Figure 2.13: Large data collection of optomechanical damping experiments with
(1,1)-mode. Plot b) is a zoom into the grey region of plot a). The blue line shows
the theoretical expectation.

fit gives a value of g0 = 1106(10)s−1. The data in figure 2.11 b) and c) are extracted
from spectrally resolved measurements of the membrane amplitude. Figure 2.12 a)
exemplarily shows such spectra for three different powers indicated by the lighter
blue data points in figure 2.11 c). Figure 2.11 b) shows the center frequency of the
membrane spectrum versus power. The mode frequency displayed above is the offset
of a fit of the linear dependence 1.96 to that data. Also here, the fitted slope contains
g0 as only free parameter. I extract g0 = 1085(3) s−1, which is in reasonable agree-
ment with the value from the ringdown measurements. The fact that the frequency
shift is even lower than expected from the coupling rate extracted from the damping
measurement, indicates that absorption does not play any role in this measurement
as it would shift the frequency even further towards low frequencies [114]. I use the
average value of the two measurements g0 = 1095(5) s−1 to determine the effective
mass of the membrane M = 117 ng, see section 1.2.1. The discrepancy between M
and Mphys/4 = 60 ng means that the 60µm wide cavity mode hits the 1.5 mm wide
membrane 360µm away from the center, which is very realistic.

The area under the membrane spectrum is proportional to the temperature of
the membrane T = (MΩ2

m/kB)
∫∞

0 Sx(Ω)dΩ/2π, see equation 1.59. The measured
temperatures are shown in figure 2.11 c) together with the theoretical expectation
Topt in presence of independently measured laser intensity noise SI(Ωm) shown in the
inset and laser frequency noise SΦ̇(Ωm) = 4π2×256 Hz2/Hz using the equations 1.95
and 1.97. To calibrate the temperature axis, equation 1.103 has been fitted to the
first ten data points with the calibration factor c1 as only free parameter, using the
result for g0 obtained from the fit to the frequency shift to determine c2. This fit
has an uncertainty of 9%. The calibration factor c1 is also used to calibrate the
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spectra in figure 2.12 a). Initially the membrane temperature follows the theoretical
expectation. However, for powers larger than 1 mW the membrane temperature
increases occasionally. This is a behavior we repetitively see when laser cooling the
(1,1)-mode. Figure 2.13 shows a summary of many damping experiments of this
mode. This increase in temperature happens when the optical spring effects takes
the membrane signal into a frequency region in which we see certain small spikes on
top of the membrane signal in the spectrum as visible in figure 2.12 a). We do not
observe any signature of these spikes on the coupling or PDH light. Therefore, we
suspect that the spikes originate from electrical noise on the voltages which supply
the ring piezos. The piezos slightly shake at the frequencies of the spikes and start
to drive the motion of the sensitive membrane whenever the membrane frequency
hits the frequency of one of the spikes.

Figure 2.12 shows exemplary spectra of the (6,6)-mode at Ω6,6 = 2π× 1658 kHz.
The noise level at this higher frequency is lower and most importantly no spikes
are visible in the spectra. The temperature in figure 2.11 f) follows the theoretical
expectation nicely. The temperature has been calibrated in the same way as for
the (1,1)-mode with the laser intensity noise SI(Ωm) = −139.6(3) dBc/Hz as an
additional fit parameter. The fitted temperature uncertainty is 7%. Plot d) and e)
show the optomechanical damping and the optical spring effect of the (6,6)-mode.
From the offset in plot d) one can extract the intrinsic damping rate of the (6,6)-
mode Γm,6,6 = 0.81(18) s−1 and the corresponding Q-factor Q6,6 = 1.28(29) × 107.
The offset of plot e) gives the mode frequency. From the slopes in plot d) and e)
single photon coupling rates of g0 = 179(1) s−1 and 242.3(3) s−1 are derived. The
discrepancy is larger than for the (1,1)-mode measurements. It can be explained
by an increase of the small laser-cavity detuning from ∆ = −0.05κ to ∆ = −0.09κ
in-between the measurements. This is not unlikely because the cavity was taken
out of lock in between measurements, but the detuning was measured only once
at the beginning of the day. As the first measurement was temporally much closer
to the detuning measurement, I use g0 = 179 s−1 to determine the effective mass
of the (6,6)-mode M6,6 = 772 ng. The large effective mass shows that we hit the
(6,6)-mode much less centered, which is not surprising as the width of the maximum
is six times smaller. If the pointing was better, the (6,6)-mode would be the more
favorable mode to use in this cavity system due to the large Q-factor and the absence
of electronic noise at higher frequencies.

2.5 Comparison with first-generation setup

Table 2.3 displays the optical and optomechanical properties of the first-generation
membrane setup. The data are adopted from [98] table 4.1. The properties have
been measured in a very similar manner, as presented above. The last column
summarizes the corresponding values of the second-generation setup. Comparing
the two systems I draw the following conclusions:

• The new cavity is a factor of 29 shorter and has a 2.4 times higher finesse.
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Chapter 2. A membrane oscillator in a cavity

Parameter Value 1st generation setup Value 2nd generation setup

Cavity length L 26.1(4) mm 0.91 mm
Mirror curvature R 30 mm 30 mm
Mirror reflectivity r2

1 96.6 % 98.54 %
Mirror reflectivity r2

2 99.99 % 99.99 %
Mirror diameter 1/4 ” 1/4 ”
Free spectral range ωFSR 2π × 5.75(8) GHz 2π × 165 GHz
Linewidth (FWHM) κ 2π × (19...41) MHz 2π × (232...543) MHz
Finesse F 140...300 304...711
Coupling strength Gmax 2π × 9.75(15) MHz/nm 2π × 342 MHz/nm
Coupling rate g0 28.7 s−1 1095(5) s−1

Table 2.3: Summary of MIM system parameters for first-and second-generation
cavity setup. The parameters from the first-generation setup are adapted from
[98]. The coupling rate g0 refers to the fundamental mode. The parameters of
the membranes themselves are summarized in table 2.1.

This brings it closer to the desired cavity finesse of F = 1000 and reduces the
influence of laser frequency noise on the membrane motion, which is beneficial.

• The reduced size of the entire MIM system, which now occupies a volume
< (25 (mm))3 [98], is a large step in the direction of a cryo-compatible cavity
system.

• The compact and monolithic design of the new cavity massively improves the
passive stability of the system. One can now run the experiment at small cavity
detunings ∆ ≈ −0.05κ without the use of any vibration insulation material.
Acoustic noise is not visible on the PDH error signal any more. The cavity
stabilization stays in lock even if doors are slammed or if mechanical work is
done at the same optical table.

• In order to reduce the mechanical degrees of freedom of the cavity system, the
possibility to adjust the angle of the membrane with respect to the cavity mode
was removed as well. It is very likely that during the cavity assembly an unde-
sired tilt of the membrane was created, which now creates a strange distortion
of the cavity transmission spectra and makes the cavity incoupling efficiency
dependent on the membrane position. Even though this does not affect the
performance of the system, it causes a lot of inconveniences in characteriz-
ing the cavity. One should certainly consider to re-implement this degree of
freedom back in the next-generation backup.

• The current limitation to the optomechanical performance of the new cavity
system is given by a set of noise peaks visible on the membrane spectrum,
which drive the membrane motion whenever the optical spring effect moves
the membrane frequency on top of one of the peaks. Most likely, the noise
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is on the voltages which supply the cavity ring piezos. During the course of
this thesis we were not able to find the exact origin of the noise peaks. If
it remains unknown, proper electrical filtering must be implemented in the
future to improve the performance of the system.

• Finally, the optical read-out of the cavity system has been improved by the
implementation of a homodyne detection scheme with a local oscillator.
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Chapter 3

Preparation of cold and dense
atomic clouds

This chapter describes and characterizes the atomic side of the hybrid system. In
the first part of the chapter I am giving an overview of our cold atom apparatus. The
basic building blocks of the setup, namely the vacuum system, the magnetic field
coils and the laser system were planned during the PhD thesis of Andreas Jöckel
and were set up by him together with me. Many details of these elements are given
in Andreas’ PhD thesis [98]. I am just summarizing the important aspects here.
During this thesis our imaging system was developed further and extended, which I
am treating in more detail.

In the second part, I am characterizing two experimental sequences: the stan-
dard MOT-molasses sequence, which we used in most of the sympathetic cooling
(chapter 4) and self-oscillation (chapter 5) experiments, and a sequence which al-
lows to generate very dense atomic clouds. We use the latter sequence to load a
far-detuned dipole trap [132], which will be used as a storage medium in a quantum
memory experiment [133, 134] or for future membrane coupling experiments. This
sequence is also applied in two of the sympathetic cooling experiments presented in
chapter 4.

3.1 87Rubidium

The experiments in our lab are performed with 87Rb atoms. Rubidium is an alkali
metal. A very useful collection of its properties relevant for atomic physics experi-
ments is given in [82]. Rb is a solid at our ambient lab conditions (Tlab = 22 ◦C).
As its melting point is only at 39.5◦C [82], the vapor pressure at room temperature
is relatively high (2.5 × 10−7 mbar [82]). This allows to generate gases with a Rb
pressure high enough for optical cooling and trapping without heating the container.
Further and even more importantly, as it is an alkali atom, the electronic structure of
Rubidium has a closed cycle transition (|F = 2,mF = ±2〉 ↔ |F ′ = 3,m′F = ±3〉),
which is a prerequisite for laser cooling.
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Figure 3.1: Overview of the atomic setup. The schematic shows the vacuum
system, the surrounding mechanical construction, the magnetic field coils, the
87Rb reservoir and the ion pump. The titanium sublimation pump is hidden
behind the cube which connects the 2D and 3D MOT glass cells. Its position is
indicated. The figure is adapted from [98].

3.2 Vacuum system and magnetic fields

Figure 3.1 gives an overview of the mechanical construction of our cold atom ap-
paratus, showing the vacuum system, the magnetic field coils and the mechanical
construction, which holds the vacuum system and the optical elements.

We use a two-chamber system consisting of the the main experimental 3D MOT
cell1 and a 2D MOT cell2 to combine large MOT loading rates with ultra-high
vacuum in the main chamber [135, 136, 98]. The two chambers are connected only
by a small differential pumping tube [98]. An ion pump3 and a titanium sublimation
pump are connected to the 3D MOT side of the system to maintain the vacuum.
The 2D MOT chamber hidden under the green coils on the right side of figure 3.1
contains a macroscopic piece of Rb4, which fills this chamber with a Rb pressure
of about 2 × 10−7 mbar. A pressure gauge5 on the 3D MOT side placed at the
connection piece between the two chambers reads a pressure of p ≈ 10−9 mbar. The
measured lifetime of ≈ 8 s of the atoms in a conservative potential of depth 230µK
generated by a far-detuned dipole trap [132] is consistent with this pressure [137].

1Precision Glassblowing, www.precisionglassblowing.com
2Precision Glassblowing
3Varian/Agilent, VacIon Plus 40 starcell
41 g Rb of natural isotope abundance, Sigma-Aldrich
5Leybold Ionivac IE514 Extractor
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Figure 3.2: 87Rb D2-line transitions used for laser cooling, optical pumping and
detection. The figure illustrates the frequencies of the repumper and cooling
master laser and shows how the different AOMs in the laser system shift the
frequencies to the desired transitions. The frequency of the master AOM is
tunable over a range of ±23 MHz allowing the 3D MOT, 2D MOT and detection
beams to cover detunings between −11Γ and +4Γ. All other AOM frequencies
are fixed.

To confine the Rb atoms spatially in a MOT, magnetic field gradients are required
as discussed in section 1.1.3. Further, the possibility to apply small homogeneous
magnetic fields is needed to define quantization axes, induce Zeemann shifts or
compensate the earth magnetic field. The magnetic field gradients for the 3D and 2D
MOT are generated by sets of Anti-Helmholz pairs (magenta and green structures
in figure 3.1). To avoid large currents, the coils are placed close to the vacuum
chambers. The 3D MOT coils generate field gradients of 0.66 G/A cm (1.4 G/A cm)
along the horizontal (vertical) axis. Short-circuiting the 3D MOT coils over a 200 V
Zener diode allows to switch off the gradient in 80µs, much faster than the turn-off
time of tens of ms in absence of the diode. The 2D MOT coils generate 8.7 G/A cm
(8.6 G/A cm) along the horizontal (vertical) axis and run permanently.

To enable the generation of small, homogeneous magnetic fields, the entire setup
is placed inside a large coil cage consisting of three pairs of Helmholtz coils, see
figure 3.1. These compensation coils can generate fields of (0.41, 0.69 0.66) G/A in
the three spatial directions with rise times of (1.1, 1.5, 2.2) ms. The current supplies
for the compensation fields include PID controllers and allow to actively stabilize
the magnetic fields if desired [98].
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3.3 Laser system

For laser cooling, manipulating and detecting 87Rb atoms, several laser beams
with different frequencies are required. An overview of these frequencies is given
in figure 3.2. In our setup two lasers provide cooling and detection light on the
F = 2 ↔ F ′ = 3 transition, repumping light on the F = 1 ↔ F ′ = 2 transition
and pumping light on the F = 2 ↔ F ′ = 2 and F = 1 ↔ F ′ = 1 transition. The
laser system used to prepare the different beams is based on previous laser systems
utilized in our group [138, 139]. Figure 3.3 shows its main components. Beam shap-
ing elements such as lenses are not shown for clarity. Two grating-stabilized diode
lasers6 [140], the cooling master and the repumper laser, are locked using standard
Doppler-free saturation spectroscopy [141, 142] to the atomic transition of a Rb va-
por. A major fraction of the master laser beam passes an acousto-optic modulator
(AOM)7 in double pass configuration, which enables fast modifications of the cool-
ing and detection light frequency via the experimental control in a range of +4Γ
to −11Γ detuning around the cycling transition. Subsequently, the master beam is
amplified by a slave diode laser8 [143] and a tapered amplifier chip9 to 1.1 W.

A series of beam splitters and AOMs distribute and shift the beams as illustrated
in figure 3.3 to prepare two beams containing cooling and repumping light for the 2D
and 3D MOT, one beam containing repump light only and two beams for detection
and pumping. Behind the optical fibers, in total 100 mW (308 mW) are available
for cooling and in total 2.2 mW (6 mW) for repumping in the 3D (2D) MOT. Fur-
ther 4.5 mW are available for detection, 500µW for 22 pumping and 100µW for
11 pumping per imaging beam. Mechanical shutters in all beam paths allow to
completely switch off the light via the computer control on the timescale of ms. A
small fraction of the cooling master light is picked up and coupled to a fiber directly
behind the laser output. This light is used to determine precisely the frequency of
the coupling lattice laser as described in section 2.3.1.

3.4 Coupling lattice potential

A crucial ingredient for coupling experiments between atoms and membrane is the
coupling lattice potential. After our first experiments on sympathetic cooling we
changed the cavity-membrane system, which also slightly changed the coupling lat-
tice. In the following I am describing the lattice in the form in which it was used for
most of measurements on self-oscillations (chapter 5) and sympathetic cooling (chap-
ter 4). A characterization of the prior lattice used for the first sympathetic cooling
experiments in chapter 4 is given in [98], section 3.7.4. I am only summarizing its
properties here.

6homebuilt, output power 25 mW
7Crystal Technologies
8homebuilt, output power 45 mW
9Toptica, BoosTA nominally 1.5W output power
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Figure 3.4: The schematic shows the MOT beams (lightest red), the three imag-
ing beams (medium red) and the coupling beam (darkest red). Most beam
shaping elements are omitted for clarity. The optical isolator behind the lattice
fiber prevents undesired multiple reflections. When taking the second-generation
membrane-cavity system into operation, we found that reflections from the λ/2
plate at the fiber outcoupler drive the membrane motion via delayed feedback
(see chapter 5). Before entering the chamber, the polarization of the lattice light
is cleaned by a PBS cube and a small fraction of the light is picked up for inten-
sity stabilization as described in section 2.3.4 and illustrated in the figures 2.4
and 2.6. The light from the second imaging fiber is either used in the Imaging
2a or 2b path.
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The 780 nm diode laser, which provides the lattice light, and the initial prepa-
ration of the coupling lattice beam were presented in section 2.3.1. The beam is
brought to the atomic system via a fiber as depicted in figure 3.4. It is focused down
to w0 = 280µm (1/e2 radius) at the position of the atoms. We measure an intensity
transmission through the glass cell of t2cell = 0.95. Behind the cell, the beam is col-
limated and coupled into a fiber which transports the light to the membrane cavity
system, see figure 2.5. Typically, R = 30% of the power is reflected back to the atoms
by the membrane-cavity system, resulting in a single-path amplitude transmission
of t = 4

√
R = 0.74, if the coupling efficiency to the cavity is good η ≈ 1. This value

varies slightly from day to day. Good mode-matching between the ingoing and the
reflected beam is guaranteed by the use of the fiber.

The lattice laser is detuned by ∆LA from the |F = 2,mF = 2〉 ↔ |F ′ = 3,m′F = 3〉
transition of the 87Rb D2 line. Therefore it forms a potential for the atoms, in which
they oscillate with an axial center frequency of Ωa(0) = ε 4

√
R
√
P0/|∆LA| (see eqau-

tion 1.22). The parameter ε can be determined from sympathetic cooling experi-
ments using the fact that the axial atomic frequency equals the membrane frequency
(Ωa(0) = Ωm) at the minimal power at which sympathetic cooling occurs. This con-
nection will be discussed in section 4.3. Using the sympathetic cooling measurement
presented in section 5.5.2 (figure 5.19) I find ε = 2π×(7.75±0.65)×1011 Hz3/2W−1/2,
which agrees very well with the expected value of ε = 2π × (7.5)× 1011 Hz3/2W−1/2

from the model presented in section 1.1.4 equation 1.22.
The prior optical lattice used for the initial sympathetic cooling experiments

(chapter 4) was not transferred to the first cavity-membrane setup via a fiber but
propagating in free space, see [98] figure 4.2. This resulted in a slightly higher power
reflectivity R = 0.51 but a deformed mode shape of the backreflected beam (win

x =
287µm, win

y = 282µm, wre
x = 265µm, wre

y = 301µm). To a good approximation,
the trapping frequencies in this case can be calculated from the mean width of the
incoming and reflected beam w0 = 284µm. Also for this lattice, the calculated value
ε = 2π×(7.4)×1011 Hz3/2W−1/2 is in reasonable agreement with the calibrated value
of ε = 2π × (6.3 ± 0.1) × 1011 Hz3/2W−1/2, which in this case was determined in a
parametric heating experiment [98].

We load the optical lattice simply by overlapping it with the MOT. As the atom-
laser detunings we use are rather small (∆LA = 2π(1−8) GHz for the experiments in
chapter 4 and ∆LA = 2π(0.5−3) GHz in chapter 5) the scattering rates introduced in
equation 1.23 are large and limit the lifetime of the atoms in the lattice potential to
a few tens of ms according to equation 1.24 (tLT = 52(10) ms for P0 = 7.8(1.6) mW,
∆LA = 2π × 5(1) GHz, R = 0.3 corresponding to Ωa(0) = Ωm). To compensate for
the losses, the large laser-cooled cloud (either in MOT or molasses configuration)
is overlapped with the lattice potential also during the coupling experiments. This
provides permanent refilling of the trap but makes it extremely difficult to determine
the exact properties, especially temperature and density, of the atoms in the lattice
volume. For the molasses configuration we found that one can explain the coupling
experiments very well if it is assumed that temperature and density of the atoms in
the lattice volume are not significantly influenced by the lattice potential but given
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by the bare temperature and density of the molasses (see chapter 4).

3.5 Absorption imaging of dense atomic clouds

The optical depth of the atomic ensemble, the number of atoms, their spatial distri-
bution and temperature are measured using absorption imaging [90]. If the atoms
are illuminated by resonant laser light, they will scatter a fraction of the light out
of the beam, which can be detected by a camera. The shape of this shadow gives
information about the spatial distribution of the atoms and the amount of scattered
photons about the optical depth. If the scattering cross section is known, the num-
ber of atoms can be calculated from the camera images. In this section I will present
our imaging system and describe the principle of absorption imaging of dense atomic
clouds.

3.5.1 Main imaging system

Figure 3.4 illustrates our imaging system. It allows to observe the cloud from two
different sides. The primary imaging beam (Imaging 1 ) probes the atoms perpen-
dicularly to the coupling lattice direction. The light from the laser system shown in
figure 3.3 arrives via a fiber at a small bread board mounted on top of the titanium
sublitation pump. The polarization of the light is cleaned by a PBS before a λ/4
plate turns it into circular polarization. A planoconvex lens creates a slightly diverg-
ing beam, which has a 1/e2-radius of wI1 = 6.88 mm at the position of the atoms. A
1/2” mirror inside the vacuum system directs the light towards the atoms. Behind
the vacuum chamber, a f3 = 40 mm achromatic lens images the plane at which the
atoms are located onto a CCD camera10. We use this imaging axis to investigate
the axial distribution of the atoms in the coupling lattice and also to determine the
properties of the entire laser cooled cloud quantitatively as the CCD camera has a
large camera chip (see table 3.1 for technical details on the cameras).

The second imaging beam (Imaging 2a) propagates with an angle of 22◦ to the
coupling lattice direction. A second f4 = 40 mm achromatic lens images the atoms
onto a second CCD camera11 with a smaller chip. We mostly use this imaging axis
to align the coupling lattice to the center of the MOT.

During the imaging sequence a small magnetic field (1G) is applied along the
propagation axis of the respective imaging beam using the compensation coils (see
figure 3.1) to set a quantization axis. Thus, the imaging light has either σ+ or σ−
polarization with respect to the quantization axis, and the atoms will scatter light
on the |F = 2,mF = ±2〉 ↔ |F ′ = 3,m′F = ±3〉 cycling transition. The imaging
usually takes place after a certain time of flight (TOF) period, in which all trapping
and cooling light is switched off, see section 1.1.5. During TOF and imaging the

10AVT Manta G-145B MOD RCG
11AVT Guppy Pro F-031B
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Parameter Manta Guppy

Number of pixels 1388× 1388 656× 492
Pixel area Apx 6.45× 6.45µm2 5.6× 5.6µm2

Quantum efficiency QE 0.17 0.3
Gain Ge 3.7/e− 4.1/e−

Well capacity 17000 e− 16000 e−

ND filter transmission tND 0.17 0.17
Magnification M 0.39775 0.3726
Imaging intensity ≈ 0.2 Isat ≈ 0.2 Isat

Field of view 22.5× 16.8 mm2 9.9× 7.4 mm2

Resolution 14µm 14µm
Typical imaging pulse length 100µs 100µs

Table 3.1: Parameters of the CCD cameras (top) and the imaging optics (bot-
tom) for primary (left) and secondary imaging system. All parameters besides
pixel area and number of pixels have been measured in our lab. For details on
the measurement of the camera parameters see [98], section 3.5.

repump beams are turned on to prepare the atoms in the F = 2 hyperfine state and
keep them on the cycling transition.

3.5.2 Imaging along the coupling lattice

During the course of this thesis a major challenge was to determine the properties
of the atoms in the coupling lattice when they are surrounded by the large laser-
cooled atomic cloud. Therefore a third imaging beam (Imaging 2b in figure 3.4)
spatially mode-matched with the coupling lattice beam was implemented. The beam
is overlapped with the optical lattice at a PBS, separated off at the subsequent PBS
on the other side of the vacuum chamber and sent to a photodiode. The beam
has a waist of wI2b = 305µm at the position of the atoms, which is only slightly
larger than the waist of the coupling lattice beam (w0 = 280µm). The detection
with the PD gives information about the amount of light the atoms scatter out of
the beam integrated over the entire probe beam area. Note that the polarization of
this imaging beam is a mixture of σ+ and σ− light with respect to the quantization
axis along the direction of propagation of the beam. The scattering cross section
will therefore deviate from the two-level value σ0 of the cycling transition [82]. A
quantized determination of atom numbers in this situation is difficult because optical
pumping redistributes atoms among different mF-levels. One can roughly calibrate
the effective scattering cross section as I will describe in chapter 3.5.4. However, the
signal can be used to compare the number of atoms in the lattice volume in different
experimental situations.
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3.5.3 Principle of absorption imaging

The amplitude and the phase of light can be altered if it propagates through a
medium with refractive index nref. For a gas of atoms with number density n the
refractive index is connected via nref =

√
1 + nα/ε0 [144] to the atomic polarizability

α introduced in equation 1.8. We image on the |F = 2,mF = 2〉 ↔ |F ′ = 3,m′F = 3〉
transition of the 87Rb D2-line, which is a closed cycle transition and can therefore
be described as a two-level system. For small polarizabilities α � 1 the refractive
index can be written as [90]

nref = 1 +
nλσ0

4π

(
i− δ

1 + δ2 + I
Isat

)
, (3.1)

where δ = 2∆LA/Γ is the detuning from the atomic transition in units of half
linewidths, σ0 = 3λ2/2π = 2.9 × 10−13m2 the resonant scattering cross section
of the cycling transition [82] and Isat = ~ωΓ/2σ0 = 1.67 mW/cm2 the saturation
intensity of the transition [82].

As we already saw in section 1.1.6, the imaginary part of nref is responsible for
the absorption of light and the real part of nref describes the dispersive behavior.
Applying Maxwell’s equations (see section 1.1.6) to a thin slice of polarizable matter
of density n, one can derive the reduction of a beam intensity dI after propagation
through a distance dx in the medium [90, 144]

dI = − 2k Imnref Idx

= − σ0

1 + (2∆LA/Γ)2 + I/Isat
I n(x)dx , (3.2)

where n(x) is the atomic density at position x. Note that this equals equation 1.11,
which we found by simple arguments about the scattering of laser light. Furthermore,
one finds that the phase of the light behind the slice differs from the phase it would
have in absence of the medium by

dψ = 2π(Renref − 1)
dx

λ

=
(2∆LA/Γ)

2

σ0

1 + (2∆LA/Γ)2 + I/Isat
n(x)dx . (3.3)

Our imaging system relies on the detection of the intensity reduction by a camera.
In principle the phase shift can be also used for imaging [90].

Separating the x and I dependent terms in equation 3.2 and integrating over the
atomic ensemble along the x direction gives the atomic area density

dN

dA
≡
∫
d
n(x)dx = −

∫ I1

I0

1 + (2∆LA/Γ)2 + I/Isat

σ0 I
dI . (3.4)

Here I0(I1) is the intensity in front of (behind) the atomic ensemble and d the length
of the ensemble. One can easily access these intensities by taking two images, one
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with and one without atoms. This allows us to determine the area density on a
pixel-by-pixel basis.

