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Abstract

In this thesis, I report on the development of imaging techniques in atomic vapor
cells. This is a relatively unexplored area, despite the ubiquitous use of imaging in
experiments with ultracold atoms. Our main focus is in high resolution imaging of
microwave near fields, for which there is currently no satisfactory established tech-
nique. We detect microwave fields through Rabi oscillations driven by the microwave
on atomic hyperfine transitions. The technique can be easily modified to also image
dc magnetic fields. In addition, we have developed techniques to image vapor cell
processes such as atomic T1 and T2 relaxation. These provide a new window into
vapor cell physics, which we have used to obtain spatially resolved information on
Rb interactions with the cell walls, and to estimate the Rb relaxation probability in
a collision with the cell wall.

As a first application of our imaging techniques, we imaged the dc and microwave
magnetic fields inside a state-of-the-art vapor cell atomic clock. This new clock
characterisation technique should lead to real improvements in clock performance,
and is in the process of being adopted by the atomic clock community.

We have developed a widefield, high resolution imaging setup using a microfab-
ricated vapor cell, which we have used to image microwave and dc magnetic vector
fields. With the addition of a 480 nm laser, the setup can be configured to image
microwave electric fields. Our camera-based imaging system records 2D images with
a 6 × 6 mm2 field of view at a rate of 10 Hz. It provides up to 50µm spatial res-
olution, and allows imaging of fields as close as 150µm above structures, through
the use of extremely thin external cell walls. This is crucial in allowing us to take
practical advantage of the high spatial resolution, as feature sizes in near-fields are
on the order of the distance from their source, and represents an order of magnitude
improvement in surface-feature resolution compared to previous vapor cell experi-
ments. We demonstrate a microwave magnetic field sensitivity of 1.4µT Hz−1/2 per
50 × 50 × 140µm3 voxel, at present limited by the speed of our imaging system.
Since we image 120× 120 voxels in parallel, a single scanned sensor would require a
sensitivity of at least 12 nT Hz−1/2 to produce images with the same sensitivity.

The spatial resolution, distance of approach, and sensitivity of our high resolution
setup are sufficient for characterising 6.8 GHz microwave fields above a range of real
world devices. However, frequency tunability is essential for wider applications of
our imaging technique. Industry is particularly interested in techniques for imaging
high frequency microwaves, above 18 GHz, where simulations become increasingly
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unreliable. I have shown that our technique can be extended to image microwaves
of any frequency, in principle from dc to 100s of GHz, by using a large dc magnetic
field to Zeeman shift the hyperfine ground state transitions to the desired frequency.
I present results from a proof-of-principle setup, where we have used a 0.8 T solenoid
to detect and image microwaves from 2.3 GHz to 26.4 GHz.
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Chapter 1

Introduction

This is a thesis exploring imaging techniques in atomic vapor cells, which is an
area that has received relatively little investigation, despite the ubiquitous use of
imaging in experiments with ultracold atoms. The main motivation was to develop
techniques for imaging microwave magnetic fields. This could transform how we
design, characterise, and debug microwave devices, as there are currently no widely
used or completely satisfactory microwave imaging techniques. We also worked
closely with the Mileti group, at the Laboratoire Temps-Fréquence, Université de
in Neuchâtel, Switzerland, to develop techniques for characterising and debugging
vapor cell atomic clocks. This resulted in imaging techniques for dc magnetic fields
and relaxation processes in vapor cells.

As shown in Figure 1.1.a, a vapor cell is essentially a glass box which is used
to confine Rb (or other alkali) atoms. In addition to Rb, the cell is also typically
filled with some inert buffer gas, which acts to localise the Rb atoms. This gives
us longer atomic lifetimes, as the atoms collide with the cell walls less frequently,
and gives us better spatial resolution for imaging. In contrast to experiments with
ultracold atoms, vapor cells are small, low cost, low power, and simple. This makes
vapor cells ideal for practical applications. The price paid is in precise quantum
control over the atomic states, and relatively ‘messy’ physics compared to the pure
quantum systems achievable with ultracold atoms.

Vapor cells have been a workhorse of atomic physics for decades, with experi-
ments dating back to the 1960s and earlier [1, 2]. Much of the early research was
driven by applications in vapor cell atomic clocks [3–6], which at one stage were used
as a primary frequency standard. The portability and low power requirements of va-
por cell clocks ensure their continuing importance as secondary frequency standards,
for example, as the on-board clocks in GPS and Galileo satellites [7, 8]. Recent years
have seen significant advances in vapor cell and clock miniaturisation, with micro-
fabricated cells on the mm or even 100µm scale [9–11], further improving clock
portability and power consumption, and with a view to integrating atomic clocks
into an ever wider range of applications.

There is also a growing interest in applying new techniques to vapor cells, in
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10 mm

150 μm

b)a)

Figure 1.1: Microwave near field imaging using vapor cells: a) photo of an
ultrathin vapor cell (inner volume outlined in blue), in position for imaging the
microwave field above a test device; b) images of the amplitude of the microwave
field above the device. The field is shown in three different planes: by scanning
the position of the vapor cell, we are able to build up a 3D image of the field
above a device. See Chapter 7 for more information on this measurement.

part taking advantage of advances in our understanding and control of atoms and
quantum physics gained in ultracold atom experiments. The largest number of ap-
plications to date have been in sensing electromagnetic fields, for which vapor cells
have proven themselves to be excellently suited [12–14]. Magnetometers measur-
ing both dc [15–18] and radio-frequency [19] fields, have demonstrated sensitivities
as low as δBdc = 0.16 fT Hz−1/2 in a 0.45 cm3 volume [20], and are used as gyro-
scopes [21], in explosives detection [22], magnetic nanoparticle detection [23–25],
materials characterization [26, 27], in MRI for both medical [28–30] and microflu-
idics applications [31, 32], and for magnetic imaging of the human heart [33, 34]
and brain [35–38]. Vapor cells have also been used to create optical isolators [39]
and extremely narrow-band optical filters [40, 41], and are used in quantum memo-
ries [42–45].

In the above sensing techniques, the vapor cell is generally used as a single-
channel sensor, with measurements performed on the cell bulk, and images of fields
obtained either by scanning the single sensor, or by using an array of vapor cells.
It is also possible, however, to perform imaging using a single vapor cell, where an
array of sensors is formed by groups of atoms at different positions across the cell.
All of the sensors are measured in parallel, translating to improvements in imaging
speed, sensitivity, and temporal resolution, when compared to creating an image by
scanning a single sensor. Compared to obtaining an image using an array of sensors
formed by multiple vapor cells, single-cell imaging allows maximally close packing
of sensors, and (except in the case of an array of exceptionally small vapor cells) will
generally provide better spatial resolution and a simpler setup (e.g. imaging using
only a single laser beam instead of one for each sensor). In this way, vapor cells have
been used to image dc magnetic scalar potentials with 1 mm3 spatial resolution and
a field resolution corresponding to ∆Bdc = 2 nT [46]. Atoms in Rydberg states have
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been used to detect and image microwave electric fields with 66µm× 66µm× 3 cm
spatial resolution, and a sensitivity of δEmw = 30µV cm−1 Hz−1/2 [47–49], and our
group has demonstrated microwave magnetic field imaging with 50µm × 50µm ×
140µm spatial resolution, and a sensitivity of δBmw ≈ 1µT Hz−1/2 [50–53]. We
have also demonstrated imaging of vapor cell parameters such as T1 and T2 atomic
relaxation times, with a similar spatial resolution [51, 52].

Microwave Sensing

Motivation

The initial drive for the microwave imaging project in our group came during the de-
velopment of an atom chip, which uses microwave near fields to trap and manipulate
ultracold atoms. There was no satisfactory technique available for characterising the
microwave fields above the chip, and so our group developed a new technique, where
Rabi oscillations driven on Rb hyperfine transitions are used to image the microwave
magnetic field. The technique was first developed with ultracold atoms [54]. This is
impractical for debugging during the design phase however, due to the need to place
the chip inside an ultrahigh vacuum, and a proof of principle setup for microwave
imaging using a vapor cell was constructed [50]. A major component of this the-
sis was then developing a practical setup capable of imaging microwave near fields
above real world devices. I also performed a proof of principle demonstration of
microwave imaging at arbitrary microwave frequencies, from 2.3 GHz to 26.4 GHz,
rather than the fixed 6.8 GHz splitting of the 87Rb ground state.

In addition to scientific applications, microwave devices play a broad and criti-
cal role in modern technology, particularly in telecommunications and defence [55].
In industry, the trend towards miniaturisation requires ever more tightly packed
components, with reduced size and thus higher operating frequency. Sophisticated
microwave simulation programs are available, but direct measurements of devices
are still necessary, particularly for non-linear devices and for devices operating at
higher frequencies, above say 18 GHz [56]. Simulation can also become impractical
for particularly large or complicated circuits. Our microwave imaging technique is
applicable to microwave devices of all types. It has seen success in characterising the
magnetron cavities at the heart of vapor cell atomic clocks [51, 52, 57], and we are
working with a major microwave company to characterise non-linear devices, such
as microwave amplifiers.

The basic characterisation of microwave devices is usually performed using indi-
rect techniques, such as S-parameter measurements with vector network analysers1.
Measured S-parameters are compared with simulated values, and if they match, the
device is assumed to be working as designed. Disagreement can be difficult to debug,
however, and indirect measurements are not suitable for identifying many internal

1S-parameters measure the transmission and reflection of signals through each port on a device,
generally as a function of frequency.
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features. These include standing waves that may form between device components,
or near field leakage between microwave components that have been placed too close
together [58, 59]. Thus, there is a need for a practical direct measurement technique,
which would allow for faster debugging, and the ability to increase the circuitry den-
sity [56, 60]. One solution is to use mechanical probes, placing hundreds of needle
probes in contact around a device to directly measure the microwave currents, how-
ever this is bulky, intrusive, and impractical for complicated circuits [61]. The ideal
characterisation technique is contactless, measuring the microwave near field above
the device in order to impose minimal perturbations [62]. An ideal technique should
also: minimally perturb the microwave device or its near fields; give high spatial
and temporal resolution; provide vector-resolved information on the microwave am-
plitude and relative phase; be easily calibrated; be broadband, i.e. applicable at a
range of microwave frequencies; give a wide field of view; and be simple and cheap
to operate. The required parameters vary between microwave devices. The required
spatial resolution is determined by feature sizes, which can vary from the centimeter
to nanometer scale. Operating frequencies are typically in the GHz to 10s of GHz
range.

Although far field electric and magnetic components of an electromagnetic wave
can be easily related using Maxwell’s equations, for practical purposes, the sub-
wavelength features of a near field mean that the relationship between the compo-
nents is no longer straightforward. Measurement techniques are therefore required
for both the electric (Emw) and magnetic (Bmw) microwave components.

Current Techniques

A number of methods have been investigated for imaging microwave near fields,
mostly focusing on imaging Emw. A comparison and summary of techniques is
provided in Refs. [56, 62]. Many techniques directly measure the near field am-
plitude or intensity, such as scanning antennas [63, 64], SQUID probes [65], and
NV centres [66, 67]. Another class of techniques relies on sufficiently high tem-
poral resolution to directly detect the oscillating surface potentials induced by the
microwave [61, 62]. The detection bandwidth is then determined by the timing res-
olution, typically on the order of picoseconds or 10s of picoseconds, corresponding
to frequencies of a few GHz. This allows for the monitoring of active components,
such as logic gates. Techniques include electron beam testing [68, 69], electric force
microscopy [70], and electro-optic sampling [71].

Scanned antenna are a relatively simple and broadband probe [63, 72, 73], with
the antenna often in the form of a modified coaxial cable [59, 60, 64]. Straight
antennas are used to detect |Emw|2, and loop antennas are used to detect |Bmw|2,
with detection frequencies typically in the 1-20 GHz range [60, 74]. Antenna sizes are
typically in the millimeter range, but can be as small as 100µm [63]. The spatial
resolution is on the order of 10s to 100s of µm [63, 64], and scans are typically
performed a distance 10µm to a few mm above a device. Drawbacks of antenna
based measurements include the need for different antenna orientations to detect
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each vector component of the field [72], and the field perturbations induced by the
metallic probe [64].

Scanning SQUID probes provide the microwave magnetic field [65]. SQUIDs can
provide very high sensitivity, on the order of fT Hz−1/2 near dc, but this deteriorates
with microwave frequency. SQUIDS capable of sensing microwave frequencies up to
200 GHz have been reported [75], but there are significant problems with signal non-
linearity for operation modes above 200 MHz [76]. Spatial resolution is on the µm
to 10s of µm level. SQUIDs require cryogenic cooling to operate, which is expensive,
and also requires the device under test to be cooled, e.g. to 77 K.

Very recently, NV centres have also be used to detect [66] and image [67] the
microwave magnetic field, with a demonstrated sensitivity of δBmw = 150 nT Hz−1/2

for ∼3 GHz microwaves, and a surface feature spatial resolution of 25 nm. NV center
based imaging systems provide nanoscale resolution and typically work in scanning
mode. They are thus complementary to our widefield imaging technique which is
well adapted to image features on the micrometer scale with temporal resolution.

As an example of the second class of microwave sensing techniques, electron beam
testing (EBT) uses a similar principle to a scanning electron microscope [62, 68, 69].
A primary beam of electrons is fired at a device, releasing secondary electrons where
they hit the device surface. The secondary electrons reveal the local surface voltage,
a function of the local Emw. EBT measures the microwave oscillations directly,
and the detection bandwidth is determined by the timing resolution, typically on
the order of picoseconds or 10s of picoseconds, corresponding to frequencies up to
24 GHz [62]. The spatial resolution is given by the electron beam spot size, e.g.
0.1µm [68, 69]. EBT is only able to measure surface Emw currents (rather than
near fields), and only in the top layer of a device. Measurements must also be
performed under vacuum, a significant drawback of the technique.

Electric force microscopy (EFM) can also be used to measure the surface voltage
on a device, and thus map the surface Emw currents. The surface voltage is detected
using a sharp conducting probe on the end of a cantilever, which is scanned over
the device. The spatial resolution can be below 100 nm, and with appropriate
sampling schemes, surface currents for microwave frequencies up to 40 GHz can be
detected [70]. EFM is susceptible to cross-talk from neighbouring signal lines, and
is again limited to measuring surface currents in the top layer of a device.

Electro-optic sampling (EOS) is based on the Pockels effect, where an electric
field changes the refractive index of a medium. In the most generally applicable
version, EOS is performed using a scanning probe. Pulsed laser light travels down
the probe to an electro-optic crystal at the probe tip, and the change in polarisation
of the light reflected from the device gives the local Emw field. The EOS bandwidth
can be extremely high, even above 1 THz [62], and the spatial resolution is typically
on the order of a few µm, given by diffraction limits and the size of the probe
crystal [71].

A common feature to all of the above techniques (with the exception of NV
centres) is that their calibration and SI traceability present significant issues [60, 77].
Much of the literature provides only relative values of field strength or microwave
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current across an image. In addition, the techniques are all scanning techniques,
measuring at only a single point at a time. Parallel techniques, where data for all
of the image is taken simultaneously, are preferable for imaging speed and temporal
resolution over an image. There is also a trade-off in scanning techniques between
spatial resolution and field of view. For example, µm or nm spatial resolution is
generally unattainable over mm to cm fields of view for any reasonable measurement
time.

Atoms as Sensors

Atom based sensors can present a clear SI traceability, and are a natural considera-
tion for microwave sensing. The Rabi frequency, for example, is proportional to the
microwave amplitude, and related only by well-known fundamental constants.

Early work to map microwave magnetic fields in a vapor cell using adiabatic
rapid passage and a single, scanned probe laser beam was performed by Frueholz
and Camparo [78]. Microwave magnetic field measurements have also been made in
vapor cells using the atomic candle technique, which measures the Rabi frequency in
a frequency domain technique [79, 80]. For imaging Bmw, our group has developed
a time domain Rabi imaging technique [50, 51, 54]. Atoms in Rydberg states can
be used to detect Emw [47–49], and this appears to be the most most promising
technique for a new microwave power standard [81, 82] to replace calorimeters,
which are slow, expensive, and difficult to evaluate [83]. A power standard based on
measurements of the microwave magnetic component with ground state atoms has
also received interest [80, 83].

Our imaging technique involves bringing a thin vapor cell above a microwave
device to measure 2D slices of the microwave magnetic near field. As shown in Fig-
ure 1.1, we are able to build up a 3D image of the field by scanning the position
of the cell. The imaging technique is minimally perturbing, as it is non-contacting
and does not bring metallic devices near the device. By tuning the microwave to
different atomic transitions, we are able to obtain images of each of the polarisa-
tion components of Bmw, and of the relative phase between them. The reliance
on time domain measurements of the Rabi frequency makes us relatively insensi-
tive to noise in the signal amplitude, and we avoid calibration issues through the
intrinsic SI traceability of the Rabi frequency, which is related to the microwave
amplitude through well-known fundamental constants. We have high spatial reso-
lution, demonstrating sub-100µm resolution. The technique is simple, requiring a
relatively minimal investment in lasers and optics, and is parallel, measuring data
for the entire image simultaneously on a CCD camera. In principle, this allows for
fast measurements and high temporal resolution, with real-time monitoring of the
field above a device. We are currently limited by our camera and data processing
speeds, however.

Our microwave detection technique is not limited to 87Rb, and can be applied to
any system comprised of two states coupled by a microwave transition with optical
read-out of the states. Examples of suitable systems are the other alkali atoms, and
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solid state ‘atom-like’ systems, such as NV centres [66, 67].
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This Thesis

An early result of this thesis was the development of new techniques for spatially
resolved vapor cell characterisation. These provide images of the T1 and T2 relax-
ation times, and of the optical pumping efficiency, and are a convenient lab tool for
quickly characterising setups, which I used extensively throughout this thesis. The
imaging can also be used as a new window into vapor cell physics, which we used to
provide spatially resolved information on Rb interactions with the cell walls, and to
estimate the Rb relaxation probability in a collision with the cell wall.

The state of the microwave imaging project at the start of my PhD was a proof-
of-principle experiment in a basic (and already broken) vapor cell setup, with very
little understanding of vapor cell physics in the group. I built a new high resolution
imaging setup from scratch, including redoing much of the experiment control. The
new setup improved our spatial resolution and distance of approach for imaging
by an order of magnitude: from 350 × 350 × 3000µm3, imaging up to 1.5 mm
above devices; to 50 × 50 × 140µm3, imaging as close as 150µm above devices. I
improved the data taking speed by close to two orders of magnitude, and made the
first characterisation of our imaging sensitivity, δBmw ≈ 1µT Hz−1/2. The current
spatial resolution, distance of approach, and sensitivity of the high resolution setup
are already sufficient for characterising 6.8 GHz microwave near fields above a range
of real world devices. Orders of magnitude improvement in sensitivity are still
possible, however, and I have identified the major limitations in our current setup
and made suggestions on how to overcome them. In addition, I showed that our
microwave magnetic field imaging techniques can be easily modified to image dc
magnetic fields, and demonstrated dc magnetic field imaging using two separate
methods.

As a first application of the imaging techniques developed in this thesis, I helped
characterise a state-of-the-art Rb vapor cell atomic clock, obtaining images of the
dc and microwave magnetic fields and relaxation times. Correction of the field
inhomogeneities revealed by this characterisation will allow for real improvements
in clock performance.

Finally, I showed that our Bmw imaging technique can be extended to image
microwaves of any frequency, by using a dc magnetic field to Zeeman shift the
hyperfine ground state transitions to the desired frequency. The lower frequency
limit is given by the optical resolution of hyperfine states (∼GHz), and the upper
limit is given by the available dc magnetic field (∼30 GHz for a 1 T dc field, ∼1 THz
for a 35 T field). I prepared the theoretical groundwork, detected microwaves from
2.3 GHz to 26.4 GHz, and imaged an 18 GHz microwave field in a proof-of-principle
demonstration. This demonstration of frequency tunability was an essential step in
realising wider industrial application of our microwave imaging technique.
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Thesis Outline

I begin in Chapter 2 by describing the various atomic physics processes that occur
in vapor cells. In Chapter 3, I give the theory behind our microwave imaging, and
describe the common features to the experiments presented in the later chapters:
experiment sequences, spatial resolution, sensitivity, and equipment. Chapter 4
presents a new technique for imaging relaxation and wall interactions in vapor cells,
and discusses diffusion. In Chapter 5, I present the characterisation of a vapor
cell atomic clock, representing a first application of the imaging techniques we have
developed. The development and characterisation of a high resolution setup for use
with real world devices is presented in Chapter 6, and its use in imaging dc and
microwave magnetic fields is demonstrated in Chapter 7. In Chapter 8, I describe
a proof of principle setup for imaging microwaves at any frequency. Finally, future
directions are discussed in Chapter 9.
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Chapter 2

Atomic Physics in Vapor Cells

In this chapter I run through some of the important processes occurring in vapor
cells. I start with a description of the important features of the atomic structure of
87Rb. I then discuss the Rb atomic density and its resulting optical density (OD),
which was the principle measured quantity in this thesis. I discuss optical pumping
in Section 2.4, and the various collisional interactions in Section 2.7.

The cell walls are a strong relaxation mechanism, and to address this, we fill the
cells with an inert buffer gas. This acts to localise the Rb atoms, reducing the wall
collision rate, and also improving our spatial resolution for imaging. The buffer gas
introduces perturbations of its own, however, which are discussed in Section 2.7.3.

There are a number of references available which provide extremely useful, in
depth coverage of vapor cell physics. A selection are in Refs. [4, 6, 84–87].

I use both cyclic (ν) and angular (ω) frequency units. The two are related by
ω = 2πν. In general, frequencies expressed without an explicit factor of 2π are in
units of cyclic frequency. The notation also sometimes uses Γ for linewidths, which
is in angular frequency units.

2.1 Rb Atomic Structure

There are two naturally occurring isotopes of Rb, 85Rb and 87Rb, with natural
abundances of 0.7217 and 0.2783, respectively [88, 89]. We work with the 87Rb, but
vapor cells almost always have some mixture of both isotopes, which for the reason
of cost is often given by the natural abundances. The influence of the 85Rb can often
be ignored during operation, but for our purposes it does have some negative effect
on parameters such as the optical density and relaxation rates, as discussed at the
end of this chapter.

We work on the 87Rb D2 line, 5S1/2 → 5P3/2, shown schematically in Figure 2.1.
The choice of the D2 line was due to considerations of laser compatibility with
other experiments in our lab. The line consists of two hyperfine ground state levels,
F = 1, 2, split by ∼6.8 GHz, and four hyperfine excited state levels, F ′ = 0, 1, 2, 3,
split by 70−270 MHz. The hyperfine levels are each comprised of 2F +1 (or 2F ′+1)
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Figure 2.1: The 87Rb D2 line, including Zeeman splitting of the hyperfine mF

levels in a weak (∼ 1 G) dc magnetic field. The optical, hyperfine, and Zeeman
transitions are shown in red, blue, and green, respectively.

mF sublevels.

The optical linewidth in a vapor cell is typically on the order of 0.5-2 GHz, due
to a combination of Doppler broadening and collisional broadening from the buffer
gas. The 6.8 GHz splitting of the hyperfine ground state levels is sufficient to resolve
both states using our lasers (which themselves have negligible linewidths of below
1 MHz), but splitting of the F ′ levels is not resolved. Within the angular momentum
selection rules, the laser therefore couples to all of the F ′ levels at once1. This is
illustrated in Figure 2.1 by depicting the F ′ states as a single, broad line.

We typically apply an external dc magnetic field on the order of 1 G, to Zeeman
split the hyperfine ground state levels and provide a quantisation axis. The field
splits adjacent mF levels by 0.7 MHz/G (the Zeeman effect is discussed in more
detail in Chapter 3). The mF levels are then the projection of the total atomic
angular momentum, F , onto the quantisation axis defined by the magnetic field.

In this thesis, I refer to transitions between the 5S1/2 and the 5P states as optical
transitions. Transitions between the F = 1 and F = 2 ground states are referred
to as hyperfine transitions, and transitions between mF levels of the same F state
as Zeeman transitions. These are illustrated in Figure 2.1. Unless explicitly noted
otherwise, discussions of mF states refer to the 8 mF states of the 87Rb 5S1/2 ground
state.

For essentially all of the experiments in this thesis, I used lasers resonant with
the F = 2 state atoms. The signal was changes in the absorption of a probe laser,
driven by changes in the F = 2 state population.

1The F = 1 state couples to F ′ = 0, 1, 2 and the F = 2 state couples to F ′ = 1, 2, 3. The
coupling strength to each F ′ level is also frequency dependent

12



Temperature (°C)
0 50 100 150 200

V
ap

or
 P

re
ss

ur
e 

(m
ba

r)

10-8

10-6

10-4

10-2
solid phase
liquid phase

Temperature (°C)
0 50 100 150 200

V
ap

or
 D

en
is

ty
 (c

m
-3

)

108

1010

1012

1014

1016

solid phase
liquid phase

MO
T

BEC

Figure 2.2: Total rubidium vapor pressure and density as a function of tem-
perature. In a cell filled with natural Rb, the 87Rb pressure and density is
28% of these values. For comparison, typical MOT and BEC densities are
1010 − 1012 cm−3 and 1014 cm−3, respectively.

2.2 Rb Vapor Pressure and Atomic Density

The Rb in a vapor cell comes from a macroscopic droplet of Rb metal on the cell
wall, known as the Rb reservoir. The Rb droplet forms at the coldest point available
to it. This can either be on the cell wall, or in a separate stem. The advantage of
the stem is that it allows the reservoir temperature to be set independently of the
rest of the cell. It is desirable to have the cell temperature slightly hotter (by a
few degrees) than the reservoir, in order to prevent the buildup of Rb on the cell
windows.