If the laser polarization deviates from circular or if the atoms are not in the
|F = 2,mF = 2〉 state during the entire imaging pulse, they also scatter light on
transitions with lower dipole matrix elements than the cycling transition. As a con-
sequence the average scattering cross section is reduced and the average saturation
intensity increased [82]. Effective parameters σeff = σ0/α and Isat,eff = Isatα are
used to account for this. The correction factor α has a minimal value of one if the
imaging light is scattered perfectly on the cycling transition.

Inserting these modifications into equation 3.4 and integrating it over the inten-
sity, one finds

dN

dA
=

α

σ0
(1 + 4(∆/Γ)2) ln

(
I0

I1

)
+

1

σ0

I0 − I1

Isat

= (1 + 4(∆/Γ)2)

[
α

σ0
ln

(
I0

I1

)
+

1

σ0

I0 − I1

Isat,∆

]
, (3.5)

where the detuned saturation intensity is defined as Isat,∆ = (1 + 4(∆/Γ)2)Isat.

From the atomic area density one can easily calculate the atom number by mul-
tiplying it with the pixel area at the atomic position and summing over all pixels

N =
∑

all pixels

Apx

M

dN

dA
. (3.6)

Here Apx is the area of a pixel on the camera and M the magnification of the imaging
system.

The first term in equation 3.5 depends only on the ratio between the camera
counts in absence and in presence of atoms. To determine the second term correctly,
the absolute intensities I0 and I1 must be known. Thus, the transmission of all the
elements between the atoms and camera, the camera quantum gain and the imaging
pulse length must be calibrated. The intensity can then be calculated from the
camera counts via

I0(1) =
~ω0MNcam,0(1)

GetNDQEdtprobeApx
, (3.7)

where Ncam,0(1) is the number of counts on the camera, tND the transmission of
potential neutral density (ND) filters in front of the camera, Ge an internal camera
gain factor, QE the quantum efficiency of the camera and dtprobe the length of the
imaging pulse. All these parameters are listed in table 3.1.

To reduce the importance of calibration uncertainties we typically image with low
intensities I0 � Isat,∆LA

. Then the polarizability of the atoms becomes independent
of intensity and the last term in equation 3.5 vanishes. The intensity behind the
atomic ensemble can then be written as

I1 = I0e
−OD , (3.8)
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with optical depth

OD = ln

(
I0

I1

)
=

σ0/α

1 + (2∆LA/Γ)2

∫
d
n(x)dx

=
ODres

1 + (2∆LA/Γ)2
, (3.9)

where ODres = (σ0/α)
∫
d n(x)dx is the optical depth for resonant light, which was

already introduced in section 1.1.2. In this low-saturation limit the phase shift in
the medium given by equation 3.3 becomes

ψ =
(2∆LA/Γ)

2
OD . (3.10)

3.5.4 Calibration of α

When imaging with low intensities (I � Isat,∆), the second term in equation 3.5 can
be neglected as mentioned above. For I = Isat,∆ both terms are equal, and for very
large intensities the second term dominates. Note that the parameter α affects only
the first term of the area density in equation 3.5. In the second term it cancels. The
parameter α can thus be determined by imaging a cloud of fixed atom number with
varying intensity.

Figure 3.5 a) shows the results of an intensity variation experiment for the pri-
mary imaging axis (Imaging 1 in figure 3.4). A dilute atomic cloud (ODres < 1)
is imaged with resonant laser light (∆LA = 0) for different powers in the detection
beam. The plot shows the total atom number N and the contributions from the first
N1.Term and second term N2.Term in equation 3.5 versus the intensity of the detection
beam. The sum N1.Term + N1.Term = N is independent of intensity, meaning that
αI1 = 1 ± 0.1. The atoms mostly scatter light on the cycling transition as desired.
The error is determined from the scattering of the data points. It gives a systematic
uncertainty of 10% in our atom number determination.

As mentioned above, the polarization of the imaging beam along the lattice
direction (Imaging 2b in figure 3.4) is not adapted to the cycling transition. The
corresponding higher value of αI2b can be determined by comparing the optical
depths which the Imaging1 and the Imaging2b systems measure when a spherically
symmetric cloud as illustrated in figure 3.5 c) is imaged. I find αI2b = 1.4± 0.1.

3.5.5 Imaging very dense clouds

In principle, the theory presented above allows imaging of a medium of arbitrary
optical depth with resonant light. In practice, however, there is a minimal intensity
level our camera can detect due to the noise level of the camera. Furthermore, in
very optically dense clouds multiscattering events will happen, which is not taken
into account in our simple model. Both effects modify the detected optical depth
and atom number. To circumvent this, we image dense clouds with detuned laser
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Figure 3.5: a) Total atom number N detected by the Imaging 1 imaging system
and calculated by equation 3.6 and the contributions to N from the first and
second term in equation 3.5 as a function of imaging intensity. A dilute cloud
was imaged on resonance. b) Similar data recorded with imaging beam with
mixed polarization. The total detected atom number N is shown for several
values of the correction value α. The lines are guides to the eye. c) Resonant
optical depth of the symmetric cloud used to calibrate α of the Imaging 2b
axis. d) Imaging of an optically dense cloud (ODres ≈ 70) with a detuning
of ∆LA = −4Γ. The plot shows the atom number detected with the Imaging
1 imaging system and calculated with equation 3.6 as a function of imaging
intensity in absence (light blue) and presence (dark blue) of the pumping pulse.
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light (|∆LA| > 0, e.g. ∆LA = −6Γ for ODres ≈ 100), so that the measured optical
depth OD = ln(I0/I1) becomes smaller than one. Note that there is a finite phase
shift ψ = (∆LA/Γ)OD for non-zero detunings. The atoms will then act like a lens
and refract some light out of the beam. For clouds of large diameter d � λ as in
our case, the refraction angle 2ψλ/(πd) [90] is still very small, so that all the light
is collected by the imaging objects and the atom number is not altered.

When the measured optical depth of a dense atomic ensemble is small, the num-
ber of photons scattered per atom is low. However, a few photons (≈ 5 according to
simulations done in [139]) need to be scattered to pump the atoms into the cycling
transition. If the atoms do not spend most of the imaging time on the cycling tran-
sition, the number of detected atoms, which is calculated assuming that the atom
scatters all light on the cycling transition (α = 1), decreases as depicted in the light
blue curve of figure 3.5 d). To account for this problem, without recalibrating α ev-
ery time we change the imaging intensity or the detuning, we implemented a short
2-2-pumping sequence before the imaging pulse. The 2-2 pumping light pumps the
atoms into the desired |F = 2,mF = ±2〉 state. As this state is a dark state for the
pumping light, the pumping pulse can be resonant, short and weak. To account for
depumping of the F = 2 state by the 2-2 pumper the repump beam is also present
during the pumping sequence. The dark blue curve in figure 3.5 d) illustrates how
the pumping corrects the detected atom number at low imaging intensities. The av-
erage value of the corrected atom number is N = 4.7× 108, the standard deviation
is ∆N = 3.4 × 107 corresponding to an uncertainty of 7%. This statistical error
characterizes the overall reproducibility of the MOT preparation.

3.6 Experimental control

During each experimental cycle we need to adjust laser parameters and magnetic
fields on ms timescales. To perform this, we use a software called Goodtime written
in the 1990s by Jakob Reichel and developed further by Pascal Böhi [145] and Caspar
Ockeloen [146]. It is a C based program that allows us to write script based control
sequences. These get complied and are sent to four National instrument (NI) cards12

which give out digital and analog output signals in separate channels. Each NI card
has 48 digital TTL channels, which we use as trigger and switching signals. Further-
more each card has 16 analog (16Bit) and 32 analog (13Bit) channels with ±10 V
output, which we use as control voltages for rf-signal frequencies and amplitudes, as
set-points in intensity control circuits or to control the magnetic fields. Goodtime
also allows us to send settings to devices such as the spectrum analyzer, function
generators or the lock-in amplifier, which are connected to the main lab computer
via GPIB bus, Ethernet(VISA) or USB [146]. The storage capacity of the NI cards
currently limits our timing resolution of 25µs. The major tools for diagnostics on
the atomic side are the cameras for absorption imaging. For optimization, debug-
ging and implementations of new experimental sequences, it is essential to have a

12NI 6535, 2x NI 6733, NI 6723
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Parameter 3D MOT Molasses 2D MOT

Cooling Intensity/Isat 17(8) 17(8) 19.6(11.4)
Detuning/Γ −3.5(−3.1) −11(−11) -3.1(−2.7)
Repump Intensity/Isat,rep 0.19(0.1) 0.19(0.1) 0.19(0.18)
B-field gradient [G/cm] 24(11) 0(0) 20(20)

Table 3.2: 3D MOT, 2D MOT and molasses parameters for optimized MOT and
molasses performance. Isat = 1.67 mW/cm2, Isat,rep = Isat/2 [82]. The values
in parentheses hold for the prior version of the system, which was used for the
measurements in chapter 4. They are adapted from [98].

live evaluation of every camera shot on the lab computer. In our lab this is done
by a Matlab based software called MatCam written by Caspar Ockeloen [146]. The
software reads in the camera pictures, computes the atom number, fits a user-chosen
distribution to the data and stores the picture, the atom number and the fit results
together with all configuration parameters.

3.7 Characterization of experimental sequences

In the following I want to characterize two sequences. The first one is the sequence
which we have been using for most coupling experiments between atoms and mem-
brane. The second sequence allows to prepare denser atomic clouds. We use it to
load a far-detuned dipole trap [132] which will be used for future membrane coupling
and single photon storage experiments [133, 134]. The sequence is also used in two
of the sympathetic cooling experiments presented in chapter 4.

3.7.1 Standard MOT and molasses generation

In most coupling experiments between atoms and membrane a rather simple se-
quence is used. We prepare a large but rather warm MOT and then add a molasses
phase, in which the temperature of the cloud is reduced drastically. The data I will
show in the following characterizes the atomic system in the status of the year 2015
when the measurements presented in chapter 5 were performed. A part of the data
in chapter 4 (Exp. 1, Exp. 4 and Exp. 5) was recorded with an almost identical
system, which is characterized in [98]. I will point out the slight differences at the
end of the section.

MOT

The laser parameters and the magnetic field gradient during the MOT phase have
been optimized for a maximal number of atoms. During the MOT phase the cloud
is permanently loaded from the 2D MOT. The 2D MOT parameters have been
optimized separately for a maximal loading rate as described in [98]. A maximum
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atom number of 5× 109 and a maximum loading rate 2.7× 109 s−1 were reached for
the parameters summarized in table 3.2.

Figure 3.6 shows how the number of atoms N , the resonant optical depth ODres,
the number density n0 in the center of the cloud, the axial and vertical temperature
Tx,y and the width of the cloud σx,y evolve with time during the sequence. N and
OD are inferred from absorption images using equation 3.9 and 3.6. The widths σx,y

are determined from Gaussian fits to the area density distribution. The density in
the center of the cloud n0 is calculated from the optical depth in the center and the
horizontal width using the equations 1.27 and 3.9 under the assumption that the
atomic cloud is cylindrically symmetric. The temperature has been derived from a
fit of equation 1.28 to the widths measured for different times of flight. It compares
the case of two different 3D MOT magnetic field gradients, one with the optimal
value B3D MOT = 24 G/cm used for the experiments in chapter 5 (see table 3.2)
and one with B3D MOT = 12 G/cm similarly to the value used for the experiments
presented in chapter 4. For times larger than 3 s the filled markers in figure 3.6
show the properties of the molasses cooled cloud. For the 24 G/cm measurements
the empty markers display how the parameters evolve when the settings are not
changed to molasses settings.

One clearly sees that the steeper gradient, which generates a deeper trap (see
equation 1.16), allows to load more atoms and to create larger densities and opti-
cal depths at the expense of higher temperatures. We attribute the temperature
increase to the reabsorption of scattered light in a dense atomic ensemble, which
induces a random diffusion mechanism. In [147] Cooper et al. model this diffusion
process and find that in the high density regime the temperature of a MOT scales as

T ∝ n2/3
0 N1/3. Figure 3.7 illustrates that this scaling can be seen in our experiment,

at least in an intermediate parameter regime. After 1 s (3 s) for B3D MOT = 12 G/cm
(B3D MOT = 24 G/cm) the MOT seems to be completely full and the parameters do
not change any more. Reabsorption of scattered photons also allows to explain the
constant density profile observed in figure 3.6 d) [2, 148, 149, 147]. In the absence of
interactions between the atoms one would expect the density to increase with grow-
ing atom number as the spatial geometry of the trap is fixed by the magnetic field.
However, at a certain density the probability that scattered light gets reabsorbed
by other atoms rises, which induces a repulsive force between the atoms and hence
limits the density.

Molasses

After 3 s the settings of the experiment shown in figure 3.6 are changed from MOT to
molasses cooling. In molasses configuration the magnetic field gradient is switched
off and the cooling laser is much further detuned. The exact molasses settings have
been chosen in a compromise between low temperature and large atom number (see
table 3.2). This change in the cooling settings takes the cloud from the regime
of Doppler cooling [2, 74] into the regime of polarization gradient cooling [2, 81],
which increases the cooling rate Γa. Moreover, the large increase in the cooling
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Figure 3.6: Time evolution of a) number of atoms N , b) resonant optical depth
ODres in the center of the cloud, c) horizontal and vertical temperature Tx(y), d)
density in the center of the cloud n0, e) the temperatures in the early molasses
phase (zoom into plot c)), f) horizontal and vertical width σx(y) (e−1/2 half
width).
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In [147] a linear dependence is predicted.

light detuning drastically reduces the diffusion process generated by reabsorption
of scattered light. Together, this leads to the immediate strong reduction of the
temperatures down to 40µK(60µK) for B3D MOT = 12 G/cm (B3D MOT = 24 G/cm)
visible in figure 3.6 e). A linear fit to the first data points reveals an atomic damping
rate of Γa = 5.0(8)×103 s−1 (Γa = 5.3(4)×103 s−1) which is in reasonable agreement
with the value expected from equation 1.15 (Γa = α/m = 7.5 × 103 s−1). Note
that the theoretical value was derived for a simplified level scheme and in the low
saturation limit.

Even if the outward directed force from multiple scattering is reduced, the atomic
density depicted in figure 3.6 d) decreases when we switch to molasses settings as
the confining magnetic potential is switched off. This is accompanied by a sudden
increase in the width of the atomic ensemble as visible in figure 3.6 f) and a reduction
of the optical depth, figure 3.6 e). Note that these changes happen on a time scale of
a few tens of ms, much slower than the reduction of the temperature 1/Γa ≈ 0.2 ms.
On top of this fast dynamics, the number of atoms decays exponentially with a
lifetime of τlt = 1.19(2) s (τlt = 1.10(2) s). In addition, the widths slowly broaden
due to the diffusive motion of the atoms in absence of any confining potential [2].
Atoms which diffuse out of the trapping volume are lost. Further we expect to lose
atoms by light-assisted collisions [150, 151] and collisions with the background gas
[137].

Old molasses settings

As mentioned above, the data presented in figure 3.6 was recorded with the atom
setup as it was used in 2015. The slightly different prior settings of the setup, which
were used for the first sympathetic cooling measurements in chapter 4, are listed in
parenthesis in table 3.2. The main differences are a lower magnetic field gradient and
a lower intensity in the cooling beams. With these settings we observed a slightly
higher molasses cooling rate Γa = 9.0 × 103 s−1 (9.3 × 103 s−1) for the horizontal
(vertical) axis and a shorter molasses lifetime of τlf = 0.65 s.
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Figure 3.8: a) Overview of the dense MOT sequence. The initial MOT loading
is the same as presented in figure 3.6. The plots show the evolution of the
cloud properties during the dark MOT and weak MOT phases. They show b)
number of atoms N , c) resonant optical depth ODres in the center of the cloud,
d) horizontal and vertical temperature Tx(y), e) density in the center of the cloud

n0, f) horizontal and vertical width σx(y) (e−1/2 half width).

3.7.2 Preparation of ensembles with very high OD

During the course of this thesis, we realized that the figure of merit for a strong
coupling between atoms and membrane on the atomic side is the resonant optical
depth ODres and not the overall atom number N in the lattice. Therefore in a
second optimization run we optimized on the optical depth rather than on the atom
number. We currently use this sequence with slight modifications to load an optical
dipole trap. The sequence is also used in two of the sympathetic cooling experiments
presented in chapter 4 (Exp. 2 and Exp. 6).

Figure 3.8 a) shows a summary of the optimized sequence. In a first step the
MOT is loaded in the same way as presented above (24 G/cm parameter set). After
4 s of loading the 2D MOT is switched off, and a dark MOT phase starts. During
this phase the red-detuning of the laser cooling beams is slightly increased (from
−3.5 Γ to −4.5 Γ) and the repump power is drastically reduced (from 0.19 Isat,rep to
1.2 × 10−3 Isat,rep). The parameters are changed linearly over the course of 100 ms
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as illustrated in figure 3.8 a). Both changes reduce the scattering rate of the cooling
light and thus the density limiting reabsorption processes. As the confining magnetic
field gradient is still present, the cloud shrinks and the atomic density and resonant
optical depth increase as depicted in figure 3.8 f), e) and c). The density increase
and the size reduction are initially very moderate. However, shortly before the end
of the dark MOT phase the atomic depth and the resonant OD quickly jump up
and the cloud size reduces. At this time the repump power reaches a critical value.
It becomes so low that the rate at which the cooling light depumps the F = 2
level starts to compete with the repumping rate of the the repump light. As a
consequence the atoms begin to accumulate in the F = 1-state, in which they do
not scatter cooling light. This massively reduces the outwards directed radiation
pressure force so that the density increases drastically. The optical depth increases
up to ODres = 300. Although the cloud becomes denser it now also gets colder
as visible in figure 3.8 d). The temperature levels off at about 2 mK. We found
that we can still reduce the temperature of the cloud without large losses in optical
depth, if we add a weak MOT phase in which the magnetic field gradient is slowly
ramped down, from 24 G/cm to 4 G/cm. Further, we reduce the intensity in the
cooling beams to 10 Isat and increase the MOT detuning (from −4.5 Γ to −11 Γ).
Simultaneously, the repump power slightly increases again (from 1.2×10−3 Isat,rep to
3×10−3 Isat,rep). The adiabatic reduction of the confining magnetic potential reduces
the temperature of the cloud. Figure 3.8 shows that we can reach temperatures of
200µK in combination with on optical depth of 225.
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Chapter 4

Sympathetic cooling of a
membrane oscillator in a hybrid
mechanical-atomic system

In this chapter I will present results on sympathetic cooling of the fundamental
membrane mode via the atomic ensemble. Prior experiments in our group showed
that the damping rate of the membrane can be altered by the presence of the atoms
[29]. However, the effect was too small to modify the temperature of the membrane
significantly. Our recent sympathetic cooling results are the first realization of an
atom-membrane hybrid system in which the coupling can be exploited for something
useful, namely to cool the membrane. The initial sympathetic cooling measurements
were performed with the first-generation membrane-cavity setup. The results of
these measurements are published in [55] and can be found in Andreas Jöckel’s PhD
thesis [98]. I will summarize them here and in addition show the results of several
new measurements performed with the second-generation membrane-cavity setup
presented in chapter 2. Concretely, repetitions of the initial measurements with the
new setup, a sympathetic cooling measurement in a blue-detuned lattice and the
dependence of sympathetic cooling on the atomic density will be presented.

4.1 Experimental setup of the hybrid system

Figure 4.1 shows a schematic of the hybrid setup used for the first sympathetic
cooling experiments. It connects the atomic ensemble (chapter 3) and the first-
generation membrane-cavity system ([98], chapter 4) via a standing wave generated
by a 780 nm laser1 (see figure 2.4). The light travels through the atomic ensemble
and is reflected off the single-sided membrane-cavity system. As the light is detuned
from the atomic F = 2↔ F ′ = 3 transition by ∆LA, it generates the lattice potential
described in the end of section 3.4. The properties of this membrane-cavity system

1Toptica, TA pro, 1.5 W
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Figure 4.1: Setup used for the first sympathetic cooling experiments in a hybrid
atom-membrane system. Grey boxes: Vacuum chambers. PBS: polarizing beam
splitter. EOM: electro-optic modulator. OC: optical circulator. PD: photodi-
ode. A small fraction of the coupling light is split off at a PBS for detection
and stabilization via a Pound-Drever-Hall type error signal. The low frequency
part of the Pound-Drever-Hall signal is used to lock the frequency of the laser
to the cavity frequency. The high frequency part is sent to a spectrum analyzer
to determine the power spectral density of the membrane motion Sx(Ω), see
section 1.2.6. Further details are given in the text. Figure courtesy of Tobias
Kampschulte.

and its interaction with the laser light are summarized in section 2.5.

The latter measurements are performed with the very similar hybrid setup shown
in figure 5.1, in which the atomic ensemble and the second-generation membrane-
cavity setup, that is characterized in chapter 2, see figure 2.5, are connected via a
fiber. The fiber was implemented because the second-generation setup rests on a
separate optical table. The coupling laser is the same for all experiments in this
chapter, see section 2.3.1. Further, the atomic ensemble is in principle the same
in all experiments. However, changes in the preparation sequence in between the
various measurements lead to differences in parameters of the cloud. I will point
this out in the text.

In all experiments presented in this chapter the laser is detuned slightly to the
red from the cavity resonance (∆ < 0, |∆| � κ) to avoid the optomechanical para-
metric instability. Thus, a finite amount of optomechanical damping is present in
all measurements. We make use of the known optomechanical behavior to calibrate
the measured membrane temperature. In all but one time-resolved experiments of
this chapter, the MOT is loaded with the lattice running at low incoming power
P0 before the start of the actual experiment so that Ωa(0) < Ωm and no resonant
atom-membrane coupling is present. Only when the atomic cloud is prepared and
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the final laser cooling settings are set (molasses or weak MOT settings), the cou-
pling is turned on by ramping up the laser power to P0 so that Ωa(0) ≥ Ωm. In the
spectrally-resolved measurements the lattice is running on the higher power value
P0 continuously. For all experiments we do a control experiment without atoms,
in which the cooling laser is set to blue detuning to prevent atom trapping. The
parameters of all the experiments are summarized in table 4.1 at the end of the
chapter.

4.2 Time-resolved sympathetic cooling with red and blue
detuning

In the following I present sympathetic cooling measurements in the time domain.
For this the membrane signal is recorded continuously within a bandwidth BW �
(Γtot, δΩm) using the zero-span mode of the spectrum analyzer.

4.2.1 Experiment 1 - First observation of sympathetic cooling

In experiment 1, shown in figure 4.2, the membrane is positioned at the slope of
the intracavity field, where the optomechanical coupling is the largest. Our asym-
metric cavity offers two positions for maximum optomechanical coupling |Gmax|, the
point of highest and lowest finesse (see figure 2.9). Figure 4.2 a) shows how the
membrane temperature evolves with time for a measurement in which the mem-
brane is positioned at the low finesse slope (F = 140). The column A corre-
sponds to the end of the MOT loading time. In this preparation part the mem-
brane temperature is already colder than room temperature (T ≈ 30 K) due to
the finite optomechanical damping. At the start of the actual experiment the
laser cooling settings are changed to molasses cooling and 10 ms later the lattice
power is ramped up linearly to the higher power P0 so that Ωa(0) ≥ Ωm within
1 ms. This simultaneously turns on the sympathetic cooling and increases the op-
tomechanical damping (column B). Due to the additional optomechanical damping
the temperature in a control measurement without atoms (blue trace) decreases to
Topt = TbathΓm/(Γm + Γopt) = 11(2) K. However, in the measurement with atoms
(red trace) the membrane temperature decreases much faster and settles at a much
lower temperature of Tsym = TbathΓm/(Γm + Γopt + Γsym) = 1.5(4) K due to the ad-
ditional sympathetic cooling from the atoms. Subsequently, the temperature slowly
rises due to the finite lifetime of 0.65 s of the molasses-cooled cloud. After 0.5 s
of molasses cooling all laser cooling is switched off (column C) and the red curve
equilibrates at the level of the blue curve.

The initial slope of the red curve corresponds to the total damping rate of the
membrane Γtot = Γm + Γsym + Γopt. We find Γtot = 111(1) s−1 from a fit to the
data in figure 4.2 a). This value agrees with the the total damping rate inferred
from the minimum temperature and the bath temperature Γtot = ΓmTbath/Tsym =
122(22) s−1 within one standard deviation. Note that here Tbath = 320 K includes
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Figure 4.2: Sympathetic cooling in the time domain with the first-generation
setup. a) and b) Membrane temperature versus time. A: atoms not reso-
nant (P0 = 5.5 mW). B: atoms resonant (P0 = 16.5 mW). C: atoms resonant
(P0 = 16.5 mW), but laser cooling switched off. Red curves: with atoms, blue
curves: without atoms, dark blue curve: detection light only, dashed lines:
measurement noise floor and room temperature. All measurements were taken
with the spectrum analyzer set to a fixed frequency ≈ Ωm with bandwidth
BW � (Γtot, δΩm) and averaged over 20 experimental runs. The temperatures
given in the text are the average values of the darker regions. a) Measurement
with F = 140, ∆LA = −2π × 8 GHz and BW = 2π × 0.5 kHz. b) Measurement
with F = 300, ∆LA = −2π × 8 GHz and BW = 2π × 2 kHz.
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the laser noise at P0 and is thus larger than room temperature (T0 = 300 K), see
section 1.2.5.

The experiment is repeated at the position of maximum cavity finesse (F = 300),
see figure 4.2 b). The higher finesse increases both the optomechanical damping rate
Γopt and the sympathetic damping rate Γsym. In this measurement the optomechan-
ical damping is limited by laser noise. As a consequence the temperature in the blue
trace (without atoms) slightly increases to Topt = 2.2(8) K when we ramp up the
lattice power (going from column A to column B). Still, the atoms cool the mem-
brane temperature further down with a total damping rate of Γtot = 331(30) s−1

(inferred from the initial slope) to a minimum temperature of Tsym = 0.7(2) K. This
corresponds to a minimal phonon occupation of n̄f = kBTsym/~Ωm = 4.9(1.7)× 104.
We can also infer the total damping rate from the bath temperature Tbath = 640 K,
which is strongly increased by laser noise, and the minimum temperature in presence
of atoms Tsym. In this way we find Γtot = ΓmTbath/Tsym = 535(191) s−1, which is
slightly higher than the value determined from the initial slope.