The vapor pressure of Rb, PRb, is given by [88]

log10 PRb[torr] = 2.881 + 4.857− 4215

T [K]
(solid phase, < 39.3◦C) (2.1)

log10 PRb[torr] = 2.881 + 4.312− 4040

T [K]
(liquid phase, > 39.3◦C), (2.2)

where PRb is in torr, and T in kelvin. The two different equations are for the solid
and liquid phases of Rb, which has a melting point of 39.3◦C. We can obtain the Rb
density from the Ideal Gas Law,

nRb =
PRb[Pa]

kBT [K]
, (2.3)

where kB is Boltzmann’s constant. The above equations are valid for both 85Rb and
87Rb. When using an isotopically mixed vapor cell, the density of each isotope can
be found by multiplying nRb by the relative abundance of the isotope. Note that
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PRb must be in the SI unit of pascals when using Eq. (2.3), rather than the units of
torr output by Eq. (2.1).

Figure 2.2 shows the rubidium vapor pressure and density as a function of tem-
perature calculated using Eqs. (2.1) and (2.3). The Rb density is strongly dependent
on temperature, rising almost exponentially with increasing temperature. We take
advantage of this, by heating vapor cells to control the Rb density. Note, however,
that even at 200◦C, the Rb pressure is still several orders of magnitude below the
typical 10s of mbar buffer gas pressures used in this work (discussed below). At room
temperature, the Rb vapor pressure is a few 10−7 mbar. For comparison, typical
Rb densities in a MOT and BEC are 1010 − 1012 cm−3 and 1014 cm−3, respectively.
These correspond to vapor temperatures of 23− 75◦C and 150◦C.

2.3 Optical Density and Absorption Profile

The absorptive properties of a medium are often described in terms of an optical
density (OD). The OD is defined such that light passing through the medium will
be attenuated according to

I = I0 exp(−OD), (2.4)

where I0 and I are the incident and exiting light intensities, respectively. The OD,
proportional to the number of absorbing atoms, was the principle measurement
parameter used in this thesis.

The Adams/Hughes group has developed a useful and accurate computer pro-
gram for calculating the OD in alkali vapor cells, called ElecSus [90]. Their basic
model is described in Ref [91], with expansions in Refs. [92–94]. I used this model
extensively throughout this thesis (both in my own Matlab scripts and through
ElecSus), and so summarise it briefly below.

The model provides the absorption coefficient, α, which is the OD per unit
length. The calculation assumes a very weak laser beam which does not disturb
the atomic populations [95], i.e. neither optical pumping nor saturation effects are
considered. For an optical path of length L,

OD = αL. (2.5)

The absorption coefficient for a particular optical hyperfine transition Fg → Fe is
given as

αFgFe(∆) = k ·A ·B · V, (2.6)

= k
C2
F

2(2I + 1)

d2n

~ε0
sI(y)

ku
, (2.7)

where k is the laser wavevector, A =
C2
F

2(2I+1) is the transition strength including

the mF degeneracy, B = d2nRb
~ε0 is a scaling factor for the optical line (eg D2), and

the Voigt profile V = sI(y)
ku describes the line shape. ∆ is the laser detuning, n is
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the relevant 87Rb or 85Rb number density, and I is the nuclear spin (I = 3/2 for
87Rb). The dimensionless constant C2

F =
∑
c2
mF

is the total transition strength of
the optical transition Fg → Fe, including all internal mF states. Values of C2

F for

linearly polarised light on the Rb D2 line are given in Table 2.1. u =
√

2kBT
mRb

is the

1/e velocity width of a Maxwell-Boltzmann distribution in 1D, and for the Rb D2

line, the reduced matrix element d is d = 〈Lg = 0| er
¯
|Le = 1〉 = 5.177 e a0, where e

is the elementary charge and a0 is the Bohr radius. The dimensionless Voigt profile
of the transition, sI(y) is given by2

sI(y) =
√
π<e

[
exp[1/4(a− i2y)2] erfc[a/2− iy]

]
, (2.8)

where y ≡ ∆
ku , a ≡ Γ

ku , and Γ is the Lorentzian linewidth of the transition. In the
absence of external broadening mechanisms, Γ = Γnat, the natural decay rate of the
transition (Γnat = 2π × 6.066 MHz for the Rb D2 line). The complementary error
function, erfc, is described in Appendix B. To obtain the total optical density, we
need to sum α over all of the allowed transitions between the ground and excited
hyperfine states, each with their respective detuning.

α(∆) =
∑
Fg , Fe

αFgFe(∆FgFe). (2.9)

The Lorentzian broadening due to buffer gas collisions [93] and Rb-Rb dipole-
dipole interactions [92], can be included simply by adding the terms to Γ, giving
a total Lorentzian linewidth of Γ = Γnat + Γbg + Γdipole. The total linewidth is
then a Voigt convolution of the Gaussian Doppler broadening and the Lorentzian
linewidth, included through the sI(y)/ku term in Eq. (2.6). The optical line shift
is included by modifying the detuning: ∆′ = ∆ + δωshift. The broadening and line
shift mechanisms are discussed in Section 2.6.

Table 2.1: C2
F transition strengths on the Rb D2 line for linearly polarised

light [91].

85Rb 87Rb

Fg
Fe Fg

Fe
0 1 2 3 1 2 3 4

2 1/3 35/81 28/81 0 1 1/9 5/18 5/18 0
3 0 10/81 35/81 1 2 0 1/18 5/18 7/9

Figure 2.3 shows the OD as a function of cell temperature for 2 mm and 140µm
thick cells, representative of the cells used in this thesis. The laser was assumed to

2This definition is equivalent to that given in Ref. [91], which can be seen by noting that the
two erfc terms in Ref. [91] are complex conjugates of one another.
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Figure 2.3: Calculated OD in 2 mm and 140µm thick cells as a function of cell
temperature, for a laser resonant with the (unshifted) 87Rb F = 2→ F ′ = 2/3
crossover peak (e.g. for a laser locked to a reference cell). The contribution of
87Rb, OD87, is shown in dashed lines. The cells are filled with natural Rb, with
63 mbar of N2 buffer gas in the 2 mm cell, and a mixture of 75 mbar Kr and
25 mbar N2 in the 140µm cell.

be linearly polarised and locked to the F = 2 → F ′ = 2, 3 crossover peak3. The
optical depth increases rapidly with temperature, following the rapid increase in Rb
vapor density with temperature. The cells were modelled for a natural Rb isotopic
mixture. The 2 mm cell was modelled with 63 mbar of N2 buffer gas (see Ch. 4), and
the 140µm thick cell was modelled with a mixture of 75 mbar of Kr and 25 mbar of
N2 buffer gas. The strong temperature dependence of the Rb density translates to
a similarly strong temperature dependence in the OD. The necessity of heating the
vapor cells is clear, given the negligible OD for both cells at room temperature.

Figure 2.4 shows the OD spectrum of a 140µm thick cell, again filled with
75 mbar of Kr and 25 mbar of N2 buffer gas, at a temperature of 140◦C. The
individual contributions of each isotope are also shown. Dotted lines show the
OD without buffer gas, highlighting the shift and broadening of the optical lines
induced by the buffer gas. In general, I did not compensate for the optical shift in
experiments, and the laser was locked to 87Rb F = 2 state atoms in a bufferless
reference cell. This meant that the laser frequency was actually on the shoulder of
the shifted 87Rb F = 2 peak, and that the 85Rb F = 3 transitions were shifted closer
to the laser frequency.

3The crossover peaks are a feature of saturated absorption spectroscopy that occur at the mid-
point of peaks corresponding to actual hyperfine levels [96]. The F = 2 → F ′ = 2, 3 crossover is
a convenient choice, as it gives the largest peak in the 87Rb saturated absorption spectrum and
therefore provides the strongest signal for laser locking.
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Figure 2.4: Calculated OD spectrum of the Rb D2 line, as a function of detuning
from the centre of the (unshifted) 87Rb F = 2 → F ′ = 3 transition for a) a
2 mm thick cell with 63 mbar of N2 buffer gas; b) a 140µm thick cell filled
with a 75 mbar Kr and 25 mbar N2 buffer gas mixture. The cells are filled with
natural Rb. Dashed lines show the OD in the same cells but without buffer gas,
and so without the associated broadening and line shift. The four unbroadened
peaks are labelled with their corresponding ground state levels.

2.4 Optical Pumping

Optical pumping is one of the core techniques in atomic physics, providing control
over the atomic populations [4]. We use it to prepare the Rb atoms in a (reason-
ably) well defined initial state at the start of our time-domain experiments (see
Section 3.2). These sequences first depopulate one of the hyperfine ground states
through optical pumping, and then observe its repopulation. The repopulation can
occur both passively, through relaxation processes, and actively, driven by microwave
fields. The experiment signal is proportional to the optical pumping efficiency, and
the lifetime of the optically pumped population imbalance is also of crucial impor-
tance.

I performed optical pumping in this thesis by depopulating the F = 2 ground
state, a process known as hyperfine depopulation pumping [4]. The basic principle
is simple, and is illustrated in Figure 2.5. Without optical pumping, atoms are
equally distributed amongst the 8 mF states (three F = 1 states and five F = 2). A
pumping laser is used to excite the F = 2 atoms to the excited 5P3/2 manifold, from
which atoms can decay back to either of the ground F states. Atoms in the F = 1
state do not interact with the laser, and are said to be in a ‘dark’ state. Repeated
excitation from the F = 2 state therefore depopulates it, and in the absence of
relaxation, all of the atoms will be transferred to the F = 1 state.

With the use of polarised pumping light, it is also possible to take advantage
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Figure 2.5: Schematic of optical pumping: a) unpumped atoms equally occupy
each of the 8 ground mF states; b) the pumping laser excites atoms from one of
the ground states. Atoms can decay from the excited state back to either of the
ground states; c) in the absence of relaxation, all of the population is pumped
to the dark state.

of angular momentum selection rules to distribute atoms not just to a particular
F state, but also a particular mF state or set of mF states. Good discussions are
provided, for example, in Refs. [84, 87]. In this work, however, the presence of N2

quenching gas in the cells meant that the decay from optical excitation was largely
through collisions, rather than photon emission (see Section 2.4.2). Collisional re-
laxation can return the atom to any of the ground mF states, with essentially equal
probability. In such a case, the optical angular momentum selection rules no longer
apply. As shown in Figure 3.2 in Chapter 3, the pumping polarisation had only mi-
nor effect on the optically pumped populations, particularly for the clock transition.

The literature often refers to the observables 〈Sz〉 and 〈SSS · III〉. The observable
measured in this thesis is 〈SSS · III〉, which measures the polarisation of the F state
populations. Polarisation of the mF states, which is the orientation of the atomic
spins along the magnetic quantisation axis, is measured by 〈Sz〉. This mF optical
pumping is the typical pumping used in vapor cell magnetometers.

2.4.1 Modelling Optical Pumping

We can use rate equations to model the effect of optical pumping on the OD and
the hyperfine state populations. We describe optical pumping using two 3 level
systems, each representing one of the two Rb isotopes. As shown in Figure 2.4,
buffer gas collisional broadening of the optical lines leads to a significant overlap of
the D2

87Rb F = 2 and 87Rb F = 3 absorption peaks. For the parameters used in
Figure 2.4, approximately half of the OD at resonance with the 87Rb F = 2 peak
is due to 85Rb atoms, and it is therefore necessary to consider both Rb isotopes in
our modelling. The two modelled systems do not directly interact with one another,
but both couple to the same light field.
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The 3 level description for each isotope is justified by considering the typical 0.5-
2 GHz optical linewidth in vapor cells. As mentioned in Section 2.1, this means that
the Rb 5P3/2 states cannot be individually resolved. The hyperfine ground state
splitting of several GHz is sufficiently large for optical resolution of the 87Rb and
85Rb ground states, but we cannot optically resolve the internal mF states, which
are typically split by ∼ MHz.

A schematic of our model is shown in Figure 2.6. The three 87Rb levels are the
5S1/2 F = 1, 2 states, levels |1〉 and |2〉, respectively, and the 5P3/2 excited state
manifold, level |3〉. The three 85Rb levels are the 5S1/2 F = 2, 3 states, levels |4〉 and
|5〉, respectively, and the 5P3/2 excited state manifold, level |6〉. The internal states
of these levels are included in the model through the coupling rates and branching
ratios.

We begin by describing the model in the context of the 87Rb atoms, however the
discussion can be equally applied to the 85Rb atoms by substituting the coupling
rates given in Figure 2.6.b. The model closely follows that described, for example,
in Ref. [8].

The laser couples states |1〉 and |2〉 to the excited state, |3〉, with optical excita-
tion rates RP1 and RP2, respectively. The decay rate of the excited state is given
by Γ∗ = Γnat + ΓQ, where Γnat = 2π × 6.066 MHz is the Rb D2 natural linewidth,
and ΓQ is the collisional quenching rate of the excited state (see Section 2.4.2). We
assume that the excited state is able to decay with equal probability to each of the
8 mF ground states, which is true if the primary relaxation mechanism is through
collisions rather than spontaneous emission (ΓQ � Γnat). The branching ratio to
states |1〉 and |2〉 is then 3

8 and 5
8 , respectively. The ground states are also coupled

through collisional exchange processes, with non-equilibrium population distribu-
tions decaying at a rate γ. The coupling rate for each state is equal to the fraction
of mF ground states in the opposing F state. |1〉 thus decays to |2〉 at a rate 5

8γ,
and |2〉 decays to |1〉 at a rate 3

8γ.
The rate equations for the three populations are

Ṅ1 = −RP1N1 − 5
8γ N1 + 3

8γ N2 + 3
8Γ∗N3, (2.10)

Ṅ2 = −RP2N2 + 5
8γ N1 − 3

8γ N2 + 5
8Γ∗N3, (2.11)

Ṅ3 = RP2N2 +RP1N1 − Γ∗N3, (2.12)

Where N1,2,3 are the populations of states |1〉, |2〉 and |3〉, respectively. Assuming
that the excited population is in the steady state, ie Ṅ3 = 0, we find

N3 =
RP2N2 +RP1N1

Γ∗
. (2.13)

The rate equation model is valid in the limit of a weak pumping laser,

RP � |ΩR| � Γ∗, (2.14)

where |ΩR| is the optical Rabi frequency. That is, the relaxation from the excited
state should occur on a timescale much faster the optical pumping rate, and the
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Figure 2.6: 3 level model of optical pumping in Rb. The mixture of 87Rb and
85Rb in our cells is modelled as two separate 3 level systems, with the light field
coupling to both.

pumping rate should be sufficiently weak that the laser does not drive Rabi oscilla-
tions. In such a case, Eq. (2.12) tells us N3 � N1, N2, and therefore N1 +N2 ≈ N ,
where N is the total 87Rb atom number. Even for Γ∗ = Γnat, the typical pumping
rate of RP2 = 106 s−1 results in an N3 population less than 3% of the total.

Optical pumping was generally performed in this thesis by depopulating the
F = 2 state. It is then convenient to define the change in population induced by
optical pumping as

∆n ≡
N1 − 3

5N2

N
= 1− N2

5
8N

. (2.15)

For depopulation pumping and probing of the F = 2 state, ∆n represents the 87Rb
optical pumping efficiency. In equilibrium without optical pumping, N2 = 5

8 and
∆n = 0, whilst for complete depopulation of the F = 2 state, N2 = 0 and ∆n = 1.
Using this definition, we can then rearrange Eqs. (2.10), (2.11) and (2.13) to give

∆ṅ = 3
8(RP1 −RP2)− (5

8RP1 + 3
8RP2 + γ) ∆n. (2.16)

This gives a steady state population change of

∆nss =
3
8(RP1 −RP2)

5
8RP1 + 3

8RP2 + γ
. (2.17)

Assuming ∆n(t = 0) = 0, the full solution is

∆n(t) = ∆nss

(
1− exp

[
− ΓP87 t

])
, (2.18)

where
ΓP87 = 5

8RP1 + 3
8RP2 + γ (2.19)
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is the optical pumping rate.
We can carry through a similar derivation for the 85Rb atoms. The population

change induced by optical pumping is now

∆m ≡
N4 − 5

7N5

M
= 1− N5

7
12M

, (2.20)

where M is the number of 85Rb atoms. This gives a steady state population change
of

∆mss =
5
12(RP4 −RP5)

7
12RP4 + 5

12RP5 + γ
, (2.21)

and a full solution in time of

∆m(t) = ∆mss

(
1− exp

[
− ΓP85 t

])
, (2.22)

where the optical pumping rate is

ΓP85 = 7
12RP4 + 5

12RP5 + γ. (2.23)

Assuming RP � |ΩR|, the optical excitation rates for both Rb isotopes can be
calculated using perturbation theory. For α = 1, 2, 4, 5, we have [8, 96]

RPα =
|ΩRα/2|2 Γopt

(Γopt/2)2 + δ2
α

. (2.24)

where ΩRα is the Rabi frequency, Γopt is the Doppler and collisionally broadened
optical line, and δα is the optical detuning from resonance. For unpolarised pumping
light, one can apply angular momentum selection rules [97] to show that

|ΩRα|2 = 2
3 |ΩR|2, (2.25)

where |ΩR|2 =
Γ2
nat
2

Ipump
Isat

is the familiar Rabi frequency derived for a two-level

atom [96], and Isat ≈ 1.7 mW/cm2 is the two-level atom saturation intensity (and
also the saturation intensity of the 85Rb and 87Rb cycling transitions). For Γopt =
2π × 2 GHz, Ipump = 200 mW/cm2, and δ2 = 0, we find RP2 = 5.1 × 106 s−1 �
|ΩR2| = 2.4× 108 s−1, satisfying the condition given in Eq. (2.14).

Our optical pumping model is valid for pumping light of any frequency. The
response of the cell, however, is dependent on the probe frequency. We can calculate
the OD in the absence of optical pumping using the model described in Section 2.3,
along with the contributions due to 87Rb and 85Rb, OD87 and OD85. The optical
pumping efficiency of the cell, u, is

u[ωprobe] ≡
∆OD[ωprobe]

OD[ωprobe]
, (2.26)

where
∆OD[ωprobe] = ∆OD87[ωprobe] + ∆OD85[ωprobe] (2.27)
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is the total change in OD due to optical pumping, and is a function of the probe
frequency, ωprobe. For the typical Γopt = 2π × 2 GHz used in this thesis, the hy-
perfine splitting of the Rb isotopes is sufficient that when probing 87Rb, absorption
is essentially only due to a single hyperfine state per Rb isotope: either the 87Rb
F = 2 and 85Rb F = 3 states, or the 87Rb F = 1 and 85Rb F = 2 states. For a
probe frequency near the 87Rb F = 2 line, we have

∆OD87 =
∆N2
5
8N

OD87 =
( N2

5
8N
− 1
)
OD87 = −∆nssOD87 (2.28)

and

∆OD85 =
∆N5
7
12M

OD85 =
( N5

7
12M

− 1
)
OD85 = −∆mssOD85. (2.29)

For a probe frequency near the 87Rb F = 1 line, we have

∆OD87 =
∆N1
3
8N

OD87 =
( N1

3
8N
− 1
)
OD87 (2.30)

and

∆OD85 =
∆N4
5
12M

OD85 =
( N4

5
12M

− 1
)
OD85. (2.31)

The optical pumping rate for the entire cell is in general governed by two time
constants, ΓP87 and ΓP85, with pumping following a double-exponential of the form

∆OD[t] = A exp(−ΓP87t) +B exp(−ΓP85t). (2.32)

Figure 2.7 shows optical pumping rates and efficiencies calculated using the above
model for typical experiment parameters in the 140µm ultrathin cell described in
Chapter 6: γ = 105 s−1, Γopt = 2π × 2 GHz, laser tuned to the F = 2 → F ′ =
2, 3 crossover, and OD87 = OD85 = 0.5OD. Curves are shown for each of the
Rb isotopes individually, and also for the net response of a cell filled with natural
Rb. The 87Rb and 85Rb optical pumping rates can be seen to be primarily due
to excitation of the upper hyperfine ground states, with the laser coupling only
minimally to the lower hyperfine states. Scaled to 3

8RP2 = 1, the optical excitation
rates are 5

8RP1 = 0.03, 7
12RP4 = 0.07, and 5

12RP5 = 0.37. The 85Rb pumping
rate and efficiency are much lower than for 87Rb, due to the detuning of the laser
from the 85Rb resonance. For a natural Rb cell, this results in a lower net optical
pumping efficiency, shown in yellow. The optical pumping efficiency flattens out
above Ipump = 75 mW/cm2. Although the 87Rb pumping efficiency approaches 90%
for high laser intensities, the net pumping efficiency of the cell only reaches 80%.
The reason ΓP 6= 0 at Ipump = 0 is that ΓP is also a function of the relaxation rate,
γ.

Radiation trapping (see Section 2.4.2) was assumed to be negligible for the mod-
elling in Figure 2.7. As shown in Chapter 6 however, radiation trapping can result
in significant inhibition of optical pumping, by producing secondary light resonant
with the level |1〉, |4〉, and |5〉 atoms.
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Figure 2.7: a) Optical pumping rate, and b) optical pumping efficiency as a
function of pump laser intensity, calculated using the 3 level model described in
Section 2.4.1, using parameters typical of the ultrathin cell described in Chap-
ter 6. Curves are shown for pure 87Rb (blue) and 85Rb (red) systems, as well
as a natural mixture of the isotopes (yellow). The contributions of the opti-
cal excitation rates to the pumping rates are also shown in dotted lines. In
this figure, the laser frequency is resonant with the collisionally shifted 87Rb
F = 2→ F ′ = 2/3 crossover peak.

2.4.2 Radiation Trapping and Quenching

Radiation trapping occurs in atomic samples of high OD [98, 99]. As an optically
excited atom decays to the ground state, it emits a photon resonant with the tran-
sition from the ground F state it decayed to. In low OD systems, the most likely
outcome is that this emitted photon simply flies out of the vapor cell. In high OD
systems however, the photon is likely to be reabsorbed by the surrounding atoms,
which in the case of decay to the F = 1 state, results in a pumping-back process.
Depending on the OD, a single photon can undergo many such rescattering events
(10s to 100s [98]), severely limiting the optical pumping efficiency. As the effect is
proportional to the intensity of the pump laser, it cannot be overcome simply by
increasing the laser power.

We address radiation trapping by introducing a quenching gas to the vapor cell.
The most popular choice of quenching gas is N2, which presents a number of internal
rovibrational states that are near-resonant with alkali optical absorption frequencies,
and also has good properties as a buffer gas (see Tables 2.3-2.6). Excited Rb atoms
colliding with the N2 are therefore able to decay to the ground state by exciting
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internal molecular states, suppressing spontaneous emission. The N2 excitation
leads to a heating of the gas, which for optical pumping powers of many watts can
be 10s or 100s of degrees [100]. Such heating was assumed to be negligible for the
∼ 10 mW pumping powers used in this thesis though.

The quenching rate is
RQ = nQσQv̄rel, (2.33)

where nQ is the number density of the quenching gas, σQ is the quenching collisional
cross section, and v̄rel is the mean relative velocity between a Rb atom and the
quenching gas. Values of σQ for N2 and the Rb D1 and D2 lines are given in
Table 2.2. The probability, Q, that a Rb atom will decay from an optically excited
state via photon emission is

Q =
1

1 +RQ/Γnat
, (2.34)

where Γnat is the natural linewidth (and thus the spontaneous decay rate). It is
convenient to rewrite this in terms of a characteristic pressure, P ′Q, such that PQ =
P ′Q corresponds to a 50% suppression of spontaneous emission from the excited
state [101],

Q =
1

1 + PQ/P ′Q
. (2.35)

P ′Q is (weakly) a function of temperature, through the v̄rel dependence of RQ
4.

Table 2.2 gives P ′Q values for two operating temperatures commonly used in this
thesis. Quenching rates for representative conditions are given in Table 2.7. The
quenching cross sections for Rb collisions with the noble gases are negligible, on the
order of 10−20 − 10−24 cm2 [102].

Figure 2.8 shows Q as a function of N2 pressure. The calculation is performed on
the Rb D2 line, for a cell temperature of 140◦C. Relaxation of the excited state via
spontaneous photon emission is reduced by more than 80% for N2 pressures above
∼ 20 mbar. This broadly agrees with the experiments in Ref. [98], which showed
that in their cell geometry, N2 pressures of 1-10 torr were sufficient to suppress
radiation trapping in low-medium Rb densities (1012−1013 cm3). Radiation trapping
is compared with our own experiment results in section 6.4.2, through inclusion in
the 3 level optical pumping model.

2.5 Hyperfine Relaxation

Optical pumping produces a non-equilibrium population distribution in the hyper-
fine ground states. The lifetime of this population imbalance is T1 = 1/γ1, and the
lifetime of coherence between pairs of mF states is T2 = 1/γ2. In analogy with NMR,
these can also be referred to as the longitudinal and transverse relaxation lifetimes,

4This neglects the temperature dependence of σQ, for which I could not find any data. The
temperature dependence of collisions is discussed in more detail in Section 2.7.3.

24



N
2
 Pressure (mbar)

0 20 40 60 80 100

Q

0

0.2

0.4

0.6

0.8

1

Figure 2.8: Quenching factor, Q, on the Rb D2 line as a function of N2 pressure,
at a cell temperature of 140◦C.

respectively. Relaxation back to equilibrium occurs through a variety of collisions,
as described in Section 2.7. The relaxation rates for each of these mechanisms sum
to give [6, 104]

γ1(2) = γ1(2)SE + γ1(2)bg + γwalls, (2.36)

where the subscript 1(2) denotes T1(T2) relaxation, γ1(2)SE are the Rb-Rb spin
exchange rates, given by Eqs. (2.48) and (2.49), γ1(2)bg are relaxation due to Rb
collisions with the buffer gas atoms, given by Eq. (2.57), and γwalls is relaxation
due to Rb diffusion to the cell walls, given by Eqs. (2.71)-(2.73). γwalls has been
measured to be the same for both T1 and T2 relaxation [5].