From the minimum temperatures in presence and absence of atoms and the bath
temperature, the sympathetic cooling rate can be extracted

Γsym = Γm

(
Tbath

Tsym
− Tbath

Topt

)
. (4.1)

We find Γsym = 103(26) s−1 in the low finesse case and Γsym = 390(138) s−1 in the
high finesse case. The measured values are in reasonable agreement with the value
predicted by equation 1.134, Γsym = 130 s−1 for the low finesse and Γsym = 606 s−1

for the high finesse case. Table 4.1 summarizes the relevant system parameters
together with the expected and measured sympathetic cooling rates.

The temperature axis in the low finesse data set was calibrated by the known op-
tomechanical behavior. More precisely, equation 1.103 has been fitted to the three
signal levels at different lattice powers available in the data without atoms, with
the calibration factor c1 and the parameter c2 as free parameters, which contains
the not precisely known cavity detuning ∆. For the fit the dependence of Tbath on
the measured laser noise (SI(Ωm) = −145 dBc/Hz and SΦ̇ = 4π2 × 256 Hz2/Hz, see
equation 1.97) has been taken into account. Due to the small amount of available
data points, the resulting uncertainties in the measured temperatures are rather
large. The absence of a data point with low damping Γopt ≈ Γm makes a calibration
of the temperature axis of the high finesse data set difficult. Therefore, it was cali-
brated via the low finesse calibration taking the increase in readout sensitivity with
increasing finesse F , given by equation 1.101, into account. For further details on
the calibration and the error determination see [98] chapter 5.2 or the supplementary
material of [55].

4.2.2 Experiment 2 - Repetition of the results with the new setup

Shortly after taking the measurements presented above, we changed the membrane-
cavity system to the more stable second-generation setup and repeated the time-
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Figure 4.3: Sympathetic cooling in the time domain with the second-generation
cavity setup. a) Membrane coupled to weak MOT. A: atoms not resonant (P0 =
112µW), B: atoms resonant (P0 = 19.1 mW). BW = 2π × 10 kHz, the data
is averaged over 15 runs. b) Membrane coupled to molasses via a blue lattice
(∆LA > 0). A: MOT cooled atoms, lattice resonant (P0 = 5.6 mW). B: Molasses
cooled atoms, lattice resonant (P0 = 5.6 mW). BW = 2π × 10 kHz, the data is
averaged over 20 runs. a) and b) Red trace: with atoms, blue trace: w/o atoms,
black trace: detection light only, dashed lines: measurement noise level and
average detection light level. The temperatures given in the text are the mean
values of the dark colored regions. Temperature uncertainties are determined
via equation 1.104.
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resolved sympathetic cooling experiment. The result is shown in figure 4.3 a). This
time the measurement is performed with a weak MOT, with laser and magnetic
field parameters very similar to the one described in section 3.7.2. Due to the
higher finesse of the new cavity setup and the higher atomic density in the weak
MOT, we expect a stronger sympathetic cooling effect than before. From linear fits
to the initial slopes of the measurements with and without atoms (red and blue
trace) one finds Γtot = 1486(7) s−1, Γopt + Γm = 87.2(1) s−1 and Γsym = Γtot −
Γopt − Γm = 1399(7) s−1 clearly higher than the values seen before. Note that this
time the sympathetic cooling rate is determined from the slopes in absence and
presence of atoms as both Γtot and Γopt + Γm can be fitted nicely. In the previous
experiment 1 this was not the case, especially for the high finesse measurement,
so that Γsym was inferred from the minimal temperatures. Further note that for
the fit only the membrane signal after the end of the lattice ramp-up time (this
time 10 ms) is taken into account. From the measured atomic density of the weak
MOT (see table 4.1) and equation 1.134 one expects an even higher value of Γsym =
3.57 × 104 s−1 if one assumes that all the atoms are in the F = 2 hyperfine state.
However, in the weak MOT a large part of the atoms stays in the further detuned
F = 1 hyperfine groundstate and is not coupled resonantly to the membrane as the
detuning ∆LA,F=1 = ∆LA − 2π × 6.8 GHz is too large. The atomic density used for
the calculation assuming all atoms are in F = 2 is thus probably much too large.
Still, the discrepancy could also be a sign for a reduction of the sympathetic cooling
rate due to a delay in the coupling as it will be discussed in chapter 5.

The additional membrane cooling factor expected from the damping rates in pres-
ence and absence of atoms (Topt/Tsym)expect = Γtot/(Γm + Γopt) = 17.0(1) matches
the observed additional cooling factor Topt/Tsym = 16(2) (from Topt = 10.3 K to
Tsym = 0.64 K) within one standard deviation. This means that, in contrast to the
optomechanical damping, sympathetic cooling does not add additional noise.

As we saw in figure 2.11 and 2.13, the optomechanical temperature Topt of the
new setup does not follow a predictable power dependence due to the presence of
electrical noise on the cavity piezos. Therefore, a correct calibration of the temper-
ature axis with only three data points is impossible and only temperature ratios as
presented above can be determined with decent precision. To get some idea about
the absolute temperatures, I calibrated the vertical axis in both plots of figure 4.3
by setting the average value of the measurement done in absence of the coupling
lattice with the detection light alone (black trace) to room temperature. In absence
of noise this leads to an overestimation of the membrane temperatures. From the
expected cooling factor at the detection light level and the typically small laser and
piezo noise heating at this low power level, I estimate that the absolute temper-
ature calibration is good up to a factor of three. Due to this imprecise absolute
temperature calibration no strong claims about the minimum temperature in this
measurement can be made. Still, the sympathetic cooling and total cooling rate in
this experiment are the largest we have observed so far.
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4.2.3 Experiment 3 - Sympathetic cooling in a blue-detuned lattice

The sympathetic cooling experiments presented so far were performed with red-
detuned lattices (∆LA < 0). According to the one-dimensional theory presented
in section 1.3, the sympathetic cooling should work equally well in a blue-detuned
lattice (∆LA > 0). The potential is then anti-trapping in the radial direction but
the surrounding laser-cooled cloud continuously refills the lattice. The experiment
shown in figure 4.3 b) demonstrates that sympathetic cooling also works in this case.
In contrast to the measurements before, this time the lattice power is not ramped
up, but stays at a value high enough so that Ωa(0) ≥ Ωm during the experiment.
Therefore, already in the preparation phase A, the membrane is slightly cooled sym-
pathetically by the MOT cooled atoms. At the start of phase B the laser cooling
settings are switched from MOT to molasses cooling. From the slope I determine
Γtot = 1082(95) s−1. Due to the absence of a lattice power ramp, no slope exists in
the control measurement without atoms (blue trace). Calculating the optomechani-
cal damping rate from the ingoing power and the measured system parameters (see
table 4.1) results in Γopt = 39 s−1 and Γsym = 1043(95) s−1. This value also lies be-
low the theoretically expected one of Γsym = 4420 s−1, indicating that delay effects,
which will be discussed in chapter 5, already play a role here or that the atomic
density in the blue-detuned lattice is locally reduced due to the anti-trapping radial
potential. The fact that the membrane temperature increases rather immediately
after the initial decline when the atoms are slowly lost from the trap, speaks for the
second argument.

4.3 Spectrally-resolved sympathetic cooling

4.3.1 Experiment 4 - Studying the resonant behavior

To study the resonant behavior of the sympathetic cooling effect, we repeat exper-
iment 1 and measure the minimal temperature as a function of the ingoing laser
power P0. For this we record the membrane spectrum Sx(Ω) for 380 ms starting
12 ms after the start of the molasses cooling. A variation of P0 changes the trapping
frequency Ωa(0) of the atomic ensemble (see equation 1.22). This time the lattice
power is kept constant throughout the experiment. Furthermore, the membrane is
placed at a position where G = 0.92Gmax on the low finesse slope, which decreases
gN by the same factor. The temperature is determined from the area under the
membrane spectrum after subtraction of the background level (see equation 1.59).

Figure 4.4 a) shows the membrane temperature in absence and presence of atoms
as function of P0. For powers larger than P0 = 14 mW the data points taken with
atoms lie significantly below the data points taken without atoms. The inset depicts
exemplarily the spectra at the thicker data points. The high power spectra are
massively broadened due to a jitter in the optical spring effect caused by a fluctuation
of the small laser-cavity detuning ∆. As in experiment 1, the temperature axis is
calibrated via a fit of the expected optomechanical behavior 1.103 to the detected
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Figure 4.4: Resonant behavior of sympathetic cooling in first cavity setup. a)
Membrane fundamental mode temperature as a function of laser power P0, with
atoms in the lattice (Tsym) and without atoms (Topt). Blue line: fit of the
theory of cavity optomechanical cooling with laser noise but without atoms
given by equation 1.103. The data is averaged over 20 identical runs. The
errors show the standard error of the mean value (s.e.m.). Inset: membrane
displacement spectra

√
Sx(Ω) corresponding to the big dots in the main plot.

b) Sympathetic cooling rate Γsym obtained from the data in a) as a function of
the atomic frequency in the lattice center, Ωa(0). Red line: fit of a theoretical
model of Γsym given in equation 1.132 taking the lattice profile into account.
The shaded red region indicates the ±10% uncertainty in Ωa(0).
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temperature. This time c1, c2 and c3 are fitted, and the calibration factor, the cavity
detuning ∆ and the noise temperature TL are determined from the fit results. See
[98] section 5.3 or the supplementary material of [55] for more details on the fit. We
find that laser amplitude and frequency noise limit the achievable optomechanical
cooling factor and extract the effective bath temperature Tbath(P0) from the fit.

Figure 4.4 b) shows the sympathetic cooling rate Γsym = Γm(Tbath/Tsym −
Tbath/Topt) calculated from the temperatures versus the independently calibrated
atomic center frequency. The sympathetic cooling rate shows a step-like dependence
on the atomic center frequency. The behavior can be explained by the extreme inho-
mogenous broadening of our atomic ensemble caused by the large size of the atomic
cloud. If the laser power is so low that even the atoms in the center of the Gaussian
beam profile are not resonant with the membrane Ωa(0) < Ωm, no coupling occurs,
so Γsym = 0. At the threshold laser power, at which Ωa(0) ≈ Ωm, the atoms in the
center become resonant and the membrane gets cooled. If Ωa(0) > Ωm, the atoms
in the center are off resonant. However, some atoms in the wings of the Gaussian
beam profile will now be resonant. Due to the large surrounding molasses cloud
(Ra � w0, Ra: cloud radius, w0: lattice beam waist), the atoms are distributed over
the entire beam profile and sympathetic cooling occurs for all Ωa(0) & Ωm. The
simple analytical model presented in section 1.3.4, which assumes a constant atomic
density in the lattice volume and integrates the sympathetic cooling rate over the
entire ensemble, predicts exactly this step-like behavior and allows to model the
data very nicely. A fit of equation 1.132 to the data with the atomic density as only
free parameter gives na = 4.5(3) × 1015m−3. This is in good agreement with an
independent measurement of na = 8.6× 1015m−3 taken at the start of the molasses
phase, when taking into account that a significant part of the atoms gets lost during
the 380 ms measurement time.

4.3.2 Experiment 5 - Repetition of the results with the new setup

Here the spectrally-resolved measurement is repeated with the second-generation
cavity-membrane system. The only difference on the atomic side is a smaller atom-
laser detuning ∆LA = −2π × 3.3 GHz. All the laser-cooling settings are the same
(see table 4.1 for a list of parameters). Figure 4.5 shows the results. One sees that
in this experiment the membrane reaches its so far lowest observed temperature of
Tsym = 0.4(2) K in the measurement at P0 = 9.4 mW with atoms (Topt = 2.4(1.2) K
at this power) corresponding to a phonon occupation of n̄f = 3.0(1.5) × 104. As
in experiment 2, the correct modeling of the optomechanical cooling data in the
second-generation setup is difficult. The blue line in figure 4.5 a shows the optome-
chanical temperature which is expected from the observed optical spring effect and
the measured laser noise. The left inset shows the measured frequency shift. The
transmittance of the optical system between atom and membrane, t2, was deter-
mined by a fit of equation 1.96 to the data in the inset using Pin = η2(t2P0 + Pdet).
To calibrate the temperature axis, the theoretical prediction 1.103 was fitted to the
intermediate (piezo noise free) data points with the calibration factor c1 as only free
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Figure 4.5: Resonant behavior of sympathetic cooling in the second-generation
cavity setup, analog to figure 4.4. a) Membrane temperature with atoms (Tsym)
and without atoms (Topt) as a function of the ingoing laser power P0. The solid
blue line shows the optomechanical theory prediction. The second inset on the
left in a) shows the optomechanical frequency shift of the membrane and a fit of
the theoretical model given in equation 1.96. The arrows in the upper right inset
mark two noise peaks which are probably responsible for the deviation of the
optomechanical data from the theoretical expectation. b) Sympathetic cooling
rate Γsym as a function of the separately calibrated atomic trapping frequency
Ωa(0) (see section 3.4). Again, the data is averaged over 20 identical runs.
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4.4. Experiment 6 - Atomic density dependence of sympathetic cooling rate

parameter. The fit result depends on the chosen set of data points for the fit, with
a variation of about 50% for different sets. This determines the uncertainty of abso-
lute temperature declarations for this experiment. From the calibrated temperature
Topt and the optomechanical damping rate Γopt, which is inferred from the measured
frequency shift, the effective bath temperature Tbath = Topt(Γopt + Γm)/Γm can be
calculated for every data point. I find that the membrane experiences significant
heating in the very low and very large power regime. A closer look at the spectra
reveals that in both cases the membrane signal is close to a suspicious noise peak as
indicated in the upper inset, which most likely is responsible for the heating.

As in experiment 4, the sympathetic cooling rate is determined from the cal-
ibrated temperatures and the corresponding bath temperatures. The result de-
picted in figure 4.5 b) looks qualitatively identical to the one before. However,
the measured sympathetic cooling rates are ten times higher due to the higher
finesse of the new cavity. The step-value resulting from a fit of equation 1.132
is Γsym = 413(18) s−1. Given the separately-measured atomic damping rate of
Γa = 1 × 104 s−1, the measured sympathetic cooling rate corresponds to a cou-
pling strength of gN = 1.6 × 103 s−1 and Nr = 2.0 × 104 resonantly coupled atoms.
As the finesse of the new cavity is larger by a factor of 5 (see table 4.1), we expect
an increase in Γsym of a factor 25 according to equation 1.119 and 1.134. Thus, once
more the measured cooling rate is too low, which can be due to a reduced atomic
density on that day or due to delay effects (see chapter 5).

4.4 Experiment 6 - Atomic density dependence of sym-
pathetic cooling rate

According to the results of section 1.3.4 (see equation 1.134 and lines above), the
sympathetic cooling rate is proportional to the atomic density. To verify this, I
repeat experiment 2 with variable atomic density. Again, the second-generation
cavity-membrane setup is coupled to the weak MOT. The atomic density is varied
by changing the length of the MOT loading time (in the range (10 − 300) ms) and
recorded by absorption images. From the initial slopes after the ramp-up of the
lattice power in measurements with and without atoms, the damping rates Γtot,
Γopt + Γm and Γsym = Γtot − Γopt − Γm are inferred. Figure 4.6 shows the result.
As a variation of the loading rate not only changes the atomic density but also the
width of the atomic ensemble, Γsym is plotted against the product of the cloud radius
Ra and the peak density na = n0. Here Ra =

√
2πσx/2 is the radius of a top-head

density profile with density n0 with equal optical depth as the actual Gaussian cloud
(
∫
n0e
−x2/2σ2

xdx ≡ n02Ra). The data shows a linear dependence of the sympathetic
cooling rate on the product of cloud size and density as expected from equation 1.134

Γsym = εRana with ε = 8η2t2g2
0

m

~

(
Ωm

kκ

)2

π2w2
0 . (4.2)
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Figure 4.6: Atomic density dependence of sympathetic cooling rate. The sympa-
thetic cooling rate Γsym extracted from the initial slopes after a sudden change
of the lattice power in measurements with and without atoms is plotted versus
the product of atomic cloud radius Ra and cloud density na determined from
absorption images. The line shows a linear fit to the data.

The data points have a small horizontal offset indicating that the MOT was not
well-centered at the position of the coupling lattice.

4.4.1 From rates expected versus observed cooling factor

In our experiments, the optomechanical cooling performance is limited by noise. This
can be either laser intensity or frequency noise or electrical noise on the cavity piezos
as discussed in section 2.4.2. The noise increases the bath temperature Tbath above
the room temperature T0 (see equation 1.99). As a consequence in many experiments
the observed optomechanical cooling factor T0/Topt with respect to room tempera-
ture lies below the value (T0/Topt)expect = (Γopt + Γm)/Γm which can be achieved in
absence of noise. The data taken in the last experiment with variable atomic density
show that this is not the case for the additional sympathetic cooling. The atomic
cooling does not add any additional noise. To see this, in addition to the initial slopes
also the minimum temperatures Tsym and Topt are evaluated, as in experiments 1
and 2. In figure 4.7 the observed additional cooling-factor from the atoms Topt/Tsym

is plotted against the cooling factor (Topt/Tsym)expect = Γtot/(Γopt + Γm), which
is expected from the rates of the inital slopes. The plot shows that expected and
observed cooling factors are in very good agreement, meaning that the coupling to
the atoms does not add additional noise. As mentioned above, it is difficult to make
statements about absolute temperatures with the new cavity system. Relative tem-
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Figure 4.7: The additional cooling factor from the sympathetic cooling Topt/Tsym

extracted from the minimal temperatures in absence and presence of atoms is
plotted against the additional cooling factor, which is expected from the slopes
of the initial decay of the membrane temperature in presence Γtot and absence
Γopt + Γm of atoms. As guide for the eye, the dashed line marks the line on
which both cooling factors are equal.
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Figure 4.8: Exemplary trace showing the unexpected sudden increase in mem-
brane amplitude after the initial sympathetic cooling.

peratures, like the additional atomic cooling factor, can however be measured with
a precision given by equation 1.104 as they do not require an absolute temperature
calibration.

Note that for the measurement presented in this section the MOT loading time
was varied only within a very small range ((0-300) ms). For longer loading times,
occasionally sudden increases in the membrane temperature after the initial tem-
perature decline appeared in the data as exemplary depicted in figure 4.8. This
made a meaningful evaluation of the minimum temperature for longer loading times
impossible. Looking back in time, these temperature increases were probably the
first indications of the delay-induced instability which will be studied in the next
chapter.
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Parameter Exp 1a) Exp 1b) Exp 2 Exp 3 Exp 4 Exp 5 Exp 6

Which atomic cloud? old mol old mol weak MOT new mol old mol old mol weak MOT
Atomic density na [1015 m.3] 8.6 8.6 300 60 ≈ 4 ≈ 4 0-45
Cloud radius Ra [mm] 3.5 3.5 1.1 1.9 3.5 3.5 0-0.6
Atomic damping rate Γa [s−1] 1× 104 1× 104 not meas. 0.5× 104 1× 104 1× 104 not meas.

L.-atom det. ∆LA/(2π) [GHz] -8 -8 -8.2 +1 -8 -3.3 -4.2
Ingoing power P0 [mW] 16.5 16.5 19.1 5.6 0-50 0-24 13.5
Power transmission t2 0.8 0.8 0.47 0.47 0.8 0.41 0.47
Lattice power at start [mW] 5.5 5.5 0.1 5.6 5.5 5.5 0.1

Cavity finesse F 140 300 711 600 140 711 not meas.
Cavity incoupling eff. η2 0.69 0.69 1 1 0.69 1 1
Coupling strength G Gmax Gmax Gmax 0.72Gmax 0.92Gmax Gmax 0.7Gmax

Power in PDH beam [µW] 200 200 100 100 200 100 100
Laser-cavity detuning ∆/κ -0.013(4) -0.019(2) not meas. -0.07 -0.028(4) -0.075 -0.118

Opt. cool rate Γopt [s−1] 17(3) 169(62) 87.2(1) 39 0-90 0-225 106(15)
Symp. cool rate Γsym [s−1] 103(26) 390(138) 1399(7) 1043(95) 57(5) 413(18) 0-640
Total cool rate Γtot [s−1] 122(22) 535(191) 1487(7) 1082(95) 0-147 0-638 106-746
Coupling constant gN [s−1] 683(86) 1329(235) 1666(76) 508(22) 1587(35)
Cooperativity C = Γsym/Γm 180(46) 684(242) 1457(8) 1087(99) 100(9) 430(19) 667
Γsym,theo [s−1] 130 606 35700 4420 60 1270

Table 4.1: Summary of parameters and results of the sympathetic cooling experiments. The damping rates which are
printed bold are determined from temperature measurements, taking the increase in the bath temperature Tbath due to
laser noise into account. The other damping rates are inferred from the slopes in time-resolved measurements. Missing
quantities could not be calculated because Γa was unknown. gN = (ΓaΓsym/4)1/2. The expected sympathetic cooling rate
Γsym,theo has been calculated using equation 1.134.
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4.5 Conclusion

In this chapter I presented a collection of measurements on sympathetic cooling of
the membrane motion. The mechanism was exploited to cool the temperature of
the fundamental membrane mode from room temperature (n̄th = 2.3×107 phonons)
down to a minimal temperature of Tsym = 0.4(2) K, corresponding to a phonon oc-
cupation of n̄f = 3.0(1.5) × 104. In this measurement the minimal optomechanical
temperature was only Topt = 2.4(1.2) K. The membrane was cooled with a sympa-
thetic cooling rate of Γsym = 413(18) s−1, which corresponds to a coupling strength
of gN = 1.6× 103 s−1 and Nr = 2.0× 104 resonantly coupled atoms.

Our experiments show for the first time a significant reduction of the membrane
temperature via the coupling to an atomic ensemble. The mass ratio of the mem-
brane and the resonantly coupled atoms is M/(Nrm) = 4× 1010. Impressively, the
light-mediated atom-membrane interactions still cool the membrane by a factor 750
below room temperature. Sympathetic cooling with similar cooling factors and final
temperatures was observed on large molecular ions in an ion trap [152]. However,
in this experiment the mass ratio between the target and coolant species was only
∼ 90.

Up to now, we observe sympathetic cooling as a very robust phenomenon. It
works with different membrane-cavity setups, various laser-cooling settings and red
or blue coupling lattice detuning.

The optomechanical behavior of both membrane-cavity systems used in this
chapter is limited by noise, either on the laser intensity and frequency or on the
cavity piezos. As some optomechanical coupling is always present in our system,
this limits the minimal observable temperature. The sympathetic cooling is limited
by the strong inhomogeneous broadening of the atomic ensemble. If the atoms were
not smeared out over the lattice profile but localized in the center of the atomic
trap, the atom-membrane coupling would be even more efficient. Some measure-
ments might be limited by delay effects, which will be discussed in the next chapter.

In section 1.3.5 I introduced the atom-membrane cooperativity C and the atom-
membrane quantum cooperativity Cqu as key parameters for the ability of the cou-
pled system to coherently exchange energy between atoms and membrane and to
do experiments in the quantum regime. Table 4.1 summarizes settings and results
of the various experiments presented in this chapter. The cooperativity C exceeds
one in all experiments with a maximum of C = 1457(8) in experiment 2. Our cou-
pled atom-membrane system thus allows to observe interference phenomena analog
to EIT. For this the system has to run in a regime in which the optomechanical
damping rate Γopt not too large, as optomechanical damping broadens the effective
membrane linewidth and by this reduces C. In principle, this is achievable by re-
ducing ∆LA and with this P0 and the ingoing power into the cavity. However, we
will see in the next chapter that using small detunings on the atomic side can take
the system into an unstable regime if the coupling is too large.

The criterion for ground state cooling Cqu = C/n̄bath > 1 is far from being
fulfilled, even in experiment 2, where Cqu = 6.3 × 10−5. However, it is shown in
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[69] and the supplementary material of [55] that the mechanical ground state can
be reached with realistic improvements, most importantly a reduction of the bath
temperature to Tbath = 4 K in a cryogenic environment, an increase in the atomic
density to na = 1 × 1017 m−3 and a suppression of technical laser noise. Note that
in our system optomechanical damping is not only weaker than the sympathetic
cooling (see table 4.1) but also unable to provide ground state cooling due to the
large cavity linewidth κ. For sympathetic cooling into the ground state on the other
hand, the resolved sideband condition κ � Ωm is not required. In the outlook of
this thesis I will give an overview over a new setup which is currently being built
with the goal to reach the quantum regime.
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Chapter 5

Self-oscillations in a
delay-coupled
atom-optomechanical system

In this chapter I will investigate a dynamical instability which arises in our hybrid
system if it is operated in a regime of small coupling lattice detunings and if the
number of atoms in the lattice volume is large. The effect was encountered when we
attempted to see signatures of mechanically-induced transparency (MIT). The MIT
dip in the motional atomic excitation spectrum is expected to broaden in presence
of an optomechanical damping rate Γopt. Thus, in order to achieve a pronounced
dip, we pushed the coupling beam to the limits of small atom-laser detuning and
small laser power to reduce the power on the membrane and with this Γopt.

Operating at small atom-light detuning causes an instability, which takes the
coupled atom-membrane system into self-oscillations at a large amplitude. This ef-
fect is not predicted by the theory presented in chapter 1.3. The instability can
be explained by a delay in the coupling between atom and membrane. We learned
that any delay in the system, e.g. the finite propagation delay between atoms and
membrane, is a potential source of self-oscillations, which limit the sympathetic cool-
ing performance. With a series of experiments we figured out that the propagation
delay is of minor importance, but that the main origin of the delay is an effective
retardation in the backaction of the atomic ensemble onto the light field. Most likely
this retardation is caused by collective effects within the atomic ensemble.

In the following I will present our main experimental observations and discuss
the coupled system in presence of a delay. Further, I will present an extended model
of the atomic ensemble and numerical simulations, which show that collective effects
in the ensemble lead to an effective delay in the atomic backaction.
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Figure 5.1: Second-generation coupled atom-membrane system. The atoms
and the membrane-cavity-system are resting in separate vacuum chambers. A
780 nm diode laser (TA-pro, Toptica) is split into the coupling beam and a
detection and locking beam. A large fraction is split off the detection and
locking beam and acts as local oscillator for a homodyne measurement. An EOM
modulates sidebands onto this beam for Pound-Drever-Hall (PDH) error signal
generation. The reflected PDH signal is coupled out at an optical circulator
and split in two parts. A smaller part is used to lock the cavity frequency to
the laser frequency via a piezo attached to the cavity back mirror. The bigger
part is mixed with the local oscillator beam on a beam splitter for homodyne
detection of the membrane signal. Figure courtesy of Tobias Kampschulte.

5.1 Experimental setup

The experiments presented in this chapter were performed with the second gener-
ation of the hybrid system presented in the chapters 2 and 3. For all experiments
the MOT was running in the high-magnetic-field-gradient configuration (BMOT =
24 G/cm) characterized in section 3.7.1, which produces large and dense but rather
warm atomic clouds (see figure 3.6). Figure 5.1 illustrates the coupled setup. The
second-generation membrane-cavity setup and the atomic ensemble are connected
via a fiber because the two systems are resting on different optical tables (separation
≈ 10 m).

Throughout the chapter, the membrane has been placed to a position at which
the cavity finesse is F = 570 (slightly lower than the maximum value Fmax = 711),
the cavity linewidth is κ = 2π × 290 MHz and the single photon coupling strength
is g0 = 0.63 g0,max. This was done to avoid large optical spring effects which would
bring the membrane frequency in a regime where a series of noise peaks on the
membrane displacement spectrum disturb the measurement (see section 2.4.2). In
the second-generation membrane-cavity setup, the cavity incoupling efficiency of the
incoming mode to the cavity TEM00 mode η is almost perfect, η ≈ 1. The power
in the coupling beam gets reduced by a factor t2 ≈ 0.5 on the way between atoms
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Figure 5.2: Occurrence of self-oscillations. The red, blue, green and gray lines
show the mean squared membrane amplitude 〈x2

m(t)〉 in units of the room tem-
perature value 〈x2

m,th(t)〉 (left axis) in different situations versus time during the
MOT loading phase (0 s - 5 s) and a subsequent molasses cooling phase (5 s -
5.5 s). Red: with atoms, blue: without atoms, grey: background signal, green:
detection light level. The temporal averages of the detection and background
signal are shown for better visibility. The yellow trace (right axis) shows the
number of atoms in the lattice volume recorded with the on axis imaging beam
(Imaging 2b). The power reflectivity in the experiment is R = 24%.

and membrane, where t is the single pass amplitude transmission between atoms
and membrane. Thus R = η2t4 ≈ t4 ≈ 0.25 of the power gets reflected back to the
atoms. Due to the fiber coupling, this factor varies slightly in-between measurements
and is therefore specified for each experiment. If not mentioned otherwise, we set
the laser-cavity detuning to a small red value, typically ∆ ≈ −0.05κ.

5.2 Experimental observation

5.2.1 Time domain

Figure 5.2 shows the central experimental observation. The data is recorded in an
experiment with coupling lattice power, P0 = 3.4 mW and small atom-light detuning
∆LA = −2π × 960 MHz. In contrast to most experiments presented in the previous
chapter, the laser power is kept constant throughout the sequence. The power
is higher than the threshold power needed for resonant coupling (Ωa(0) = 2π ×
396 kHz > Ωm, see chapter 4). In the experiment the membrane amplitude during
a standard MOT/molasses experiment (see section 3.7.1) is recorded.
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Figure 5.3: Evolution of the mean squared membrane amplitude for several
MOT loading times. Loading time = 50 ms, 500 ms, 1 s, 2.5 s from light to dark
red. The upper plot shows the atom number in the lattice volume (same data as
in figure 5.2). The dashed lines in the upper plot indicate how the atom number
in the lattice volume reduces after the stop of the loading. The experiment
was performed with laser-cavity detuning ∆ = −0.06κ and power reflectivity
R = 25%.
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Figure 5.4: Total membrane damping rate Γtot = Γm + Γopt + Γsym, extracted
from the initial slope of the membrane amplitude after the sudden turn-on
of the lattice power shown in figure 5.3, versus the number of atoms in the
lattice volume. The existing theory predicts a linear scaling as Γsym ∼ N (see
equation 1.127).

Looking at the red trace (with atoms), one observes that briefly after switching
on the MOT, when not very many atoms have been loaded yet1, the presence of
the atoms causes sympathetic cooling. The membrane mean squared amplitude
〈x2

m(t)〉 quickly drops below the blue level (without atoms), at which it stays if
only optomechanical damping is present in the system. However, for increasing
atom number, this sympathetic cooling effect decreases and after a loading time of
0.5 s the sympathetic cooling stops and loading more atoms leads to an increase of
the membrane amplitude, which contradicts our expectation based on the model
of chapter 1.3 that the cooling should become stronger. Instead, the membrane
amplitude rises quickly up to a maximum value 〈x2

m(t)〉/〈x2
m,th(t)〉 ≈ 400 − 500

where it stays even if the atom number grows further. As the membrane is not in a
thermal state during the self-oscillation phase, I show the mean squared membrane
amplitude here rather than the membrane temperature (see equation 1.53). After
5 s of loading, we switch from MOT to molasses parameters. This massively changes
the laser cooling dynamics (see 3.7.1), reducing the atomic temperature and density.
Immediately, the membrane amplitude decreases again. Whether the amplitude
reduction is solely caused by the change in atomic density, or whether the change
in the laser cooling parameters themselves plays a role, cannot be distinguished by
this measurement.

1The atom number in the lattice volume is recorded with the Imaging 1b imaging beam.
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5.2. Experimental observation

In the second-generation membrane setup optomechanical effects from the de-
tection beam are small as the probe power is low (PPDH = 100µW). Therefore and
because I will look at very large signals in the following, I neglect the small difference
between the thermal amplitude and the amplitude in presence of the weak detection
beam. Throughout this chapter, I will use the measurement done with the detection
beam only (green line) to calibrate the membrane amplitude axis.

We suspect from the measurement that there is a critical atom number Ncrit

above which our system becomes unstable. However, it could also be that the effect
is not connected to the number of atoms, but kicks in with some delay after the
start of our sequence. To rule this out and confirm the atom number dependence, a
slightly different experiment was performed.

In the second experiment the MOT is loaded for a variable time to obtain dif-
ferent atom numbers. During this loading time the lattice is kept at very low power
such that Ωa(0)� Ωm. Subsequently, the MOT loading is stopped so that the atom
number stays constant. It then actually starts to decrease slowly on a timescale
much longer than the self-oscillation dynamics as indicated by the gray dashed lines
of the atom number plot in figure 5.3. Simultaneously to switching-off the loading,
the lattice power is ramped up in 10 ms to P0 = 3.4 mW. Figure 5.3 shows exemplary
traces for four different loading times. When loading the trap for 50 ms, (lightest red
curve) not very many atoms are loaded. However, as soon as the lattice is turned
on and atoms can couple to the membrane, one sees strong sympathetic cooling of
the membrane below the optomechanical cooling level (light blue curve). When the
atom number decreases after the stop of the loading, the sympathetic cooling de-
creases as well as we expect from our present theory, Γsym ∝ N . For a loading time
of 500 ms (bright red curve) the membrane amplitude does not react immediately
to the turn-on of the light. Only after a while, when some atoms have been lost
from the MOT, the membrane amplitude decreases. If we load even more atoms,
as for the last two traces (darkest red curves), the membrane amplitude initially
increases after the turn-on instead of decreasing, before it slowly decreases again
when atoms are lost. Thus, it seems that the appearance of the self-oscillation is
indeed connected to the number of atoms present in the lattice volume. Specifically,
there is a threshold atom number above which the system becomes unstable.

From the slopes of 〈x2
m(t)〉 after the turn-on of the coupling lattice, one can

extract the total membrane damping rate Γtot. Note that Γtot > 0 corresponds to
damping, while Γtot < 0 corresponds to amplification of the membrane oscillations.
It is plotted in figure 5.4 versus the number of atoms in the lattice volume at the
end of the loading time. The total membrane damping rate is the sum of the
intrinsic membrane damping rate Γm = 0.96 s−1, the optomechanical damping rate
Γopt = 10.6 s−1 and the sympathetic cooling rate Γsym, Γtot = Γm + Γopt + Γsym.
The optomechanical damping rate Γopt has been inferred from the temporal average
of the measurement without atoms using equation 1.59. Of the three terms in
Γtot only the last one depends on N . However, the atom number dependence is
strikingly different from the linear dependence we expect from from equation 1.127.
In section 5.3.3 I will show that the observed dependence Γtot(N) can be modeled
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Figure 5.5: a) Membrane spectrum Sx(Ω) versus time in units of electrical
power. The white dashed line marks the start of the MOT-loading. The red
and the green line before the MOT loading and during the excitation mark
times for exemplary spectra shown in b) and c). The vertical white line is
plotted as a guide to the eye. b) Exemplary membrane spectra for excited and
non-excited case referring to the times marked by the red and the green line
in plot a). c) Zoom into the gray region of plot b). Experimental settings:
atom-laser detuning ∆LA = −2π × 960 MHz, lattice power: P0 = 4.6 mW,
reflectivity: R = 29%, atomic center frequency: Ωa(0) = 2π × 480 kHz, laser-
cavity detuning: ∆ = −0.037κ. A new spectrum was recorded every 30 ms with
a frequency resolution of 12.5 Hz and a measurement bandwidth of 50 Hz. The
data is averaged over 29 identical experiments.
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Figure 5.6: The plots show a) the membrane amplitude, b) the center frequency,
and c) the linewidth of the central peak extracted from Lorentzian fits to the
spectrum in figure 5.5. The two vertical black lines mark the start of the MOT-
loading and the transition to molasses parameters, respectively.

by including a delay in the atom-membrane coupling.

5.2.2 Frequency domain

The measurements shown before were done in the time domain with no spectral in-
formation. To learn in which way the membrane spectrum changes when the system
self-oscillates, the first experiment was repeated, and in addition to the temporal
also the spectral information was recorded using a real-time spectrum analyzer.
Figure 5.5 a) shows how the membrane spectrum evolves with time. The recording
starts slightly before the start of the MOT-loading, which is marked by the white
dashed line at ≈ 2 s. In the initial part, below the white line, one sees the membrane
signal in absence of atoms. The membrane amplitude shortly decreases after the
MOT loading starts and then it increases drastically. After 5 s the laser cooling
settings are changed from MOT to molasses settings which drastically reduces the
membrane amplitude. Plot b) compares a spectrum taken without atoms (red line)
to a spectrum taken during the excited phase of the membrane (green line). Plot c)
shows a zoom into the gray area in plot b). Besides being of much larger amplitude,
the maximum of the green line is displaced by 62.5 Hz towards lower frequencies
compared to the maximum of the red line.

Figure 5.6 illustrates the results of Lorentzian fits to each line of the spectrum
in figure 5.5 a). It shows the fitted amplitude of the central peak, its frequency
Ωm and the linewidth Γtot, respectively. One sees that the central frequency moves
towards lower frequencies when the membrane becomes excited, and that it jumps
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a

b

Figure 5.7: Box schematic of the coupled atom-membrane system. The black
lines indicate the lattice light which travels from atoms to membrane and vice
versa. P and Φ are fluctuations of the power and the phase of the light. The
figure illustrates that the coupled system forms a closed loop, in which the
membrane converts power modulations of the light into phase modulations and
the atoms convert phase modulations into power modulations. a) without delay
b) with delay.

back immediately when the setting are changes to molasses cooling. The measured
linewidth Γtot in absence of atoms is (≈ 550 s−1) is much broader than the ≈ 10 s−1

expected from the previous measurement due to slow shot to shot fluctuations in the
center frequency. The membrane frequency is shifted by δΩm ≈ −2π× 1 kHz due to
the optical spring effect. As the lattice power is not stabilized on the membrane side
of the setup, the optical spring effect drifts by ±5% in between measurements, which
strongly broadens the narrow line. Still, one sees how the damping rate increases
when atoms are loaded and then reduces again. Qualitatively, this matches the
behavior seen in figure 5.4. Further one sees a strong increase in damping as soon
as the laser-cooling settings are switched to molasses cooling.

5.3 Theory of a coupled atom-membrane system with
delay

So far we model the atom-membrane system as two coupled and damped harmonic
oscillators, of which one, the membrane, experiences a fluctuating thermal force
Fth(t) due to the coupling to its support (see section 1.3). In this model, the dy-
namics of the position of the atomic center-of-mass and the position of the membrane
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are described by the equations of motion given in equation 1.117

Nmẍa(t) = −ΓaNmẋa(t)−NmΩ2
axa(t)−Kxm(t) ,

Mẍm(t) = −ΓmMẋm(t)−MΩ2
mxm(t)− η2t2Kxa(t) + Fth(t) , (5.1)

with coupling spring constant K = ~gN/xm,0xa,0, where xm,0 =
√

~/2MΩm and
xa,0 =

√
~/2NmΩa are the quantum mechanical zero-point amplitudes of the mem-

brane motion and the atomic center-of-mass motion. Note that here and in the
following two equations I use the symbol t for the time and amplitude transmission
of the optical path between atoms and membrane. The difference is clear from the
context.

This coupled system forms a closed loop as illustrated in figure 5.7 a) similar
to a control circuit in electronics [153]. The schematic drawing depicts the power
modulations P generated by the motion of the atomic ensemble (see section 1.1.6),
the phase modulations Φ generated by a motion of the membrane (see section 1.2.2)
and ingoing random power fluctuations Pnoise coming e.g. from technical laser noise.
The formal connections between the power and phase modulations, P and Φ, and
the amplitudes of atoms and membrane, xa and xm will be derived in the last part
of this chapter. A closed-loop system can become unstable if there is a delay in the
system in combination with a too high gain. In our system the latter can occur if
the coupling strength is large. Figure 5.7 b) shows the same system in presence of a
delay in the coupling between atoms and membrane.

Let’s go through the loop step by step to see why the delay can induce self-
oscillations. As mentioned above, a motion of the membrane causes a modulation
of the phase of the laser light which travels to the atoms. The atomic motion gets
influenced by this phase modulation and in turn imprints its motion as a power mod-
ulation onto the light which travels back to the membrane. This power modulation
affects the motional state of the membrane which closes the loop. If some noise at
a given frequency Ω enters the system, e.g. in form of a power modulation in front
of the membrane, this noise signal travels through the loop and comes back with a
certain phase and amplitude. If the phase, which the noise signal collects, equals
an integer multiple of 2π, and if in addition the amplitude of the noise after one
round trip is larger than the ingoing amplitude (corresponding to a gain larger than
one), the noise signal gets amplified in every loop. Membrane and atoms will then
oscillate with larger and larger amplitude at the noise frequency. The equations of
motion 5.1 do not allow the collected phase to be 2π for any noise frequency and
therefore do not give rise to such instabilities as I will show further down in this
chapter. However, a delay in the interaction between atoms and membrane adds a
phase-shift Ωτ and can induce instable behavior.

5.3.1 Stability analysis of equations of motion with delay

For the moment I ignore the question of the origin of the delay. I simply investigate
the coupled system in a situation in which the forces which the atoms exert on the
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membrane and vice versa are delayed by a time τ . The equations of motion will
then modify to

Nmẍa(t) = −ΓaNmẋa(t)−NmΩ2
axa(t)−Kxm(t− τ) ,

Mẍm(t) = −ΓmMẋm(t)−MΩ2
mxm(t)− η2t2Kxa(t− τ) . (5.2)

Note that I removed the thermal force Fth(t) in the equations above for the stability
analysis because we want to learn whether the atom-membrane system itself without
any input has unstable solutions or not. If unstable solutions exist, adding the
thermal input force will excite these solutions.

To analyze the stability of the system, I look for the solutions of the differential
equations 5.2 and make the ansatz

xa(t) = xa(s)est ,

xm(t) = xm(s)est , s ∈ C . (5.3)

From the ansatz it is obvious that a solution will be unstable if the real part of s is
positive. In this case the solution will diverge.

Plugging the ansatz 5.3 into equation 5.2 leads to

(s2 + sΓa + Ω2
a)xa(s) = − K

Nm
e−sτxm(s) ,

(s2 + sΓm + Ω2
m)xm(s) = −η

2t2K

M
e−sτxa(s) . (5.4)

Solving the the first equation for xa(s),

xa(s) = − K

Nm

e−sτ

s2 + sΓa + Ω2
a

xm(s) , (5.5)

and plugging it into the second equation gives(
s2 + sΓm + Ω2

m −
η2t2K2

MNm

e−2sτ

s2 + sΓa + Ω2
a

)
xm(s) = 0 . (5.6)

I multiply the whole equation by s2 + sΓa + Ω2
a to remove the s dependence in the

denominator:(
(s2 + sΓm + Ω2

m)(s2 + sΓa + Ω2
a)− η2t2K2

MNm
e−2sτ

)
xm(s) = 0 . (5.7)

To fulfill this equation for solutions xm(s) 6= 0, the term in the parentheses has to
become zero.

(s2 + sΓm + Ω2
m)(s2 + sΓa + Ω2

a)− η2t2K2

MNm
e−2sτ = 0 . (5.8)
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5.3. Theory of a coupled atom-membrane system with delay

To make statements about the stability of the system, it is not necessary to know
the exact positions of the roots of the function on the left hand side. It is enough to
know whether the real part of all roots is negative. If the delay τ is small compared
to the time scale of the atom and membrane dynamics Ωa/mτ � 1, one can replace
the exponential term by a first order approximation, e−2sτ ≈ 1− 2sτ . The function
on the left side of equation 5.8 then becomes a polynomial

(s2 + sΓm + Ω2
m)(s2 + sΓa + Ω2

a)− η2t2K2

MNm
(1− 2sτ) = 0

⇔ s4 + (Γa + Γm)s3 + (Ω2
a + Ω2

m + ΓaΓm)s2

+(ΓmΩ2
a + ΓaΩ2

m + 8η2t2g2
NΩaΩmτ)s+ ΩaΩm(ΩaΩm − 4η2t2g2

N ) = 0 , (5.9)

where in the last step I replaced K2/NmM = 4g2
NΩaΩm. The polynomial form

allows us to apply the Hurwitz criterion ([153], section 8.3.2), which tells from the
coefficients of a polynomial whether all roots will have negative real parts without
determining the roots explicitly.

Hurwitz criterion [153, 154]: All roots of the polynomial

p(s) = ans
n + an−1s

n−1 + an−2s
n−2 + ...+ a0 (5.10)

have a negative real part if ai > 0 , i = 0, 1, ..., n, and if the determinant

Mn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an−1 an−3 an−5 ... ... ... 0
an an−2 an−4 ... ... ... 0
0 an−1 an−3 ... ... ... 0
0 an an−2 ... ... ... 0
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . a1 .
. . . . . a2 a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.11)

and all ”north western” sub-determinants Mi, i = 1...n− 1 (which are gener-
ated by erasing the last n− i columns and rows) are positive.

For our fourth order polynomial the matrix reads

M4 =

∣∣∣∣∣∣∣∣
a3 a1 0 0
a4 a2 a0 0
0 a3 a1 0
0 a4 a2 a0

∣∣∣∣∣∣∣∣ , (5.12)
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Figure 5.8: Critical atom number versus delay. The curve shows the delay
dependence of the critical atom number calculated from the Hurwitz criterion
for M = 120 ng, F = 600, rm=0.4, Ωa = Ωm = 2π × 275 kHz, Γm = 10 s−1,
Γa = 1000 s−1, η2 = 1, t2 = 0.55. A larger membrane damping rate Γm has
been assumed to take optomechanical damping into account.

with

a4 = 1 ,

a3 = Γa + Γm ,

a2 = Ω2
a + Ω2

m + ΓmΓa ,

a1 = ΓmΩ2
a + ΓaΩ2

m + 8η2t2g2
NΩaΩmτ ,

a0 = ΩaΩm(ΩaΩm − 4η2t2g2
N ) . (5.13)

Application of the Hurwitz criterion leads to the following stability criteria:

C1 : ai > 0 ,

C2 : a3a2 > a4a1 ,

C3 : a3a2a1 > a4a
2
1 + a2

3a0 . (5.14)

The first condition C1 holds as long as ΩaΩm > 4η2t2g2
N , which is very well

fulfilled in our system. In an intuitive picture, this condition means that the major
part of the potential seen by the oscillators has to come from the restoring force and
not from the coupling.

Moreover, we see that if all coefficients are positive, fulfilling condition C3 implies
that condition C2 is fulfilled as well. Thus, condition C3 is the relevant one for
our system. Solving condition C3 for the number of atoms N , gives a condition
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N < Ncrit, which the atom number has to fulfill to keep the system stable. For
Γm � (Γa,Ωa,Ωm, τΩ2

a) and Γmτ � 1, and using equation 1.119 this critical atom
number can be written as

Ncrit ≈
Γ2

a + 2τ(Γa − Γm)(Ω2
a − Ω2

m) + Γa

√
Γ2

a + 4τ2(Ω2
m − Ω2

a)2

32η2t2g2
1τ

2ΩaΩm
, (5.15)

with g1 being the coupling strength of a single atom. For τ → 0 the term on the right
side diverges. In this case the system is stable for all N . And indeed, the inequality
shows that a finite delay in the coupling is accompanied by a critical, maximum
atom number Ncrit, above which the system becomes unstable. This fits to the
experimental observation of a critical atom number visible in figure 5.4. Figure 5.8
shows how the critical atom number depends on the delay for our system parameters.
We see that a 100 ns delay, which is rather short compared to the oscillation period
of the system T = 1/(275 kHz) = 3.64µs, requires an atom number of ≈ 5 × 104.
This is easily reached in our system.

5.3.2 Modified sympathetic cooling rate

The stability criterion, that is discussed above, tells us whether the system is stable
or not. It does not make statements about the damping respectively heating rate
which the membrane experiences. One can extract the membrane damping rate
from the effective membrane susceptibility in presence of the atoms and the delay,
similar to the derivation done in section 1.2.4. I do this by comparing the modified
membrane susceptibility to the susceptibility of the uncoupled membrane

χm(Ω) = [M(Ω2
m − Ω2 + iΩΓm)]−1 . (5.16)

Note that the membrane frequency Ωm is equal to the zero-crossing of Reχm[Ω]−1

and the damping rate Γm is equal to Imχm[Ωm]−1/MΩm. This assignment must
also hold in the coupled, delayed case. Therefore, I determine the effective damping
rate by evaluating the imaginary part of the membrane susceptibility at the zero
crossing of its real part. The complete calculation is presented in appendix A. By
Fourier transforming the equations of motion one finds for the effective membrane
susceptibility in presence of the atoms and a small delay (Ωa/mτ � 1)

χm,eff(Ω) =

[
M

(
Ω2

m − Ω2 + iΩΓm −
η2t2K2(1− 2iτΩ)

NmM(Ω2
a − Ω2 + iΩΓa)

)]−1

. (5.17)

Note that except for a factor M the susceptibility equals the term in parentheses
in equation 5.6 for s = iΩ and in the limit Ωτ � 1. The expression I find for the
new global membrane damping rate Γtot = Γm + Γsym with a modified sympathetic
damping term Γsym is quite complicated. It can be simplified in the case of resonant
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Figure 5.9: The plot shows a fit of the model in equation 5.19 to the data from
the experiment described in the beginning of the chapter (see figure 5.4). The
system parameters are summarized in table 5.1.

coupling Ωa = Ωm and by making the following assumptions

Γaτ � 1

2
,

Γa � Ωa ,

Γa � 6τΩ2
a ,

Γ3
a � 24η2t2g2

NτΩ2
a . (5.18)

The modified sympathetic damping rate then reads

Γsym =
1

9Γa(4η2t2g2
N − Γ2

a)
[48η2t2g4

N + 12η2t2g2
NΓ2

a − 6Γ4
a

−3
1
3 (36η2t2g2

NΓaτΩa −
√
...)(36η2t2g2

NΓaτΩa +
√
...)

1
3

−3
2
3 (4η2t2g2

N − Γ2
a)(36η2t2g2

NΓaτΩa +
√
...)

2
3 ] , (5.19)

where
√
... =

√
(36η2t2g2

NΓaτΩa)2 − 3(4η2t2g2
N − Γ2

a)3 . (5.20)

5.3.3 Fit to measured total damping rate

The modified expression for Γsym can be used to fit the data from figure 5.4. Most
of the parameters in equation 5.19 can be measured independently. They are listed
in table 5.1. Furthermore, the number of resonant atoms, which participate in the
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Parameter Value

Effective membrane mass M 117 ng
Membrane reflectivity rm 0.4
Cavity finesse F 570
Mechanical frequency Ωm 2π × 275 kHz
Mechanical damping rate Γm 11.5 s−1

Transmission of optical path t2 0.5
Cavity incoupling efficiency η2 1

Table 5.1: Independently measured system parameters. Γm includes the op-
tomechanical damping rate.

coupling, is set to Nr = Nlat(πΓa/2Ωm) (see section 1.3.4). The unknown delay τ
and the atomic damping rate in the MOT phase Γa are left as fit parameters. A fit
of the full expression for Γtot to the data gives τ = 88(1) ns and Γa = 337(10) s−1,
setting the fraction of resonant atoms to πΓa/2Ωm = 3 × 10−4. If find reasonable
looking fits also for slightly higher and lower fractions of resonant atoms up to
two times larger (fitresults: τ = 61(1) ns, Γa = 326(8) s−1) or five times smaller
(fitresults: τ = 217(5) ns, Γa = 428(27) s−1). Note that within this parameter range
the assumptions I made to derive the expression for Γsym are justified.

5.3.4 Conclusion

In this section we learned that in presence of a delay in the coupling between atoms
and membrane there is a critical atom number above which the system becomes
unstable. Strictly speaking not the delay but the phase-shift induced by the delay,
2Ωmτ , generates the instability. The modified sympathetic cooling rate of the cou-
pled system with delay allows to model the measured data nicely. This suggests
that indeed some delay with a duration of τ = 88(1) ns is responsible for the self-
oscillations. The origin of the delay is not entirely clear yet. In the following sections
I will present further experiments and theoretical modeling that aim at identifying
the mechanism which causes the delay.