It is worth noting explicitly that in our definition, T1 refers to 〈SSS ·III〉 population
relaxation of the F states, and so is an aggregate over the mF sublevels, whilst T2

is for a particular hyperfine transition between two mF states. In this framework,
Zeeman transitions between mF states of the same F level contribute to T2 relax-
ation, but not T1. In the absence of perturbations due to external fields, I assume
that T2 is the same for all of the hyperfine transitions. I also assume that the T1

relaxation rate is the same for both isotopes of Rb. This is important when consid-
ering population relaxation in isotopically mixed cells (all of the cells used in this
thesis), where the experimental observable (the OD) is due to both Rb isotopes.

In addition to events that cause both T1 and T2 relaxation, there are a number
of additional pure T2 dephasing mechanisms, primarily through interactions with
the buffer gas [5]. As discussed in Section 2.7.2, when Rb-Rb spin exchange is the
dominant relaxation mechanism, it is nevertheless possible to have T2 > T1. For a
two level system, T2 is bounded by 2T1. The bound is slightly lower in multi-level
systems, and is determined by the nuclear spin.
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Typical relaxation rates and times for the cells and conditions used in this thesis
are given in Table 2.7.

2.6 Broadening and Line Shifts

Thermal motion and collisions in a vapor cell result in a frequency broadening and
shift of the Rb optical and hyperfine transitions. The thermal motion of atoms
results in Doppler broadening, discussed below. The collisional interactions in a cell
are complex, and are discussed in detail in Section 2.7. Briefly, collisions involving a
Rb atom distort the Rb electron cloud, inducing phase shifts and also state changes.
The accumulation of phase shifts gives an average frequency shift of a resonance, and
the random scattering in sign and amplitude of the phase shifts leads to a broadening
of the resonance. The state changes also produce broadening.

Accurate knowledge of line shifts and broadening is important for modelling
systems during the design phase, and can also be used to characterise systems, for
example to measure the buffer gas pressure or cell temperature. Typical line shifts
and broadening values for the cells and conditions used in this thesis are given in
Table 2.7.

As mentioned at the start of this chapter, frequencies are discussed in both cyclic
(ν) and angular (ω) units, which are related by ω = 2πν. The cyclic frequency can
be directly compared with the relevant collision rates and is convenient for ease of
discussion, but it should be converted to units of angular frequency for calculating
the OD. Shifts and broadening are denoted as δω(δν) and ∆ω(∆ν), respectively.
Linewidths are given as the full-width-half-maximum (FWHM).

2.6.1 Doppler Broadening

The thermal motion of atoms in a vapor cell results in Doppler broadening of the
optical absorption line, given by the Gaussian FWHM of

∆ω =
ω0

c

√
8kB T ln 2

m87
, (2.37)

where ω0 is the optical absorption frequency, T is the cell temperature, c is the speed
of light, kB is Boltzmann’s constant, and m87 is the 87Rb mass.

Doppler broadening is often thought of as an inhomogeneous broadening mech-
anism, but for atoms in a buffer gas cell, the broadening functions more as a ho-
mogeneous mechanism. This is because each Rb atom undergoes velocity changing
collisions with the buffer gas at a rapid rate, on the order of 109 s−1 (see Table 2.7),
and thus samples a large fraction of velocity space during an interaction period, e.g.
T1 = 10µs or a 0.3µs probe laser pulse.
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2.6.2 Dicke Narrowing

The rapid velocity changing collisions in a buffer gas cell also lead to the effect of
Dicke narrowing [84, 105]. When the Rb mean free path, L, is much shorter than
the wavelength of a transition, λ, there is a motional averaging that cancels out
the Doppler broadening. For the 6.8 GHz 87Rb hyperfine ground state transitions,
λ ≈ 4 cm, and this condition is easily met with a few mbar of buffer gas. The Dicke
narrowed linewidth is

∆ω = 4π
D

λ2
, (2.38)

where D is the diffusion constant, given by Eq. (2.75), and λ is the wavelength
of the transition. The resulting narrowed linewidths can be as small as a few Hz,
dramatically smaller than the ∼ 10 kHz Doppler broadening that would otherwise
be present.

Dicke narrowing is not significant on the optical absorption lines in buffer gas
cells5. Although it is possible to meet the L� λ condition given by Eq. (2.38) with
buffer gas pressures of several 10s of mbar (see Table 2.7), the resulting narrowing is
only on the order of 10%. In addition, any narrowing is offset by buffer gas induced
broadening, which is on the order of 10 − 20 MHz/mbar for the optical lines (see
Table 2.5).

2.6.3 Optical Broadening and Line Shift

The optical line shift is primarily determined by buffer gas collisions, and is given
by Eq. (2.55), below. The optical linewidth is given by a Voigt profile convolution of
Gaussian Doppler broadening, given by Eq. (2.37) (Section 2.6.1), and the Lorentzian
natural and collisionally broadened linewidths,

ΓLor = Γnat + Γdipole + Γbg, (2.39)

where Γnat is the Rb D2 natural linewidth, Γdipole is the Rb-Rb self broadening, given
by Eq. (2.50) (Section 2.7.2), and Γbg = ∆ωbg is the buffer gas induced broadening,
given by Eq. (2.56) (Section 2.7.3). The units should be in angular frequency. The
convolution is included in the model summarised in Section 2.3.

2.6.4 Hyperfine Broadening and Line Shift

The microwave line shift is determined by the buffer gas species and density, and is
given in Eq. (2.52). The hyperfine line width is limited by the Lorentzian broadening
associated with the finite coherence time of the levels [6],

∆ω = 2γ2, (2.40)

where γ2 is the T2 relaxation rate (see Sections 2.5 and 2.7). Externally applied
electromagnetic fields, in particular the dc and microwave magnetic fields, induce

5It can, however, be seen in bufferless nano-cells [106].
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further broadening. For the conditions in this thesis, the field-induced broadening
was often the dominant broadening mechanism, typically resulting in linewidths on
the order of kHz to 10s of kHz, but in extreme cases (inhomogeneities in the Tesla-
order magnetic fields used in Chapter 8) giving 100 MHz broadening or more. The
field-induced broadening is discussed further in Chapter 3.

2.7 Collisional Processes

Collisions affect relaxation, and give rise to line shifts and broadening on both opti-
cal and hyperfine transitions. The important collisions are Rb collisions with other
Rb atoms, the buffer gas, and the cell walls. In this section, I give an overview of
the various collision processes. I try to give both a qualitative understanding of the
processes, as the quantitative modelling that follows is heavily based on experimen-
tally obtained parameters, and can be somewhat phenomenological. The discussion
is written in terms of the effects on the 87Rb 5S1/2 valence electron.

2.7.1 Collision Rates

The collision interactions modelled in the following sections are functions of the
collision rate for that interaction. For a particular interaction, the collision rate
between Rb and some species, S2, is given by

γ = nS2 σ v̄RbS2 , (2.41)

where nS2 is the number density of the second species, and σ is the collision cross sec-
tion for the interaction. Cross sections for various interactions are given in Table 2.3.
The mean relative velocity of the Rb and S2 particles, v̄RbS2 , is given by

v̄Rb,S2 =

√
8kB T

πM
, (2.42)

where kB is Boltzmann’s constant, and T is the temperature. M is the reduced
mass of the colliding system, given by

M =
mRbmS2

mRb +m2
, (2.43)

where mRb and mS2 are the atomic masses of the Rb and the second species. The
mean free path between collisions is

L =
(
nS2 σ

√
mRb/M

)−1
. (2.44)

In principle, the values of σtotal listed in Table 2.3, which were measured in atomic
beam experiments, could be used for calculating the net mean free path for collisions
of all types with the buffer gas. However, this yields a value that is incompatible
with the measured diffusion rates. As discussed in section 2.7.4, general agreement
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is reached by scaling the σtotal values by a factor of 1
20 . For calculating the net mean

free path between buffer gas collisions, I used

L =
3D

v̄Rb,S2

, (2.45)

where D is the diffusion coefficient, given in Table 2.6. The net mean free path for
collisions with multiple species is given by the inverse sum of the values for each
species6,

1

L
=

1

L1
+

1

L2
+ · · · . (2.46)

If the collision cross section, σ, is independent of temperature, γ scales with
temperature as T 1/2, through the v̄Rb,S2 term in Eq. (2.41). The temperature de-
pendence of σ is dependent on the exact form of the interaction potential between
the colliding atoms or molecules however. The potential is typically modelled as
V (R) =

∑
Cp/R

p, where Cp are the interaction coefficients and R is the separa-
tion distance of colliding partners. Such potentials lead to a power-law temperature
dependence [107],

γ(T ) = γ0

( T
T0

)κ
, (2.47)

where T is the cell temperature, γ0 is the collision rate at a reference temperature, T0,
and κ is the temperature scaling coefficient. If the interaction potential is dominated
by a single term, κ ≈ (p − 3)/(2p − 2) [107]. For a predominantly van der Waals
type C6/R

6 potential, as given by the larger noble gases, then the scaling coefficient
is κ ≈ 0.3 [107, 108]. In the following sections, the temperature scaling is treated
separately for each collision and interaction type. For some cases, there is little
discussion of the temperature dependence of σ in the literature. I then assume σ is
temperature independent, and use κ = 1/2.

2.7.2 Rb - Rb Collisions

As the Rb-Rb collision rates are proportional to the Rb vapor density, they are
strongly dependent on temperature (see Figure 2.2). Rb-Rb spin exchange thus
tends to become the dominant relaxation mechanism at high temperatures.

Spin Exchange

Spin exchange (SE) collisions involve a swapping of the spins of the colliding part-
ners [4, 84, 101]. The exact mechanisms are not completely understood. There is
some contribution from binary collisions between two Rb atoms, however experi-
ments at high (kG) dc magnetic fields indicate that 1/2 to 2/3 of Rb-Rb SE is
field-dependent, and so must be due to other mechanisms [114]. These appear to
be collisions with Rb2 molecules, which are present in a vapor cell with a density of

6This is determined by the buffer gas collisions. The contribution of the Rb-Rb mean free path
is in practice negligible, as seen in Table 2.7.
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Table 2.2: Properties of N2 as a quenching gas on the Rb D1 and D2 lines [86,
101, 103]. The reference temperature for the cross sections is T0 = 57◦C.

Optical Line
σQ P ′Q (T = 90◦C) P ′Q (T = 140◦C)

(cm2) (mbar) (mbar)

D1 (5P1/2) 5.8× 10−15 4.1 4.4

D2 (5P3/2) 4.3× 10−15 5.6 6.0

Table 2.3: Cross sections for Rb collisions with various species. The cross-
section for a collision of any kind to take place is σtotal. The cross sections
for 〈SSS · III〉 T1 and T2 relaxation are listed as σ1 and σ2, respectively. The σ2

values were measured in 85Rb, and I assume they are the same for 87Rb. This
may result in an overestimation of γ2bg. I could not find published values for
σtotal or σ2 for Rb-Kr collisions, so in this case I assumed σtotal = 10−13 cm2,
and σ2 = 10× σ1. The measurement temperature, T0, is listed below the cross
section. For the σtotal values, which were measured in atomic beam experiments,
I used T0 = 0◦C. The phenomenological factor of 1

20 is required for agreement
with measurements of the diffusion coefficient.

Species σtotal (cm2) σSE (cm2) σSD (cm2)

Rb
1.397× 10−13 [109] 1.9× 10−14 [110] 9× 10−18 [111, 112]

(0◦C) 78− 277◦C

Species σtotal (cm2) σ1 (cm2) σ2 (cm2)

He
( 1

20×)1.52× 10−14 [109] 8.7× 10−24 [86] 2.94× 10−21 [5]
(0◦C) 150◦C 27◦C

Ne
( 1

20×)2.68× 10−14 [109] 1.9× 10−23 [6] 5.55× 10−21 [5]
(0◦C) 30◦C 27◦C

N2
( 1

20×)7.85× 10−14 [109] 1× 10−22 [86] 7.43× 10−21 [5]
(0◦C) 70◦C 27◦C

Ar
( 1

20×)5.72× 10−14 [109] 6.1× 10−22 [86] 3.71× 10−21 [5]
(0◦C) 27◦C 27◦C

Kr
( 1

20 × 10−13) 2.7× 10−21 [86] (2.7× 10−20)
(0◦C) 27◦C (27◦C)

Xe
2.2× 10−19 [86] 1.1× 10−18 [113]

150◦C 21◦C
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approximately 10−6 × nRb. There is a nuclear-quadropole interaction through col-
lisions with Rb2 molecules in the singlet state, and a spin-axis interaction through
collisions with Rb2 molecules in the triplet state [115, 116]. SE collisions conserve
the total angular momentum, i.e. the total mF value, but not necessarily the F
value. The effect for Rb-Rb collisions is to scramble the collision partners’ states
amongst the 8 ground mF states.

The Rb-Rb SE rate of the hyperfine populations, γ1SE , is given by

γ1SE = nRb σSE v̄RbRb, (2.48)

where nRb is the Rb atom number density, which can be obtained from Eqs. (2.1),
σSE is the Rb-Rb spin exchange cross section, given in Table 2.3, and v̄RbRb is the
mean relative velocity of two Rb atoms, given by Eq. (2.42). Note that the SE rate
is proportional to the total Rb density, including 85Rb [3].

From a multilevel density matrix analysis (i.e. treating each mF ground state
individually) [6, 117], it can be seen that SE relaxation of coherence is slowed by
a factor given by the nuclear spin. In general, the multilevel relaxation is deter-
mined by the populations of the transition and neighbouring mF states7, and is
not described by a single time constant. The general case is discussed, for exam-
ple, in Refs. [6, 117]. For the special case of complete depopulation of one of the
F states (i.e. optical pumping with 100% efficiency), and equal population of the
mF states in the other hyperfine level, the coherence decay of the clock transition,
|F − 1,mF = 0〉 → |F,mF = 0〉, is approximately exponential, with

γ2SE =
6I + 1

8I + 4
γ1SE , (2.49)

where I is the nuclear spin. This relationship has been experimentally verified for
both 87Rb and 85Rb [5, 6, 117]. For 87Rb, where I = 3/2, we have γ2SE = 5

8γ1SE . For
modelling, I assumed that SE relaxation of coherence was the same for all hyperfine
transitions.

The SE cross section, σSE , appears to be essentially independent of temper-
ature, with measurements from 78◦C to 277◦C all giving the same σSE = 1.9 ×
10−14 cm2 [110, 118, 119]. SE becomes the dominant relaxation mechanism at high
temperatures. The critical temperature depends mostly on the wall relaxation rate
(Section 2.7.4), and is approximately 75◦C for the microfabricated cells used in
Chapters 4 and 8, and 160◦C for the ultrathin cells used in Chapters 6 and 7. It is
worth then quickly reviewing the available options to limit SE.

The conservation of total mF in SE collisions means that the stretched mF

states, |2, 2〉 and |2,−2〉, are somewhat protected from SE relaxation. If two |2, 2〉
(|2,−2〉) atoms collide, spin exchange is not possible, as mF conservation means
that the only allowed output state is again two |2, 2〉 (|2,−2〉) atoms. 〈SSS · III〉 SE
relaxation can therefore be suppressed by optically pumping the atoms to one of

7The neighbouring states to a transition are those with mF2 = mF1 ± 1, where mF1 is either of
the two transition states.
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these stretched states [13]. There will always be some population in the other mF

states however, particularly when driving oscillations between mF states, and SE
cannot be completely eliminated in this way. The conservation of total mF also
means that T1 relaxation of 〈Sz〉 does not occur in collisions between identical
atoms [3].

SE is suppressed at high dc magnetic fields [114, 115], through suppression of
the Rb-Rb2 interactions. A suppression factor of 1/3 was measured at a field of
6000 G [114].

It is also possible to suppress SE through the application of 2π microwave pulses
repeated at the Larmor precession frequency [120], though it is unclear how well the
technique could be applied in our relatively small cells, with short T1 and T2 times.

The complete suppression of SE relaxation is possible in a combination of low
dc magnetic field and high Rb density. This is known as the SERF (spin exchange
relaxation free) regime, and is exploited to great effect in some vapor cell magnetome-
ters [101, 111]. The relaxation rate is then determined by Rb-Rb spin destruction
collisions, and Rb collisions with the buffer gas.

SE can also be taken advantage of to polarise samples that would be otherwise
difficult to polarise, such as noble gases and solids [121–123]. This is known as spin
exchange optical pumping.

Spin exchange is normally considered an incoherent process, but recently coher-
ent transfer of spin between alkali atoms has been observed, mediated through SE
collisions [124]. Relatively favourable Rb properties, such as the T1 and T2 relax-
ation rates, were transferred to K. The coherent coupling was only observed in low
dc magnetic fields (< 1 mG) though, and it is unclear at this point how it could be
applied to our field imaging.

Spin Destruction Collisions

It is also possible for Rb-Rb collisions to randomise the Rb states, without con-
serving mF . These collisions are known as spin destruction collisions. They are an
important mechanism when SE has been reduced or eliminated, such as in SERF
magnetometers. The spin destruction rate is several order of magnitude below the
SE rate for the conditions in this thesis however, as seen by the spin destruction
cross section (σSD) in Table 2.3, and I did not include it in my modelling.

Dipole-Dipole Interactions

Dipole-dipole interactions during Rb collisions with other Rb atoms lead to a broad-
ening of the optical lines proportional to the Rb vapor density [92, 94]. This becomes
important for Rb densities corresponding to temperatures above 125◦C. For the Rb
D2 line, the dipole-dipole broadening is

Γdipole = β2 nRb, (2.50)
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where β2 = 2π× 1.10× 10−7 Hz cm3 is the self-broadening coefficient [125], and nRb
is the Rb vapor density. For the conditions in this thesis, this was a minor correction
to the buffer gas induced broadening, as seen in Table 2.7.

2.7.3 Rb - Buffer Gas Collisions

The two important interactions with the buffer gas are the hyperfine shift interaction,
caused by a change in spatial overlap of the electron and nuclear wavefunctions, and
the spin rotation interaction, caused by coupling of the Rb electron spin to the
angular momentum of the colliding pair8. The Hamiltonian for interaction between
Rb and the buffer gas can be written as

Ĥbg = δA(r)III ·SSS + γ(r)SSS ·NNN, (2.51)

where III and SSS are the Rb nuclear and electron spins, respectively, NNN is the angular
momentum of the colliding pair, δA(r) is the change in the hyperfine coefficient,
and γ(r) is the spin-orbit coupling coefficient. Both coefficients are functions of
the internuclear separation, r. The hyperfine shift interaction results in shifts and
broadening of the hyperfine transitions, while the spin-rotation interaction primarily
results in shifts and broadening of the optical transitions, and T1 relaxation of the
hyperfine states.

Modelling of the coefficients δA(r) and γ(r) is extremely difficult for buffer gases
more complex than H (i.e. all of them). Modelling tends to give only rough quantita-
tive agreement with experiment, but does yield useful physical insights [6, 126, 127].
For quantitative modelling, we turn to more phenomenological models, using exper-
imentally derived parameters.

I could not find values for the T2 relaxation cross section, σ2bg, measured for
87Rb. The σ2bg values given in Table 2.3 are for 85Rb, and are likely to be an
overestimation for 87Rb. This is because of the smaller 85Rb hyperfine splitting
(3 GHz instead of 6.8 GHz), and the larger nuclear spin (I85 = 5/2 compared to
I87 = 3/2).

The Hyperfine Shift Interaction: Hyperfine Transition Shift

In the hyperfine shift interaction, distortion of the Rb electron wavefunction during
a collision changes the overlap of the electron with the nucleus, giving a shift in
the hyperfine coupling coefficient, δA(r). This results in a shift and broadening of
the hyperfine transition frequencies. The interaction cannot induce T1 relaxation
however [6, 86], except at high magnetic fields [110]. The dominant mechanism
for the hyperfine shift is binary Rb-buffer collisions, known as the Carver mecha-
nism [110, 126], which is linear with buffer gas density. A secondary mechanism,
scaling quadratically with buffer gas density, is the Bouchiat mechanism, in which

8The spin-rotation interaction with the Rb nuclear spin is typically neglected, as the differing
gyromagnetic ratio ensures that the nuclear interaction is at least 3 orders of magnitude smaller
than the electron interaction.
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‘sticking’ 3 body collisions result in the formation of short-lived van der Waals (vdW)
molecules [126, 128].

In a binary collision, the electron wavefunction distortion occurs in two stages.
At large separation distances, so at the beginning and end of a collision process, at-
tractive van der Waals forces pull the electron wavefunction outwards. This reduces
the electron overlap with the Rb nucleus, and so reduces the hyperfine coupling,
giving a negative frequency shift. At small separation distances, the electron clouds
of the colliding partners overlap, giving a strong repulsive Pauli exclusion force.
This pushes the electron wavefunction back into the nucleus, increasing the hyper-
fine coupling and giving a positive frequency shift. The random scatter of collision
trajectories (e.g. head-on or grazing) will result in different distances of closest ap-
proach, and thus a random scatter in the δA(r) shift magnitude and sign for each
collision.

The perturbations in δA(r) can be thought of as a phase shift of the electron
spin. The accumulated phase shifts across many collisions result in a frequency shift
of the hyperfine resonance. The dispersion (scattering in sign and amplitude) of
the phase shifts results in broadening of the resonance. The balance between the
short and long ranged binary collision interactions, which depends on the buffer gas
species, determines the sign of the collisional shift. Larger buffer gas species, with
strong vdW interactions (Ar, Kr, Xe), give a negative shift, whilst smaller species
(He, Ne, N2) give a positive shift (see Table 2.4). By using a mixture of buffer
gas species (typically N2 and Ar), it is possible to take advantage of this to reduce
the hyperfine shift, and to cancel its first order temperature dependence. This is
often used in vapor cell atomic clocks, and could be applied for our imaging when
high stability of the microwave transition is required for imaging microwave and dc
magnetic fields with high accuracy.

VdW molecules form in 3 body collisions with Rb and heavy buffer gas atoms
(Ar, Kr, and Xe) [129], and are destroyed in a subsequent buffer gas collision. VdW
molecule formation is neither expected nor observed for lighter buffer gas atoms (He,
Ne, N2) [129, 130]. VdW molecules are present at intermediate buffer pressures (10s
of mbar), where the buffer gas pressure is high enough for vdW molecule formation,
and low enough that molecules are not immediately broken up in a subsequent
collision. The formation of vdW molecules, and the resulting shifts in both δA(r) and
γ(r), result in a non-linear shift of the hyperfine frequencies. As the magnitude is less
than 1% of the linear shift (10s to 100s of Hz in hyperfine frequency shift) [129, 130],
we can safely neglect the non linear contributions for the calculations for this thesis.

The temperature dependence of the hyperfine shift for a given buffer gas density
is modelled in a power-law expansion. Over large temperature ranges (−125◦C
to 800◦C), 4th and 5th order polynomials have been used [131, 132], however for
typical experiment parameters, the temperature dependence is usually modelled
with a quadratic relationship [6, 133]. The hyperfine line shift is given by

δνbg(T ) = P
(
β + δ(T − T0) + γ(T − T0)2

)
+ ∆2ν + b(T )P 2, (2.52)
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where T is the cell temperature, T0 is the reference temperature the shift was mea-
sured at, and P is the buffer gas pressure scaled to the reference temperature T0.
The experimentally determined coefficients β, δ, and γ, which represent the binary
Carver mechanism, are given in Table 2.4. The nonlinear terms ∆2ν, the vdW
shift [129, 130], and b(T )P 2, a shift quadratic with buffer density and linear in
temperature [133, 134], are included for completeness, but they are small and not
included in calculations for this thesis. In the case of multiple buffer gas species, the
line shifts due to each species can be summed linearly [6]9,

δνbg = δνbg1 + δνbg2 + · · · . (2.53)

We do not explicitly calculate the broadening of the hyperfine transition induced
by the hyperfine interaction, but rather the net broadening induced by buffer gas
collisions of all types. This is because of the experimental difficulty in isolating
the various contributions. Following the discussion in Section 2.6.4, the buffer gas
broadening is given by ∆ω = 2π(γ2bg/π), where the buffer gas coherence relaxation
rate, γ2bg, is given by Eq. (2.56) in Section 2.6. Values of the Carver rate are given,
for example, in Refs. [86] and [135].

Table 2.4: Hyperfine line shift coefficients, β, δ and γ, for the 87Rb ground state
in the presence of various buffer gases. Line shift coefficients from Refs. [6, 136]
are for T0 = 333 K and Tfill = 300 K.

Buffer β δ γ
Gas (Hz/torr) (Hz/torr/◦C) (Hz/torr/◦C2)

Ne +392 [4]

N2 +546.9 [6, 136] 0.55 [6, 136] 1.5× 10−3 [6, 136]

Ar -59.7 [6, 136] -0.32 [6, 136] −3.5× 10−4 [6, 136]

Kr -593.5 [6, 136] -0.57 [6, 136]

Xe

The Spin-Rotation Interaction: Optical Transition Shifts and Broadening

The spin-rotation interaction, γ(r)SSS ·NNN , acts as a perturbation to the fine structure
splitting, LLL · SSS, of the Rb 5S and 5P states. Like for the hyperfine transitions, this
leads to collisional broadening and shifts of the optical transitions. The accumula-
tion of phase shifts over many collisions gives an average frequency shift, and the
dispersion of the phase shifts leads to broadening. Success has been shown modelling
the V (R) =

∑
Cp/R

6 type interaction potential using [108]

V (R) = −C6

R6
− C8

R8
+
C10

R10
. (2.54)

9Though Vanier gives the summation rule in a different form, a bit of algebra shows that the
two forms are equivalent.
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For large buffer gases, the repulsive C6 van der Waals term dominates. The higher
order terms become more important for smaller buffer gases, where the van der
Waals force is less strong and the Rb is able to penetrate further into the core of
the buffer gas electron cloud. The C10 term is only dominant in He however, which
is the only buffer gas giving a positive optical line shift.

The shifts and broadening are typically modelled as scaling linearly with buffer
gas density. The temperature dependence has been less clear however. The optical
line shift is described by,

δνs = αs P
(T0

T

)κs
, (2.55)

where P is the buffer gas pressure at the reference temperature T0, αs is the line shift
coefficient, T is the cell temperature, and κs is the temperature scaling coefficient.
Similarly, the optical broadening is given by

∆νb = αb P
(T0

T

)κb
, (2.56)

where αb is the broadening coefficient and κb is the temperature scaling coefficient.
There has been significant variation in the few reported values of κ in the exper-
imental literature, and large departures from theory [133, 137, 139–141]. Recent
experiments using the newly discovered isoclinic point however, indicate that the
spread in experimental values was due to difficult to account for systematic errors,
and that the theoretical values are in fact sound [107]. Ref. [107] measured κs for Rb
in Kr buffer gas, and found κs = 0.36± 0.06, in good agreement with the calculated
value of κs = 0.31 [108]. I have therefore used the theoretical scaling coefficients
given in Ref. [108]. Experimentally obtained values of α and theoretically obtained
values of κ are given for common buffer gases in Table 2.5.

For the systems presented in this thesis, the collisional broadening of the optical
lines gives the upper limit on buffer gas pressure. This limit is imposed by the
reduction in on-resonance OD as the buffer gas density is increased. The exact limit
of the buffer gas density is a parameter of the cell thickness, operating temperature,
and the OD required for operation.

The Spin-Rotation Interaction: Hyperfine Relaxation

The spin-rotation interaction is also the primary mechanism for buffer gas induced
relaxation of the hyperfine states [110, 142], with the transfer of angular momentum
between the electron spin and the rotational momentum of the colliding atoms or
molecules randomising the electron spin. The relaxation is known variously as spin-
damping (S-damping), spin-rotation, or simply as buffer gas relaxation. The spin-
orbit coupling coefficient, γ(r) in Eq. (2.51), is extremely difficult to model, and the
relaxation rate due to collisions with buffer gas atoms, γbg, is modelled in terms of
an experimentally obtained collision cross section [6, 104],

γ1(2)bg = nbg σ1(2)bg v̄Rb−bg, (2.57)
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where the subscript 1(2) denotes T1(2) relaxation, nbg is given by Eq. (2.61), σ1(2)bg is
the spin relaxation cross section given in Table 2.3, and v̄Rb−bg is the mean relative
Rb-buffer velocity, given by Eq. (2.42). For heavier buffer gases (Ar, Xe), σ2 is
approximately 10 times σ1. This ratio increases with lighter buffer gas species, and
for He, σ2/σ1 ≈ 103. We see that γbg scales linearly with buffer gas density. I have
not found discussions of the temperature scaling of γbg in the literature, but it seems
reasonable to assume that the scaling is similar to that of the optical line shift and
broadening. I used the scaling

γbg(T ) = γbg(T0)
( T
T0

)κb
, (2.58)

where γbg(T ) is the relaxation rate at temperature T , γbg(T0) is the relaxation rate
at the reference temperature, T0, and κb is the temperature scaling coefficient given
in Table 2.5. The exact temperature scaling is in any case non-critical, as for the cell
conditions in this thesis, γbg was only a minor contribution to the total relaxation
rate, as shown in Table 2.7. If multiple buffer gas species are used, γbg is simply the
linear sum of the individual rates,

γbg = γbg1 + γbg2 + · · · . (2.59)

From Table 2.3, it can be seen that σbg is 7 to 9 orders of magnitude smaller
than σtotal, the cross section for Rb-buffer collisions of any type. This means that a
Rb atom undergoes on the order of 107 to 109 collisions with buffer gas atoms before
its state is depolarised, and up to 108 collisions before losing coherence.

Buffer Pressure, or Density?

Collisional interactions with the buffer gas are a function of the buffer gas density.
However, the buffer gas interactions are commonly referred to as inducing ‘pressure’
shifts and ‘pressure’ broadening. This is for historical reasons, where the experimen-
tally measured quantity is generally the buffer gas pressure, and the line shift and
broadening coefficients are published in terms of frequency shift per unit pressure.
The discrepancy can cause significant confusion when it comes to the scaling of these
effects with temperature, and in the correct buffer gas pressure to input into various
phenomenological models.

In a sealed vapor cell, the cell volume, V , and the number of buffer gas atoms,
N , are constant. The Ideal Gas Law,

P V = N kB T, (2.60)

tells us that although the buffer gas density, n = N/V , is constant, the buffer
pressure, P , is proportional to the temperature, T . The buffer gas is thus defined by
the buffer pressure, Pfill, and temperature, Tfill, at the time of filling (and sealing)
the cell. For the ultrathin cells used in Chapters 6 and 7, I used the lab temperature
of Tfill = 22◦C. For the microfabricated cells used in Chapters 4 and 8, which were
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produced by the Mileti group in Neuchatel, I used the temperature at which the
buffer gas pressure was measured at: 80◦C for the M1 cell used in Chapters 4 and
8, and 70◦C for the M2 cell used in Chapter 810. The buffer gas density is given by

nbg =
Pfill
kB Tfill

. (2.61)

For this reason, the buffer gas shifts and broadening are sometimes given in the
literature in units of amagats. 1 amg is the number density of an ideal gas at 0◦C,
and the units are thus independent of temperature. At 0◦C, we have the conversion

1 GHz/amg =
1000

760
MHz/torr. (2.62)

It is nevertheless common for various interactions to be modelled in terms of the
buffer gas pressure. In such cases, the filling pressure, Pfill, should be scaled to the
reference temperature, T0, at which the interaction coefficients were measured,

P = Pfill
T0

Tfill
. (2.63)

An interesting illustration of the importance in clearly distinguishing the roles
of buffer pressure and density can be seen in the case of a cell with a temperature
gradient [128, 135]. The buffer gas atoms or molecules, under isobaric conditions, will
move to equalise the pressure across the cell.11 This results in a density gradient
of the buffer gas across the cell, which produces a corresponding gradient in line
shifts and broadening. The effect can be a significant and difficult to account for
systematic error in the determination of buffer gas collision coefficients.

2.7.4 Diffusion and Rb - Wall Collisions

When a Rb atom collides with the cell walls, it is generally assumed that the collision
completely randomises the Rb state, i.e. that the wall collision results in complete
T1 and T2 relaxation. After hitting the wall, the Rb atom is adsorbed for some
time. Whilst on the wall, the atom is subject to strong fluctuating fields from the
wall atoms, which act to mix the Rb states.

There is relatively little literature on Rb interactions with bare glass walls [143].
There have been extensive studies of Rb interactions with coated cell walls, however,
and we can base our understanding off such work [3, 144, 145]. Coatings are typically
hydrocarbon chains, eg of the form (CH2)n, which act to shield the Rb from the
strongly depolarising glass. A key property of the coatings is their low magnetic

10For the filling station setup, where the cell was sealed by closing a valve, Tfill is easy to
determine. Obtaining Tfill can be difficult for cells sealed using high temperatures though, such as
in anodic bonding or when using a glassblowing flame. In practice, the buffer gas density in such
cells is measured through the line shifts after sealing.

11Temperature gradients will also produce a Rb density gradient, but I assume the effect to be
negligible in this thesis.

38



Figure 2.9: Schematic of Rb relaxation processes on an antirelaxation coating,
showing fast spin-orbit fluctuations due to vibrational motion of the Rb atom
within a given surface site, and slower, larger fluctuations due to site-hopping
on the coating surface. Figure is taken from Ref. [3].

moment, and the H atoms act as a weakly-perturbing blanket to shield the Rb from
the glass wall.

Measurements of Rb dwell times on coatings have given values on the order of
10−9 s and 10−6 s, depending on the measurement technique [145]. The two different
timescales have been respectively proposed to be due to Rb atoms interacting with
the coating surface and with the coating bulk. There is also some amount of Rb
that becomes near-permanently trapped inside the coating. During physisorption, a
Rb atom has two key interactions with the coating: 1) dipole-dipole coupling of the
Rb spin to the nuclear spin of the H atoms; and 2) a spin-orbit interaction between
the Rb and the C atoms [3]. A Rb atom is not stationary during its time adsorbed
on a surface, undergoing thermal vibrations within a given surface site, and hopping
between sites. The time constants for thermal vibrations and hopping are on the
order of 10−12s and 10−10s, respectively. As illustrated in Figure 2.9, the interaction
with the H nuclei produces relaxation due to the fluctuations induced as the Rb atom
hops between surface sites, and the spin-orbit interaction produces smaller and faster
fluctuations due to thermal vibration of Rb in a given site. Both interactions can
be modelled as the electron spin coupling to a fluctuating magnetic field, with the
weaker spin-orbit interaction described by a 50 G field. The dipole-dipole coupling
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can be significantly reduced by replacing the H atoms with D (deuterium), which has
a much smaller magnetic moment. The magnetic moments of atoms and molecules
present on a bare glass surface are far larger, and therefore highly depolarising [146,
147].

It is also entirely possible that the Rb atoms do not interact with the glass,
even in cells without antirelaxation coating. Rb has been observed to coat the cell
wall with several monolayers, with 6-7 monolayers observed at 94◦C [148]. It is
unclear how thick the Rb coating is at elevated temperatures, and it is plausible
that very little remains at the 140−150◦C cell temperatures used with the ultrathin
cells in Chapters 6 and 7, for example. In collisions with a macroscopic amount of
Rb however, such as the Rb reservoir, relaxation is complete, as the incoming and
outgoing atoms are not even necessarily the same atom.

The assumption that Rb collisions with the walls result in complete depolari-
sation is widely used, and justified, for example, by experiments showing that the
population and coherence relaxation rates, γ1 and γ2, are essentially equal for Rb
colliding with uncoated walls [5]. These measurements were made on atoms in the
cell bulk, however, and experiments measuring the Rb polarisation on or near the
walls suggest the relaxation is not entirely complete [143, 149]. This is discussed
further in Chapter 4, where we also observe incomplete relaxation at the walls [51].

Diffusion

In the absence of a buffer gas, Rb atoms travel ballistically through the cell, bouncing
at ∼ 300 m/s from wall to wall, with minimal collisions in between. In millimeter
and sub-millimeter scale cells, this gives transit times, and thus lifetimes, on the
order of µs to sub-µs. The spatial resolution for imaging also suffers. In order to
reduce the wall collision rate and better confine the atoms, buffer gas is added to
the cell. This transforms the ballistic motion of the Rb atoms to a diffusive one,
with the Rb atoms bouncing like a pinball between buffer gas atoms or molecules.
The motion is considered diffusive when

L� l = V/A, (2.64)

where L the Rb mean free path, given by Eq. (2.44), and l is the characteristic length
of the cell, given by the ratio of the cell volume, V , to the cell wall area, A. The
diffusion speed is characterised by a diffusion constant, D. For a simple estimate of
diffusion in 2 dimensions, we use

∆x =
√

2D t, (2.65)

where ∆x is the distance diffused during a time t. Note that the diffusion distance
scales with t1/2. For a more in-depth treatment, we use the diffusion equation

u̇ = D∇2 u− γcol u, (2.66)

where u, defined in Eq. (4.3), is the optically pumped hyperfine population imbal-
ance, D is the diffusion constant, and γcol represents relaxation due to Rb collisions
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with other Rb atoms and the buffer gas, as described in the previous sections. The
(Dirichlet) boundary condition is that u = 0 at the cell walls, representing the as-
sumption that every Rb collision with the cell walls will randomise the Rb state. I
discuss the case of a Robin boundary condition, where the walls are only partially
depolarising, in Chapter 4.

The solution is determined by the cell geometry. For a cylindrical cell, we assume
azimuthal symmetry, and write the boundary condition u(R, z, t) = u(r, 0, t) =
u(r, d, t) = 0, where R and d are the radius and length of the cell, respectively. We
take the initial condition as complete and uniform optical pumping, u(r, z, 0) = 1.
Defining

αi(r) =
J0(µir)

J1(µiR)

βj(z) =

√
2

d
sin (νjz),

where νj = jπ/d, J0 and J1 are Bessel functions of the first kind, and µi is defined
by J0(µiR) = 0, the solution of Eq. (2.66) with the above boundary and initial
conditions is

u(r, z, t) =

∞∑
i=1

∞∑
j=1,3,5...

2
√
π

µi

2
√

2

νj
√
d
αi(r)βj(z) exp

[
−
(

(µ2
i + ν2

j )D + γcol

)
t
]
. (2.67)

We cannot measure the z dependence of u(r, z, t) however, as our probe laser averages
over the entire cell length as it passes through the cell. To model this, we integrate
out the z dependence, giving

u(r, t) =

∞∑
i=1

∞∑
j=1,3,5...

2
√
π

µi

8

ν2
j d
αi(r) exp

[
−
(

(µ2
i + ν2

j )D + γcol

)
t
]
. (2.68)

For a rectangular cell geometry, the solution to Eq. (2.66) with the boundary
conditions u|walls = 0 is

u(x, y, z, t) =
∞∑
lmn

Almn sin
( lπ
a
x
)

sin
(mπ
b
y
)

sin
(nπ
c
z
)
×

exp
(
−
[
[( lπa )2 + (mπb )2 + (nπc )2]D + γcol

]
t
)
, (2.69)

where a, b, and c are the cell length, width, and height, and Almn is given by the
initial condition.

From the above solutions, we can see that the time-evolution of the hyperfine
population difference is not governed by a single decaying exponential with a single
time constant, but rather by an infinite sum of decaying exponentials. In a region
of uniform optical pumping however, e.g. away from the immediate vicinity of the
cell walls, the lowest-order (i = j = 1) diffusion mode dominates, and relaxation is
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well-approximated by a single exponential [1, 2, 6]. Eqs. (2.68) and (2.69) then yield
a relaxation rate

γ = γcol + γwalls, (2.70)

where
γwalls = k2D, (2.71)

and k is determined by the cell geometry. For a cylindrical cell,

k2 = ν2
1 + µ2

1, (2.72)

where ν1 = π/d, and µ1 = 2.405/R. For a rectangular cell,

k2 = π2
( 1

a2
+

1

b2
+

1

c2

)
. (2.73)

In Chapter 4, I present a detailed 2D model of diffusion in a cylindrical cell, which
includes the optical pumping, multi-order diffusion, and the possibility of non-
depolarising wall collisions.
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Figure 2.10: The diffusion constant, D0, plotted as a function of buffer gas mass.
All values have been normalised to T0 = 0◦C. The experimentally obtained D0

values listed in Table 2.6 are shown in blue. In red are values of D0 calculated
using the σtotal values listed in Table 2.3 and Eq. (2.74). To match these values
with the experimentally obtained D0, I modified σtotal by a factor of 1

20 .

We can estimate the diffusion constant using

D =
1

3
L v̄Rb−bg =

1

nbgσtotal

√
8kB T

9πmRb
, (2.74)
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Table 2.5: Optical pressure broadening, αb, and line shift, αs, coefficients, and
their respective temperature coefficients, κb and κs, for the Rb D2 line in the
presence of various buffer gases. The reference temperature is T0 = 273.15 K for
the Ref. [137] values, and T0 = 394 K for the Ref. [138] values. In the absence
of available published temperature coefficients for N2, I used κb = κs = 0.3.

Buffer αb κb
αs κsGas (MHz/torr) (MHz/torr)

He 23.8 [137] 0.42 [108] 0.61 [137] 1.20 [108]

Ne 9.47 [138] 0.27 [108] -2.44 [138] 0 [108]

N2 18.3 [138] (0.3) -5.79 [138] (0.3)

Ar 17.7 [138] 0.32 [108] -5.76 [138] 0.31 [108]

Kr 17.2 [138] 0.32 [108] -5.50 [138] 0.31 [108]

Xe 17.8 [138] 0.32 [108] -6.19 [138] 0.31 [108]

Table 2.6: Diffusion coefficients for Rb in various buffer gases, with the reference
temperature T0.

Buffer Gas D0 (cm2/s) T0 (◦C)

He 0.35 [150] 80

Ne 0.20 [151] 0

N2 0.159 [152] 60

Ar 0.14 [5] 27

Kr 0.068 [151] 0

Xe 0.057 [151] 0
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where L is the mean free path of Rb atoms in the buffer gas, given by Eq. (2.44),
v̄Rb−bg is the mean relative Rb-buffer gas velocity, given by Eq. (2.42), the buffer gas
density, nbg, is given by Eq. (2.61), σtotal is the total cross section for Rb-buffer gas
collisions of any type, given in Table 2.3, and mRb is the Rb mass. We can see that D
is inversely proportional to the buffer gas density, and that the temperature scaling
is influenced by T 1/2 from v̄Rb−bg, and some unknown contribution from σtotal.

The estimation of the diffusion constant is useful for a qualitative understanding,
but in practice we use a value derived from experiment. The published value is given
as D0, the diffusion constant at a reference temperature T0 and reference pressure
P0 = 1 atm. The reference temperature is often T0 = 0◦C, but it can also be the
measurement temperature. Values of D0 for Rb in various buffer gases are listed in
Table 2.6. The diffusion constant at general temperature T and buffer pressure P
is [151]

D = D0
P0

P

( T
T0

)κ
, (2.75)

where P is given by Eq. (2.63), and κ = 3/2 [6, 152, 153]. If multiple buffer gas
species are used, the diffusion constant is given by

1

D
=

1

D1
+

1

D2
+ · · · . (2.76)

Figure 2.10 compares calculated and measured diffusion coefficients as a func-
tion of buffer gas atomic or molecular mass. The calculated values, obtained using
Eq. (2.74) and the σtotal values listed in Table 2.3, do not match with the measured
D0. This appears to be due to the σtotal values, which were obtained in atomic
beam experiments, and appear to be a factor of 20 larger than that implied by the
measured D0 values. I have therefore plotted the calculated D0 in Figure 2.10 using
1
20σtotal. The agreement between the data sets for the variation in D0 for the differ-
ent buffer gases is then reasonably good, with He the only significant discrepancy.
As one might expect, D0 decreases with buffer gas mass. N2 stands out with a
smaller D0 than the heavier Ar, most likely due to its molecular nature.

2.8 Antirelaxation Coatings

Antirelaxation (a.k.a. wall) coatings are the alternative technique to using buffer
gases for minimising wall induced relaxation. The idea is to coat the inside of the
cell wall with a more ‘friendly’ substance, with which the Rb can collide without
changing its spin state. Coatings are typically made of some long hydrocarbon
chain, with the H atoms acting as a weakly-perturbing blanket to shield the Rb
from the wall. Paraffin, which allows Rb to bounce off the order of 104 times before
depolarisation, was an early and particular favourite. The most effective coatings
can allow as many as 106 bounces [154].

There are a number of disadvantages of wall coatings however, and barriers to
their use. Wall coatings are notoriously difficult to apply, and for some coatings,
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perhaps only a single group or person worldwide has mastered their application. The
majority of coatings also fail at quite low temperatures. Paraffin wax, for example,
is limited to 60−80◦C [145]. Finally, the buffer gas in our cells is also important for
confining the Rb atoms in order to provide high spatial resolution in imaging, and
we would want to fill our cells with some buffer gas regardless 12.

A coating that is compatible with the high operating temperatures required in the
ultrathin cells presented in Chapters 6 and 7 is OTS (octadecyltrichlorosilane) [155],
which is capable of operating at temperatures up to 160◦C without permanent dam-
age, and allows 100s to 1000s of bounces. Despite the OTS temperature tolerance
being well below the 300− 500◦C required for anodic bonding, microfabricated cells
with an OTS coating have been produced through a combination of anodic bonding
and an indium seal [156]. Although I did not use OTS in this thesis, its use in future
ultrathin imaging cells is worth investigation.

2.9 Conclusions

Table 2.7 shows typical parameter values in the three main vapor cells used in this
thesis, using the theory presented in this chapter.

The presence of 85Rb in a vapor cell has a number of negative influences on the
optical and microwave responses of the cell. The 87Rb density is reduced for a given
temperature, as the temperature determines the total Rb density, regardless of the
isotopic mixture. This results in faster SE relaxation for a given 87Rb density, as
the SE relaxation rate is given by the total Rb density. For a given temperature, the
reduced 87Rb density results in a reduction in OD87 and therefore signal strength.
Absorption from 85Rb contributes significantly to the signal background, and for a
laser tuned to the 87Rb F = 2 → F ′ transition, OD85 accounts for approximately
1/2 to 2/3 of the total cell OD, as seen in Figure 2.4 and Table 2.7. The overlap
of the 87Rb and 85Rb optical absorption lines means that the 87Rb F = 2 → F ′

transition generally does not correspond to a peak in the total OD spectrum of the
cell, but is rather a bump on the shoulder of the 85Rb F = 4 → F ′ transition.
Measurements on the 87Rb F = 2→ F ′ transition are thus particularly sensitive to
frequency drifts, as frequency noise is almost linearly converted to amplitude noise.

It is likely then that for probing the atoms, the optimal transition is the 87Rb
F = 1 → F ′ transition, due to its reduced overlap with the 85Rb absorption lines.
Optical pumping is best performed on the F = 2 → F ′ transition however, as this
results in the largest population per mF state, with complete optical pumping giving
1/3 of the atoms in each of the F = 1 mF states. The 85Rb absorption has less
influence for the optical pumping, and can be compensated for simply by increasing
the pump laser intensity.

It is not immediately clear whether pumping or probing on the D1 transition
would be beneficial, and further analysis is worthwhile. The 0.8 GHz splitting of the

12The need for buffer gas to provide spatial confinement would be eliminated, however, if we used
a cell comprised of an array of ∼ 10− 20µm sized antirelaxation coated microcells.
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Table 2.7: Typical properties for the three main vapor cells used in this thesis.
The laser is locked to the (unperturbed) F = 2 → F ′ = 2, 3 crossover peak.
Shifts are given in units of cyclic frequency (ν).

M1 cell M2 cell U1 cell
Chapters 4, 8 Chapter 8 Chapters 6, 7

Cell
Thickness (mm) 2 2 0.14

Transverse R = 5 mm R = 5 mm 6× 6 mm2

T (◦C) 90 90 140

Rb

87Rb abundance 0.2783 0.75 0.2783
nRb (cm−3) 3.1× 1012 3.1× 1012 6.1× 1013

nRb87 (cm−3) 8.7× 1011 2.3× 1012 1.7× 1013

PRb87 (mbar) 4.3× 10−5 1.2× 10−4 9.6× 10−4

Buffer

Tfill (◦C) 80 70 22
PN2 (mbar) 63 15.3 25
PKr (mbar) 0 0 75
PAr (mbar) 0 18.7 0

OD
ODtotal 1.79 4.21 2.40
OD87 0.97 4.06 0.73
OD85 0.82 0.15 1.67

∆νopt Lorentzian (GHz) 0.94 0.51 1.8
Shifts and ∆νopt Doppler (GHz) 0.56 0.56 0.60

Broadening δνopt shift (MHz) -298 -165 -566
(FWHM) ∆νmw broadening (kHz) 1.1 1.3 38

δνmw shift (kHz) 25.2 5.3 -27.4

Diffusion
D (cm2/s) 3.1 6.0 1.5

∆x(t = T1) (µm) 420 513 48.5

Mean Free LRb−Rb (mm) 16 16 0.83
Path LRb−bg (µm) 1.7 3.5 0.64

Rb-Rb (total) 1.8× 104 1.8× 104 3.8× 105

Rb-Rb (γ1SE) 2.5× 103 2.5× 103 5.2× 104

Collision Rb-Rb (γ2SE) 1.9× 103 1.9× 103 4.0× 104

Rates (s−1) Rb-buffer (total) 3.5× 108 1.6× 108 7.0× 108

Rb-buffer (γ1bg) 7.9 16 253
Rb-buffer (γ2bg) 612 236 2.8× 104

Rb-wall (γwalls) 1.1× 103 2.0× 103 7.5× 104

Quenching (RQ) 3.3× 108 8.4× 107 1.7× 108

Relaxation
γ1 (s−1) 3.5× 103 4.5× 103 1.3× 105

γ2 (s−1) 3.6× 103 4.2× 103 1.2× 105

T1 (µs) 282 221 7.8
T2 (µs) 280 240 8.5
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two 87Rb 5P1/2 F states could be beneficial for some optical pumping, as might the
presence of dark states on the D1 line. The optical broadening and line shifts are
almost identical on the two lines [138] however, and N2 quenching is only slightly
better on the D1 line [101, 103]. Relaxation between the ground states would also
remain unchanged.

The choice of buffer gas type and pressure depends on the geometry of the cell
and the intended use. Thinner cells will require higher buffer pressures to reduce
wall relaxation. The upper limit on the buffer gas pressure is given by the desired
OD for a given operating temperature and cell thickness. The optical broadening
should also be less than the 6.8 GHz hyperfine splitting. Cells with a large transverse
OD, such as the ultrathin cells used in Chapters 6 and 7 are particularly prone to
radiation trapping, necessitating the use of a quenching gas. The microfabricated
cells used in Chapters 4 and 8 were produced by our collaborators in Neuchâtel.
The cells are optimised for use in clocks, and thus have lower buffer gas pressures
than would be optimal for our imaging purposes.
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Chapter 3

Imaging Techniques using
Atoms

In this chapter, I describe the features that are common to all of the experiments
in this thesis. These include the theory for microwave field reconstruction (for
fixed frequencies); the experiment sequences for double resonance, Franzen, Ramsey,
and Rabi measurements; absorption imaging; field sensitivity; spatial and temporal
resolution; and common pieces of equipment.

3.1 Microwave Field Reconstruction

The major drive of this thesis was developing techniques to image microwave mag-
netic fields. Our technique for microwave imaging using atoms was originally devel-
oped by Pascal Böhi et al. with ultracold atoms [54, 157], who then demonstrated
microwave imaging with vapor cell atoms in a proof-of-principle setup in Ref. [50]. At
the time however, many of the processes affecting the performance of this technique
in a vapor cell were not yet carefully analysed.

We detect microwaves by driving Rabi oscillations on atomic hyperfine transi-
tions and observing the resulting oscillations in OD. Rabi oscillations are coherent
oscillations between two energy levels, driven by a near-resonant electromagnetic
field [96, 158]. For a resonantly driven two level atom starting initially in state |1〉,
the normalised population of state |2〉 in the absence of damping mechanisms is

p2 = sin2
(1

2
ΩR t

)
, (3.1)

As shown below, the Rabi frequency, ΩR, is proportional to the microwave field
amplitude, with different hyperfine transitions driven by different polarisation com-
ponents of the field. By measuring Rabi oscillations on several transitions, we are
able to fully reconstruct the microwave magnetic field up to a relative overall phase:
we can obtain each of the polarisation components and the relative phase between
the polarisation components.
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Figure 3.1: Energy splitting of the 87Rb hyperfine ground state levels as a
function of applied static magnetic field, B0. The labels A1...8 are introduced
and used in Chapter 8.