5.4 Retardation between the systems

The most obvious source of a delay in our system is the finite distance between
the atoms and the membrane. In the experiments presented in the beginning of
the chapter the atoms and the membrane were separated by 6.5 m involving 5 m of
fiber in which the speed of light is even slower. With a refractive index of n ≈ 1.5
inside the fiber one finds τdistance = (lfreespace + nlfiber)/c = 30 ns, where c is the
speed of light. Further the membrane rests inside the cavity, so information from
the atoms needs an extra time τcavity = κ−1 = 0.6 ns to enter the cavity. Summed
up, information needs τ = τdistance + τcavity = 33.5 ns to travel between atoms and
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Figure 5.10: Free space part of the setup used to vary the propagation distance.

membrane via light. This seems not too far away from the τ = 88 ns found from the
fit in the last section. Motivated by this observation, we started to do experiments
with varying distances between atoms and membrane to see whether the threshold
atom number is influenced by this as expected from figure 5.8.

5.4.1 Varying the propagation distance

In a first attempt we varied the distance between atoms and membrane simply
by replacing the optical fiber between the systems with shorter and longer ones.
However, changing the fiber involves recoupling the light into the cavity, which is
very time-demanding. To speed up the measurement, we decided to use a setup
which is better adapted to the task of changing the length quickly without changing
the beam at the membrane or atomic side. In the surroundings of membrane and
atoms the setup from figure 5.1 was not changed. Only the fiber between atoms
and membrane part was removed and replaced by two short (1 m and 2 m) fibers
and the free space setup shown in figure 5.10. In the free space part a movable cat-
eye element, which reflects an identical but displaced mode, allows to change the
beam path length quickly. The reflected beam is coupled into the fiber towards the
membrane. When changing the cat-eye position, only a slight realignment of the cat-
eye back-mirror position is necessary to re-optimize the membrane-fiber coupling.

Figure 5.11 shows the results of experiments similar to the first experiment pre-
sented in this chapter (figure 5.2). The lattice is running continuously and we
observe the membrane signal during the loading phase of the MOT (0−5 s) and the
subsequent molasses phase. The laser power is significantly higher than in the prior
experiments P0 = 11.4 mW and the amount of reflected power is lower R = 0.10,
corresponding to Ωa(0) = 2π × 581 kHz. The traces show measurements taken with
the cat-eye at position 1 (red traces, total atom-membrane light traveling time 25 ns)
and position 2 (blue traces, total traveling time 40 ns). One sees that the red signals
rise at slightly later times. Therefore, this configuration must have a slightly higher
critical atom number. However, the time shift is extremely small although we varied
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Figure 5.11: a) The traces show the membrane self-oscillation recorded with
different propagation lengths between atoms and membrane. Red: cat-eye at
position 1 (7.5 m distance, 25 ns traveling time). Blue: cat-eye at position 2
(12 m distance, 40 ns traveling time). Plot b) is a zoom into the initial section of
plot a). The laser detuning is ∆LA = −2π × 960 MHz and the cavity detuning
is ∆ = −0.06κ. Each trace is averaged over 20 identical experimental runs.
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r

Figure 5.12: Schematic drawing of reflecting element and field amplitudes.

the delay by almost a factor 2. The mean values of the times at which the traces
for position 1 and 2 cross the detection light level differ by 10.8± 5.5 ms. Over this
short time-scale the atom number changes only by 2.7 ± 1.4% as can be inferred
from the loading curve in figure 5.3. According to figure 5.8 and equation 5.15 the
critical atom number should change by more than a factor of two when the delay
doubles. In contrast, we see changes of the atom number on the percent level. From
this observation I conclude that the run-time delay between the two systems has an
effect on the stability of the system, but also that it is not the main effect which
causes the instability in our system. There must be another dominant process which
makes changes in the run-time delay less relevant.

Note that the fit to the data of figure 5.9 resulted in a global delay of τ of 88(1) ns.
The run-time variation of 15 ns, which we implemented, is a non-negligible fraction
of the fitted delay and should generate on detectable difference in the threshold atom
number according to equation 5.15. However, we also have to note that the experi-
mental situations in the length-variation experiment and the experiment in figure 5.9
were not exactly the same. The lattice power in the length-variation experiment was
three times higher and the lattice reflectivity more than two times lower. The high
power was chosen because it made the self-oscillation signal more stable and repro-
ducible. If an additional delay mechanism was present which strongly depends on
this power or the reflectivity, the global delay in the length-variation experiment
might have been much higher than 88 ns so that additional delays of 15 ns became
irrelevant.

5.4.2 Non-atom-induced instability

When performing the distance variation measurements, we noted that for atom-
membrane distances larger than 10 m the membrane was driven even without atoms
from time to time as illustrated in figure 5.13 a). In contrast to the self-oscillation
in presence of atoms, this effect appeared and disappeared in a random manner. We
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attribute this to tiny reflections in the beam path. The phase of the beam coming
from the membrane is modulated at the membrane frequency. If a small fraction
of this beam is reflected, it will interfere with the incoming laser beam turning
the phase modulations into power modulations, which act back on the motion of
the membrane. If the reflecting surface is positioned at a finite distance from the
membrane, this feedback arrives delayed. This can drive the membrane into self-
oscillations if the amplitude is high enough. Figure 5.12 visualizes the reflecting
element at position x0 and the optical fields around it. The system can be described
by the transfer matrix formalism introduced in section 1.1.6. There is an incoming
field from the right C(x) = E1e

−ikx, E0 ∈ R and an incoming field from the left
B(x) = E0e

ikx+iΦ. The field from the left carries a small additional phase Φ � 2π
originating from the motion of the membrane, Φ = (4/κ)Gxm.

The field A which travels back to the membrane is a superposition of the trans-
mitted part of C and the reflected part of B, see eqn. 1.31, 1.33 and 1.35. If the
reflectivity of the reflecting element is small (|r|2 � 1), the transmission coefficient
becomes almost one (t ≈ 1) and the reflectivity becomes purely imaginary so that
we can write it as r = ir with r ∈ R. One can then write A(x0) as

A(x0) = C(x0) + irB(x0) = E1e
−ikx0 + irE0e

ikx0+iΦ . (5.21)

The power of the beam which travels to the membrane is proportional to the modulus
squared of A(x0),

P ∝ |A(x0)|2 = E2
1 + E0r

2 − 2E0E1r sin(2kx0 + Φ) (5.22)

≈ E2
1 + E2

0r
2 − 2E1E0r sin(2kx0)− 2E1E0r cos(2kx0)Φ ,

where the sine has been developed to first order in the small parameter Φ in the last
line. A sinusoidal modulation of Φ ∝ xm, due to the motion of the membrane, causes
a sinusoidal power modulation of the beam (last term). As the radiation pressure
force on the membrane is proportional to the ingoing power, there will be a feedback
part in the force proportional to the membrane’s own amplitude. If this feedback
part has to travel for a time τrt between membrane and mirror, it arrives delayed,
Fm(t) = (4G/κ)Pmembrane pos(t) = (4G/κ)Pmirror pos(t − τrt) = −γxm(t − 2τrt) ≈
−γxm(t)+2τrfγẋm(t) with backaction strength γ = (4G/κ)2 cos(2kx0)σLε0E1E0r/k.
Note that once more only the power modulation is considered for the force and the
constant first three terms of the power have been neglected. The last equality shows
how the delayed feedback leads to a membrane-velocity-dependent term in the force
on the membrane which causes damping if the sign of γ is negative, and antidamping
if the sign of γ is positive. The term proportional to xm(t) leads to a slight change in
the membrane frequency analog to the similar term discussed in section 1.3 and can
usually be neglected. Sign and amplitude of γ depend on the exact position of the
reflector with respect to the membrane equilibrium position x0. As the distances in
our lab are not stable to the length scale of the optical wavelength, this position will
vary on a slow timescale, resulting in the random appearance and disappearance
of an instability without atoms on a time scale of seconds as visible in figure 5.13

120



Chapter 5. Self-oscillations in a delay-coupled atom-optomechanical system

0 10 20 30
−80

−70

−60

−50

−40

−30

−20

Time [s]

P
S

D
 [d

B
m

]

 

 
Exp1

Exp2

0 10 20 30
−80

−70

−60

−50

−40

−30

Time [s]

P
S

D
 [d

B
m

]

 

 
Piezo on

Piezo off

0 1 2 3 4 5
−90

−80

−70

−60

−50

−40

−30

Time [s]

P
S

D
 [d

B
m

]

 

 

Piezo on

Piezo off

a

c

b

Figure 5.13: Plot a) shows two exemplary traces of the mean squared membrane
amplitude (uncalibrated) versus time in presence of the coupling light and an
artificial reflection of r2 = 10−5. Plot b) compares a third measurement of the
same kind (blue) to a measurement in which in addition one of the mirrors was
moved periodically by a PZT (green). Plot c) compares the situation of PZT
on and off for a measurement done with atoms, without the artificial reflection
and with the cat-eye at position 2.
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a). Note that in contrast to the position of a reflecting surface, the position of the
atoms with respect to the membrane is fixed because they are trapped in the lattice.
If the position of one of the mirrors in the setup drifts slowly over a few optical
wavelengths, the atoms follow the motion and their distance to the membrane stays
fixed.

I tried to find the origin of the back reflection by sending light in opposite
direction through our setup. The largest reflection I saw was r2 = 2 × 10−5 and
originated from the outcoupling lens of the coupling fiber on the membrane setup,
see figure 2.5. Other reflections were not detectable on top of this 10−5 signal, so
that they must be significantly smaller. Reflections on this low level are hard to
avoid even when using antireflection-coated optics and therefore will cause problems
in any long-distance atom-membrane-coupling experiment.

However, one can average the effect away due to the sinusoidal dependence of
the backaction strength γ on the position of the reflecting element x0. If one moves
x0 periodically over several optical wavelengths, the cosine-term will average to zero.
The modulation has to be fast compared to the heating rate which the membrane
experiences, if the cosine-term has a finite value. Also, it has to be slow compared
to the axial trapping frequency of the atoms to avoid atom loss from the trap. To
test this idea, we implemented an artificial reflection of r2 = 10−5 far away from
the membrane by inserting a glass plate under a small tilt in the beam path close
to the atoms. Further, we placed one of the mirrors in the path between atoms and
membrane on a piezo element (PZT) as shown in figure 5.10.

Figure 5.13 a) shows the behavior of the membrane in presence of the coupling
beam and the 10−5 reflection for the case when the PZT is switched off. Figure 5.13
b) compares a measurement taken with PZT off to a measurement in which the
PZT mirror was moving back and forth over approximately one wavelength with
3 kHz frequency. The motion of the mirror entirely suppresses the instability. The
fluctuations one still sees on the membrane amplitude signal are on the level of the
expected thermal fluctuations at this lattice power. Figure 5.13 c) compares the
situation with PZT turned on and off in an experiment with atoms done with the
cat-eye at position 2 and without the artificial reflection. The self-oscillation due
to the atoms remains, nicely illustrating the concept of the atoms as a reflecting
element whose position with respect to the membrane is interferometrically stable.
The motion of the piezo also makes this signal much calmer. Indeed, all traces in
figure 5.11 have been recorded with a moving piezo mirror.

5.4.3 Conclusion

In this section the influence of the propagation delay between atoms and membrane
on the stability of the coupled system was investigated. We find that changing the
distance between atoms and membrane changes the threshold atom number slightly.
However, the effect is so small that it cannot be the major mechanism which causes
the unstable behavior. Still, the run-time delay explains the instability which we see
for separations larger then 10 m in measurements without atoms. We attribute the
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origin of this non-atom induced instability to delayed feedback from tiny reflections
in the beam path. As some finite reflections will always be present in an optical
setup, this driving mechanism is a problem for any long-distance coupled atom-
membrane system. We found a way to strongly suppress this instability by moving
one of the mirrors periodically with a PZT element. The PZT motion removes the
effect of spurious optical reflections but keeps the feedback from the atoms intact.

5.5 Influence of system parameters

To get a better overview of the instable behavior, several system parameters were
varied. Measurements with different sign and different magnitude of the lattice
detuning ∆LA, varying lattice powers P0 and different powers in the MOT repump
beam Prepump were performed.

5.5.1 Red versus blue-detuned lattice

Figure 5.14 compares time-resolved membrane traces of two experiments with iden-
tical settings but different detuning of the light from the atomic transition. In
one case the lattice was red-detuned from the F = 2 ↔ F ′ = 3 transition by
∆LA = −2π×960 MHz and in the other case blue-detuned by ∆LA = +2π×770 MHz
from the F = 2 ↔ F ′ = 3 transition. As we saw in section 1.1.6, the backac-
tion of the atoms onto the light field depends on the atomic polarizability α '
−|deg|2/(ε0~∆LA), which has been derived in section 1.1.1 equation 1.8 for a two-
level atom. For the more realistic multilevel atom depicted in figure 5.15 the polar-
izabilities of the transitions to the three hyperfine excited states F ′ = 1, 2, 3 have
to be added up αtot '

∑
i=1,2,3−|di2|2/(ε0~∆i). For the experimental configuration

described above this results in a difference of only 3% in the total polarizabilities
αtot and therefore almost equal dispersive atom-light interaction in the red and in
the blue-detuned case, resulting in equal axial trapping frequencies. However, the
light shifts of the atomic levels (see equation 1.19) and also the lattice scattering
rate (see equation 1.23) differ strongly as the atoms accumulate at the maxima of
the lattice intensity in the red case and at the minima in the blue case. In this
experiment the intensity in the maxima is 8.5 times higher than in the minima.

In figure 5.14 we see that in both realizations the atoms initially cause sympa-
thetic cooling. Surprisingly, the sympathetic cooling is stronger in the red-detuned
case although the numbers of atoms in the lattice volume are very similar. This
indicates that the atom-light coupling in the red-detuned case is stronger. In the
blue-detuned case, this cooling goes on and becomes stronger when the laser cooling
parameters are switched from MOT to molasses. In contrast, in the red-detuned
case, self-oscillations occur. The bottom row shows the corresponding number of
atoms in the lattice volume for the two cases. One sees that the measured atom num-
ber in the lattice volume is slightly lower in the anti-trapping blue case. However,
the self-oscillation in the red-detuned case starts when the atom number exceeds
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Figure 5.14: Comparison of the self-oscillation effect in red- and blue-detuned
lattice. Upper plots: mean squared membrane amplitude (uncalibrated) versus
time. Lower plots: corresponding atom number in lattice volume versus time. a)
Red-detuned lattice (∆LA = −2π × 960 MHz). b) Blue-detuned lattice (∆LA =
+2π × 770 MHz). In both measurements the ingoing power is P0 = 3 mW, the
lattice detuning is ∆ = −0.04κ and the power reflectivity R = 0.24.
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Figure 5.15: Hyperfine manifold of the 87Rb D2-line and lattice laser.

≈ 9×107, which is reached only slightly later also in the blue-detuned case. The ex-
periment was repeated for several lattice powers. Repetitively, ones sees a stronger
initial sympathetic cooling effect followed by self-oscillations in the red lattice and
no self-oscillations during the MOT phase in the blue case.

The reason for the stronger atom-light coupling in the red case, which leads
to the stronger initial cooling and to the occurrence of self-oscillation, most likely
lies in the different light shifts. In the red-detuned case, the ac-Stark shift of the
coupling laser shifts the levels of the |F = 2,mF = 2〉 ↔ |F ′ = 3,m′F = 3〉 MOT
laser cooling transition apart by 2.5 Γ. The MOT cooling detuning, thus, locally
increases from 3.5 Γ to 6 Γ, so that the light scattering rate reduces. In section 3.7
we saw that the temperature and the density of our MOT are strongly limited by
reabsorbtion of scattered laser light. As soon as the light scattering rate is reduced,
for instance when we switch from MOT to molasses cooling, the temperature of the
atoms quickly decreases as depicted in figure 3.6. Hence, via the light shift, the red-
detuned lattice light creates an effective dark spot [155] with locally reduced atomic
temperature T , modified atomic number density distribution na and damping rate
Γa. As the temperature in our MOT is much larger than the lattice modulation
depth (TMOT = 2 − 5 mK, Vm = 240µK for resonant atoms Ωa = Ωm), a reduction
of the temperature increases the number of trapped atoms which take part in the
coupling. In contrast, in the blue-detuned case, the coupling laser shifts the levels of
the cooling transitions together by 0.4 Γ, and, therefore, even slightly decreases the
MOT cooling detuning and increases the scattering rate. Thus, in the blue case the
atoms in the lattice volume are most likely hotter. Therefore, less atoms are trapped
in the lattice and take part in the coupling with the membrane. This explains the
smaller initial sympathetic cooling effect and the absence of self-oscillations in the
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Figure 5.16: The figure shows an exemplary experimental trace of the lattice
parameter variation experiment. The mean squared membrane amplitude (un-
calibrated) is plotted as a function time. Red: with atoms, light blue: w/o
atoms, dotted blue: average value of light blue line. The green dot marks the
time at which the red curve crosses the dotted blue line. From loading curves
as shown in figure 5.2 and 5.3, I extract the atom number corresponding to
that time. As the number of atoms in the lattice volume depends on the lattice
parameters, I recorded the loading for all lattice parameters. The left green line
shows a linear fit to the red curve from which the heating rate is extracted. The
green line on the right also shows a linear fit to the red data, from which the
cooling rate during the molasses phase is extracted. During the measurements
the cavity detuning was ∆ = −0.06κ and the overall lattice reflectivity was
R = 22%.

blue-detuned case.

5.5.2 Lattice parameter dependence

During the measurements on propagation delays, we realized that the MOT-loading
time at which the self-oscillation starts depends strongly on the power of the lattice
beam and its detuning from the atomic transition. Therefore, we did experiments in
which these two parameters were varied. To compare meaningful quantities of the
different experimental runs, we extracted the atom number in the lattice volume at
which the membrane mean squared amplitude 〈x2

m(t)〉 starts to exceed the value at
which it equilibrates in absence of atoms. I refer to this atom number as Ncrit in
the following. Further we determined the rate at which the membrane amplitude
rises once Ncrit is reached, Γex, and the sympathetic cooling rate Γsym,mol at which
the membrane amplitude decreases again when we switch from MOT to molasses
cooling. These quantities are illustrated in figure 5.16.

Figure 5.17 and figure 5.18 display Ncrit and Γex as function of the ingoing lattice
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Figure 5.17: The plot shows the threshold atom number Ncrit (color coded) vs.
the power in the coupling lattice P0 and the detuning of the coupling lattice
|∆LA|/2π from the F = 2↔ F ′ = 3 transition. All detunings are red detunings.
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Figure 5.18: The plot shows the excitation rate Γex (color coded) vs. the power
in the coupling lattice P0 and the detuning of the coupling lattice |∆LA|/2π
from the F = 2↔ F ′ = 3 transition. All detunings are red detunings.
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Figure 5.19: The figure depicts Γsym,mol (color coded) during the molasses phase
vs. the power in the coupling lattice P0 and the detuning of the coupling lattice
to the atomic transition |∆LA|/2π. All detunings are red detunings. The white
curve marks the linear dependence between the minimum power that is needed
for sympathetic cooling and the detuning.

beam power, P0, and the different red detunings from the F = 2↔ F ′ = 3 transition,
∆LA. One sees that self-oscillations occur only for the smallest detunings. For a
given small detuning, the threshold atom number reduces and the excitation rate
rises with rising lattice power. This might be due to the atomic temperature effects
described in the last paragraph. At larger lattice power the local temperature of the
atoms in the lattice volume is most likely lower. Thus, a larger fraction is trapped
in the lattice and takes part in the coupling. As a consequence, the total number
of atoms in the lattice volume needed for the self-oscillations Ncrit reduces and the
excitation rate Γex rises.

For increasing detuning ∆LA, the self-oscillations start at larger and larger power
P0. From the resonance condition a linear scaling of the onset of the effect is expected
Ωm = Ωa ∼

√
P0/∆LA (see next paragraph). The dependence of the minimum power

for self-oscillation on the detuning in the figures 5.17 and 5.18 looks rather quadratic,
indicating that at larger detuning more atoms need to participate in the coupling
to generate instable behavior. In section 5.7 I will introduce a model which predicts
exactly this behavior.

The minimal power for which sympathetic cooling in the molasses phase can be
seen in figure 5.19 depends linearly on the lattice detuning. This is expected from
the theory in absence of delay. The axial oscillation frequency depends on the trap
depth, which is proportional to P0/∆LA. There is a minimum threshold trap depth,
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Figure 5.20: Total critical atom number Ncrit and the contribution to Ncrit from
atoms in the F = 1 and F = 2 states vs. the power in the repumper beam.
Experimental parameters: ∆ = −0.06κ, ∆LA = −2π × 900 MHz, P0 = 6.8 mW,
R = 27%, Ωa(0) = 2π × 596 kHz.

which has to be reached in order to make the most tightly trapped atoms in the
center of the beam resonant with the membrane, Ωa(0) = Ωm, see section 1.3.4. The
power needed to reach this threshold trap depth depends linearly on the detuning,
which can be seen in the plot. In fact, the white line in figure 5.19 has been used
to calibrate the axial trapping frequency of the lattice potential (see section 3.4) via
the membrane frequency Ωm.

5.5.3 Repump power dependence

Lastly, the influence of the scattering rate of the MOT repump light was investigated
by varying the power of the repump beams. As in the experiment before, the critical
atom number in the lattice volume was determined. In addition to the critical total
atom number, also the critical atom number in the F = 2 state was measured in
this new experiment.

The imaging laser is resonant with the F = 2↔ F = 3 transition. Thus, it will
always only detect the atoms which are in the F = 2 state. To count all atoms, the
ones which stay in the F = 1 ground state at the end of the sequence are pumped
into the F = 2 state by the repump light during the time of flight period (TOF)
between the end of the experiment and the imaging sequence. To count the atoms
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in F = 2 alone, one simply has to turn off the repump laser at the end of the
experiment. From the difference of the total atom number and the atom number in
F = 2, also the number of atoms in the F = 1 state can be inferred.

The green trace in figure 5.20 a) shows how the critical total atom number for
the self-oscillation depends on the power in the repump beam. The red and blue
trace show how many of these atoms are in F = 2 and F = 1. We see that more
atoms are needed to make the system unstable if the repump power is higher. Again,
this might be related to the temperature of the atoms. A reduction of the repump
power reduces the fraction of atoms in the F = 2 hyperfine ground state and thus
the MOT cooling light scattering rate and the temperature of the cloud. If the
corresponding increase in the fraction of atoms trapped in the lattice exceeds the
reduction of coupling atoms due to the growing F = 1 population, the total atom
number in the lattice volume needed for self-oscillations decreases. Remarkably, the
contribution of atoms in F = 1 to the critical atom number is flat.

5.5.4 Summary

This section investigated the dependence of the self-oscillation phenomenon on sev-
eral system parameters. Many observations can be explained by a varying fraction
of atoms which take part in the coupling for different parameter settings. The non-
linear dependence of the turn-on power of the self-ocillations on the lattice detuning
and the fact that the self-oscillations disappear completely for detunings larger than
|∆LA| = 2π× 2000 MHz remain unexplained and thus give hints at the origin of the
effect.

5.6 Atomic backaction onto the light

Even if the exact mechanism which causes the delay is still unknown, the measure-
ments we did up to this point strongly hint that the most relevant process occurs on
the atomic side of the system. One should thus be able to see this in an open-loop
experiment which investigates the atomic back-action on the light field.

5.6.1 Measurement setup

To investigate this, we performed measurements in which we mimicked the phase-
shift caused by the membrane with a fiber electro-optic modulator (EOM) and
examined the atomic backaction onto the light. The setup is sketched in figure 5.21.
Laser light enters the setup from the right. After passing the atoms, a small frac-
tion (3%) is picked up and sent to a photodiode (PD). The main part of the light
propagates twice through a fiber EOM before it interacts with the atoms again. Due
to strong optical losses in the fiber EOM, the power reflectivity in this setup drops
to R = 0.06. A lock-in amplifier sinusoidally drives the fiber EOM at a frequency
Ω, which imprints a phase modulation onto the light traveling back to the atoms.
This modulates the location of the potential minima of the standing-wave optical
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Figure 5.21: Setup for measuring the atomic backaction on the light field.

lattice. The atomic motion is affected by this modulation and, in turn, modulates
the power of the laser beams as discussed in section 1.1.6, which is recorded by the
PD (power to voltage conversion factor β = 350 V/W). The PD-voltage is fed back
into the lock-in amplifier, which measures its amplitude and the phase with respect
to the phase of the outgoing voltage signal.

5.6.2 Expected behavior from existing theory

Before I get to the measurements, I want to briefly discuss the behavior expected
from the existing theory without delay, as this kind of measurement was not done
before in our lab. The calculation is based on the transfer matrix formalism pre-
sented in 1.1.6. It is similar to the calculation presented in section 5.4.2 with the
difference that, here, the position of the atoms can be altered by phase shifts on the
light, whereas the position of the fixed reflector in section 5.4.2 was independent of
the phase of the light.

Again, I refer to the situation shown in figure 5.12 with ingoing fields C(x) =
E1 exp(−ikx) and B(x) = E0 exp(ikx + iΦ). Now, x0 = xa is the position of the
atoms. Once more, the zero point of the coordinate system has been chosen so that
the intensity |C(x) +B(x)|2 is maximum at x = 0 if Φ = 0. Now, the phase Φ is the
phase added to the light by the fiber EOM. If the EOM is off, Φ = 0, and if the laser
is red-detuned, the light field will pull the atoms towards x = 0. In chapter 1.1.6,
equation 1.42, we learned that for ingoing fields B(x) and C(x), as above, with
intensities I0(1) = ε0

2 c|E0(1)|2 and for |ζ| � 1, ∆LA/Γa � 1 and kxa,Φ � 2π, the
force exerted on the atoms by the light field is given by

Fa(xa) = −8kσL Re ζ

√
I0I1

c

(
xa +

Φ

2k

)
= −NmΩ2

a

(
xa +

Φ

2k

)
. (5.23)

Further, in section 1.1.6 we found for the power modulation of the beam which
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leaves the atomic ensemble towards the left ( see equation 1.46)

P = −4kσL

√
I0I1 Re ζ

(
xa +

Φ

2k

)
= − c

2
NmΩ2

a

(
xa +

Φ

2k

)
. (5.24)

In presence of an additional damping term, for instance originating in laser
cooling, the equations of motion for the position of the atom reads

Nmẍa = −ΓaNmẋa −NmΩ2
a

(
xa +

Φ

2k

)
. (5.25)

Fourier transforming and solving for x̃a(Ω) gives

x̃a(Ω) = −Ω2
a

2k

(
Ω2

a − Ω2 + iΓaΩ
)−1

Φ̃(Ω) . (5.26)

This expression gives the complex amplitude of the atomic motion which is induced
by a phase modulation of a certain frequency and amplitude.