The following sections detail microwave reconstruction at fixed microwave fre-
quencies, in the presence of a weak static magnetic field. Reconstruction of mi-
crowaves of arbitrary frequency, in the presence of intermediate to strong dc mag-
netic fields, is discussed in detail in Chapter 8. Values of various relevant constants
are provided in Appendix A.

3.1.1 87Rb Hamiltonian in a DC Magnetic Field

In an unperturbed atom, the mF levels of each F state are degenerate. We apply a
static magnetic field to Zeeman shift the mF levels and lift this degeneracy, allowing
the ground state hyperfine transitions to be individually addressed by tuning the
microwave frequency. Due to power broadening from the microwave, it is important
that the splitting, ωZ , is larger than the Rabi frequency, ΩR. The Hamiltonian for
the hyperfine splitting of an atom in an external static magnetic field B0 = Bzẑ is

H = Hhfs +HZ = AhfsI · J + µB(gIIz + gJJz)Bz, (3.2)

where Hhfs is the hyperfine coupling Hamiltonian, HZ is the Zeeman Hamiltonian,
I and J are the atomic nuclear and electronic spin, respectively, gI and gJ are the
corresponding g-factors, and Ahfs is the hyperfine coupling constant.

The hyperfine splitting at zero field is Ehfs = Ahfs(I+1/2) ≈ h·6.8 GHz [88, 159].
For a weak magnetic field, we can obtain approximate analytic eigenvalues and
eigenvectors for H by treating the Zeeman term, HZ , as a perturbation to Hhfs. To
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first order, the energies of the 87Rb 52S1/2 hyperfine eigenstates, |F,mF 〉, are then
given by

E = Ehfs + EZ , (3.3)

where the Zeeman shift for each 87Rb 52S1/2 mF level is

EZ = gFµBmFBz. (3.4)

The hyperfine g-factor gF is

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
,

(3.5)
which gives gF ≈ −(+)1/2 for F = 1(2), respectively. For the i = 4 transition (see
section 3.1.2), the first order Zeeman shift is zero, and the second order shift is given
by [88]

EZ(i = 4) =
(gJ − gI)2µ2

B

2Ehf
B2
z = 575.15 Hz/G2. (3.6)

The low-field Zeeman shift for each hyperfine transition is listed in Table 3.1.

For large magnetic fields, Hhfs becomes a perturbation to the Zeeman Hamilto-
nian, Hz. In this case, the ‘good’ quantum numbers are no longer F and mF , but
instead I, mI , J and mJ . Within the 52S1/2 level, we always have I = 3/2, J = 1/2,
and it is convenient to compress the state notation to |mI ,mJ〉. To first order, the
energies of the |mI ,mJ〉 states are

E = gIµBBzmI + gJµBBzmJ +AhfsmImJ . (3.7)

As gI is 3 orders of magnitude smaller than gJ , we can usually neglect the first term.

For intermediate field strengths, where the magnitudes of Hhfs and Hz are of
the same order, we can no longer take a perturbative approach. In general, one
would have to resort to numerical modeling, but the D lines of the alkali atoms
are a particularly fortunate case. As J = 1/2, we can use the Breit-Rabi formula,
a simple analytical expression that gives the hyperfine energy splitting for all field
strengths [88]. We have

E(F,mF ) = −
Ehfs

2(2I + 1)
+ gIµBmFBz ±

Ehfs
2

(
1 +

4mFx

2I + 1
+ x2

)1/2
, (3.8)

where x = (gJ−gI)µB
Ehfs

Bz and the ± sign is determined by the sign of mJ . Figure 3.1

shows the resulting energies of the hyperfine states as a function of applied dc mag-
netic field. In the low field regime, the states are grouped according to the |F,mF 〉
basis, with three states in the lower F = 1 group and five in the F = 2 group. In
the high field regime, the states are grouped according to |mI ,mJ〉, with four in the
lower mJ = −1/2 group and four in the mJ = +1/2 group.
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3.1.2 Hyperfine (Microwave) Transitions

In the low-field regime, there are nine possible hyperfine transitions between the
87Rb ground states, three from each mF level of F = 1. As the Zeeman shift is
proportional to the mF number, two pairs of transitions are degenerate: |1,−1〉 →
|2, 0〉 and |1, 0〉 → |2,−1〉; and |1, 0〉 → |2, 1〉 and |1, 1〉 → |2, 0〉1. This leaves us
with seven resonances, which we label i = 1 . . . 7, in order of increasing frequency.
Table 3.1 lists the transitions, along with the polarisation of the transition and the
hyperfine states involved. i = 4 represents the ‘clock transition’, exploited in atomic
clocks [6, 7]. Figure 3.2 shows example spectra of the 7 transitions, as a microwave
applied to vapor cell atoms is swept across the resonances.

For imaging microwave magnetic fields, the i = 1, 4, 7 transitions are the most
useful. The dc-field-insensitive i = 4 transition is the most robust for detecting the
π microwave component, and the i = 1, 7 transitions are the only non-degenerate
transitions sensitive to the σ components of the field. For imaging dc magnetic fields,
the i = 4 transition is no longer useful. The dc field can then measured using any
of the i = 1, 2, 6, 7 transitions. Transitions i = 2 and i = 6 are useful in cancelling
out common-mode shifts in dc field imaging, as they are both driven by the same
(π) component of the microwave field.

Table 3.1: List of the hyperfine transitions between the 87Rb ground states,
in a weak static magnetic field. αi, describing the relationship between Rabi
frequency and the driving microwave field components, is defined in Eq. (3.16).
Note that this definition of αi depends on the choice of definition of the field
components and Rabi frequencies given in Section 3.1.3. For the i = 4 transi-
tion, the first order Zeeman shift is zero, and the second order shift is given in
brackets.

i |F,mF 〉 Polarisation αi Zeeman Shift (MHz/G)

1 |1,−1〉 → |2,−2〉 σ− −
√

1/3 -2.1

2 |1,−1〉 → |2,−1〉 π −
√

4/3 -1.4

3
|1,−1〉 → |2, 0〉 σ+

√
2

-0.7
|1, 0〉 → |2,−1〉 σ− −

√
2/3

4 |1, 0〉 → |2, 0〉 π −1 0 (575.15 Hz/G2)

5
|1, 0〉 → |2, 1〉 σ+

√
2/3

+0.7|1, 1〉 → |2, 0〉 σ− -
√

2

6 |1, 1〉 → |2, 1〉 π −
√

4/3 +1.4

7 |1, 1〉 → |2, 2〉 σ+

√
1/3 +2.1

1Note that while this is accurate to first order for weak magnetic fields, the degeneracy breaks
for strong fields, such as those addressed in Chapter 8
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3.1.3 Rabi Frequencies

The microwave magnetic field reconstruction is based on experimentally determined
absolute values of Rabi frequencies. This section follows Ref. [157] and the sup-
plementary notes to Ref. [54]. We begin by defining the microwave magnetic field
vector, B(r, t) = 1

2 [B(r)e−iωt + B∗(r)eiωt], where r = (x, y, z) is the position in the
fixed cartesian lab-frame coordinate system. The complex phasor of the microwave
field is

B(r) ≡

Bx(r)e−iφx(r)

By(r)e−iφy(r)

Bz(r)e−iφz(r)

 .

With Bx,y,z(r), φx,y,z(r) ∈ <≥0. It is these six real values, Bx,y,z(r), φx,y,z(r), that
we need to obtain in order to reconstruct the microwave magnetic field.

We take measurements with an applied static magnetic field, B0, pointing along
several axes. B0 defines the quantisation axis of the system, and the π and σ
components of the microwave field, which drive the atomic transitions, are defined
relative to B0. We therefore introduce a new cartesian coordinate system, (x′, y′, z′),
with the z′-axis pointing along the direction of B0. Suppressing the dependence of
B(r) on r in order to simplify notation, the microwave magnetic field phasor in the
new coordinate system is then

B ≡

Bx′e−iφx′By′e
−iφy′

Bz′e
−iφz′

 .

We define the π and σ components of the microwave field in this new frame as

B−e
−iφ− ≡ 1

2

[
Bx′e

−iφx′ + iBy′e
−iφy′

]
, (3.9)

Bπe
−iφπ ≡ Bz′e−iφz′ , (3.10)

B+e
−iφ+ ≡ 1

2

[
Bx′e

−iφx′ − iBy′e−iφy′
]
, (3.11)

with B−,π,+, φ−,π,+ ∈ <≥0. For transitions from an initial state |1〉 to a final state
|2〉, the Rabi frequencies are

Ω− ≡
2µB
~
〈2| J− |1〉B−e−iφ− , (3.12)

Ωπ ≡
2µB
~
〈2| Jz |1〉Bπe−iφπ , (3.13)

Ω+ ≡
2µB
~
〈2| J+ |1〉B+e

−iφ+ , (3.14)

Where Jz, J+ = Jx + iJy, and J− = Jx − iJy are the spin z, raising, and lowering
operators, respectively.
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Note that in the definitions of B− and B+, a factor of 1/
√

2 instead of 1/2 can
also be found in some of the literature (e.g. in Ref. [6]). This goes along with a
change in the definitions of J+ and J−, which then read J± = 1√

2
(Jx ± iJy). If

this alternative definition is used, the coefficients α+ and α− in Eqs. (3.15-3.16) are
larger by a factor of

√
2.

3.1.4 Microwave Amplitude

The magnitudes of the π and σ microwave components are given by a simple rear-
rangement of Eqs. (3.12)-(3.14),

Bγ = |αi|
~
µB
|Ωγ |. (3.15)

Here, i labels the hyperfine transition, γ = −, π,+ is the polarisation of the transi-
tion, and

αi ≡
1

2 〈2| Jγ |1〉
. (3.16)

Transition polarisations and α values are listed in Table 3.1.

The magnitudes of the microwave components in the lab frame, Bx, By, and Bz,
are easily obtained by noting that Bπ = Bz′ , and by performing measurements of
Bπ with B0 pointing along each of the lab-frame x, y, and z axes.

3.1.5 Microwave Phase

The relative phases between the microwave polarisation components can be obtained
from measurements of the microwave π and σ transitions taken with the static field
pointing along each of the x, y, and z lab frame axes [157]. We have

sin(φy − φx) =
1

~BxBy

(
(Bz
−)2 − (Bz

+)2
)
, (3.17)

sin(φx − φz) =
1

~BxBz

(
(By
−)2 − (By

+)2
)
, (3.18)

sin(φz − φy) =
1

~ByBz

(
(Bx
−)2 − (Bx

+)2
)
, (3.19)

where the superscript Bx,y,z
γ denotes the orientation of the static field in the lab

frame.

3.1.6 Power Broadening and Off-Resonant Microwaves

For a non-zero microwave detuning, the oscillations are

p2 =
Ω2
R

Ω2
R + δ2

sin2
(1

2

√
Ω2
R + δ2 t

)
. (3.20)
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The atom oscillates at a new, faster frequency, Ω =
√

Ω2
R + δ2, where δ is the

microwave detuning, and ΩR is the Rabi frequency of the transition, as defined
above. The oscillation amplitude is also reduced compared to the resonant case.
The frequency dependence of the oscillation amplitude, Ω2

R/(Ω
2
R + δ2), leads to a

power broadening of the hyperfine transition. The FWHM of the power broadened
line is 2ΩR.

For measurements performed in an inhomogeneous static field, a microwave de-
tuning of zero will not be achieved across the entire vapor cell. A detuned microwave
is also difficult to avoid if the buffer gas shift is not constant (see Section 6.5.1). For
weak microwave fields and large detunings, this can lead to a large overestimation of
the microwave amplitude. In practice, the overestimation in this thesis was on the
percent level or below. In Chapter 7, the microwave detuning was approximately
0 − 10 kHz. For a 30µT microwave driving 420 kHz Rabi oscillations, a 10 kHz
detuning leads to a fractional overestimation of 2.8 × 10−4. For a weaker 5µT mi-
crowave driving 56 kHz Rabi oscillations, the 10 kHz detuning leads to a fractional
overestimation of 1.6× 10−2.

3.2 Experiment Sequences

I used four key experiment sequences in this work. In the frequency-domain, I
took double-resonance (DR) spectra [7], and in the time-domain I used Franzen [1],
Ramsey [160], and Rabi [158] sequences.

DR spectra are a versatile and quick experiment tool, providing the frequency-
space locations and widths of the hyperfine transitions. Franzen, or relaxation-
in-the-dark, sequences are all-optical, and are used to obtain T1 times. Ramsey
sequences provide both T1 and T2 times, and the microwave frequency detuning from
resonance, which can be used to image dc magnetic fields. As noted in Section 2.5,
the T1 times refer to population relaxation between all F = 1 and F = 2 sublevels,
whilst the T2 times are specific for the particular hyperfine mF transition probed.
Rabi sequences are used to image applied microwave magnetic fields.

In a typical time-domain sequence, we first apply an optical pumping pulse to
the vapor that depopulates the F = 2 state. This is followed by an evolution
period, which may include microwave pulses that coherently manipulate the atomic
hyperfine state. We then measure the OD in the F = 2 state with a probe laser
pulse of the same frequency, but much shorter duration than the optical pumping
pulse, in order to minimise optical pumping during the probe pulse. The sequence
is then repeated, scanning the evolution time.

The example data provided in the following sections is from the setup described
in Chapter 4 and Ref. [51]. The setup consisted of a 2 mm thick vapor cell, with
natural Rb and 63 mbar of N2 buffer gas, placed inside a microwave cavity. The
transmission of the probe laser pulse was measured with a photodiode 10 µs after
its start, in order to accommodate the photodiode response time. A laser intensity
of ≈ 5 mW/cm2 was used, with the beam partially covering the cell. Scanning the
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laser intensity from 0.1 mW/cm2 to 10 mW/cm2 produced no apparent variation in
relaxation times. This indicates that the small, constant amount of optical pumping
induced by the first 10 µs of the probe pulse does not greatly affect the measured
time constants. Uncertainties are taken from the 68% confidence bounds of fitting
to the data.

3.2.1 Double-Resonance Spectra

I generally used DR spectra [7] as a convenient lab tool: for finding hyperfine res-
onances shifted by buffer gases or static magnetic fields; checking that the vapor
cell atoms could ‘see’ a microwave field when aligning a setup; and checking that
the hyperfine transitions were sufficiently separated for a given dc magnetic field
and microwave power broadening. In Chapter 8, I also used DR sequences to image
dc magnetic fields, by measuring the Zeeman shift of a transition. As discussed in
Appendix G, it was often easier and faster to see the effect of microwaves on atoms
using DR spectra than Rabi or Ramsey sequences. DR spectra can also be used as
a precision experiment tool, with the DR spectrum of the i = 4 ‘clock’ transition
used as the signal in cw atomic clocks, for example.

A DR spectrum is produced by scanning the frequency of an applied microwave
as the laser illuminates the cell. For this measurement, both the microwave and
laser are continuously on. Whenever the microwave comes onto resonance with a
hyperfine transition, the optically pumped F = 2 state is repopulated. This results
in a dip in the transmission of the laser, which is recorded by a photodiode. The
area of the DR peak is proportional to the field strength, and this can be used to
compare the relative strengths of the microwave polarisation components.

Figure 3.2 shows example DR spectra in the Chapter 4 setup, for different laser
polarisations. The π-transitions, i = 2, 4, 6, are the strongest, as the microwave
cavity is designed to operate in a mode where the π-component dominates. The
∼ 0.5 MHz splitting of the transitions corresponds to a dc field of 0.7 G. By varying
the laser polarisation, optical pumping is able to build up excess population in the
positive or negative mF states, and thus modulate the DR peak strengths. The
strength of the i = 4 transition is relatively unaffected for the pumping parameters
used here. Although I generally used a linearly polarised laser in this thesis, Fig-
ure 3.2 shows that the signal strength of the i 6= 4 transitions can be enhanced by
tuning the pump laser polarisation.

3.2.2 Franzen Sequence

The Franzen sequence is shown schematically in Figure 3.3.a. We begin the sequence
by optical hyperfine pumping of the atoms for ∼ 1 ms, depopulating the F = 2
ground state and reducing the OD of the cell [4]. The laser beam is then switched
off with an AOM2, and the pumped population difference begins relaxing at a rate

2acousto-optical modulator
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Figure 3.2: Double resonance signals in the Chapter 4 setup, for a σ−, π,
and σ+ polarised laser. The transitions are labelled i = 1 . . . 7, according to
the definition in Section 3.1.2. σ−(+) polarisations shift the optically pumped
populations to the negative (positive) mF levels, giving a corresponding increase
in the DR peak areas from these levels. The three measurements are vertically
offset for visibility.

1/T1. After a time dtdark, we measure the OD with a probe pulse. Scanning dtdark
allows us to observe the hyperfine population relaxation and to determine T1.

Figure 3.3.a shows data from an example Franzen sequence. As discussed in
Section 2.7.4, atomic diffusion is generally dominated by the lowest order mode, and
the T1 time is well-described by a single exponential. We fit the following equation
to the data:

OD = A−B exp(−dtdark/T1), (3.21)

where A, B, and T1 are fitting parameters. For the data shown in Figure 3.3.a, this
yields T1 = (244± 6) µs. Close to the cell walls, diffusion is no longer single-mode,
and relaxation cannot be described by a single exponential. In this case, we can
define the T1 time as the time taken for the optical pumping to decay to 1/e of its
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original value,

u(T1) =
1

e
u(0), (3.22)

where u is the degree of optical pumping (see Chapter 2). In the limit where the
temporal decay of u can be described by a single exponential, this definition is
identical to the exponential fit in Eq. (3.21). As seen in Chapter 4, the two T1

definitions are in close agreement in most of the cell.

The simple nature of the Franzen data and the fitting equations result in fast
fitting and robust T1 values.

3.2.3 Ramsey Sequence

In Ramsey sequences [160], we introduce two microwave pulses between the pump
and probe laser pulses of the Franzen sequence, as shown schematically in Fig-
ure 3.3.b, and slightly detune the microwave frequency from resonance. The first
pulse creates a coherent superposition of the two hyperfine mF states that are cou-
pled by the microwave. During the subsequent free evolution of duration dtR, the
detuning of the microwave frequency from the atomic resonance results in the atomic
superposition state accumulating a phase relative to the microwave local oscillator.
The second microwave pulse converts this phase into a population difference be-
tween the hyperfine states. By scanning dtR, oscillations of the atomic population
are recorded. Each microwave pulse is nominally a π/2 pulse, however variation
in the microwave field across the cell can result in atoms experiencing a range of
pulse areas. For a given microwave power setting, the nominal π/2 pulse length is
obtained by performing a Rabi sequence using a broad laser beam that illuminates
the entire cell (or area of interest), and measuring the Rabi oscillation period on a
photodiode. The π/2 length is then taken as 1/4 of this period. Ramsey sequences
are robust to laser and microwave field induced decoherence, as the majority of the
atomic evolution occurs in the dark, with the microwave and optical fields off. As
such, they provide a good measure of the T2 time of the cell.

Figure 3.3.b shows an example Ramsey sequence. The microwave power at the
input to the cavity was 29.8 dBm. To record Ramsey oscillations in time, the
microwave was slightly detuned by δ from the i = 4 transition. Although the data
is only shown up to 500 µs, Ramsey oscillations are still clearly visible at evolution
times past 1.2 ms. The data is fit with the equation

OD = A−B exp(−dtR/T1)

+C exp(−dtR/T2) sin(δ dtR + φ) (3.23)

Where A, B, C, φ, T1, T2, and δ are fitting parameters. The fit gives the two
relaxation times as T1 = (245 ± 0.5)µs and T2 = (322 ± 4)µs. The T1 time is
in excellent agreement with that obtained from the Franzen measurement. The
exact detuning of the microwave from resonance is given by the Ramsey oscillation
frequency, δ = 2π× (135.764± 0.006) kHz. This knowledge can be used to tune the
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microwave (almost) exactly on to resonance for a Rabi sequence, though at least
two Ramsey measurements are generally needed, in order to know the sign of the
detuning. The level shifts imposed by the microwave are different in Ramsey and
Rabi sequences, however, as the microwave is off for most of the Ramsey sequence.
Although in practice the microwave level shift is often small, the Ramsey detuning
cannot account for this difference in level shifts.

The measured T2 is specific to the clock transition. Tuning the microwave to
field-sensitive transitions (i 6= 4), we see T2 drop by a factor of two to three, primarily
due to dephasing introduced by inhomogeneities in the static magnetic field.

Given that we have good knowledge of our generated microwave frequency, the
microwave detuning (obtained by either a Ramsey or DR sequence) gives a measure-
ment of the atomic resonance frequency. This can be used to image the dc magnetic
field, by providing the Zeeman shift seen by the atoms, which we can fit to the
Breit-Rabi formula, Eq. (3.8). We can eliminate common-mode frequency shifts,
such as the buffer gas shift, by combining images obtained on different transitions.
The common-mode rejection is also a convenient method for measuring the buffer
gas shift.

3.2.4 Rabi Sequence

A Rabi sequence, shown schematically in Figure 3.3.c, consists of a single microwave
pulse applied during the dark time between the laser pumping and probe pulses [158].
As discussed in section 3.1, the microwave pulse drives Rabi oscillations between
the two resonantly coupled mF sublevels of F = 1 and F = 2, at a frequency
proportional to the microwave magnetic field strength. This allows us to use Rabi
sequences to image the microwave magnetic field.

An example Rabi sequence is shown in Figure 3.3c. The microwave power at the
input to the cavity was 27.8 dBm, and the microwave frequency was tuned exactly
to the i = 4 transition, having been calibrated using a Ramsey sequence. Defining
τ1, the population difference lifetime, and τ2, the Rabi coherence lifetime, the data
is fit with the equation

OD = A−B exp(−dtmw/τ1)

+C exp(−dtmw/τ2) sin(Ω dtmw + φ), (3.24)

where A, B, C, φ, τ1, τ2, and Ω are fitting parameters. We obtain τ1 = (231± 9)µs
and τ2 = (94±3)µs. The Rabi coherence lifetime is significantly shorter than the T2

time obtained from the Ramsey measurement, principally due to the sensitivity of
the Rabi oscillations to inhomogeneous dephasing induced by a spatially non-uniform
microwave field. On the i = 4 transition, we are sensitive to the π component of
the microwave magnetic field, and so Ω4 = 2π × 50.39 ± 0.05 kHz corresponds to
Bπ = 3.600± 0.003 µT.

The sequence can be optimised for the detection of weak microwave fields by
introducing a π/2 pulse from a uniform microwave source (eg an external microwave
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horn) immediately after optical pumping. Rabi oscillations driven by the microwave
field of interest then start their oscillations halfway up the sine curve, maximising
the atomic response.

3.2.5 Fitting in Chapters 7 and 8

In Chapters 7 and 8, I used a modified absorption imaging sequence (see Section 3.3)
for the Ramsey and Rabi sequences, where the only difference between the actual
and reference images was the presence of the microwave. The resulting images were
then of ODmw, the change in OD induced by the microwave. For Ramsey sequences,
I fit the data with

ODmw = A+B exp(−dtR/T2) sin2(δ dtR + φ), (3.25)

where A, B, T2, δ and φ were fitting parameters. For Rabi sequences, I used

ODmw = A+B exp(−dtmw/τ2) sin2(1
2Ω dtmw + φ), (3.26)

where A, B, τ2, Ω and φ were fitting parameters. The isolation of the microwave
contribution improved the sensitivity to weak signals. With less fit parameters,
fitting was also significantly faster.

3.2.6 Alternative Techniques

The atomic candle technique is a frequency domain measurement of the Rabi fre-
quency [79]. Interest has been shown in using the technique to develop a new
microwave power standard, to replace the calorimeters currently used, which are
slow, expensive, and difficult to evaluate [83]. Both cold atoms [161, 162] and vapor
cells [80] have been used, with the atoms placed inside a microwave waveguide. In
a setup similar to a DR sequence (Section 3.2.1) the microwave frequency is locked
to a resonance, and the microwave phase is modulated. For a modulation frequency
ωm, there is a peak in OD when

2ωm = ΩRabi. (3.27)

The atomic candle may be more sensitive to weak microwaves than our time domain
Rabi sequence, as DR spectra are obtainable at weaker fields than Rabi oscillations.
This is not certain however, as Eq. (3.27) is derived assuming ωm T1 T2 � 1, and
there is little discussion of the case ωm T1 T2 ≈ 1 in the literature. The technique is
nonetheless worth further consideration.

3.3 Absorption Imaging

Absorption imaging is a powerful technique that was perfected in experiments with
ultracold atoms to obtain accurate images of atomic density distributions in a given
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hyperfine state [163]. It has been used to provide single-atom sensitivity [164], and
micrometer spatial resolution [165], however its use with room-temperature atoms
has been a relatively unexplored area. In absorption imaging, a set of reference and
dark images is usually taken in addition to the image where the atoms are present.
This allows one to calibrate out spatial variation of the probe laser intensity and
stray light [163]. An important difference between absorption imaging of cold atoms
and a hot vapor is that the presence of the atoms cannot be easily controlled in the
vapor cell, i.e. the vapor is always present in the laser beam path, even for the dark
and reference images. However, we can modify the experimental sequence between
the different images in order to be able to extract the relevant information from the
observed variation in optical density, ∆OD.

We record four images to create an image of ∆OD. As described in Figure 3.4,
these are the actual image (Iimage), taken after the entire sequence of optical pump-
ing, microwave pulses (for Rabi and Ramsey sequences), and probe pulse; a reference
image (Iref), taken 10 ms after every actual image, with a probe pulse, but with-
out optical pumping or microwave pulse; a dark image for the actual image (Idark1),
taken with a pump pulse, but no probe or microwave pulse; and a dark image for the
reference image (Idark2), taken without any pump, probe, or microwave pulse. For
a given setup, the two dark images are taken approximately once per day. In Chap-
ters 7 and 8, the reference image (and its corresponding dark image) also included
an optical pumping pulse. The ∆OD image is obtained by calculating

∆OD = − ln
[Iimage − Idark1

Iref − Idark2

]
. (3.28)

The absolute OD can then be determined by normalising to the OD in the steady
state without optical pumping. The use of reference and dark images significantly
reduces our sensitivity to short and long term drifts in the imaging system and to
spatial variations of the probe laser intensity.

The number of photons scattered per atom during the probe pulse can be esti-
mated with

Nphotons/atom =
I0 (1− e−OD) dtprobe

~ωL Ln
, (3.29)

where I0 is the incident laser intensity, dtprobe is the probe pulse duration, ωL is the
laser frequency, L is the cell length, and n is the Rb number density. An upper
limit is obtained by using the unpumped OD, calculated using the model presented
in Section 2.3. In addition, a more accurate estimation can be obtained by treating
the 87Rb and 85Rb isotopes separately.

In this thesis, I make a distinction between experiment shots and runs. Each
experiment shot contains an actual image and a reference image, as shown schemat-
ically in Figure 3.4.b, which provide a single ∆OD image. A run is comprised of
multiple shots of the experiment (typically 150), and I scan the experiment param-
eters (e.g. the dt evolution time) between the shots. I often performed multiple
identical runs, and averaged the ∆OD images for each timestep. Figure 3.4.c shows
an example of ∆OD images obtained from a set of 5 averaged Ramsey sequence
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see oscillations in the OD in time, which for this Ramsey data, we can fit to
obtain T1 and T2 at that location. Figure adopted from Ref. [166].
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runs. The Ramsey evolution time was scanned between shots, and each image is the
average of the 5 runs for that timestep. Examining a single pixel over the averaged
runs, we see a time-varying signal (equivalent to the photodiode measurements in
Figure 3.3), which we fit with Eqs. (3.21-3.24), for Franzen, Ramsey, and Rabi se-
quences, respectively. For a set of runs, I only fit the data once, after the runs are
averaged together.

3.3.1 Pixel Binning

After taking each image, we often bin the CCD pixels into N × N blocks. This
binning acts to reduce noise on the pixels and to reduce the computational intensity
of the fitting process. There is considerable opportunity for confusion in the resulting
nomenclature. In this thesis, I refer to the unbinned pixels as ‘CCD pixels’, and to
the N ×N binned blocks of CCD pixels as ‘image pixels’. I also use the unqualified
term ‘pixel’ to refer to the image pixels.

We used a fairly basic CCD camera, and binning was performed on the PC
during post-processing. A common feature on more expensive CCDs is the option
to perform the binning on the CCD chip itself. This reduces readout noise and
improves the readout speed and camera frame rate, as the binned electrons are
processed in a single readout.

3.3.2 Measurements of the Absolute OD

To directly obtain the cell OD, I generally used a powermeter3 placed before and
after the cell. When making many OD measurements, such as when measuring OD
as a function of temperature, I instead used beam-samplers to send a portion of
the laser beam to photodiodes before and after the cell. The photodiode signal was
calibrated using the powermeter.

If a probe laser with a large mode-hop free tuning range is available, another
good measurement of the OD is to measure an absorption spectrum of the Rb,
sweeping the laser frequency from well-below the optical lines to well-above. The
relative change in OD during the sweep is given by

∆OD = − ln(PD), (3.30)

where PD is the transmission signal of the probe laser beam on a photodiode. The
absolute OD can be obtained by noting that the far-detuned signal corresponds to
OD = 0.

3.3.3 Vibrations

Mechanical vibrations proved to be a significant experimental challenge in achieving
reliable imaging. We were required to undertake steps in order to minimise them,
such as rigidising mounting components.

3Newport, 1918-C, with 818-ST probe
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3.4 Field Sensitivity and Spatial and Temporal Resolu-
tion

A vapor cell can be thought of as an array of sensors, with the sensor length given by
the cell thickness, and sensor transverse dimensions given by the distance diffused
by atoms over the course of a measurement. The spatial resolution is determined
by the sensor size, and can be improved by using thinner vapor cells, higher buffer
gas pressures, or shorter measurement sequences. A price is paid in sensitivity
however. Smaller sensors contain less atoms and in general are interrogated by less
photons, which increases both the atomic projection noise and photon shot noise
limits. Shorter measurement times are also detrimental to sensitivity.

The following discussion is carried out in the context of microwave detection using
Rabi sequences. The equations are equally valid for the detection of dc magnetic
fields using Ramsey sequences though.

3.4.1 Atomic Projection Noise

The ultimate sensitivity of an atom-based sensor is given by the projection noise
of measurements of the atomic state [13]. In a system under near-continuous mea-
surement (or very short dead time between optimised pulsed measurements), the
microwave magnetic field sensitivity on the i = 4 transition is given by

δBatom =
~
µB

1√
Nat τ2 Tmeas

, (3.31)

where τ2 is the atomic coherence time, Tmeas is the length of time over which mea-
surements are made, and Nat is the number of atoms interacting with the field. τ2 is
the same as that used in Eq. (3.24)4, and δBatom is expressed in units of T Hz−1/2.
As the number of atoms is proportional to the sensor volume, V , the sensitivity
scales with V −1/2.

3.4.2 Photon Shot Noise

Very few atomic sensors reach the atomic projection noise limit, and often a more
realistic sensitivity limit is imposed by the finite number of photons reaching the
detector. The photon shot noise is calculated from the shot noise in the number of
electrons generated on the camera for each sensor,

Nelec =
Q (I0 e

−OD)Adtprobe
~ωL

, (3.32)

where Q is the quantum efficiency of the camera, I0 is the incident laser intensity,
OD is the (unpumped) optical density, A is the sensor cross-sectional area in the cell
plane, dtprobe is the length of the probe laser pulse, and ωL is the laser frequency.

4The equivalent for dc field imaging with a Ramsey sequence is the T2 time.
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The number of camera counts for each pixel is given by Ncounts = GNelec, where G
is the camera gain. The shot noise in camera counts is determined by Nelec,

∆Ncounts = G
√
Nelec. (3.33)

The change in OD induced by the microwave is given by ODmw = − ln(Nact/Nref ),
where Nact and Nref are the number of counts for the actual and reference images,
respectively. The smallest detectable change in OD, ODmin, is given by the OD shot
noise,

ODmin =

√( δOD
δNact

∆Nact

)2
+
( δOD
δNref

∆Nref

)2
. (3.34)

The condition for the smallest detectable microwave amplitude is that, during the
measurement time, the microwave must drive a Rabi oscillation fast enough to
change the OD by ODmin. For an optimised experiment sequence (see Sec. 3.2.4),
the change in OD induced by the microwave, ODmw, is given by

ODmw = ODmax
mw exp(−dtmw/τ2)

(
sin2(1

2 [ΩR dtmw + π
2 ])− 1

2

)
, (3.35)

where ODmax
mw is the maximum amplitude of the ODmw oscillations, ΩR is the Rabi

frequency, dtmw is the duration of the microwave pulse, τ2 is the coherence lifetime
(see Eq. (3.24)), and we have assumed the microwave detuning is zero. We can
estimate ODmax

mw from the OD contribution of the 87Rb atoms, OD87, and optical
pumping considerations. For pure 87Rb, assuming 100% optical pumping efficiency
and equal decay into the three F = 1 mF states, we begin a sequence with atoms
equally distributed among the F = 1 mF states. The microwave couples to 1/3 of
the atomic population, and ODmax

mw = 1
3OD87.

For weak fields, ΩR dtmw � π, and we can expand Eq. 3.35 in ΩR, to first order
giving

ΩR =
2

dtmw

ODmin

ODmax
mw

exp(dtmw/τ2). (3.36)

This shows that the sensitivity is maximised (i.e. ΩR is smallest) for dtmw = τ2.
Assuming we are working on the i = 4 transition, with α4 = −1, the smallest
detectable change in microwave amplitude for a single shot of the experiment is

∆B =
~
µB

ΩR =
~
µB

2

τ2

ODmin

ODmax
mw

exp(1), (3.37)

where ∆B is in units of T. For a run of Nshots taking a time dtrun, the photon shot
noise sensitivity limit is

δBphoton =

√
dtrun
Nshots

δB =

√
dtrun
Nshots

~
µB

2

τ2

ODmin

ODmax
mw

exp(1), (3.38)

with δBphoton expressed in units of T Hz−1/2.
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3.4.3 Spatial Resolution and Sensor Size

The spatial resolution and sensor size is given by the distance atoms move during
a measurement. The longitudinal spatial resolution is given by the cell thickness.
We can estimate the transverse spatial resolution from the distance an atom diffuses
during the measurement time,

∆x =
√

2Ddt, (3.39)

where D is the diffusion constant given in section 2.7.4, and dt is the measurement
time. Typically, we estimate using dt = T1, because our T1 estimates are more
accurate than our coherence lifetime estimates.

3.4.4 Parallel Measurements (Imaging vs. Scanning)

Because our measurement technique is an imaging technique, we record data for all of
the sensors in our array simultaneously. The ultrathin cells presented in Chapters 6
and 7 are comprised of Nsens ≈ 100× 100 sensors. Compared to creating an image
by scanning a single sensor, this improves our data taking speed by a factor of at
least Nsens, so four orders of magnitude, and our effective sensitivity considered over
the entire image by a factor of

√
Nsens. Parallel imaging is therefore more suitable

than scanning for applications requiring a high temporal resolution.

3.4.5 Temporal Resolution

The best possible timing resolution is obtained by operating in single-shot mode
(1 shot =1 actual + 1 reference image), where Bmw is determined from counting
the fringes on an ODmw image (see Section 7.2 for example images). With a perfect
camera and data saving system, the shot rate limit when running at maximum
sensitivity is given by twice the evolution time, once for each of the actual and
reference images. For an evolution time of 50µs this gives a 10 kHz shot rate, and a
temporal resolution of 100µs. Finer temporal resolution could be attained by taking
fewer reference images.

Experiment Control Timing Limitations

The current imaging system takes shots with a rate of approximately 10 Hz, giving
a timing resolution of 100 ms. This is 1000 times slower than optimal, and severely
limits our sensitivity. The lab PC limits the number of shots to 150 in a single run,
which takes a total time of 30 s including saving the data. The interaction time
with the atoms during this 30 s is minuscule: for imaging with the ultrathin cells
in Chapter 7, the microwave is interacting with the atoms for 150× 10µs = 1.5 ms,
and the detection laser is interacting with the atoms for only 150 × 0.3µs = 45µs.
This ensures that the photon shot noise is several orders of magnitude larger than
the atomic projection noise in the current setup.
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Solutions include a faster camera, possibly with integrated data averaging capa-
bilities to minimise the time taken transferring data to the computer, and a faster
data saving algorithm, most likely compiled and perhaps running outside of the
Matlab environment. For example, the 2500 fps imaging techniques demonstrated
in Ref. [167] would be applicable to our setup. Another possible option for improve-
ment of the photon shot noise limit would be to move to a different detection scheme
altogether, of continuous weak measurement using Faraday rotation [167]. Such a
scheme may require an array of photodiodes for sufficiently fast detection.

3.4.6 OD Image Streaming

A typical experiment sequence involves quickly taking the image data, and process-
ing the data at some later point. However, we can also immediately process the raw
data to provide images of the cell OD in real time. A stream of Rabi OD images, for
example, provides images of ODmw, and thus of the contour lines of the microwave
magnetic field (see Figure 7.1, Chapter 7). The technique provided a particularly
helpful experimental tool during alignment and parameter optimisation. The frame
rate is considerably slower than in a conventional imaging sequence, with the frame
rate determined primarily by the image processing speed on the PC. In order to
streamline the data processing, we do not save the streamed data, and the current
image processing provides an OD image streaming rate of 0.3 Hz. This is already
useful, but significant improvement should be possible, even with the current hard-
ware.

3.5 Equipment

A number of equipment items were common to all experiments, and these are de-
scribed below. Equipment specific to particular experiments is described in the
relevant chapter.

3.5.1 Experiment Control

We use a single PC for experiment control, data taking, and analysis. The ex-
periment control software is based around goodTime, developed initially by Jakob
Reichel, and contributed to by various people including Pascal Böhi [157] and Caspar
Ockeloen [168]. We use goodTime to send programming commands to the various
instruments via GPIB, and to send a ‘start’ signal. The software also controls loop-
ing of the experiment sequence, and communicates in a basic way with our data
taking code, Matcam lite. The ‘start’ signal is sent as a TTL pulse via a digital
I/O board5 to two pulse generators. The 8-channel pulse generators (also known as
delay generators)6 then control the pump and probe laser pulses, the camera, and

5National Instruments, PCI DIO 32HS
6Stanford Research Systems DG645, both with Option 3 (Combinatorial Outputs), one with

Option 5 (Rb timbase)
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the mw pulses. One pulse generator also has a Rb clock timebase, which we use to
provide a 10 MHz synchronisation signal to all of our instruments.

Matcam lite is a Matlab based interface for the camera that I wrote to replace
the Matcam programs developed in our group for use in ultracold atom experiments.
Although Matcam is entirely appropriate for ultracold experiments, where the cool-
ing process limits the experiment repetition rate to sub-Hz, it is far too slow for the
kHz or MHz repetition rates compatible with vapor cell experiments. Matcam lite
accumulates and collates image data from the multiple actual and reference image
shots taken during an experiment run, and automatically saves it afterwards. The
number of experiment shots during a run was limited by our computer memory to
150. The data saving process is quite long, and is responsible for approximately half
of the 30 s run time. Nonetheless, with Matcam lite I was able to achieve a nearly
100-fold improvement in experiment speed.

Matcam lite is integrated with goodTime as follows7: Each ‘execution’ of a good-
Time script corresponds to a set of identical experiment runs, with a single experi-
ment run performed per loop of the script. At the beginning of each loop, goodTime
calls a short Matlab script, ArmMatcam, which in turn initiates the Matcam lite
script. The use of ArmMatcam is necessary, as it is a built-in goodTime function
that ensures (in principle) that goodTime should wait for the Matcam lite script to
finish before the next goodTime loop begins. After a goodTime loop has completed
(i.e. after a single experiment run), goodTime calls the function StopMatcam, which
tells Matcam lite to save the data from that experiment run, and allows goodTime
to proceed to the next loop. It is also possible to directly send commands from good-
Time to Matlab, and this is used to send information on the experiment parameters
to Matcam lite, to be included in the saved data files.

3.5.2 Lasers

I used two home-built diode lasers in this thesis, one grating stabilised (GS-laser) [169],
and one interference filter stabilised (IF-laser) [170]. The lasers were frequency
locked to Rb using saturated absorption spectroscopy [96] and polarisation spec-
troscopy [171] for the grating and interference filter stabilised lasers, respectively, in
general to the F = 2→ F ′ = 2, 3 crossover peak of the 87Rb D2 line (5S1/2 → 5P3/2).
Figure 3.5 shows schematics of the two laser and spectroscopy setups. The laser fre-
quency sent to the experiment was 80 MHz red-detuned from the locking frequency,
due to the acousto-optical modulator (AOM) used for switching.

The grating stabilised laser had an output power of approximately 30 mW from
the box, and was used as the probe laser in Chapters 4-7, and simultaneously as the
pump beam in Chapters 4 and 5. The interference stabilised laser had an output
power of approximately 50 mW, and was used as the pump laser in the filling station
setup in Chapters 6 and 7.

I also used a commercial laser8 for the work presented in Chapter 8. The laser

7This paragraph is aimed mostly at other members of our research group.
8Newport, TLB-6712 Velocity Laser
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Figure 3.5: Schematic of the setup for the two home built lasers and their spec-
troscopies. The saturated absorption and polarisation spectroscopy were used
with the GS-laser and IF-laser, respectively. OI = optical isolator; λ/2, λ/4 =
waveplate; PBS = polarising beamsplitter; AOM = acousto-optical modulator;
PD = photodiode.

was chosen for its large mode-hop free tunable range (ca. 80 GHz). The stated
free-running linewidth of the commercial laser was < 200 kHz. Given the diffi-
culty associated with locking the laser frequency over the extremely wide range of
detunings required, I operated the laser without additional frequency stabilisation.

3.5.3 Microwave Generation

The microwave signal is provided by a 10 MHz to 26.5 GHz signal generator9, and
is passed through a short microwave circuit, providing switching and amplification,
before being sent to the experiment. In general, we use components capable of op-
erating up to 26.5 GHz, with 26.5 GHz-compatible SMA connectors. The switch10

operates from dc to 40 GHz, and we use three separate amplifiers. The first am-
plifier11 operates from 6 to 18 GHz, and provides 45 dB of gain, with a maximum

9HP8340B, from Hewlett Packard, now Keysight Technologies
10American Microwave Corporation, SWCH1K-DC40-SK
11Miteq, AMF-2B-06001800-65-35P
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output of 35 dBm. We use the other amplifiers in Chapter 8: a second amplifier12

operating from 18 to 26.5 GHz, which provides 30 dB of gain with a maximum out-
put of 29 dBm; and a third amplifier, kindly loaned from the Maletinsky group13,
operating from 2 to 8 GHz, which provides 35 dB of gain with a maximum output
of 33.5 dBm. Each amplifier is protected from back-reflections by a circulator14.

microwave
generator

switch
(TTL)

amplifier to experimentcirculator

Figure 3.6: Schematic of the microwave circuit used in this thesis.

3.5.4 Detectors

We used both photodiodes15 and a CCD camera16 for detection. The response time
of the photodiode signal was often improved using a 200 MHz current amplifier17,
providing sub-µs resolution. The camera CCD is comprised of 492 × 656 pixels,
with a pixel size of 5.6× 5.6µm2, and a quantum efficiency at 780 nm of Q = 0.27.
The camera was chosen for its relatively fast frame rate, 127 fps. As discussed in
Section 3.4.5, the experiment duty cycle is still severely limited by this frame rate.

12Miteq, AMF-8F-19002650-95-29P-TC
13Mini-Circuits, ZVE-3W-83+
14Ditom, DMC6018 and D3C1826; and Pasternack PE8432
15Thorlabs, DET10A/M
16Guppy Pro F031B
17Femto, DHPCA-100
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Chapter 4

Relaxation Imaging

There has been great interest in miniaturised vapor cells in recent years, with
such cells showing particular success in miniaturised atomic clocks [9, 10] and low-
frequency (dc to rf) electromagnetic field sensing [15–19]. A thorough knowledge of
the properties of a cell is prerequisite to precision measurements, with the spatial
dependence of relaxation times and excitation fields of particular importance for
microfabricated cells and imaging applications. Despite this, there remain many
unanswered questions regarding atomic interactions with the cell walls, and vapor
cell production can at times resemble as much an art as a science.

In this chapter, I describe a new technique for obtaining spatially resolved in-
formation on the T1 and T2 lifetimes in a cell, as well as collisional properties of
Rb with vapor cell walls. These properties have previously been studied without
spatial resolution by looking at their effect on the bulk properties of the cell, or with
some spatial resolution by scanning a narrow probe beam across the vapor cell or
using evanescent-wave techniques [172–176]. Probe beam scanning is cumbersome
and time-consuming, however, and characterisation with evanescent waves is not ap-
propriate for arbitrary cell geometries or for many cell materials, such as the opaque
Si walls investigated here.

I present the techniques through the characterisation of a microfabricated va-
por cell [10, 177] in a microwave cavity designed for compact vapor cell atomic
clocks [178]. The material presented in this chapter was published in Ref. [51].

4.1 Experiment Setup

We use the microfabricated cell shown in Figure 4.1.a, which we label cell M1. The
cell has a 5 mm× 2 mm internal diameter and thickness, and contains natural abun-
dance Rb and 63± 2 mbar of N2 buffer gas [10]. The windows of the cell are glass,
and the side-walls are Si. The buffer gas pressure was measured at 80◦C from the
line-shift induced on the 87Rb clock transition [10], using the coefficients provided
in [136]. The cell is inserted into a microwave cavity [178], which is tuned to have
its resonance frequency at the 6.835 GHz ground-state hyperfine splitting of 87Rb.
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Figure 4.1: a) The microfabricated vapor cell used in this chapter, with glass
windows and a black silicon frame; b) The vapor cell placed inside the microwave
cavity (end-cap removed for photo) and the solenoid coils; c) The experimental
setup; d) A double resonance spectrum of the cell inside the microwave cavity,
showing the clearly resolved hyperfine transitions. The π transitions (i = 2, 4, 6)
are strongest, as the microwave cavity is designed to operate in a mode where
the π-component dominates. Figure adopted from Ref. [51].

The cavity is surrounded by a solenoid coil that provides a static magnetic field of
35 µT, parallel to the direction of laser propagation (see Figure 4.1.c). The result-
ing 0.25 MHz Zeeman splitting between transitions allows all seven 87Rb hyperfine
transitions to be individually addressed, as shown in the double-resonance spectrum
of Figure 4.1.d. An outer double-layer of µ-metal provides magnetic shielding, and a
temperature control system is used to heat the cell and actively stabilise its temper-
ature to within a few parts in 104. The absolute temperature may have an offset of
several percent from the set temperature, however. This is because the microwave
cavity and temperature control system were designed for a much larger cell, with
the heating element and temperature sensors placed some distance from the M1 cell
(see Figure 4.1.c). The temperature was set to 90◦C for the imaging data presented
in this chapter.

We used a single laser (the grating-stabilised laser described in section 3.5.2) for
both optical pumping and probing. For imaging, a single lens was used to create a
1:2 demagnified image of the cell. An ND filter is placed between the vapor cell and
camera to avoid saturation of the CCD. As the camera does not have a mechanical
shutter, the optical pumping pulse hits the CCD as well. The electronic shutter of
the camera opens with a delay of 12 µs after the end of the pumping pulse. While
some residual charges accumulated during pumping are visible on the images, they
can be compensated for by taking a dark image (see Section 3.3). For the data
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presented in this section, the laser intensity averaged over the 5 mm cell diameter
was set to 30 mW/cm2 to obtain strong optical pumping, which ensures a large
signal amplitude. During probing, on the other hand, optical pumping is undesired,
and a short probe pulse duration of 2.2 µs was chosen. The strong collisional and
Doppler broadening of the optical transition ensure that the transition is not strongly
saturated and the number of absorbed probe photons per atom is of order unity.
In later setups, I used separate laser beams to avoid compromises between optical
pumping and probing performance.

In order to reduce the imaging noise and the computational intensity of the
fitting process, we bin the CCD pixels after taking each image. We bin the simpler
Franzen CCD pixels into 3 × 3 blocks, and the Ramsey data into 7 × 7 blocks (see
Section 3.3.1). Taking the approximate 1:2 demagnification given by the imaging
lens into account, each of these 3×3 (7×7) pixel blocks corresponds to 35µm×35µm
(82µm × 82µm) in the cell. The spatial resolution of our imaging system is then
35µm for Franzen data, and 82µm for Ramsey data. The expected size of the
smallest features in the atomic vapor, on the other hand, is given by atomic diffusion
through the buffer gas during the measurement sequence, typically a few hundred
µm for this cell (see section 4.3, below).

4.2 Temperature Dependence

The properties of the cell, such as the OD and relaxation times, are strongly tem-
perature dependent, primarily due to the changing Rb density with temperature.

Figure 4.2.a shows the OD of the vapor in the cell as a function of tempera-
ture. Transmission through the centre of the cell of a 2 mm diameter, relatively
low intensity (I0 < 600µW/cm2) laser beam was measured with a photodiode. In
this case, no optical pumping or microwave pulses were applied, although optical
pumping was unlikely to be completely negligible. Using the model described in
Section 2.4 with OD87 = OD85, Γ∗ = 2π × 1.5 GHz, T1 = 265µs, and an optical
shift of δνopt = −300 MHz, we find that a 600µW/cm2 beam results in a pumping
efficiency of u = 0.45. This neglects factors such as radiation trapping, and is most
likely an overestimate of the pumping efficiency. A theory curve is also shown, cal-
culated using the model described in Section 2.3 (which neglects optical pumping),
with only temperature as a free parameter. As discussed in Section 4.1, there was
some uncertainty in the absolute cell temperature. In order to match the data to
the theory curve, I assumed the actual temperature was described by

Tactual = Troom +A× (Tset − Troom) +B × (Tset − Troom)2, (4.1)

where A = 0.8 and B = 1.6 × 10−3 are fitted scaling parameters, Tset is the set
temperature, and Troom = 22◦C is the room temperature. For Tset = 90◦C, this
gives Tactual = 83.8◦C.

Figure 4.2.b shows T1 times for a range of cell temperatures, obtained using
Franzen sequences measured with the photodiode. The temperature has been scaled
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Figure 4.2: a) OD and b) T1 in the cell as a function of temperature. The set
temperature for the data has been scaled according to Eq. (4.1). The OD and
T1 theory curves have been produced using the models described in Chapter 2.
The only free parameter is the temperature, which was scaled to match the data
using Eq. (4.1). Arrows mark Tactual = 83.8◦C (Tset = 90◦C), where the imaging
data was taken. The T1 error bars are 95% confidence bounds from the fitting.
Figure adopted from Ref. [51].

using Eq. (4.1) and the same parameters as Figure 4.2.a. The data is compared with
the model described in Chapter 2, which includes the effect of Rb-Rb spin exchange
collisions, Rb-buffer gas collisions, atomic diffusion and atom-wall collisions. Con-
sidering only the lowest-order diffusion mode, the T1 time is calculated as

T1 = [(µ2
1 + ν2

1)D + γ]−1, (4.2)

where D is the diffusion coefficient. For a cell length d and radius R, ν1 = π/d,
and µ1 is defined by the first root of J0(µ1R) = 0, where J0 is the Bessel function
of the first kind. The relaxation rate γ = γSE + γbg accounts for relaxation due to
Rb-Rb spin exchange collisions at a rate γSE , and Rb-buffer gas collisions at a rate
γbg. The parameters of the model are temperature-dependent; their values at 90◦C
are γSE = 2500 s−1, γbg = 10 s−1, and D = 2.6 cm2/s.