One can plug this expression for the atomic amplitude into the Fourier trans-
formed expression for the power modulations

P̃ (Ω) = − c
2
NmΩ2

a

(
x̃a(Ω) +

Φ̃(Ω)

2k

)

= − c
2

NmΩ2
a

2k

(
1− Ω2

a

Ω2
a − Ω2 + iΓaΩ

)
Φ̃(Ω) . (5.27)

The power modulation in equation 5.27 is the quantity which we measure in
the lab via the photodiode and the lock-in amplifier. The lock-in gives out the
quadratures or phase and amplitude of PD voltage caused by the power modulation
in equation 5.27.

Figure 5.22 a) - d) depicts the calculated amplitude and phase of the power mod-
ulation versus the modulation frequency Ω. The model is plotted for two parameter
sets, which differ in the ratio of Γa to Ωa. In the left column Γa/Ωa is 0.07, in the
right column the ratio is 0.55. The parameters used for the plot are listed in the
figure caption. For both parameter sets one sees that for very small modulation
frequencies Ω the amplitude is negligible. In this case the atoms follow the motion
of the intensity maxima of the standing wave adiabatically so that xa = −Φ/2k and,
therefore, the power modulation in equation 5.24 is zero. Furthermore, the ampli-
tude has a peak at the frequency of the atoms Ωa as expected. Over the resonance
the phase drops from 0◦ to −180◦. For large damping, as in the right column, the
phase does not reach 0◦ degrees before the resonance because the damping term
pulls the phase to −90◦ at small frequencies. At frequencies much higher than Ωa,
the motion of the atoms does not react to the fast phase modulation Φ any more.
They stay located at the potential minimum of the temporally averaged potential.
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Figure 5.22: The plots show phase [ b) and d) ] and amplitude [ a) and c)] of
the power modulation caused by a periodic phase modulation at frequency Ω
for N = 2 × 105, Ωa = 2π × 275 kHz, Φrms = 0.232 and Γa = 2π × 20 kHz [ a)
and b) ] or Γa = 2π × 150 kHz [ c) and d) ] according to equation 5.27. The
amplitude has been adapted to the electrical power which the lock-in measures
Pel = (βrPUPopt)

2/R with rPU = 0.03 being the reflectivity of the pick-up plate,
β = 350V/W the power-to-voltage conversion factor and R = 50 Ω the input
impedance of the lock-in. Thus, we can directly compare the theory to the data.
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Figure 5.23: The plot shows the quadratures corresponding to the second pa-
rameter set from figure 5.22.
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However, as they are a reflecting element, they still generate a power modulation on
the beam which travels towards the fiber EOM, similar as described in section 5.4.2.
The amplitude of the power modulation now stays constant for increasing modu-
lation frequency. Note that the phase of the power modulation never falls below
−180◦ in the model. The measured data will strongly deviate from this.

Figure 5.23 shows the quadratures of the power modulation in equation 5.27 for
the second parameters set. In principle, the figure carries the same information, but
I found it helpful to look at the measured data also in this representation. Thus, I
also show the quadratures here to be able to compare them to the measurements.

5.6.3 Application of the stability criterion

One can use the measurements of the atomic backaction to learn about the stabil-
ity of the system under the assumption that the membrane behaves as expected
from standard optomechanics theory. Via the backaction measurements, we have
access to the quantity [P̃ (Ω)/Φ̃(Ω)]a, the factor with which the atoms convert phase
modulations into power modulations at a given frequency Ω. Assuming that the
membrane behaves as expected, one can calculate the phase modulation it imprints
on the light when it is subject to a given power fluctuation, [Φ̃(Ω)/P̃ (Ω))]m. As
described earlier, the coupled system will start to self-oscillate if a noise signal en-
tering the loop, as depicted in figure 5.7, becomes amplified and collects a phase
delay of 2π when it propagates through the loop once. In this case, the product
t2e−2iΩτ [P̃ (Ω)/Φ̃(Ω)]a× [Φ̃(Ω)/P̃ (Ω)]m has a phase of 360◦ and an amplitude bigger
than one. Here, also the reduction of the power modulation due to optical losses
(t2 =

√
R = 0.25 for the measurements in this chapter) and the run-time delay

(τ = 30 ns in a typical coupling experiment) have been taken into account.

Calculation of [Φ̃(Ω)/P̃ (Ω)]m

To calculate the membrane response [Φ̃(Ω)/P̃ (Ω)]m, we remember from section 1.2.2
that the phase-shift per small membrane motion xm is

Φ =
dΦ

d∆

dωc

dxm
xm =

4G

κ
xm (5.28)

and that the membrane susceptibility is given by

χm(Ω) =
x̃m(Ω)

F̃ (Ω)
= [M(Ω2

m − Ω2 + iΓmΩ)]−1 , (5.29)

Thus, for the Fourier transform of Φ one can write

Φ̃(Ω) =
4G

κ
x̃m(Ω) =

4G

κ

1

M(Ω2
m − Ω2 + iΓmΩ)

F̃ (Ω) (5.30)

Moreover, we remember (see equation 1.89 and 1.91) that the radiation pressure
force modulation Frad caused by a modulation of the power in front of the cavity P

134



Chapter 5. Self-oscillations in a delay-coupled atom-optomechanical system

a

274.96 274.98 275.00 275.02 275.04

-9.0

-8.5

-8.0

-7.5

Frequency [kHz]

A
m
pl
itu
de

[a
.u
.] b

274.96 274.98 275.00 275.02 275.04

-150

-100

-50

0

Frequency [kHz]

P
ha
se

[°
]

Figure 5.24: The figure illustrates the frequency response of the membrane
backaction onto the light given by equation 5.33. Figure a) shows the amplitude
in arbitrary logarithmic units and figure b) the phase.

is given by

Frad = ~Gn̄c =
4G

κωc
P , (5.31)

so that Φ̃(Ω) becomes

Φ̃(Ω) =

(
4G

κ

)2 1

ωc

1

M(Ω2
m − Ω2 + iΓmΩ)

P̃ (Ω) . (5.32)

The power-to-phase conversion factor of the membrane in frequency space hence
reads [

Φ̃(Ω)

P̃ (Ω)

]
m

=

(
4G

κ

)2 1

ωc

1

M(Ω2
m − Ω2 + iΓmΩ)

=

(
4G

κ

)2 1

ωc

1

2ΩmM(Ωm − Ω + iΓm/2)
, (5.33)

where I did a Lorentz approximation in the last step, which is justified if |Ωm−Ω| ≈
Γm � Ωm. Figure 5.24 illustrates phase and amplitude of the membrane power
to phase fluctuation conversion factor. Note that also here the phase never reaches
−180◦. The combined phase lag of the atomic oscillator and the membrane oscillator
can therefore not exceed 360◦. An additional phase-shift e.g. from a delay is needed
for this.

Stability criterion

The only frequencies at which the power to phase conversion factor on the membrane
side [Φ̃(Ω)/P̃ (Ω)]m has a finite value lie within in a small window of width ≈ Γm

around the membrane frequency Ωm. Thus, if the system oscillates, it will oscillate at
a frequency in this window. Due to the much larger atomic linewidth Γa � Γm, the
conversion factor on the atomic side [P̃ (Ω)/Φ̃(Ω)]a can be assumed to be constant
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within the small frequency window around Ωm. As Γmτ � 1, also the factor e−2iΩτ is
constant to good approximation in the relevant frequency window. For statements
about the stability of the coupled system it is therefore enough to measure the
phase φa and the amplitude of the atomic conversion factor [P̃ (Ωm)/Φ̃(Ωm)]a =
|P̃ (Ωm)/Φ̃(Ωm)|a exp(iφa) at the membrane frequency, and to take the propagation
phase at Ωm, φp = −2Ωmτ , into account.

For an instability the combined phase of the product t2e−2iΩmτ [P̃ (Ωm)/Φ̃(Ωm)]a×
[Φ̃(Ω)/P̃ (Ω)]m needs to be −360◦. If for example the sum of the phase of the atomic
backaction φat and the propagation phase φp is −270◦, the critical −360◦ point is
reached at the membrane frequency Ωm, at which the phase of membrane backaction
is −90 ◦ and the membrane backaction is maximal. If φat + φp is less or more
than −270◦, the critical frequency will slightly deviate from Ωm and the membrane
backaction amplitude will be reduced.

From the condition

φat + φp + arg([Φ̃(Ωcrit)/P̃ (Ωcrit])m) = −2π , (5.34)

one can find the critical frequency Ωcrit close to Ωm at which the system will oscillate
if the gain is high enough. One finds

Ωcrit = Ωm −
Γm

2
cotφ′a , (5.35)

where φ′a = φa + φp is the atomic phase shifted by the propagation phase. The
amplitude of the membrane backaction at this frequency is given by∣∣∣∣∣ Φ̃(Ωcrit)

P̃ (Ωcrit)

∣∣∣∣∣
m

=

∣∣∣∣∣ Φ̃(Ωm)

P̃ (Ωm)

∣∣∣∣∣
m

1√
1 + cot2 φ′a

, (5.36)

with ∣∣∣∣∣ Φ̃(Ωm)

P̃ (Ωm)

∣∣∣∣∣
m

=

(
4G

κ

)2 1

ωc

1

ΩmΓmM
. (5.37)

From the stability condition∣∣∣∣∣ Φ̃(Ωcrit)

P̃ (Ωcrit)

∣∣∣∣∣
m

× t2
∣∣∣∣∣ P̃ (Ωm)

Φ̃(Ωm)

∣∣∣∣∣
a

< 1 , (5.38)

one finds that the amplitude of the atomic backaction for a given phase φa of this
backaction at Ωm has to stay below∣∣∣∣∣ P̃ (Ωm)

Φ̃(Ωm)

∣∣∣∣∣
a,max

=
1

t2

∣∣∣∣∣ Φ̃(Ωcrit)

P̃ (Ωcrit)

∣∣∣∣∣
−1

m

=
1

t2

∣∣∣∣∣ Φ̃(Ωm)

P̃ (Ωm)

∣∣∣∣∣
−1

m

√
1 + cot2 φ′a (5.39)
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Thus, if we know the phase of the atomic backaction at Ωm, we can calculate
the maximally allowed amplitude and check whether the measured value lies below
or above. From the the phase and the maximum amplitude, one can also determine
the maximum quadratures along φ′at

X(Ωm)a,max,φ′at
=

∣∣∣∣∣ P̃ (Ωm)

Φ̃(Ωm)

∣∣∣∣∣
max

cosφ′a =
1

t2

∣∣∣∣∣ Φ̃(Ωm)

P̃ (Ωm)

∣∣∣∣∣
−1

m

√
1 + cot2 φ′a cosφ′a ,

Y (Ωm)a,max,φ′at
=

∣∣∣∣∣ P̃ (Ωm)

Φ̃′(Ωm)

∣∣∣∣∣
max

sinφ′a =
1

t2

∣∣∣∣∣ Φ̃(Ωm)

P̃ (Ωm)

∣∣∣∣∣
−1

m

. (5.40)

Interestingly the critical Y -quadrature is independent of φ′a. Summing up, I
find that our coupled system is unstable if the amplitude of the atomic backaction

at the membrane frequency (Ωcrit ≈ Ωm) exceeds
∣∣∣ P̃ (Ωm)

Φ̃(Ωm)

∣∣∣
a,max

, or correspondingly

if the Y -quadrature of the atomic backaction at Ωm rotated by φp is larger than

1
t2

∣∣∣ Φ̃(Ωm)

P̃ (Ωm)

∣∣∣−1

m
. For F = 570, Γopt = 15 s−1, Φ̃rms(Ωm) = 0.23, and R =

√
0.06 as

in the experiments of this section, I find Y (Ωm)max,φ′at
= 3.3µVrms. Note that the

critical −360◦ point cannot be reached in the existing model without delay as the
phases of both, the atomic backaction, figure 5.22, and the membrane backaction,
figure 5.24, stay above −180◦. As mentioned above, an additional phase-shift e.g.
from a delay is needed to realize a global phase lag of 360◦.

5.6.4 Measurements

Finally, I present our measurements of the atomic backaction. Several of them
deviate strongly from the theoretical behavior without delays. In particular many
traces show much larger phase lags, which is not surprising as some delay must be
present in the system. Via the stability analysis presented above, one can judge
from these measurements of the open loop behavior on the atomic side whether the
coupled system will be unstable if we close the loop.

Signal in absence of atoms

Every reflecting element in the beam path causes a power modulation in the beam
on the PD due to interference between the phase modulated reflected beam and
the incoming beam as described in the section on run-time delay, see figure 5.12
and equation 5.23. The phase of this power modulation jumps randomly between
0◦ and 180◦ as the position of the reflecting elements drifts slowly, which randomly
changes the sign of the cosine in equation 5.23. The plots a) and b) of figure 5.25
depict this effect. One sees that on top of the 180◦ jumps the phase decreases with
a slope of 90◦/2 MHz due to a global delay caused by propagation delays of the
optical setup, propagation of the electrical signals in the BNC cables and all other
delays in the electronics involved. We use this knowledge to calibrate the subsequent
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Figure 5.25: a) and b) Phase and amplitude of the power modulation generated
by a reflecting element in the beam path in a measurement without atoms and
without piezo. The amplitude is given in units of electrical power over the
50 Ω input impedance of the lock-in. The linear dependence of the phase on
the frequency (dashed lines) is used to calibrate the delay of the measurement
setup. c) and d) compare the same data to data taken in a measurement with
operating piezo.
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measurements as we want to isolate the delays created within the atomic ensemble.
The non-atomic reflections cause a signal of significant amplitude. To reduce this,
we turn on the piezo attached to the back mirror, see figure 5.21, so that the position
x0 of the reflector with respect to the end mirror moves periodically. If we perform
our measurements more slowly than the oscillation timescale of the piezo, the power
modulation caused by non-atomic reflecting elements will average to zero, similar as
described in the propagation delay section. Plot c) and d) of figure 5.25 compare a
measurement done with piezo turned off to a measurement done with piezo turned
on. All measurements have been done with a filter bandwidth of the lock-in of 18 Hz,
so that the measurement time, 55 ms, was much longer than the oscillation period of
the piezo T = 1/3 kHz = 0.33 ms. One sees that the amplitude of the signal reduces
by around 15dB almost to the background level (gray trace). In all measurements
that I will show in the following the piezo was turned on.

Variation of atom number during MOT phase

The first experiment is similar to the experiment from the beginning of this chapter,
in which the number of atoms in the lattice volume was varied by loading the MOT
for different times, see 5.3. Again the MOT is loaded for a specific variable time.
During this time the lattice beam is at very low power (P = 110µW), so that
Ωa(0)� Ωm. Subsequently, the lattice is ramped up (in 10 ms) to P0 = 9.12 mW so
that Ωa(0) > Ωm. Shortly afterwards the lock-in amplifier is triggered to measure
the backaction of the atoms for 50 ms at a given modulation frequency Ω. As the
atomic lifetime in the MOT is seconds, the atom number in the MOT stays nearly
constant during these 50 ms. Then, the experiment is repeated with a different
loading time and/or a different modulation frequency Ω.

Figure 5.26 shows amplitude and phase of the power modulation for different
MOT loading times and correspondingly different atom numbers in the lattice vol-
ume. The technical phase lag of 45◦/MHz has been substracted from the phase
measurement, so that the signal shows the bare effect from the atoms. Figure 5.27
shows the corresponding quadratures of the electrical voltage. Here the red dot
marks the measurement at the membrane frequency. If the red dot lies within the
gray area, the coupled system will become unstable according to the criterion dis-
cussed in the last subsection.

The measured amplitude behavior in figure 5.26 a) is in qualitative agreement
with the prediction in figure 5.22. An initial peak is followed by a plateau at large
frequencies. Both figures also show that the system must be stable for the smallest
loading time as the trace never enters the gray region. This is in agreement with our
earlier observations that the self-oscillation only kicks in after a certain threshold
loading time. Moreover, the shape of the quadrature signal of this measurement has
a lot of qualitative agreement with the theory signal. It starts at around −90◦ and
then approaches −180◦. However, there is a loop in the trace, which is not predicted
by the theory. In the phase plot in figure 5.26 this is visible as a going up and down
of the phase. In the second, orange trace the loop almost touches the center of the
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Figure 5.26: The plots show the frequency response of the atomic backaction for
different MOT loading times. The legend displays the corresponding number of
atoms in the lattice volume in units of 107 atoms. The upper graph in figure a)
shows the amplitude and the lower plot the phase of the power modulation on
the light caused by the backaction of the atoms. The phase is referenced to the
phase of the modulation on Φ and the amplitude is given in units of electrical
power. Figure b) shows a zoom to the low frequency region of figure a). The
dashed lines mark the membrane frequency Ωm/2π = 275 kHz and the expected
maximal atomic frequency Ωa(0)/2π = 449 kHz. The gray color marks the area
in which the coupled system in principle can become unstable if the gain is high
enough. Experimental parameters: atom-laser detuning ∆LA = −2π × 1 GHz,
power reflectivity R = 0.06.
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Figure 5.27: The plots show the quadratures corresponding to the frequency
response shown in figure 5.26. The numbers show the loaded atom number
in units of 107 atoms. The red dot marks the measurement at the membrane
frequency and the gray area the instability region. The critical quadrature region
has been tilted with respect to 5.40 by the finite propagation phase φp = 5.2◦,
which is typically present in our coupling experiments.
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coordinate system, which corresponds to the prominent dip in the corresponding
amplitude plot. This loop in the quadrature plot is located away from the origin
for the smallest atom number. For increasing atom number, it moves closer to the
origin and starts to wind around the zero point, which drastically influences the
phase behavior.

For atom numbers exceeding 3.2×107 the red dot lies in the gray area, predicting
an instability in the coupled system in agreement with our previous observations.
The phase behavior is extremely different from the theoretically expected one for
the large atom numbers. The phase lag at the membrane frequency gets as large
as 270◦ exceeding the theoretical maximum of 180◦ by much more than the phase
shift 2Ωmτ = 17◦ from the τ = 88 ns delay fitted in figure 5.9. However, it has to be
noted that the current experiment and the experiment from figure 5.9 differ in the
power reflectivity R and the ingoing power P0 and can therefore not be compared
directly.

Variation of atom number during molasses phase

In all measurements on the self-oscillation effect we observed an immediate reduction
of the membrane amplitude as soon as we switched from MOT to molasses cooling.
Therefore, I repeated the backaction measurement with molasses-cooled atoms. For
this, the time of the lattice ramp-up and the subsequent measurement was shifted to
a certain time after the start of the molasses phase. Figure 5.28 shows the frequency
response of the atomic backaction for different molasses times. The signals are small
but the phases are well-defined. The amplitude reduces with increasing molasses
time because the optical depth quickly decreases. None of the traces enters the gray
instability regions, and qualitatively the measured signals agree with the expecta-
tions from the model without delay. This is in agreement with our observation that
the self-oscillation vanishes in the molasses phase. Note that the amplitude levels of
all molasses measurements, which quantify the strength of the atom-light coupling,
stay below the signal levels of the first MOT measurements in figure 5.26, which do
not penetrate the instability region either. Self-oscillation might, thus, be absent in
the molasses regime because the atom-light interaction is too weak.

Variation of the laser detuning - red

As we observed a strong dependence of the self-oscillation effect on the lattice param-
eters, we repeated the experiment for different red detunings of the coupling lattice.
In this experiment the laser power was kept constant and the MOT was running
permanently. Figure 5.29 shows the results of the measurement. One sees that the
signal amplitude rises with decreasing detuning. This makes sense as the power mod-
ulations depend on the atomic polarizability ζ ∼ N/∆LA (see equation 5.24), which
increases for decreasing detuning ∆LA. Furthermore, as discussed in section 5.5.1,
the number of atoms trapped in the lattice modulation wells might rise for decreas-
ing detuning as the increasing light shift leads to colder temperatures in the lattice
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Figure 5.28: The large plots show amplitude and phase of the frequency response
during the molasses phase. The small plots show the corresponding quadratures.
The legend and the numbers in the quadrature plots display the molasses time
in ms. The measurements look qualitatively similar to the theoretical prediction
for an atomic oscillator without delay in figure 5.22.
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Figure 5.29: Plots on top: amplitude and phase of the freq. response for dif-
ferent red detunings. Small plots: corresponding quadratures. The axes of the
quadrature plots show r.m.s. voltage in µV. Axis labels are left away for better
visibility. The legend and the numbers in the quadrature plots show the ab-
solute value of the detuning of the coupling lattice from the F = 2 ↔ F ′ = 3
transition |∆LA|/2π in MHz. Exp. parameters: ingoing power P0 = 9.12 mW,
reflectivity R = 0.06. 144
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Figure 5.30: Figure a) and b) show amplitude and phase of the frequency re-
sponse for different blue detunings at the laser from the atomic transition, fig-
ures c)-f) the corresponding quadratures. The legend and the numbers in the
quadrature show the absolute value of the detuning of the coupling lattice from
the F = 2↔ F ′ = 3 transition |∆LA/2π| in MHz.

volume. Surprisingly, for detunings below ∆LA = 2π × 910 MHz, the signal ampli-
tude decreases again. A reduction of the atom number due to the increased lattice
scattering rate at small detuning (see equation 1.23) might explain this. However,
the phase behavior of the traces at very small detunings differs strongly from the
behavior at large detuning even if the signal amplitudes are comparable (compare
e.g. the 2010 MHz and 610 MHz measurements). This indicates that not simply the
number of trapped atoms is changing. In this measurement atom number effects
and detuning effects are connected, which makes it hard to analyze the data.

Still, the measurement allows to make some remarks. Firstly, it predicts sta-
bility for large detunings and instability for small detunings consistent with the
measurements on lattice parameter dependence (see figure 5.17). Secondly, for large
detunings the loop with unknown origin appears again. It approaches the zero point
for decreasing detuning and winds around it for detunings smaller than 1610 MHz.

Variation of the laser detuning - blue

Lastly, figure 5.30 shows results of the same measurement as before but with blue
detunings. For all measurements the signal stays in the stability region. The phase
responses for different blue detunings roughly overlap, going from −90◦ towards
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−180◦. The measurements look qualitatively similar to the expectation without
delay and to the measurements performed during the molasses phase. This fits to
the prior observations that we do not see any self-oscillations when the lattice is
blue-detuned. Note that also here, the signal levels are small, indicating that self-
oscillations do not appear in blue lattices because the atom-light coupling is too
small as discussed already in section 5.5.1.

5.6.5 Summary

In this section I described measurements of the atomic backaction onto the coupling
laser light. It was the first time in our lab that we directly measured this backaction.
The measurements give valuable information about the atom-light interactions of our
coupled atom-membrane system. Especially in the context of the self-oscillation, the
backaction measurement is a useful tool as we suspect the atoms to be responsible
for the phase delay.

The measurements show that in regimes in which no instability is observed in
the coupled system, namely in the molasses phase, for small atom numbers and
large lattice detunings or in experiments with blue detuning, the atomic backac-
tion shows no sign of a delay. On the contrary, measurements in the MOT phase,
with large atom number and small red detuning, show extremely large phase lags
in the atomic backaction. In this parameter regime the backaction measurements
predict instable behavior, which is consistent with our prior observations. Thus, the
measurements show that the retardation which causes the instability arises within
the atomic ensemble. Strictly speaking, there is no real delay in the system. We
observe a phase-shift with respect to the expected behavior ∆φat = φat,theo − φat,
that can be assigned to an effective delay τat = ∆φat/Ωm. As already mentioned in
the beginning of section 5.3, it is the phase-shift induced by a delay that matters
for the stability of the system.

5.7 Collective atomic effects in an asymmetric lattice

In section 1.1.6 I claimed that if |∆LA| � Γa, the atomic ensemble can be described
as one single beamsplitter and I used this description to derive the equations of
motion of the coupled atom-membrane system. In the parameter regime of small
detunings ∆LA ≈ −2π × 1 GHz, in which the instability studied in this chapter
occurs, this one-beamsplitter-assumption is not necessarily well-fulfilled. In [78]
Asbóth et al. study the atom-light interaction in a one-dimensional lattice and
explicitly take the distribution of the atoms over several lattice wells into account.
They find that the lattice can become unstable if the atomic polarizability ζ given in
equation 1.30 is large and the lattice is asymmetric, meaning that one lattice beam is
stronger than the other. Inspired by their observations and the preceding backaction
measurements, I repeated the numerical simulation done in [78] and extended it to
simulate the backaction measurements. Interestingly, I find that light-mediated
interaction between the atoms in different wells of an asymmetric lattice can lead to
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Figure 5.31: New model of atoms in optical lattice taking the distribution over
several lattice wells into account. The atomic ensemble is described as a stack
of beamsplitters.

large phase shifts in the atomic backaction onto the light. This makes such collective
atomic effects a strong candidate for being the origin of the self-oscillation.

Collective effects in atomic ensembles mediated by the atomic backaction on
laser light have been observed in optical cavities [156]. The presence of a cavity
strongly enhances the atom-light interaction. If a cold atomic ensemble in a linear
cavity is strongly driven by a perpendicular laser beam, the coupling of atoms at
different positions to the cavity mode leads to a self-organization of the atoms in a
checkerboard lattice [157, 158]. In an experiment with a BEC this self-organisation
mechanism was even exploited to realize a phase transition between a super-fluid and
a self-organized phase [159, 160]. In a ring cavity the backaction of atoms can lead
to the conceptually related phenomenon of collective recoil lasing [161, 162]. Atoms
in a unidirectionally pumped high-finesse ring cavity scatter light also into the back-
propagating cavity mode. The dipole force generated by light in this cavity mode
pulls the atoms towards positions at which the backwards scattering is stronger.
This mechanism results in an exponential gain of the back-propagating field mode
amplitude and an accumulation of the atoms at the antinodes of the emerging moving
optical lattice.

In free-space experiments the atom-light coupling is typically too weak to induce
collective effects. However, the following simulations show that in an asymmetric
lattice light-mediated atom-atom interactions can matter for realistic experimen-
tal parameters. I will sketch the model and present the results of the numerical
simulations in the following.