At low temperatures, relaxation is governed by Rb collisions with the cell walls,
with a rate proportional to the diffusion coefficient D. As the temperature is in-
creased, Rb-Rb spin-exchange collisions rapidly come to dominate, due to the Rb
vapor density increasing almost exponentially with temperature [88]. There is good
agreement between our data and the theory, particularly at spin-exchange dominated
high temperatures.
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Figure 4.3: Measured T1 and T2 times across the cell. The top panels show a)
T1 times obtained from the 1/e decay time of a Franzen sequence (see text);
b) T1 times obtained from fitting a Ramsey sequence, fitting uncertainty ±1%;
and c) T2 times obtained from the same Ramsey sequence, fitting uncertainty
±4%. The bottom panels show radial profiles of each image in the form of a two-
dimensional histogram. The radial distance from the cell center is binned into
27.5µm wide bins for the Franzen data, and 38.8µm wide bins for the Ramsey
data. Franzen T1 and Ramsey T1 and T2 times are binned into 0.99µs, 1.4µs,
and 2.1µs wide bins, respectively. The T1 profiles are compared to theory as
described in section 4.4. Close to the walls, there is a significant decrease in T1

and T2 due to Rb-wall collisions. Figure adopted from Ref. [51].

4.3 Imaging Relaxation in the Cell

Figure 4.3 shows images of the T1 and T2 times across the cell, taken using both
Franzen and Ramsey sequences. For the Ramsey sequence, the microwave input
power to the cavity was 21.8 dBm, and the frequency was set slightly detuned from
the i = 4 transition.

Two different methods have been employed to obtain T1 times from the Franzen
and Ramsey data. Each pixel of the Ramsey data was fit using Eq. (3.23), yielding
T1 and T2 times with ±1% and ±4% fitting uncertainties, respectively. Fitting each
pixel of the Franzen data in a similar way, using Eq. (3.21), yields essentially the
same T1 image as obtained from the Ramsey data. However, relaxation near the cell
walls is not well-described by a single exponential. For the Franzen T1 image, we
therefore calculate T1 as the 1/e decay time of the hyperfine population difference,
as described by Eq. (3.22).

The bottom panels of Figure 4.3 show radial profiles of the T1 and T2 images.
There is strong agreement between the structure of the Franzen and Ramsey T1 im-
ages. The relaxation rate is uniform across the centre of the cell, with both Franzen
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and Ramsey T1 times around 265 µs. Franzen and Ramsey T1 times drop away to
around 80 µs and 100 µs, respectively, at the cell edge, due to the depolarisation of
Rb atoms after collisions with the cell walls. The 0.34± 0.05 mm half-width of this
‘skin’ of reduced relaxation times is determined by the distance ∆x an atom diffuses
during the bulk relaxation time. A simple estimate yields ∆x =

√
DT1 = 0.31 mm,

using the measured bulk T1 = 265µs. More detailed modelling is described in sec-
tion 4.4 below. The shorter Franzen T1 at the cell edge is due to the definition of
the 1/e time that accounts for the multimode nature of the diffusional relaxation.
The T2 relaxation, shown in the right-hand panels of Figure 4.3, also exhibits an
outer ‘skin’ of reduced relaxation times, with T2 times around 130µs at the cell edge.
Unlike in the T1 profiles however, the bulk T2 times are not entirely flat, rising up to
around 350µs in the cell centre. This is significantly longer than the 284µs calcu-
lated in Table 2.7. The most likely explanation is that the σ2bg values in Table 2.3,
which were measured for 85Rb, are too large for 87Rb. This is reasonable, given the
larger 87Rb hyperfine splitting, by a factor of two, and the different nuclear spin.

The relaxation times obtained in the centre of the cell are larger than the val-
ues obtained using the photodiode in section 4.2. Integrating over the images in
Fig. 4.3a-c, we get average Franzen and Ramsey T1 times of 176µs and 221µs, re-
spectively, and an average Ramsey T2 time of 269µs. The Franzen T1 time is more
accurate, as it accounts for the multimode diffusional relaxation near the cell walls.
The photodiode values lie between the central and average image values, indicating
that the photodiode measurements averaged the relaxation time over some partial
fraction of the cell.

In addition to the relaxation times, the absorption images also provide infor-
mation about the optical pumping efficiency. We define the hyperfine population
difference between the F = 1 and F = 2 states as

u ≡ 1− n2

5/8
, (4.3)

where n2 is the fraction of atoms in F = 2. With this definition, u = 0 represents
the unpumped equilibrium state where all mF states are equally populated, and
u = 1 corresponds to perfect optical pumping where the F = 2 state is empty. We
neglect the contribution of 85Rb, despite its often significant role, as discussed in
particular in Chapters 2, 3 and 6. For the discussion in this chapter, we are only
concerned with the overall polarisation and optical response of the cell, regardless
of isotope. The B fitting parameter for Franzen data (see Eq. (3.21)) describes
the amount the OD has changed through optical pumping. Normalising by the
unpumped OD = 1.1 we obtain the hyperfine population difference in the optically
pumped steady state, u0 = B/1.1. Figure 4.4 shows the image and radial profile of
u0 obtained in this way. We observe a reduced pumping efficiency close to the cell
edge because of atom-wall collisions. In addition, there is a broad dip in pumping
efficiency in the centre of the cell. This is due to a deposit of Rb that had developed
on the front cell wall, partially blocking the pumping light. We attribute the deposit
to a small temperature gradient on the cell. The deposit was present when taking
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Figure 4.4: Image and radial profile of u0, the hyperfine population difference in
the optically pumped steady state, obtained from Franzen data. The red data
points in the lower panel show the mean u0 for each radial position, binned in
27.5µm bins. The error of the mean is smaller than the symbols. Note the
change in scaling of the bottom axis at r = 2 mm to magnify the region near
the cell wall. The data is compared to theory as described in section 4.4. The
fit of Eq. (4.5) to the data near the cell wall is shown in solid blue. The ‘theory’
and ‘analytic theory’ curves respectively model u0 with (Eq. (4.10)) and without
(Eq. (4.9)) the inclusion of the central dip in optical pumping efficiency, which
was caused by a Rb deposit on the front cell window. Figure adopted from
Ref. [51].

all of the imaging data. The robustness of our T1, T2, and microwave magnetic field
measurements is highlighted by the lack of correlation between the image of u0 in
Figure 4.4, and the images presented in Figure 4.3.

4.4 Modelling Relaxation in the Cell

We now describe a model for the hyperfine population relaxation in the cell and
compare it with our imaging data. We begin by analyzing the optically pumped
steady state in Fig. 4.4. Using a simple 1D model based on Ref. [143], we determine
the probability that a Rb-wall collision destroys the hyperfine polarisation. We then
use this probability in a 2D model valid throughout the entire cell to describe the
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observed T1 relaxation.

4.4.1 Depolarisation Probability of Rb-Wall Collisions

In Ref. [143], Grafström and Suter used evanescent-wave spectroscopy to study op-
tical pumping of Na vapor near a glass wall. Using a simple model, they related
the atomic 〈mF 〉-polarisation at the wall to the depolarisation probability of atom-
wall collisions. We adapt their model to our case of hyperfine population relaxation
between states of different F in Rb collisions with Si walls.

Close to the cell walls, the evolution of the hyperfine population difference u can
be described by a 1D diffusion equation

∂

∂t
u(r, t) = D

∂2u

∂r2
− (Γ + Γp)u(r, t) + Γp. (4.4)

The first term on the right-hand-side describes diffusion of Rb atoms in the buffer
gas. The second term describes relaxation at a rate Γ+Γp, where the bulk relaxation
rate Γ = γSE+γbuffer +γz includes the effect of Rb-Rb spin exchange collisions (γSE)
and Rb-buffer gas collisions (γbuffer). Relaxation due to collisions with the front and
back cell windows varies only slightly with r, and so we include it as a constant
rate γz. The optical pumping rate Γp drives both relaxation in the second term
of Eq. (4.4) and optical pumping in the third term. The steady-state solution to
Eq. (4.4) is

u0(r) = u∞ − (u∞ − uR) exp[µ(r −R)], (4.5)

where u∞ ≡ Γp
Γ+Γp

is the population difference far from the walls, R is the cell radius,

uR ≡ u0(R) is the population difference at the wall, and µ ≡
√

Γ+Γp
D . Wall collisions

produce a skin of reduced optical pumping near the cell edge, with the skin thickness
given by µ−1. The 1D model provides a good description of the behavior near the
wall for |r −R| � R and µR� 1, which is satisfied in our experiment.

From the behavior of u0(r) near the cell wall, it is possible to determine the
probability ε that a Rb-wall collision destroys the atomic hyperfine polarisation
[143]. Very close to the wall, on average half of the atoms have just collided with
the wall, and half are arriving from a distance L = 2

3λ into the cell bulk, where
λ = 3.5µm is the Rb mean free path in the buffer gas. Atoms from the bulk
carry an average polarisation u(R − L), which is reduced to (1 − ε)u(R − L) after
the collision. Thus, u(R) ' 1

2(2 − ε)u(R − L). Applying these considerations to
Eq. (4.5) and noting that µL� 1, we obtain

ε =
2µL(u∞ − uR)

uR + µL(u∞ − uR)
. (4.6)

Figure 4.4 shows a fit of Eq. (4.5) to the measured u0(r) profile of the Franzen
data (blue solid line). We only fit to the data near the cell wall (r ≥ 2.15 mm),
where the 1D approximation is valid and the optical pumping rate is approximately
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constant. The fit parameters are µ = (7 ± 1) × 103 m−1, uR = 0.35 ± 0.04, and
u∞ = 0.89 ± 0.03. Using these values in Eq. (4.6), we obtain a depolarisation
probability of ε = 0.05 ± 0.01. When we analyse the initial state of the Ramsey
data in a similar way (not shown), we obtain ε = 0.046 ± 0.007, consistent with
the Franzen data. For comparison, Fig. 4.4 shows fits to the data where ε was
constrained to ε = 1 (purple) and ε = 0.01 (green), respectively. Both values are
inconsistent with our data.

The value of ε = 0.05 obtained from our data is surprisingly small. It implies that
the atomic hyperfine population can survive of order ε−1 ≈ 20 collisions with the Si
wall. Previous experiments with Na and Cs atoms near glass walls have reported
ε = 0.5 [143, 149]. Our experiment differs not only in the measurement technique, the
atomic species, and the wall material, but also in that we study relaxation between
hyperfine states F = 2 and F = 1, while the previous experiment [143] studied
the relaxation of 〈mF 〉-polarisation within one hyperfine state. A systematic error
in our measurement would arise if the images are clipped close to the cell wall, so
that the actual location of the wall is at r > 2.5 mm. To make our data consistent
with ε = 1, the location of the wall would have to be shifted by > 63µm (more
than two datapoints in Fig. 4.4), which is not very likely given the spatial resolution
of our imaging system. Moreover, we point out that the surface properties of the
interior cell walls are not precisely known. A layer of adsorbed Rb atoms or other
residues on the Si walls could modify the collisional properties. A systematic study
of these effects would require a dedicated setup and was beyond the scope of this
thesis. However, our measurements show that absorption imaging is a powerful tool
for the investigation of atom-wall collisions. The high spatial resolution opens up
many intriguing possibilities such as laterally patterning the surface to modulate the
collisional properties.

4.4.2 T1 Relaxation: 2D Model

We now model T1 relaxation in the Franzen sequence, considering the entire circular
aperture of our cell. The diffusion equation for circular symmetry reads

∂

∂t
u(r, t) = D

1

r

∂

∂r

(
r
∂u(r, t)

∂r

)
− (Γ + Γp)u(r, t) + Γp. (4.7)

From the above considerations on diffusion and atom-wall collisions, we can derive
the boundary condition

∂u

∂r

∣∣∣
r=R

+
ε/2

(1− ε/2)L
u(R) = 0, (4.8)

which reproduces Eq. (4.6) when applied to Eq. (4.5). The initial condition for
modeling the Franzen sequence is given by the optically pumped steady state solution
of Eq. (4.7) subject to the boundary condition Eq. (4.8),

u0(r) = u∞

(
1− I0(µr)

I0(µR) + I1(µR) (2/ε− 1)µL

)
, (4.9)
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where I0 and I1 are modified Bessel functions of the first kind, and u∞ and µ are
defined as in the previous section. In the following, we take ε = 0.05 as a fixed
parameter determined as described above.

Figure 4.4 shows u0(r) given by Eq. (4.9) for the same parameters as in the
previous section (blue dotted line). While the solution is indistinguishable from
the 1D model close to the wall and matches the data well in this region, there is a
discrepancy in the cell center (r < 2 mm). This is because we have so far assumed
a spatially homogeneous optical pumping rate Γp, which was not the case in the
experiment. To model T1 relaxation, we can simply take the measured profile in
Fig. 4.4 as the initial condition for the dynamics described by Eq. (4.7). It can be
phenomenologically described by the function

u′0(r) = u0(r)− k0

2

[
cos
(
π
r

R

)
+ 1
]
. (4.10)

The additional term has been chosen such that it does not affect the boundary
condition Eq. (4.8) and is thus consistent with the same value of ε as u0(r). The
factor k0 describes the reduced pumping efficiency in the cell center. Our data is
well described by u′(r) using k0 = 0.28 (black solid line in Fig. 4.4).

We model relaxation in the dark by setting Γp = 0 at t ≥ 0 and numerically
solving Eq. (4.7) with the initial condition Eq. (4.10) and the boundary condition
Eq. (4.8). At each radial position, we define T1 as the time taken for u to decay to
1/e of its initial value. Recalling Eq. (3.22), we have

u(r, T1) =
1

e
u(r, 0). (4.11)

The simulated and measured T1 profiles are compared in the bottom panels of
Fig. 4.3.

We set Γ = 3900 s−1 in order to match the theory curves with the observed T1

values in the centre of the cell. The central dip in optical pumping efficiency results
in T1 > Γ−1 in the cell center due to the diffusive influx of atoms from neighbouring
regions with higher optical pumping, partially offsetting relaxation. The agreement
of our model with the data is reasonable. In particular, the width of the skin of
reduced T1 times at the cell edge is reproduced well. However, the transition from
the cell bulk to the cell edge is sharper in the data than in the model.

4.5 Outlook

We have used time-domain spatially resolved optical and microwave measurements to
image atomic relaxation in a microfabricated Rb vapor cell placed inside a microwave
cavity. The relaxation times at the cell edge provide spatially resolved information
on the interactions of Rb atoms with the Si cell walls. Our data suggest that Rb-Si
collisions are not completely depolarising, agreeing with previous work on Na-glass
collisions. It would be interesting to study these interactions in further detail on
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a dedicated setup. This aspect of our technique could be particularly useful in the
characterisation of wall coatings in coated cells. The temperature dependence of
ε may also yield insights into Rb interactions with the bare glass walls. I used
several other vapor cells in this thesis, for which ε was not measured. Except where
explicitly noted, I used ε = 1 for all other calculations in this thesis.

Our measurement technique is fast, simple, and produces high resolution im-
ages for vapor cell and microwave-device characterisation. It is of particular inter-
est for characterising cells in miniaturised atomic clocks [179] and sensing applica-
tions [17, 21, 50], and I used it extensively as a characterisation tool throughout
this thesis. It could be used to directly image diffusive transport of polarisation,
following Ref. [180]. As shown in the next chapter, it is also of interest for char-
acterising the cell and cavity properties in larger and high-performance vapor cell
atomic clocks [52, 181–183].
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Chapter 5

Clock Characterisation

The imaging techniques presented in this thesis are already being applied in char-
acterising high-performance vapor cell atomic clocks. Applications of these minia-
turised, low power clocks include telecommunications systems, and as the on-board
clocks in GPS and Galileo satellites or deep-space probes. The state of the art is
now aiming for stabilities better than 10−14, which is better than the stability of a
passive hydrogen maser, and at least an order of magnitude better than commercial
lamp-based atomic clocks [181, 183, 184]. In this chapter, I present the characterisa-
tion of a state-of-the-art Rb clock, which has a stability of 1.4×10−13 after 1 s [185],
and 4× 10−14 after 104 s of integration [184]. The clock was produced by the Mileti
group at the Laboratoire Temps-Fréquence, Université de in Neuchâtel, Switzerland,
and the characterisation was published in Ref. [52]. The characterisation builds on
the cavity characterisation techniques we developed in Ref. [51].

A Rb clock works by stabilising a quartz oscillator to the 6.8 GHz 87Rb i = 4
‘clock’ transition [6]1. This π transition is chosen for its first order insensitivity to
dc magnetic fields. The microwave field in the Neuchâtel clock is provided by a
magnetron cavity [186], with the vapor cell placed inside, as shown in Figure 5.1.
Magnetron cavities offer a ∼ 10× stronger signal than similarly sized CPT clocks,
due to the 2-photon nature of the CPT interaction, though CPT clocks can be minia-
turised further [187]. The dimensions of the cavity, which has an external diameter
of 40 mm and a length of 35 mm, are smaller than the 44 mm free-space wavelength
of the 6.8 GHz microwave, resulting in a nonetheless very compact ‘physics pack-
age’. However, achieving a uniform microwave field in this cavity is a non-trivial
task. Solenoid coils provide a dc magnetic ‘C-field’ of 40µT (0.4 G), which provides
a quantisation axis along the −z direction, and allows the hyperfine transitions to
be individually addressed, as seen in Figure 5.1.d.

The homogeneity of the applied dc and microwave magnetic fields is crucial for
clock stability, and precise knowledge of the field distributions is a key requirement
in clock characterisation and development. Homogeneity of the microwave field
direction is important for driving the clock transition, which is driven by the mi-

1The labelling of the hyperfine transitions is defined in section 3.1.2.
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Figure 5.1: a) Cross section of the clock magnetron cavity; b) photo of the vapor
cell inside the magnetron cavity; c) schematic of the measurement setup, where
a single laser (the GS-laser) was used for both optical pumping and probing.
Note that there was only optical access to the central 10 mm of the 25 mm
cell diameter; d) DR spectrum of the clock, showing the strong π microwave
component (transitions i = 2, 4, 6), weak σ components, and narrow resonance
linewidths. Figure adopted from Ref. [52].

crowave component parallel to the quantisation axis. Homogeneity in the microwave
amplitude is important for achieving a uniform microwave power shift of the clock
frequency. For pulsed clocks, which operate using a frequency-domain Ramsey se-
quence, microwave homogeneity is also required in order to uniformly apply the
π/2 Ramsey pulses. Despite the first-order insensitivity of the clock transition to
Zeeman shifts, the C-field homogeneity is also important. Influences of dc field in-
homogeneities include the second order Zeeman shift and T2 dephasing, the dc field
dependence of the microwave power shift [178, 188], and the need for homogeneity
in the quantisation axis direction.

The field distributions depend on the assembly of the clock, with the microwave
field particularly influenced by the presence and position of the vapor cell, which
provides a dielectric filling to the cavity. This means that measurements using dc
and microwave field probes inside the disassembled clock components, which anyway
introduce field perturbations of their own, are of only minor benefit. Previous clock
characterisations have therefore relied on computer simulations, and measurements
of the fields have been based on the bulk properties, integrated over the vapor cell
without (or with minimal) spatial resolution [183, 184, 186]. Our imaging techniques
allow the clock atoms themselves to be used as sensors to map the clock fields. This
allows a fast, in-situ characterisation of the fully assembled clock, in its operational
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mode. Our techniques will therefore also allow the study of long term drifts in the
clock, such as possible changes in the C-field due to magnetisation of the magnetic
shielding.

The 25 mm length of the clock vapor cell is 1-2 orders of magnitude longer
than the other cells used in this thesis. The imaging techniques were found to
be nevertheless compatible with the longer cell, and we obtain images with sub-
100µm transverse spatial resolution, given by the diffusion length of atoms during
a measurement.

To characterise the clock dc and microwave fields, we used Ramsey and Rabi
imaging sequences, respectively, as described in Section 3.2. The imaging optics
produced a 1:4 demagnification on the CCD camera. The CCD image was binned
into image pixels of 3×3 CCD pixels, with an image pixel size of 72×72µm2 in the
cell plane.

5.1 Clock C-Field
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Figure 5.2: Images of the clock dc magnetic field, and the T2 time of the i =
2 transition (left column), and the corresponding fitting uncertainties (right
column). The cross in the left column images indicates the concentric centre of
Bdc, and shows the alignment of the T2 image with this centre. Figure adopted
from Ref. [52].

87



Figure 5.2.a shows an image of the clock C-field, obtained with a Ramsey se-
quence detuned from the i = 2 transition, and with common-mode frequency shifts
removed using a similar measurement on the i = 6 transition, whose Zeeman shift
is of the same magnitude but opposite sign. The field is highly uniform, to within
0.3%, and is slightly offset from the cell centre. The corresponding T2 time, shown
in Figure 5.2.b, is inversely correlated with the C-field inhomogeneity, and is at a
maximum where the C-field is most homogeneous. The fitting uncertainties on each
pixel for Bdc and T2 are < 0.5% and < 8%, respectively. Despite the only 0.3%
C-field inhomogeneity, T2 on this field-sensitive transition drops by a factor of two
towards the cell edges. The effect on the clock transition (not shown) is much less
dramatic, with T2 varying from 1.55µs in the image centre, to 1.45µs at the image
edge.

As described in Ref. [52], we can model the dephasing influence of C-field gra-
dients on T2 from models developed for NMR spin echo experiments. The general
agreement with the measurements indicates that the observed spatial variation in
T2 is indeed be caused by inhomogeneous dephasing due to magnetic field gradients.

5.2 Clock Microwave Magnetic Field
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Figure 5.3: Images of the a) σ−, b) π, and c) σ+ components of the clock cavity
microwave magnetic field, and the respective τ2 Rabi oscillation lifetime. The
fitting uncertainties of the π component images are also shown. White and black
circles in (b) correspond to pixels (88,98) and (39,15), respectively, which are
further analysed in Figure 5.4. Figure adopted from Ref. [52].

Figure 5.3 shows images of the σ−, π, and σ+ components of the clock cavity
microwave magnetic field. The images were obtained in Rabi sequences driven on
transitions i = 1, 4, 7, respectively. The π component is reasonably uniform, to
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within 20%, which is sufficient for both cw and pulsed clock operation [11]. The
field is again off-centre with respect to the vapor cell, however this is not correlated
with the C-field spatial offset. Subsequent modelling revealed that the microwave
offset is due to the vapor cell stem [57], and this can now be accounted for in the
next generation cavity. The σ− and σ+ components of the microwave field are 10%
and 20% of the π component amplitude, respectively. This matches with the cavity
desgin, and the DR spectrum in Figure 5.1.d. Although the σ components do not
interact with the atoms during clock operation, their images are important to the
characterisation of the cavity. At the time of writing, the spatial variation of the σ
components had not yet been explained.

Below the microwave field images in Figure 5.3 are images of τ2, the lifetime of
Rabi oscillations driven by each field component. In a similar way to T2 dephasing
from C-field gradients, τ2 is a measure of how the coherent Rabi oscillations are
dephased by inhomogeneities in the microwave field, and is inversely correlated with
the field inhomogeneity seen in the microwave images above.

Figure 5.4: Fourier analysis of the π component of the microwave field. FFT
traces are shown for pixels (88,98) and (39,15), respectively marked with white
and black circles in Figure 5.3.b, and for the integrated signal across the entire
image. The horizontal axis has be scaled to the corresponding microwave field
amplitude. For better visibility, the FFT magnitudes of pixel (39,15) and for
the integrated signal were multiplied by factors of 2 and 15, respectively, to
compensate differences in FFT magnitudes caused by the different T2 times of
the time domain signals. Figure adopted from Ref. [52].

The images in Figures 5.2 and 5.3 are integrations of the fields along the z axis,
over the laser path through the cell. The images therefore do not tell us about field
gradients along the z axis. In such a thick (25 mm) cell however, field homogeneity
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along the z axis is just as important as for the transverse axes. We are able to extract
some information on the z axis variation by taking a Fourier transform of the Rabi
or Ramsey oscillations. As an example, Figure 5.4 shows a Fourier analysis of the π
component of the microwave magnetic field. Spectra are shown for pixels (88,98) and
(39,15) of the π component image in Figure 5.3.b, as well as for the Fourier transform
of the averaged signal of all the image pixels. The two example pixels are chosen
as representative bounds of the microwave amplitude, corresponding to regions of
high and low microwave amplitude, respectively. All three Fourier spectra show
narrow peaks for the microwave field distribution, with a spread of 10% or less for
the two individual pixels. For pixel (39,15), the small peak at Bmw < 1µT indicates
the presence of some z-region with very low field amplitude. The integrated signal
shows a structure composed of the distinct features of both example pixels, plus
an intermediate feature at 4.5µT, as expected from the general field distribution in
Figure 5.3.b. Small dips in the integrated signal are seen at 4.14, 4.3, and 4.55µT,
making this signal appear to be comprised of several distinct peaks. Given the overall
smooth field distribution of Figure 5.3.b, these dips might well be artifacts without
statistical significance, arising from measurement noise or instabilities converted by
the FFT routine employed. The contribution of the low field amplitudes, such as in
pixel (39,15), to the integrated signal is small. This matches with the small image
area in Figure 5.3.b showing such low amplitude values. The reasonably sharp peaks
for all three spectra allow us to conclude that the variation of Bmw along the z-axis
is small (< 10%).