5.7.1 Model

The atomic ensemble is modeled as an array of nBS beamsplitters with transfer
matrices MBS,i , i ∈ (1...nBS) as given in equation 1.36. The beamsplitters are sep-
arated by distances di corresponding to the free-space transfer matrices Md,i intro-
duced in equation 1.67 as depicted in figure 5.31. As in section 1.1.6, the lattice
is created by two laser beams with amplitudes C(x) = E1e

−ikx from the right and
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B(x) = E0e
ikx+iΦ(t) from the left and intensities Ii = ε0c|Ei|2/2. The lattice is

asymmetric, E0 =
√
RE1 (

√
R ≤ 1), and the phase on the beam from the left is

modulated with frequency Ω, Φ(t) = Φ0 cos(Ωt).

5.7.2 Numerical simulation

At the start of the simulation (t=0) each atomic ensemble is displaced by a small,
random displacement ξi(t = 0) from its steady state position xs

i

xi(t = 0) = xs
i + ξi(t = 0) . (5.41)

The initial displacement ξi(t = 0) is a uniformly distributed random variable between
−ξinitial and ξinitial, with ξinitial = 5×10−4λ. To determine the steady state positions
xs

i , the asymmetric radiation pressure is taken into account as well as the reduction
of the lattice constant d in presence of atoms for red and blue detuning [78]

red: d =
λ

2

(
1− χ+

π

)
,

blue: d =
λ

2

(
1−

∣∣∣∣χ−π
∣∣∣∣) , (5.42)

with

χ± = arcsin

(
ζ
√

4 +A± ζ
√

4− ζ2A2

2(1 + ζ2)

)
. (5.43)

The parameter A quantifies the asymmetry of the lattice

A =
I1 − I0√
I1I0

. (5.44)

These analytic expressions for the reduced lattice constant hold for non-dissipative
atomic ensembles only (ζ ∈ R). Therefore, I restrict my simulations to this case
and neglect the imaginary part of the atomic polarization Im ζ. In principle, the
simulation can also be performed for dissipative material. Only the starting dis-
placements will be slightly different from ξinitial in this case. If Im ζ � Re ζ, the
deviation is small and not relevant for the result of the simulation. In fact, for the
parameters used in this chapter, I do not see a significant difference in the results of
the simulations if I use the full complex polarizability ζ to calculate the beamsplitter
matrices MBS,i.

For each timestep the global outgoing fields A1 and DnBS as well as the fields
at the position of each atomic beamsplitter are calculated using the transfer matrix
method. Via equation 1.39, the force on each atomic pancake Fi is determined.
Subsequently, the position of each atom in the next timestep is calculated from the
corresponding equation of motion

mBSẍi = −mBSΓaẋi + Fi . (5.45)
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Figure 5.32: Simulated atomic response for variable atom number. The plot
shows the amplitude and the phase of the relative power modulation of the
outgoing beam (Pleft − 〈Pleft〉)/〈Pleft〉 for various atom numbers. The legend
displays the atom number in units of 107 atoms. The phase is referenced to the
phase of the ingoing modulation. The simulation has been performed for ingoing
power P1 = πw2

0I1/2 = 9.12 mW, atom-laser detuning ∆LA = −2π × 1 GHz,
beam waist w0 = 280µm, reflectivity R = 0.06, nBS = 10 pancakes, atomic
damping Γa = Ωa(0)/4 = 7× 105 s−1 and driving amplitude Φ0 = 10−3 × 2π.

Here mBS = NBSm is the mass of the NBS = N/nBS atoms in one lattice well.

If the phase of the beam from the left Φ is modulated (|Φ0| > 0) at a frequency
Ω, the phase and the amplitude of the resulting power fluctuations of the outwards
going beam to the left Pleft = Ileftπw

2
0/2 (Ileft = ε0c|A1|2/2) are evaluated once the

simulation is completed. For this evaluation only the outgoing power Pleft after the
initial transient time Tdamp = 1/Γa is taken into account.

5.7.3 Results of the simulation

Atom number dependence

Figure 5.32 shows the simulated backaction of the atomic ensemble onto the light for
parameters similar to the ones of the experiment presented in figure 5.26. Concretely,
the ingoing power P1, the detuning ∆LA, the beam waist w0 and the reflectivity R
have been set to the same values (see figure caption). The atomic damping rate has
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Figure 5.33: Exemplary atomic traces corresponding to different points in fig-
ure 5.32. The plots depict how the displacement ξi(t) = xi(t)− xs

i of each atom
from its steady state position (color coded) evolves with time. The time is given
in units of the drive period Td = 2π/Ω. The titles show the atom number N
and the drive frequency Ω.

been set to Γa = Ωa(0)/4 to simulate the strong inhomogeneous broadening in the
experiment. Here, Ωa(0) = 2π× 448 kHz is the trapping frequency in the low atom-
light coupling limit given by equation 1.21. Moreover, the total number of atoms N
is varied over a similar regime as in figure 5.26. The N atoms are distributed over
nBS = 10 beamsplitters. For atom numbers larger than N = 37 × 107 the lattice
becomes unstable.

For small atom numbers (red and orange trace) the curves follow the prediction
of the single beamsplitter model depicted in figure 5.22 as expected. For increasing
atom number, the amplitude of the relative power modulations (Pleft−〈Pleft〉)/〈Pleft〉
increases. Surprisingly, the peak moves towards lower frequencies and broadens.
Simultaneously the phase of the backaction starts to penetrate the region below
−180◦ enabling the occurrence of self-oscillations in the coupled system. For very
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large atom numbers (dark blue traces), a new second peak appears slightly to the
right of the initial atomic resonance and the phase drops in two steps as low as
−360◦.

Figure 5.33 shows a couple of exemplary atomic traces corresponding to different
points in figure 5.32. Plot a) shows how the displacements of the atomic ensembles
from their steady state positions ξi(t) = xi(t) − xs

i evolve with time if the atom
number is small (N = 1× 107). All beamsplitters oscillate with the same phase set
by the ingoing modulation as expected in the absence of atom-atom interaction. For
large atom numbers, the behavior is fundamentally different. The plots b) - d) show
the evolution of the displacement ξ(t) of N = 25 × 107 (slightly higher than the
maximum atom number in our experiment) atoms for driving frequencies b) below
resonance (Ω = 2π × 300 kHz) c) at resonance (Ω = 2π × 448 kHz) and d) above
resonance (Ω = 2π×650 kHz). The beamsplitters do not oscillate in phase any more
but the motional phases of the individual beamsplitters are strongly correlated. Plot
b) and d) show very different collective modes. In b) the phase and the amplitude
vary linearly over the atomic ensemble. In d) there is a region in the middle in which
the atoms hardly oscillate. Here, the oscillations at the edges are equally large but
opposite in phase. Plot c) shows the transition between the two modes in b) and d).

Thus, the modified model predicts that collective effects between the atomic
beamsplitters in an asymmetric lattice lead to phase-shifts in the atomic backaction
onto the light in a parameter regime similar as in our experiment. Any phase-
shift with respect to the single beamsplitter model can lead to instable behavior as
discussed in section 5.6.3. Collective atomic effects might therefore be the origin of
the self-oscillations.

The simulation in figure 5.32 does not exactly reproduce the measured frequency
response of figure 5.26. This can be due to the fact that the model of the atomic
ensemble is greatly simplified. Already in chapter 4, the radial density distribution
of the atomic ensemble had to be taken into account to model the data. In the self-
oscillation experiments of the current chapter, the coupling lattice is surrounded by
the MOT cooled cloud and the MOT magnetic field gradients are turned on. The
MOT temperature is high (> 1 mK), but very likely the light-shift induced by the
coupling lattice locally modifies the atomic temperature, the density profile and the
atomic damping rate as discussed in section 5.5.1. With our current setup we are
not able to precisely determine the local properties of the atoms in the coupling
lattice volume in presence of the surrounding MOT cloud. This makes it difficult
to model radial distributions in this case. Still, two very important features, the
occurrence of atomic backaction phases below −180◦ and the fact that this behavior
becomes more pronounced for increasing atom number, are in agreement in data
and simulation.
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Figure 5.34: a) and b) Simulated frequency response for variable reflectivity R.
N = 25×107. The ingoing power P1 is adjusted such that the trapping frequency
stays at Ωa(0) = 2π × 448 kHz. c) and d) Simulated frequency response for
different numbers of pancakes. N = 20 × 107. a) and c) Amplitude, b) and d)
phase of the relative power fluctuations of the leftwards traveling beam as in
figure 5.32. All parameters which are not mentioned explicitly are given in the
caption of figure 5.32.
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Figure 5.35: a) and b) Simulated frequency response for different atomic damp-
ing rates Γa. The legend shows the ratio between the atomic damping rate
and the oscillation frequency Γa/Ωa(0). N = 25 × 107. c) and d) Simulated
frequency response for different red atomic detunings ∆LA < 0. The legend dis-
places |∆LA/2π| in GHz. N = 15× 107. The ingoing power P1 is adjusted such
that the trapping frequency stays at Ωa(0) = 2π × 448 kHz. a) and c) Ampli-
tude, b) and d) phase of the relative power fluctuations of the leftwards traveling
beam as in figure 5.32. All parameters which are not mentioned explicitly are
given in the caption of figure 5.32.

Dependence on the asymmetry, number of pancakes, atomic damping and
detuning

To get more insights into the collective behavior, several system parameters have
been varied in the simulation. Figure 5.34 a) and b) show amplitude and phase
of the atomic frequency response for different reflectivities R. For R = 1 the be-
havior equals the expectation from the single beamsplitter model (figure 5.22). For
all driving frequencies the atomic beamsplitters move in phase as in figure 5.33 a).
Thus, no collective effects are present in the symmetric lattice. Figure 5.34 a) and
) clearly shows that this behavior changes and becomes more and more pronounced
for decreasing reflectivity. In figure 5.34 c) and d) the number of the atomic beam-
splitters is varied between nBS = 1..15. One sees a drastic difference when going
from one to two beamsplitters. For one beamsplitter no collective effects can occur
and the response is given by the single beamsplitter model as expected. For nBS > 2
the collective behavior immediately kicks in and saturates quickly. For nBS > 4 no
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Figure 5.36: Amplitude a) and phase b) of the simulated relative power mod-
ulations of the leftward traveling beam at a given modulation frequency Ω for
different configurations. Red: ∆LA = −2π×1 GHz, Γa = Ωa(0)/4. Blue dashed:
∆LA = 2π × 1 GHz, Γa = Ωa(0)/4. Green: As red, but also Im ζ is taken into
account. Purple: As red, but with radial distribution of 50 atomic ensembles
with Γa = Ωa(0)/10. N = 25 × 107 in all plots. All parameters which are not
explicitly mentioned are the same as in figure 5.32.

significant difference between the traces can be observed any more. Note that in
the experiment the atoms occupy nBS = 2Ra/(λ/2) ≈ 104 potential wells. Such
large numbers were not simulated because the computation time would have been
too long.

Figure 5.35 a) and b) shows the behavior for varying atomic damping Γa. At
low damping (Γa ≈ Ωa(0)/9, blue traces) one clearly sees the presence of two dis-
tinct peaks in the amplitude plot corresponding to the two different spatial modes
in figure 5.33. For larger damping the amplitude strongly reduces and the phase
behavior washes out.

In figure 5.35 c) and d) the atomic detuning ∆LA is varied. The ingoing power
P1 is adjusted so that Ωa(0) stays constant. A smaller detuning increases the atomic
polarizability ζ ∼ 1

∆LA
(see equation 1.30), which increases the atomic backaction
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onto the light field. Therefore, the signal is larger for smaller detunings and stronger
influenced by the collective effects.

Finally figure 5.36 compares two simulations which only differ in the sign of the
detuning (red and dashed blue trace). The curves lie on top of each other meaning
that the collective behavior is the same in the red and the blue case. The absence of
self-oscillations in the blue case in the experiment is due to the fact that less atoms
take part in the coupling in a blue-detuned lattice as discussed in section 5.5.1.
Figure 5.36 further shows the result of a simulation in which also the imaginary
part of the atomic polarizability Im ζ and, therefore, dissipation has been taken into
account (green trace). As mentioned above, the difference is negligible. Lastly, a
plot is shown for which the radial distribution of trapping frequencies in an atomic
ensemble with constant density distribution has been taken into account (purple
trace). For this it is assumed that light from different radial regions hits the photo-
detector at different positions so that the voltage signal is the sum of the signals
from the different radial regions. The purple trace shows the summed signal of 50
equally dense atomic packets at different radial positions (thus seeing different lattice
intensities) with atomic damping rates of Γa = Ωa(0)/10. Compared to the traces
without this inhomogeneous broadening and Γa = Ωa(0)/4 the resonance peak is
slightly deformed, of comparable width and at a lower frequency. The minimal phase
is reduced and the behavior on the right side of Ωa(0) is sharper due to the reduced
Γa. As mentioned above, the correct radial density and damping rate distribution
in the middle of the MOT cloud are not known so that an exact modeling of the
inhomogeneous broadening is very difficult. Specifically it is not guaranteed that
the density profile is flat as in chapter 4 for the reasons discussed in section 5.5.1.

5.7.4 Discussion

The numerical simulation presented above showed that large atomic polarizabili-
ties in asymmetric lattices lead to light-induced interactions between the atoms in
different potential wells. If the atomic motion is driven via a modulation of the
phase of one ingoing beam, the atomic backaction onto the light in presence of these
atom-atom-interactions strongly deviates from the single beamsplitter behavior. Es-
pecially the phase lag of the backaction can be much larger than 180◦. This acts as
an effective delay in the coupled atom-membrane system and is therefore very likely
the origin of the self-oscillations.

Due to the lack of knowledge about the exact atomic parameters in the lattice
volume, precise modeling of the measured atomic backaction onto the light is diffi-
cult. Still, the modeled parameter dependence of the collective atomic backaction is
qualitatively consistent with our measurements. It shows the desired atom number
dependence and can be much larger than the propagation delay, so that the latter
can become irrelevant. Further, the collective effects are stronger for smaller de-
tunings ∆LA as they scale with the atomic polarizability ζ ∼ N/∆LA. Thus, for
larger detunings and fixed atomic frequency Ωa(0) ∼

√
P0/∆LA the atom number

needed for the same collective backaction effects is larger. If the fraction of trapped

155



5.8. Summary and final conclusion

atoms in the lattice increases with rising lattice power, this qualitatively explains
the lattice parameter dependence observed in section 5.5.2.

5.8 Summary and final conclusion

In this chapter I investigated self-oscillations, which appear in the atom-membrane
system under certain experimental conditions.

I studied the dependence of this instability on several system parameters and
found that a larger atom number and a smaller atom-light detuning ∆LA make the
system less stable.

The effect can be explained by a retardation in the coupling, which drives the
system into limit cycle oscillations if the coupling strength is large. From the equa-
tions of motion in presence of a delay, I derived a modified sympathetic cooling
rate. The model allows to fit the measured atom number dependence with a delay
of τ = 88(1) ns. This retardation exceeds the propagation time between atom and
membrane by a factor of three.

From the theoretical investigation we learned that any retardation in the cou-
pling, even the small propagation delay between atoms and membrane, limits the
sympathetic cooling performance. Possibly some of the sympathetic cooling exper-
iments presented in the preceding chapter 4 were delay-limited. For sympathetic
cooling into the quantum ground state, it is therefore crucial to minimize the dis-
tance between the atomic and membrane-cavity setup as well as the lifetime of
photons in the cavity.

In the parameter regime exploited in this chapter, the main contribution to the
retardation in the coupling arises from an effective delay in the backaction of the
atoms onto the light. This could be shown by direct measurements of this backaction.
These show large phase lags at the membrane frequency, which can be assigned to
an effective retardation. Numerical simulations suggest that, most likely, the phase
lags are caused by collective effects within the atomic ensemble. Such backaction
mediated collective effects have been observed in optical cavities [161, 160, 158],
but are not well studied in free space systems. In our experiments, the membrane
oscillator acts as a sensitive probe for this small atomic light-matter interactions,
demonstrating the possibilities of the hybrid system for sensing and signal transduc-
tion. To optimize the performance in sympathetic cooling experiments this effective
atomic backaction delay can be suppressed simply by choosing a large atom-light
detuning.
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Chapter 6

Conclusions and outlook

This thesis presented experiments with a hybrid system, in which the motion of
laser-cooled atoms is coupled to the vibrations of a membrane oscillator in a cavity.
During the course of this thesis both subsystems were carefully characterized.

We used the coupling to cool the fundamental membrane vibration at Ωm =
2π × 276 kHz from room temperature to Tsym = 0.4(2) K. Thus, during this thesis
we realized for the first time an atom-membrane system which can be exploited for
a useful task. In previous experiments the coupling had been too weak to alter the
membrane properties significantly [28, 54, 29].

During the course of this thesis we learned that a delay in the coupling can
have a significant impact on the behavior of the system. It drives the system into
limit cycle oscillations if the coupling is large, which limits the sympathetic cooling
performance.

We identified several sources of delays in our system. Under certain experimental
conditions, the atomic backaction on the light is retarded, most likely due to light-
mediated collective atomic effects within the ensemble. In this case the membrane
acts as a sensitive probe for the collective atomic light-matter interaction. This shows
the potential of the hybrid system for signal transduction or sensing applications.
If desired, e.g. for sympathetic cooling, the effect can be suppressed by choosing a
large atom-light detuning. The second source of the delay is the propagation time
between atoms and membrane consisting of the bare propagation time between the
atoms and the cavity and the lifetime of the cavity. This finite delay will always be
present and has to be taken into account in any ground state cooling experiment. By
using a fiber of suitable length the corresponding phase shift could be set to 2π and
thus rendered irrelevant. We are currently investigating whether this delay-coupling
can even by exploited in an experiment in the quantum regime e.g. for the creation
of atom-membrane entanglement via two-mode squeezing.

For experiments in the quantum regime the atom-membrane quantum coopera-
tivity Cqu has to be enhanced. In our current system it is limited to Cqu ≈ 10−5 by
the large phonon occupation of the membrane’s thermal bath nbath and laser noise
on the membrane side as well as the large atomic inhomogeneous broadening on the
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Tethers

Photonic crystal

Membrane

Phononic crystal

Figure 6.1: a) Tether membrane with photonic crystal. Most of the membrane
material is removed to reduce the membrane mass. A photonic crystal struc-
ture on the membrane increases the membrane reflectivity. b) Standard Si3N4

membrane (golden square in the middle) embedded in a phononic crystal (blue
structure).

atomic side. During the writing of this thesis optimization processes on the atomic
and membrane side of the setup have been started, which I briefly present in the
remaining paragraphs.

Further, we are currently investigating new coupling schemes which address the
internal state of the atomic ensemble [163, 164, 72, 73]. This will allow us to use
higher frequency mechanical oscillators, which are affected less by laser noise. More-
over, the internal states of the atoms can be prepared and detected with higher
precision than the motional states, offering new possibilities for quantum operation.

Already after the current optimization steps on the atomic and membrane side,
our hybrid atom-membrane system should be ready for operation in the quantum
regime [69]. The system will then open the door to the preparation of non-classical
motional states via optomechanical coupling to the atomic ensemble e.g. by the
creation of atom-light entanglement [71, 72]. Ultimately, this will enable quantum
signal transduction and precision sensing [165] applications as well as tests of quan-
tum mechanical predictions in the regime of large masses [10, 11, 12].

Next generation membrane oscillators and cryogenic pre-
cooling

To optimize the optomechanical coupling on the membrane side we are currently
testing several types of new membranes. A very promising approach are so called
tether membranes [166], see figure 6.1 a). In these structures most of the Si3N4

membrane material is removed. A small piece in the middle is attached to the frame
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Figure 6.2: Absorption image of the atomic ensemble in the dipole trap. The
plot shows the resonant optical depth of 3 × 107 atoms seen from the side.
The atoms form a straight line. The entire width of the ensemble cannot even
be recorded because it exceeds the size of our imaging beam. The image was
recorded after 1 ms of TOF.

only by four thin tethers. The resulting low frequency oscillator (Ωm = 2π×185 kHz)
has a very small mass (2 ng), which increases the single photon optomechanical cou-
pling rate g0 = Gxm,0. Due to the tethers, the membrane is well-isolated from the
environment. We observed Q-factors of up to 15 × 106. The small mass and the
high quality factor make these membranes very attractive for optomechanics exper-
iments. The group of Simon Gröblacher in Delft combines tether membranes with
photonic crystal structures [166]. This drastically increases the membrane reflectiv-
ity (rm > 0.999) enabling the usage of these membranes as vibrating endmirrors in
optomechanical cavities. They provided us with a set of structures optimized for
operation at λ = 780 nm. Unfortunately, the optical modes of the cavities built with
these photonic crystals deviate strongly from the TEM00 mode. This will strongly
reduce the efficiency in an atom-membrane coupling experiment so that the struc-
tures in their current status are not yet ready for the usage in a hybrid system. Fine
tuning of the photonic crystal parameters might solve this problem.

Further, we investigate membranes which are embedded in a phononic crystal,
see figure 6.1. These membranes are purchased from Norcada and based on a design
by the Regal group in Boulder [123] (see also [120]). A periodic structure in the
membrane frame creates a phononic bandgap around the frequency of the membrane
mode. This shields the mechanical mode of interest from the environment. The Q-
factors which we observed with these membranes are not higher than the ones of
the standard Norcada membranes, but they are more robust so that mounting the
membrane is easier. In addition the background noise floor is lower, improving
the signal to noise ratio of the membrane detection. A membrane cavity system
using a phononic crystal membrane with a bandgap around the 33-mode at Ωm,33 =
2π × 4.7 MHz is currently being set up. Besides using mirrors of slightly higher
reflectivity resulting in a higher cavity finesse, the new cavity is built cryo-compatible
and will be placed into a cryostat at 4 K to reduce the thermal phonon occupation.
With this new system we expect to achieve an membrane cooperativity close to the
maximum value of Cm = 1 enabling ground state cooling by classical feedback.

An elongated atomic ensemble in a dipole trap

The major limitation on the atomic side of our setup is currently the large inho-
mogenous broadening of the atomic ensemble. We can prepare atomic ensembles
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Figure 6.3: Sympathetic cooling experiment with a cigar-shaped atomic en-
semble a) Theoretical expectation of sympathetic cooling rate for N = 3× 107

atoms and atomic temperatures as given in the legend. Further parameters:
M = 110 ng, F = 700, Ωm = 2π × 276 kHz, Γm = 0.9 s−1, rm = 0.4, η = 1,
t = 0.68, Γa = 500 s−1, τ = 30 ns. b) Result of a first sympathetic cooling
experiment with atomic ensemble loaded from the dipole trap. The measured
sympathetic cooling rate Γsym is plotted against the separately calibrated fre-
quency in the lattice center Ωa(0). The resonance is displaced towards higher
frequencies and very broad indicating that the transfer from the dipole trap into
the lattice is not fully adiabatic yet.

with optical depths of ODres ≈ 100, but as the atoms populate the entire lattice
profile, the number of resonantly coupled atoms is strongly reduced. This limits the
atomic cooperativity to Ca ≈ 2× 10−3.

To overcome this limitation, we recently set up a far-detuned optical dipole
trap. It allows to produce thin cigar-shaped atomic ensembles much better suited
for atom-membrane coupling experiments. Currently we trap 3 × 107 atoms in the
dipole trap and manage to transfer almost all of them into the coupling lattice.
The resulting cloud in the lattice is 2 cm long and only 60µm wide (1/e2 diameter
and length), see figure 6.2. It has a temperature of 33µK. Due to the absence
of the surrounding molasses or MOT cooled cloud we can now for the first time
directly access the properties of the atoms in the coupling lattice volume. From
the measured temperature and atom number we calculate a peak optical depth
of the atomic ensemble of ODres,max = 4300. Averaged over the current optical
lattice beam area (w0 = 115µm) this gives an optical depth and correspondingly
atomic cooperativity of Ca = ODres = σ0N/σL = 280. When combining the novel
cryogenic cavity setup with the new atomic ensemble, we thus expect to observe
an atom-membrane quantum cooperativity of Cqu = 4CmCa = 1120 in absence of
losses. This will place our coupled atom-membrane system deep into the quantum
regime.

Figure 6.3 shows the results of a first sympathetic cooling experiment with the
new atomic ensemble and the ”old” second-generation membrane-cavity setup. In
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Chapter 6. Conclusions and outlook

Figure 6.4: Mirror coupled to the internal states of a distant atomic ensemble.
A laser at frequency ωL from the left pumps the system. The polarizing beam-
splitter cube translates a motion of the mirror into a polarization rotation at
the position of the atoms. Transitions between the atomic ground states modify
the radiation pressure on the membrane. Figure adapted from [163].

the experiment we first prepared a cigar-shaped cloud in the dipole trap and then
transferred it into the coupling lattice by slowly ramping up the coupling lattice
power. The resonance is shifted strongly towards higher center frequencies and
much broader than the theoretical expectation of the left. This indicates that the
transfer from the from the dipole trap into the lattice is not yet fully adiabatic.

Coupling to the internal states of the atoms

In a recent paper the Zoller group, in collaboration with Klemens Hammerer from
Hannover and our group, proposes a coupling scheme between a mechanical oscillator
and the internal states of an atomic ensemble [163]. Figure 6.4 sketches the proposed
scenario. The atomic ensemble is modeled as N Λ-type three-level systems with two
ground states, |e〉 and |g〉, which are separated by ωat. The coupling of the ground
states to the excited state |e〉 is polarization-dependent. The system is driven by a
σ−-polarized laser beam from the right, which pumps the atoms initially into the |g〉
ground state. In a Michelson-interferometer-like setup, a polarizing beam splitter
cube (PBS) splits the light into two equal linearly-polarized components. Arm A
is terminated by the mechanical oscillator, the other arm B by a fixed mirror. If
the oscillator is in its equilibrium position, the two arm lengths are equal and the
reflected light at the position of the atoms is purely σ−-polarized. A motion of the
mechanical oscillator induces a phase shift of the reflected light in arm A, which
is translated into a polarization rotation at the PBS. If the membrane vibration is
resonant to the atomic transition ωm ≈ ωat, the reflected σ+ polarized light at the
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sideband frequency ωL + ωat can induce a two-photon transition |s〉 ↔ |g〉. Vice
versa, if an atom makes a transition between the ground states, additional σ+ light
at the sideband frequency is emitted. Behind the PBS this light interferes with the
main laser beam and modifies the radiation pressure on the oscillator.

Vogell et al. show that the interaction can be described by an effective Hamilto-
nian between the membrane displacement and a collective spin wave in the atomic
ensemble

Heff = −~geff

2
(am + a†m)(S0 + S†0) . (6.1)

Here am(a†m) is the annihilation (creation) operator of the membrane mode and

S0(S†0) the annihilation (creation) operator of the collective spin wave mode

S0 =
1√
N

∑
j

σjgs , (6.2)

where σjgs = |g〉 〈s|j is the transition operator of the jth atom. Further, geff is the
atom-membrane coupling constant

geff = 2
√
Ngmga =

√
N

2

Ω+Ω−
∆

kLlm . (6.3)

Here Ω+(Ω−) is the Rabi frequency resulting from the drive laser field amplitude
and the dipole matrix element of the σ+(σ−) transition and lm =

√
~/2Mωm is the

zero-point amplitude of the membrane vibration.
To be able to realize this effective Hamiltonian a number of technical require-

ments have to be fulfilled. Firstly, to prevent coupling to multiple atomic spin waves,
the atoms have to be positioned at certain locations within the σ− standing wave by
an external lattice. Further, to avoid atom-atom interaction via the backreflected
light an additional phase-shifter on the atomic side of the PBS is required (not drawn
in figure 6.4), which shifts the phase of the σ+-light by π/4.

For a membrane-in-the-middle optomechanics system, the coupling strength in
this internal state coupling scheme exceeds the coupling strength achievable in the
motional coupling scheme, which was discussed in this thesis, by one single-atom
Lamb-Dicke factor geff/gmotion = 1/kLlat [163], where lat =

√
~/2mωat. Vogell et

al. show the atomic diffusion rate increases by (kLllat)
2 so that the atom-membrane

cooperativity given in equation 1.139 remains unchanged.
Even if no higher cooperativities can be achieved, the internal state coupling

scheme is very appealing. Coupling to the motion of the atomic ensemble limits the
mechanical resonator frequency to the sub-MHz regime. In the internal states scheme
this constraint is absent as the resonance condition is given by the energy splitting
between the two ground states |g〉 amd |s〉. The atomic Zeemann-sublevels can be
split easily by a magnetic field offering the possibility to couple to MHz oscillators.
If the atomic hyperfine ground states are addressed, also coupling to GHz oscillators
can be realized. Furthermore, the internal state of atoms can be prepared and ma-
nipulated and detected with a much higher fidelity than the center-of-mass-motion,
offering more possibilities for coherent quantum control in the hybrid system.
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Appendix A

Sympathetic cooling rate in
presence of delay

The following lines show how a modified sympathetic cooling rate can be derived
from the equations of motion of the coupled system in presence of a delay. I consider
two coupled and damped harmonic oscillators, the atomic center of mass motion, xa,
and the membrane motion, xm. The coupling term acts delayed by τ . Further one
of the oscillators, xm, experiences a fluctuating thermal force Fth. The equations of
motion of this system are

Nmẍa(t) = −ΓaNmẋa(t)−NmΩ2
axa(t)−Kxm(t− τ) , (A.1)

Mẍm(t) = −ΓmMẋm(t)−MΩ2
mxm(t)−Kxa(t− τ) + Fth(t) ,

where N is the number of atoms, m the atomic mass, M the membrane mass, Ωa the
frequency of the atomic center of mass motion, Ωm the membrane frequency, Γa the
atomic damping rate, Γm the membrane damping rate and K = ~gN/xm,0xa,0 the
coupling spring constant. For simplicity I neglect optical losses. To include inefficient
cavity incoupling and optical losses on the way between atoms and membrane, the
K in the second equation has to be multiplied with η2t2 as presented in section 1.3.

Fourier transforming the equations of motion one obtains

x̃a(Ω) = χa(Ω)[−K exp(−iτΩ)x̃m(Ω)] and

x̃m(Ω) = χm(Ω)[F̃th −K exp(−iτΩ)x̃a(Ω)] , (A.2)

with the mechanical susceptibilities

χa(Ω) = [Nm(Ω2
a − Ω2 + iΩΓa)]−1 and

χm(Ω) = [M(Ω2
m − Ω2 + iΩΓm)]−1 . (A.3)

If we eliminate x̃a(Ω) from the equations A.2 we find for the membrane amplitude

x̃m(Ω) =
F̃th

χ−1
m (Ω)−K2 exp(−i2τΩ)χa(Ω)

,

= χm,eff(Ω)F̃th , (A.4)
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Figure A.1: Real and imaginary part of the effective membrane susceptibility
χm,eff in presence of a delay in the coupling between atoms and membrane for
a), b) 10 atoms and c),d) 104 atoms.

with an effective membrane susceptibility

χm,eff(Ω) =

[
M

(
Ω2

m − Ω2 + iΩΓm −
K2 exp(−i2τΩ)

NmM(Ω2
a − Ω2 + iΩΓa)

)]−1

,

'
[
M

(
Ω2

m − Ω2 + iΩΓm −
K2(1− 2iτΩ)

NmM(Ω2
a − Ω2 + iΩΓa)

)]−1

. (A.5)

The last equations holds for small delays, such that 2τΩ� 1. I will assume this in
the following.

The effective membrane susceptibility is the starting point of the derivation of
the modified sympathetic cooling rate Γsym. Equation. A.3 reveals that the central
frequency of the oscillators Ωm(Ωa) is given by the zero point of the real part of the
inverse susceptibilities and that the damping rates Γm(Γa) are given by the imaginary
part of the inverse susceptibility divided by ΩM(ΩNm). This dependence must hold
also for the modified membrane susceptibility χm,eff. Thus, all we have to do is to find
the zero point of Re[χm,eff(Ω)−1], called Ωm,eff in the following, and then to evaluate
Im[χm,eff(Ω)−1]/ΩM at Ωm,eff to find the total damping rate Γtot = Γm + Γsym of
the membrane mode in presence of atoms and delay.

Before starting the calculation we have a look at the real and imaginary part of
the effective susceptibility χm,eff itself. Note that zero points of Re[χm,eff(Ω)−1] ≡
Re[a + ib] = a , (a, b ∈ R) are also zero points of Re[χm,eff(Ω)] = a/(a2 + b2) and
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Appendix A. Sympathetic cooling rate in presence of delay

that Im[χm,eff(Ωm,eff)−1] = b = −(Im[1/ib])−1 = −1/ Im[χm,eff(Ωm,eff)] , so that
the imaginary part of χm,eff(Ωm,eff) has opposite sign to the damping rate Γtot.
Figure A.1 shows real and imaginary part of χm,eff(Ω) for a small atom number
(N = 10, left column) and for a big atom number (N = 104, right column). Upper
and lower plot in the left column look qualitatively still the same as imaginary and
real part of the bare membrane susceptibility χm(Ω) (equation A.3). On closer
inspection one finds that the small coupling to the atoms broadens the peak in the
imaginary part plot and moves this peak as well as the zero point in the real part
plot slightly towards higher frequencies. For strong coupling to the atoms (right
column) two peaks are visible in the plot of Im[χm,eff(Ω)], a sign of normal mode
splitting due to strong coupling. For intermediate atom numbers (not shown in the
figure) the two peaks are of equal negative sign. However, for a certain threshold
atom number, the imaginary part of the right mode changes its sign from negative
to positive as shown in the right column of figureA.1. Thus, this mode changes its
damping rate from positive to negative.

It is exactly such a behavior of switching from positive to negative damping with
increasing atom number which we observe with our membrane. Therefore, I will
investigate the real part zero crossing of Re[χm,eff(Ω)−1] = Ωm,eff and corresponding
damping rate Γtot = Im[χm,eff(Ωm,eff)−1]/Ωm,effM for the right mode in the following.

For real and imaginary part of the inverse effective membrane susceptibility in
equation A.5 in one finds

Re[χm,eff(Ω)−1] = M

[
Ω2

m − Ω2 +
4g2
NΩaΩm[(1 + 2Γaτ)Ω2 − Ω2

a]

Γ2
aΩ2 + (Ω2 − Ω2

a)2

]
, (A.6)

Im[χm,eff(Ω)−1] = MΩ

[
Γm +

4g2
NΩaΩm[Γa + 2τ(Ω2

a − Ω2)]

Γ2
aΩ2 + (Ω2 − Ω2

a)2

]
. (A.7)

Applying the procedure described above to determine the sympathetic cooling
rate Γsym = Γtot−Γm, leads to a very longish expression even for resonant coupling
Ωa = Ωm, namely

Γsym =
c

d
with (A.8)

c = −8g2
N t

1/3Ω2
a[−3t1/3Γa + 22/3t2/3τ − 2t1/3Γ2

aτ + 2× 21/3Γ4
aτ

+6× 21/3τΩ2
a[g2

N (4 + 8Γaτ)− Γ2
a]] and

d =
21/3

3

√
·t1/3 +

22/3

3

√
·Γ2

a + 16g2
N t

2/3Ω2
a − 4× 21/3g2

N t
1/3Γ2

aΩ2
a

+2t2/3Γ2
aΩ2

a + 21/3t1/3Γ4
aΩ2

a + 32g2
N t

2/3ΓaτΩ2
a

−8× 21/3g2
N t

1/3Γ3
aτΩ2

a + 22/3Γ4
aΩ2

a[g2
N (4 + 8Γaτ)− Γ2

a]

+72× 21/3g2
N t

1/3ΓaτΩ4
a

+6× 22/3Ω4
a[Γ4

a − 4g2
NΓ2

a(2 + Γaτ) + 16g4
N (1 + 2Γaτ)2] , (A.9)
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where

√
· =

√
Γ2

a[−2Γ5
a + 9Γa[Γ2

a − 4g2
N (1 + 2Γaτ)]Ω2

a + 216g2
NτΩa4]2 · · ·

· · · − 4[Γ4
a + 3[−Γ2

a + g2
N (4 + 8Γaτ)]Ω2

a]3 (A.10)

and
t =
√
· − 2Γ6

a + 9Γ2
aΩ2

a[Γ2
a − 4g2

N (1 + 2Γaτ)] + 216g2
NΓaτΩ4

a . (A.11)

One can simplify these expressions using the following assumptions

Γaτ � 1

2
,

Γa � Ωa ,

Γa � 6τΩ2
a ,

Γ3
a � 24g2

NτΩ2
a . (A.12)

Of these assumptions the second one is certainly true in our system and with this
plus the assumption that the delay is small (Ωmτ � 1) the first assumption is also
true. In our parameter regime (τ > 50 ns, Γa < 103 s−1, N > 103) the last two
assumptions are fulfilled as well.

Using the assumptions the expressions above reduce to

√
· '

√
Γ2

a(216g2
NτΩ4

a)2 − 4(3Ω2
a(4g2

N − Γ2
a))3 ,

t '
√
·+ 216g2

NτΩ4
a ,

c ' −8g2
N t

1/3Ω2
a(−3t1/3Γa + 22/3t2/3τ + 6× 21/3τ(4g2

N − Γ2
a)Ω2

a) ,

d ' 21/3

3

√
·t1/3 + 16g2

N t
2/3Ω2

a + 2t2/3Γ2
aΩ2

a + 72× 21/3g2
N t

1/3ΓaτΩ4
a

+6× 22/3Ω4
a(Γ2

a − 4g2
N )2 . (A.13)

With these approximations Mathematica is able to further simplify the global ex-
pression Γsym = c/d to

Γsym =
1

9Γa(4g2
N − Γ2

a)
[48g4

N + 12g2
NΓ2

a − 6Γ4
a

−3
1
3 (36g2

NΓaτΩa −
√
...)(36g2

NΓaτΩa +
√
...)

1
3

−3
2
3 (4g2

N − Γ2
a)(36g2

NΓaτΩa +
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...)

2
3 ] where (A.14)

√
... =

√
(36g2

NΓaτΩa)2 − 3(4g2
N − Γ2

a)3 . (A.15)

To include optical losses, all factors g2
N in the expression have to be multiplied by

η2t2.
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Appendix B

Acronyms

NV Nitrogen-vacancy
BEC Bose-Einstein condensate
MIM Membrane-in-middle
MOT Magneto optical trap
EOM Electro-optic modulator
PSD Power spectral density
PDH Pound-Drever-Hall
EIT Electromagnetically-induced transparency
AR Anti-reflection coated
TA Tapered amplifier
PD Photo diode

PBS Polarizing beam splitter
BS Beam splitter

AOM Acousto-optic modulator
VCO Voltage-controlled oscillator

DC Direct Current
IFL Interference-filter laser

PZT Piezo element
LO Local oscillator

PID Proportional-integral-derivative
OD Optical depth

CCD Charged-coupled device
ND Neutral density
RF Radio frequency
OC Optical circulator

MIT Magnetically-induced transparency
FSR Free spectral range

167



168



List of Figures

1 Hybrid atom-membrane setup . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Two-level atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Transfer Matrix Model . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 MIM system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Simulation of cavity transmission . . . . . . . . . . . . . . . . . . . . 24

1.5 Schematic of coupled atom-membrane system . . . . . . . . . . . . . 33

2.1 Membrane production process and vibrational modes . . . . . . . . . 42

2.2 Membrane-cavity system . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Vacuum system of membrane setup . . . . . . . . . . . . . . . . . . . 47

2.4 Coupling light preparation setup . . . . . . . . . . . . . . . . . . . . 48

2.5 Optics assembly membrane-cavity system . . . . . . . . . . . . . . . 50

2.6 PDH lock and intensity stabilization . . . . . . . . . . . . . . . . . . 50

2.7 Cavity transmission signal . . . . . . . . . . . . . . . . . . . . . . . . 53

2.8 Cavity transmission spectra . . . . . . . . . . . . . . . . . . . . . . . 54

2.9 Cavity resonance length and finesse . . . . . . . . . . . . . . . . . . . 55

2.10 Ringdown signal and Γm measurement . . . . . . . . . . . . . . . . . 57

2.11 Optomechanics (1,1)- and (6,6)-mode . . . . . . . . . . . . . . . . . . 58

2.12 Exemplary membrane spectra . . . . . . . . . . . . . . . . . . . . . . 58

2.13 Summary optomechanical damping (1,1)-mode . . . . . . . . . . . . 59

3.1 Vacuum system and mechanical construction of atom setup. . . . . . 64

3.2 MOT 87 transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Laser system for cold atom preparation. . . . . . . . . . . . . . . . . 67

3.4 Optics assembly around atom chamber. . . . . . . . . . . . . . . . . 68

3.5 Calibration of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Characterization of MOT and molasses . . . . . . . . . . . . . . . . . 79

3.7 Scaling of MOT temperature with atom number . . . . . . . . . . . 80

3.8 Characterization of the dense MOT sequence . . . . . . . . . . . . . 81

4.1 Setup of coupled atom-membrane system. . . . . . . . . . . . . . . . 84

4.2 Sympathetic cooling in the time domain with first cavity . . . . . . . 86

4.3 Sympathetic cooling in the time domain with second cavity . . . . . 88

169



List of Figures

4.4 Spectrally-resolved sympathetic cooling first cavity. . . . . . . . . . . 91

4.5 Spectrally resolved sympathetic cooling second cavity. . . . . . . . . 93

4.6 Atomic density dependence of sympathetic cooling rate. . . . . . . . 95

4.7 Expected versus measured sympathetic cooling. . . . . . . . . . . . . 96

4.8 Unexpected membrane excitation in molasses phase. . . . . . . . . . 97

5.1 Second-generation atom-membrane setup . . . . . . . . . . . . . . . 102

5.2 Occurrence of self-oscillations. . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Loading time dependence of self-oscillations. . . . . . . . . . . . . . . 104

5.4 Total membrane damping rate versus atom number . . . . . . . . . . 105

5.5 Membrane spectrum versus time . . . . . . . . . . . . . . . . . . . . 107

5.6 Membrane spectrum fit results . . . . . . . . . . . . . . . . . . . . . 108

5.7 Box schematic of the coupled atom-membrane system. . . . . . . . . 109

5.8 Critical atom number versus delay . . . . . . . . . . . . . . . . . . . 113

5.9 Fit of the total membrane damping rate . . . . . . . . . . . . . . . . 115

5.10 Length variation setup . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.11 Effect of length variation on instability. . . . . . . . . . . . . . . . . 118

5.12 Schematic drawing of reflecting element and field amplitudes. . . . . 119

5.13 Non-atom instability due to propagation delay . . . . . . . . . . . . 121

5.14 Red vs blue detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.15 Rb87 D2-line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.16 Exemplary trace lattice parameter dep. . . . . . . . . . . . . . . . . 126

5.17 Lattice parameter dependence of threshold atom number. . . . . . . 127

5.18 Lattice parameter dependence of excitation rate. . . . . . . . . . . . 127

5.19 Lattice parameter dependence of the sympathetic cooling rate. . . . 128

5.20 Repump power dependence of threshold atom number. . . . . . . . . 129

5.21 Setup for atomic backaction measurement . . . . . . . . . . . . . . . 131

5.22 Model for atomic back action - phase and amplitude . . . . . . . . . 133

5.23 Model for atomic back action - quadratures . . . . . . . . . . . . . . 133

5.24 Membrane backaction onto the light. . . . . . . . . . . . . . . . . . . 135

5.25 Effect of piezo mirror on backaction measurement. . . . . . . . . . . 138

5.26 Amplitude and phase of atomic backaction during MOT phase. . . . 140

5.27 Quadratures of atomic backaction during MOT phase. . . . . . . . . 141

5.28 Freq. response of atomic backaction during molasses phase . . . . . 143

5.29 Freq. response of atomic backaction for different red detunings . . . 144

5.30 Freq. response of atomic backaction for different blue detuning. . . . 145

5.31 New model of atoms in lattice . . . . . . . . . . . . . . . . . . . . . . 147

5.32 Simulated frequency response atom number dependence . . . . . . . 149

5.33 Example pictures simulated frequency response . . . . . . . . . . . . 150

5.34 Sim. freq. response for variable reflectivity and nr. of pancakes . . . 152

5.35 Sim. freq. response for variable atomic damping and detuning . . . 153

5.36 Sim. freq. response for blue det., dissipation and inhom. broadening 154

6.1 Novel types of membrane . . . . . . . . . . . . . . . . . . . . . . . . 158

170



List of Figures

6.2 Atomic ensemble in dipole trap . . . . . . . . . . . . . . . . . . . . . 159
6.3 Sympathetic cooling in dipole trap . . . . . . . . . . . . . . . . . . . 160
6.4 Atomic ensemble in dipole trap . . . . . . . . . . . . . . . . . . . . . 161

A.1 Effective membrane susceptibility . . . . . . . . . . . . . . . . . . . . 164

171



List of Figures

172



List of Tables

1.1 Polarizability parameters . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Membrane properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 RF components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.3 MIM system properties . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1 Imaging parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 MOT and molasses settings . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Sympathetic cooling parameters and results . . . . . . . . . . . . . . 98

5.1 System parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

173



List of Tables

174



Bibliography

[1] J. Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Com-
pany, Inc., Boston) (1994).

[2] H. J. Metcalf and P. van der Straten, Laser cooling and trapping of atoms
(Springer-Verlag, New York Berlin Heidelberg) (1999).

[3] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of
single trapped ions, Rev. Mod. Phys. 75, 281 (2003).

[4] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Single spin detection
by magnetic resonance force microscopy, Nature 430, 329 (2004).

[5] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zim-
mermann, On the measurement of a weak classical force coupled to a quantum-
mechanical oscillator. i. issues of principle, Rev. Mod. Phys. 52, 341 (1980).

[6] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D. Lukin, Optome-
chanical transducers for long-distance quantum communication, Phys. Rev.
Lett. 105, 220501 (2010).

[7] P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D.
Lukin, A quantum spin transducer based on nanoelectromechanical resonator
arrays, Nature Physics 6, 602 (2010).

[8] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds,
C. A. Regal, and K. W. Lehnert, Bidirectional and efficient conversion between
microwave and optical light, Nature Physics 10, 321 (2014).

[9] T. Bagci, A. Simonsen, S. Schmid, L. G. Villanueva, E. Zeuthen, J. Appel,
J. M. Taylor, A. Sorensen, K. Usami, A. Schliesser, and E. S. Polzik, Optical
detection of radio waves through a nanomechanical transducer, Nature 507,
81 (2014).

[10] M. Arndt and K. Hornberger, Testing the limits of quantum mechanical su-
perpositions, Nature Physics 10, 271 (2014).

[11] S. Nimmrichter, K. Hornberger, and K. Hammerer, Optomechanical sensing
of spontaneous wave-function collapse, Phys. Rev. Lett. 113, 020405 (2014).

175

http://dx.doi.org/10.1103/RevModPhys.75.281
http://dx.doi.org/10.1038/nature02658
http://dx.doi.org/10.1103/RevModPhys.52.341
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1103/PhysRevLett.105.220501
http://dx.doi.org/10.1038/nphys1679
http://dx.doi.org/10.1038/nphys2911
http://dx.doi.org/10.1038/nature13029
http://dx.doi.org/10.1038/nature13029
http://dx.doi.org/10.1038/nphys2863
http://dx.doi.org/10.1103/PhysRevLett.113.020405


Bibliography

[12] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics,
Rev. Mod. Phys. 86, 1391 (2014).

[13] O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, Radiation-
pressure cooling and optomechanical instability of a micromirror, Nature 444,
71 (2006).

[14] S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, Observation
of strong coupling between a micromechanical resonator and an optical cavity
field, Nature 460, 724 (2009).

[15] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin,
and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a
micromechanical membrane, Nature 452, 72 (2008).

[16] D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, Cavity Optomechanics
with Stoichiometric SiN Films, Phys. Rev. Lett. 103, 207204 (2009).

[17] M. Underwood, D. Mason, D. Lee, H. Xu, L. Jiang, A. B. Shkarin, K. Børkje,
S. M. Girvin, and J. G. E. Harris, Measurement of the motional sidebands of
a nanogram-scale oscillator in the quantum regime, Phys. Rev. A 92, 061801
(2015).

[18] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J.
Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling
of micromechanical motion to the quantum ground state, Nature 475, 359
(2011).

[19] M. Yuan, V. Singh, Y. M. Blanter, and G. A. Steele, Large cooperativity and
microkelvin cooling with a three-dimensional optomechanical cavity, Nature
Commun. 6, (2015).

[20] E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt,
A. A. Clerk, and K. C. Schwab, Quantum squeezing of motion in a mechanical
resonator, Science 349, 952 (2015).
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[28] D. Hunger, S. Camerer, T. W. Hänsch, D. König, J. P. Kotthaus, J. Reichel,
and P. Treutlein, Resonant coupling of a Bose-Einstein condensate to a mi-
cromechanical oscillator, Phys. Rev. Lett. 104, 143002 (2010).

[29] S. Camerer, M. Korppi, A. Jöckel, D. Hunger, T. W. Hänsch, and P. Treutlein,
Realization of an Optomechanical Interface Between Ultracold Atoms and a
Membrane, Phys. Rev. Lett. 107, 223001 (2011).

[30] T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M.
Stamper-Kurn, Tunable cavity optomechanics with ultracold atoms, Phys. Rev.
Lett. 105, 133602 (2010).

[31] F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Cavity Optomechanics
with a Bose-Einstein Condensate, Science 322, 235 (2008).

[32] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander,
E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Mar-
tinis, and A. N. Cleland, Quantum ground state and single-phonon control of
a mechanical resonator, Nature 464, 697 (2010).

[33] J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, Dynamical
backaction of microwave fields on a nanomechanical oscillator, Phys. Rev.
Lett. 101, 197203 (2008).

[34] T. Faust, J. Rieger, M. J. Seitner, J. P. Kotthaus, and E. M. Weig, Coherent
control of a classical nanomechanical two-level system, Nature Physics 9, 485
(2013).

[35] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews, P.-L. Yu, K. W.
Lehnert, and C. A. Regal, Laser cooling of a micromechanical membrane to
the quantum backaction limit, Phys. Rev. Lett. 116, 063601 (2016).

177

http://dx.doi.org/10.1038/ncomms3743
http://dx.doi.org/10.1073/pnas.1309167110
http://dx.doi.org/10.1073/pnas.1309167110
http://dx.doi.org/10.1103/PhysRevLett.114.123602
http://dx.doi.org/10.1103/PhysRevLett.114.123602
http://dx.doi.org/10.1038/nature10461
http://dx.doi.org/10.1103/PhysRevLett.104.143002
http://dx.doi.org/10.1103/PhysRevLett.107.223001
http://dx.doi.org/10.1103/PhysRevLett.105.133602
http://dx.doi.org/10.1103/PhysRevLett.105.133602
http://dx.doi.org/10.1126/science.1163218
http://dx.doi.org/10.1038/nature08967
http://dx.doi.org/10.1103/PhysRevLett.101.197203
http://dx.doi.org/10.1103/PhysRevLett.101.197203
http://dx.doi.org/10.1038/nphys2666
http://dx.doi.org/10.1103/PhysRevLett.116.063601


Bibliography

[36] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker,
and R. W. Simmonds, Circuit cavity electromechanics in the strong-coupling
regime, Nature 471, 204 (2011).

[37] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W.
Lehnert, Coherent state transfer between itinerant microwave fields and a me-
chanical oscillator, Nature 495, 210 (2013).

[38] T. P. Purdy, R. W. Peterson, and C. A. Regal, Observation of radiation pres-
sure shot noise on a macroscopic object, Science 339, 801 (2013).

[39] D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N. Brahms, and
D. M. Stamper-Kurn, Non-classical light generated by quantum-noise-driven
cavity optomechanics, Nature 488, 476 (2012).

[40] A. H. Safavi-Naeini, S. Groblacher, J. T. Hill, J. Chan, M. Aspelmeyer, and
O. Painter, Squeezed light from a silicon micromechanical resonator, Nature
500, 185 (2013).

[41] F. Lecocq, J. B. Clark, R. W. Simmonds, J. Aumentado, and J. D. Teufel,
Quantum nondemolition measurement of a nonclassical state of a massive ob-
ject, Phys. Rev. X 5, 041037 (2015).

[42] P. Treutlein, C. Genes, K. Hammerer, M. Poggio, and P. Rabl, Cavity Optome-
chanics, chapter Hybrid Mechanical Systems, pp. 327–351 (Springer-Verlag,
Berlin Heidelberg) (2014).

[43] D. Hunger, S. Camerer, M. Korppi, A. Jöckel, T. Hänsch, and P. Treutlein,
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möglich gewesen, denen ich an dieser Stelle herzlich dafür danken möchte.
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chen Angelegenheiten.

Lucas Beguin, Tobias Kampschulte, Andreas Jöckel, Niels Lörch, Paul Vochezer
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