5.3 Conclusions

The imaging techniques presented in this thesis can be employed as an important
tool in the characterisation and development of state-of-the-art clocks. The imaging
techniques provide spatially resolved information on parameters that were previously
typically measured without spatial resolution, and often through indirect means. For
example, a common technique is to use DR spectra to characterise the dc and mi-
crowave magnetic fields. The relative areas of the σ and π peaks give the relative
strengths of the microwave components, and the linewidths give an indication of the
microwave and dc field homogeneity. However, it is very difficult, if not impossible,
to extract from the DR spectra the rich information on the spatial variation within
each of the σ and π microwave components that is provided by our imaging tech-
niques. Correcting for these inhomogeneities can give real improvements in clock
performance. The simplicity of our imaging techniques make their adoption feasi-
ble in most lab environments, and the wealth of information now available should
significantly aid the development of these precision devices.
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Chapter 6

Ultrathin Vapor Cells and the
Cell Filling Station

Microwave imaging using vapor cells was demonstrated in a proof of principle ex-
periment in Ref. [50]. The setup was far too bulky for practical use, however, and
a central project of this thesis was to develop a high resolution setup appropriate
for imaging real world devices. The new setup is based on ultrathin vapor cells,
which are attached to a filling station to give us complete flexibility in the buffer
gas pressures, species, and mixtures used in the cells. The new setup provides
50 × 50 × 140µm3 spatial resolution in the cell bulk, and allows us to image fields
as close as 150µm above surfaces with a 6× 6 mm2 field of view. This represents an
order of magnitude improvement in spatial resolution compared to previous vapor
cell experiments, and allows us to enter the relevant regime for imaging fields of
industrial microwave devices. A particularly promising feature of our system is that
it can be configured to also image microwave electric fields (see Section 7.7) [49].

Sub-millimeter spatial resolution has been reported in the vapor cell bulk for
a number of sensing techniques [32, 46–51, 175], but typical cell dimensions have
limited useable spatial resolution to the millimeter-scale or larger. Feature sizes
in near-fields are on the order of the distance from the field source, meaning that
in order to resolve small structures on objects under investigation, it is crucial to
measure fields at similarly small distances above the structures. There are many
applications where higher spatial resolution is essential, such as integrated microwave
circuit characterisation [189], corrosion monitoring [190–192], and in lab-on-a-chip
environments for microfluidic analytical chemistry and bio-sensing [31, 32, 193, 194],
and molecular imaging [24, 195, 196].

This chapter describes the setup and characterisation of the ultrathin cells and
the filling station. In the next chapter, I present examples of field imaging results.
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a) cell

DUT

b) cell DUT

Figure 6.1: a) CAD schematic and b) photo of the filling station setup. The
photo is taken with the SRR chip placed in front of the cell for imaging (see
section 7.3.3).
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Figure 6.2: a) Schematic of the ultrathin vapor cells used in this thesis (not to
scale). The cell chamber is shown in blue, and the etched channel and through-
hole are indicated with dotted lines. The key features are the extremely thin
external cell walls: 500µm on the side, and only 150µm at the end of the cell; b)
Photo of cell U1 in operation with the Zigzag chip (see Sec. 7.3.2). The outline
of the cell chamber is highlighted in blue.

6.1 Equipment and Setup

Figure 6.1 shows a CAD schematic and photo of the filling station setup. The vapor
cell is attached to a vacuum system, and placed inside an oven. The oven, imaging
optics, and DUT (device under test) mount are on a raised breadboard, and the
setup is surrounded by a set of Helmholtz coils. The following section describes the
key components. Further information is available in Appendix E.

6.1.1 Ultrathin Vapor Cells

The design of the ultrathin vapor cells was a critical component in our high resolution
imaging. The commercially obtained cells1 consist of two optically bonded 0.5-
and 1.5 × 20 × 90 mm pieces of Suprasil (quartz) glass. As shown schematically in
Figure 6.2.a, a cell chamber is etched into one end of the 1.5 mm-thick piece. An
etched channel connects the cell chamber to a through-hole, around which we attach
a glass-to-metal transition with epoxy (see Appendix E.1). We had cells made with
nominal cell chamber thicknesses of 100 µm and 200 µm, which we refer to as cells
U1 and U2, respectively.

The thickness of cell U1 was measured at two points using an optical profilome-

1The custom cells were produced by Hellma Analytics.
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ter2 to be 136±3µm and 146±7µm. I therefore took the thickness to be 140±10µm.
This is within the 100± 50µm manufacturing tolerance.

The ultrathin thicknesses represent an order of magnitude increase in longitudi-
nal spatial resolution compared to the 3 mm thick cell used in the proof-of-principle
setup presented in Ref. [50]. However, the key advance of the cells are their thin
external walls (see Figure 6.2.a), as thin as 150µm3, which allow us to image near
fields as close as 150µm above devices. The general rule for near fields is that the
smallest feature size is on the order of the distance from the source. Near field
imaging using cells with a more typical millimeter-scale wall thickness can therefore
only detect millimeter-scale features. Our thin walls allow us to for the first time
take practical advantage of the high spatial resolution available in vapor cells, and
should serve as a model for future near field sensing cells.

We fill the cells with a 3:1 mixture of Kr and N2 buffer gasses, with typical filling
pressures between 90 mbar and 120 mbar. The heavy Kr acts to localise the Rb
atoms, improving our spatial resolution and limiting depolarising Rb collisions with
the cell walls. The cell geometry, with relatively large transverse dimensions and
transverse OD, is particularly susceptible to radiation trapping (see section 2.4.2).
The N2 gas is therefore included for quenching.

6.1.2 Temperature Control

The cell and microwave device are placed inside an oven, with operating temper-
atures of 130◦C to 150◦C chosen to give OD ≈ 1. The oven has two layers: an
inner box made of 1 cm thick PEEK plastic, and an outer box made of cardboard.
Heating is provided by several resistive heating pads4. The Rb vapor density is con-
trolled by a cold finger wrapped around the end of the glass-to-metal transition (see
Figure 6.3), with a macroscopic droplet of Rb, known as the Rb reservoir, forming
under the cold finger. The cold finger is made from a strip of mesh wire, with one
end wrapped around the glass tube, and the other attached to a heat sink outside
the oven. The 5 − 10◦C temperature gradient between the cold finger and the cell
helps reduce the deposition rate of Rb and other contaminants on the cell windows.
The temperature is characterised by Tcell, the temperature near the cell chamber,
and Tres, the temperature under the cold finger. The thermal time constant is quite
slow (Figure 6.7.a, for example, shows that the temperature takes several hours to
stabilise after turn-on), and the steady-state temperature stability is better than
0.5◦C, as measured on thermistors placed around the oven (see Figure E.2). The
absolute temperature accuracy, however, is on the order of a few degrees Celsius.
This is due to the placement of the temperature sensors relative to the Rb, and also
due to the low accuracy of the temperature redout devices used (which included
a changing response with battery power). An improved temperature measurement

2Keyence VK-X2000
3The manufacturing tolerances allow for external walls up to 50µm thicker than the specified

values.
4From Minco.
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system would have more control over the sensor placement, and would not use bat-
tery powered devices. We could also use the optical absorption spectrum to obtain
the temperature using the atoms as sensors, for example fitting the spectrum using
ElecSus [90], or using the temperature shift of the isoclinic point [197].

6.1.3 Imaging Setup

I used two separate lasers for optical pumping and probing, allowing separate opti-
misation of the pump and probe intensities. In general, I used the GS-laser as the
probe, and the IF-laser as the pump. As shown in Figure 6.3, the pump beam was
sent in to the cell at a slight angle, ensuring that transmitted pump light did not
hit the camera. Both lasers were locked to the 87Rb F = 2 → F ′ = 2/3 crossover
peak. Note that better performance is expected if the probe laser is tuned to the
F = 1 ground state (see discussion in section 2.9).

The device under test (eg a microwave chip) is mounted next to the cell on a
long arm, which extends outside of the oven to a 3D translation stage. There are
two possible imaging modes. In most cases, the microwave device is placed at the
end of and perpendicular to the cell, as shown in Figure 6.3. For devices built
on transparent or reflective substrates however, it is possible to image in a second
imaging mode, with the device placed in front of or behind the cell. This is exploited
in section 7.3.3 with the SRR chip.

Probe

Cell

Lens AOM

Microwave
pgenerator

Devicep
underptest

Oven

Topvacuump
system

CCD

3Dptranslationp
stage

Coldpfingerp/
RbpreservoirCellpvalve MOA

Pump

Figure 6.3: Schematic diagram showing the imaging setup used with the ul-
trathin cells. The laser beam radii are several mm. AOM = acousto-optical
modulator.
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6.1.4 Vacuum System

The cell is attached through a glass-to-metal transition to a vacuum system, shown
schematically in Figure E.2. This differs from many vapor cell experiments (such
as those in rest of this thesis), where a free-standing, permanently sealed-off vapor
cell is used. The vacuum system allows us to evacuate the cell, transfer Rb, and
fill the cell with arbitrary buffer gas mixtures and pressures, giving us flexibility
at the expense of a compact setup. In addition, its construction does not require
expertise in microfabrication or glass blowing. Schematics of the vacuum system,
and a description of the Rb transfer and buffer gas filling procedures are provided
in Appendix E.

6.1.5 Coils

The filing station is surrounded by a cage of Helmholtz coils, which cancel the Earth’s
magnetic field, and provide a static field of 1-2 G along the X, Y , or Z axes. This
field serves as the quantisation axis, and the resulting ∼MHz Zeeman splitting of
the 87Rb hyperfine ground state transitions allows each transition to be individually
addressed by the microwave magnetic field.

Figure 6.4 shows images of the dc magnetic field produced by each of the filling
station coils. The data was taken using the 200µm thick cell, which was in a slightly
different location to the 100µm thick cell (rotated upwards in the Y −Z plane). The
measurements were taken as part of the Bdc measurements presented in Section 7.4
(Figure 6.4 shows the C field measurements of Section 7.4). The microwave field
used to drive the Ramsey oscillations was provided by the X component of the split-
ring resonator, described in section 7.3.3. The X measurement was taken on the
i = 6 transition with a 316µT (3.16 G) dc field, and shows a 0.4% variation in dc
field strength across the field of view. The Y and Z measurements were taken on
the i = 7 transition, with 134µT and 141µT dc fields, respectively. The dc field
strength varies by 3% for both the Y and Z measurements. The inhomogeneities
are likely to be due to imperfect centering of the cell with respect to the coil centres,
and imperfect cancelling of the Earth’s magnetic field.

6.2 Controlling the Rb Vapor Density, and Vapor Cell
Curing

The Rb density in a vapor cell is at a basic level determined by the temperature of the
Rb reservoir and the resulting Rb vapor around it. There are a number of additional
complicating factors at work however, such as Rb transport, cell geometry, and
interactions with the cell walls. The three main mechanisms present in our ultrathin
cells are: 1) Diffusion of Rb to and from the Rb reservoir, which is separated from
the cell by a narrow channel; 2) Desorption of Rb from the cell walls; and 3) Rb loss
through interactions with the cell walls.
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Figure 6.4: Experimentally obtained images of variations in the magnitude of
the dc magnetic field produced by the filling station coils. The variations are
on top of 316µT, 134µT and 141µT dc magnetic fields, for the X, Y , and Z
coils, respectively, and are scalar measurments, insensitive to field orientation.
The outlines of the cell and split-ring resonator (see section 7.3.3) are shown in
blue and black, respectively. The field of view is defined by the microwave field
of the split-ring resonator.

The experiment temperature is an important parameter, due to the strong de-
pendence of the Rb density on temperature, but difficult to accurately obtain, due
to the poor temperature sensor readout devices and uncertainty in sensor place-
ment, as discussed in Section 6.1.2. We can estimate the temperature, however,
by matching the experimental and theoretical temperature dependence of the OD.
In the following sections, I scaled the measured temperatures to match the theory
curves, giving

Tactual = Troom +A× (Tmeas − Troom), (6.1)

where A is the scaling parameter, Tmeas is the measured temperature, and Troom =
22◦C is the room temperature. Variation of A between data sets is due to changes
in the sensor positions, and the battery power of the readout device.

6.2.1 Rb Transport

The cell chamber in our ultrathin cells is separated from the Rb reservoir by a narrow
channel, 76 mm long, with a 2×1 mm2 cross section, and a conductance of 0.01 L/s.
In the absence of buffer gas, this low conductance is not a problem. Rb is able to
travel through the channel sufficiently quickly that the Rb density in the cell volume
follows the reservoir temperature, Tres. An example of this is shown in Figure 6.5.
Introducing a buffer gas to the system significantly slows down Rb motion through
the channel however, and the channel becomes a significant barrier between the cell
chamber and Rb reservoir.
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Figure 6.5: OD in cell U1 as a function of Tres, with no buffer gas present. The
laser frequency is locked to the F = 2→ F ′ = 2/3 crossover peak, and offset by
−80 MHz by an AOM. The theory curve is calculated using the model presented
in Section 2.3. To match the data and theory curves, I modified the measured
Tres using Eq. (6.1) with A = 0.92.

6.2.2 Cell Walls as a Rb Source

In steady-state, the Rb density is controlled by the reservoir temperature, Tres. At
the beginning of each run however, the Rb density is often actually controlled by
the cell temperature, Tcell. During the cool-down period after each run, much of
the Rb vapor will stick to the immediate cell walls, rather than return to the distant
Rb reservoir. When subsequently reheating the cell, this wall-Rb can act as a Rb
reservoir of its own. The effect is most apparent with high buffer gas pressures, which
slow transport of Rb between the reservoir and cell chamber. This is illustrated in
Figure 6.6, which tracks the OD during a single experiment run as the cell is heated
up. The cell is filled with 70.1 mbar of Kr and 18 mbar of N2. The OD, and thus Rb
density, evolves in three distinct stages: 1) The OD initially rises rapidly, with the
OD plotted as a function of Tcell matching the theory curve, until t = 125 mins; 2)
The OD then drops over the next 25 mins; 3) At t = 150 mins, the OD then begins
rising again, with the theory curve now matched by OD plotted as a function of
Tres.

The explanation is as follows. When heating the cell up, the Rb from the reservoir
takes some time to diffuse through the channel to the cell, and the Rb in the cell is
initially mainly due to desorption from the cell walls, with a density given by Tcell.
As Tcell >Tres, during this period there will be an equilibrating flux of Rb atoms
leaving the cell and heading towards the reservoir. The Rb density in the cell is kept
close to that given by Tcell, as Rb atoms lost to the reservoir are quickly replaced by
newly desorbed atoms from the cell walls. Eventually however, this extra Rb from
the cell windows runs out. The Rb density in the cell then begins to decrease, as
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Figure 6.6: OD in cell U1 as a function of a) time; and b) temperature. The
data is for a single experiment run, and is plotted twice in (b), as a function of
both Tres (blue diamonds) and Tcell (red dots). A theoretical curve using the
nominal buffer gas filling pressures of 70.1 mbar of Kr and 18 mbar of N2 is also
shown. The laser frequency is locked to the F = 2→ F ′ = 2/3 crossover peak,
and offset by −80 MHz by an AOM. To match the data and theory curves, I
modified the measured temperatures using Eq. (6.1) with A = 0.88.

Rb atoms diffuse to the lower density region around the reservoir. For the buffer
mixture in Figure 6.6, the timescale for the drop in Rb density is around 25 minutes.
After reaching equilibrium, the Rb density is given by Tres (as long as Tres changes
adiabatically relative to the 25 minute equilibration timescale, which in this case it
does). Note that the data in Figure 6.6 was taken many months after the cell curing
process (see next section), and so Rb loss into the cell walls was minimal. The run
was performed immediately after a Rb transfer (see Appendix E.3), so the cell walls
were also particularly well-primed with Rb.

The effect is greatly reduced when using lower buffer gas pressures. I didn’t notice
it when using 15 mbar of Kr, for example. The lower pressures mean faster diffusion
between the cell and the reservoir, and so a shorter equilibration constant, inhibiting
any build-up of a Rb density differential between the cell and reservoir. The effect
is also a function of the history of the cell: If the previous run was performed with
a high Rb density, then the cell walls will be a more effective reservoir at the start
of the following run.

6.2.3 Cell Walls as a Rb Loss Mechanism

When Rb is introduced to a vapor cell, it begins modifying the cell walls, in a pro-
cess known as ‘curing’. The most extensive work on curing has been performed for
antirelaxation coated cells, particularly by Bouchiat and Brossel [3]. The interac-
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Figure 6.7: a) OD in cell U1 for experiment runs performed over several days,
before cell curing. The first run was performed without buffer gas, while subse-
quent runs were performed with 80 mbar of Kr. The laser frequency is locked to
the F = 2→ F ′ = 2/3 crossover peak, and offset by −80 MHz by an AOM. To
match the data and theory curves, I modified the measured Tres using Eq. (6.1)
with A = 0.97. b) OD as a function of Tres, taken after the two weeks of cell
curing. The measured Tres has been scaled using A = 0.93 and A = 0.90 for the
13/11/2013 and 21/5/2014 data, respectively.

tion with bare glass walls is less well understood, but there have been some recent
studies [148, 198], and information is also available from studies of Rb discharge
lamps [7, 199–201]. The main result for our ultrathin cells was that there was a very
significant loss of Rb into the uncured cell walls. The exact mechanism is unclear,
and several possibilities are discussed below.

Observations

Figure 6.7.a shows an example of the cell behaviour before curing. The OD is shown
as a function of Tres for a sequence of experiment runs performed over several days.
First, a run was performed without buffer gas, in order to calibrate the temperature
sensor. After scaling the measured Tres using Eq. (6.1) with A = 0.97, the no-buffer
run matches the theory curve well. On the same day, I then filled the cell with
80.2 mbar of Kr, and performed a second run. The OD at first followed the theory
curve given by Tres, however after reaching Tres = 120◦C at t = 120 mins, the OD
began to drop. After several hours, the OD stabilised at OD = 0.21. Repeating the
run the next day, the OD followed a new trajectory, and only rose to OD = 0.21.
The following day, having emptied the cell and then refilled with fresh buffer gas
to the same pressure, the OD followed this same new trajectory, with almost no
detectable signal for temperatures below 110◦C.
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On the first day in Figure 6.7.a, the Rb density in the cell is determined by
three mechanisms: the flux of Rb coming from the Rb reservoir in the glass stem;
the desorption of Rb from the cell walls; and Rb loss through some mechanism
presumably involving the cell walls. In the no-buffer run, the flux of Rb from the
reservoir is much higher than the other mechanisms, and the Rb density follows
Tres. On introducing 80 mbar of Kr to the cell, however, the Rb flux through the
cell channel is drastically reduced. The Rb density initially follows Tcell, until the Rb
left on the walls from the previous no-buffer run is exhausted. The Rb density then
drops to a new equilibrium value, given by the competition between the (low) flux of
Rb from the reservoir, and the loss of Rb into the cell walls. There is no significant
replenishment of Rb on the walls between the subsequent runs, and so both runs
follow a new trajectory given by this second equilibrium condition. The separation
of the Rb reservoir and cell means that the reduced OD cannot be explained by
contamination of the Rb reservoir.

In order to cure the cells, I evacuated the cells and heated them to ∼ 140◦C
for two weeks (with the cell valve closed). This accelerated the interaction of Rb
with the cell walls, allowing a relatively stable, saturated regime to be reached.
The process exhausted the supply of transferred Rb (see Figure E.4), and after the
curing process I had to perform a second Rb transfer. Figure 6.7.b shows the cell
behaviour after curing. The steady-state OD now approaches the value predicted
by theory and Tres, and the behaviour is consistent between runs performed more
than 6 months apart.

Discussion of Mechanisms

The loss of Rb into cell walls has been observed in many experiments. An early
study of cell curing in coated cells found the Rb density was reduced by a factor of
1.2 through loss into the coated walls [3], and Rb consumption is a limiting factor
in the lifetime of Rb rf discharge lamps, which are often used as the light source in
Rb vapor cell clocks [7, 199–201]. Possible mechanisms include: chemical reactions
with the glass or contaminants; adsorption into the glass; and the formation of a
thin layer on top of the glass. Rb is considered lost or consumed when it is no longer
in its elemental form. Note that the data in Figure 6.7 was taken before problems
developed with the cell valve (Section 6.5.1).

Rb is highly reactive, and there is an initial consumption of Rb when it is first
introduced to a cell, as it quickly reacts with available contaminants [199]. Curing
is seen to increase the effectiveness of antirelaxation coatings, possibly through Rb
chemical reactions removing contaminants from the coating [3, 147, 202].

In equilibrium, the walls in a vapor cell are coated with a thin layer of Rb,
measured to be 6-7 monolayers at 94◦C [148]. Molten Rb is a good solvent, and it
is possible that this layer will leach O2 out of the glass, forming a layer of (brown)
Rb2O. Such a Rb2O surface layer has been observed in Rb discharge lamps [199].
In the cell used in Chapter 4, a semitransparent brown area appeared on the cell
window, presumably due to a relatively thick layer of RbO2. The Rb also penetrates
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into the glass substrate, forming Rb2SiO3 (rubidium silicate). Measurements of the
penetration depth with and without the use of the discharge lamp rf coils (which
create a plasma) show Rb to 1/e depths of 5µm and 15µm, respectively [199]. In
a more recent vapor cell measurement, Rb penetration into in cured quartz glass
was observed to result in Rb comprising 0.5− 4% of the glass within the first 10 nm
below the surface [198].

For several types of glass, the Rb loss in discharge lamps has been shown to be
primarily due to Rb diffusion into the glass walls, with the loss following [199, 200]

C(t) = A+B
√
t, (6.2)

where A is the relatively small and almost instantaneous loss of Rb due to chemical
reactions that occurs when a lamp is first turned on, and B = 0.1− 1µg hr−1/2 rep-
resents loss due to diffusion into the glass [201]. This corresponds to a diffusion rate
on the order of D = 10−14 cm2/s for the Coring 17205 and Schott 8436 aluminosili-
cate glass typically used in discharge lamps [199]. We would expect the loss rate to
be higher in our ultrathin cells: quartz glass, used in our ultrathin cells, is relatively
permeable and we might expect a faster diffusion rate [203]; Rb penetration seems
to be inhibited by the plasma in a Rb discharge lamp [199]; and our 130 − 150◦C
operating temperatures are also above typical 70− 120◦C discharge lamp operating
temperatures [199, 204], which would likely accelerate our loss rate into uncured
glass.

These Rb loss mechanisms generally result in consumption of 10s or 100s of µg
of Rb. From the relative sizes of the 1 g Rb ampule and the Rb reservoir in the cell,
I would not expect the Rb transferred to the cell to amount to much more than a
mg, and it may be significantly less. It is not obvious that our curing or occasional
complete consumption of Rb is explained by the above mechanisms, however. For
example, the diffusive loss of Rb should not saturate; rather, consumption should
continue essentially forever [199].

Several features of our setup may have made us particularly susceptible to Rb
consumption: the relatively large surface to volume ratio in our cells; the (likely)
small amount of Rb transferred to the cells; and the used of porous glass. The
resulting problems can be solved by transferring a large amount of Rb, and by curing
the cell at high temperature for several weeks. In future generations of the ultrathin
cells, it may be advantageous to use Schott 8436 aluminosilicate glass instead of
quartz, and to modify the cell geometry to give better conduction between the Rb
reservoir and the cell chamber.

6.3 Exploring the Parameter Space

The operation of the ultrathin cells is dependent on a number of tunable parame-
ters, in particular the operating temperature and the buffer gas species and density.

5No longer in production.
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In this section, I present an analysis of the response of the cell to tuning these
parameters.

6.3.1 Relaxation

The relaxation rates are calculated using the theory presented in Chapter 2, and
the spatial resolution is calculated using Eq. (3.39). Only single-species buffer gas
filling is considered (no buffer gas mixtures).

Figure 6.8 shows T1 and T2, relaxation rates, and the spatial resolution for
different buffer gas pressures and species. As Pfill rises, γbg rises, and D and γwalls
fall, as shown in Figure 6.8.b. With the exception of Xe, the reduction in γwalls
dominates for all buffer gases over the range of plotted pressures. High buffer gas
pressures can even reduce γwalls below the Rb-Rb SE relaxation rate. The result is
longer T1 and T2 times as Pfill is increased, shown in Figure 6.8.a. However, the
limit on Pfill is generally given by the optical broadening. Figure 6.8.c, which plots
T1 and T2 against optical broadening, is therefore a fairer comparison of buffer gases.
The performance of Ne can then be seen to be equivalent with N2 and Ar, due to
the balance between the different broadening and diffusion coefficients. However, in
both Figure 6.8.a and c, the best T1 and T2 times are clearly given by Kr.

Figure 6.8.d shows that the best spatial resolution is given by Xe, which has the
lowest diffusion constant of the considered buffer gases. The use of Xe is precluded
by its strong γbg relaxation though. Kr gives a similar spatial resolution, without
the strong relaxation induced by Xe.

Figure 6.9 shows T1, T2, and relaxation rates as a function of cell temperature.
There are two regimes, with γwalls dominating at low temperatures, and γSE domi-
nating at high temperatures. The strong temperature dependence of γSE is driven
by the temperature dependence of the Rb vapor density, as seen in Figure 2.2. All
of the relaxation rates increase with temperature, and so T1 and T2 decrease with
temperature in both regimes. As SE comes to dominate, T2 becomes longer than
T1, as T2 SE relaxation is approximately a factor of 5/8 slower than T1 relaxation6.

Figure 6.10 shows T1, T2 as a function of cell thickness. For very thin cells,
γwalls dominates, and T1 and T2 are equal. As the cell thickness is increased, γwalls
decreases, leaving γSE as the dominant relaxation mechanism. The T1 and T2 times
then split up according to the slower T2 SE relaxation. The exception is Xe, for
which γbg relaxation dominates T2 and contributes to T1. The figure also highlights
the sensitivity to uncertainty in the cell thickness.

The best buffer gas under all conditions in the ultrathin cells is Kr, as seen in
Figures 6.8-6.10. This is because of the strong need to suppress wall relaxation
in such thin cells, and so the need for a low diffusion constant, and is despite the
fact that Kr induces γbg relaxation 5 − 100 times more strongly than the lighter
buffer gases commonly used in atomic clocks (Ne, N2, Ar). Although the diffusion
constant of Xe is slightly lower than for Kr, its relaxation cross sections are two

6Strictly speaking, this is true for the 87Rb clock transition with complete depopulation of one
of the hyperfine ground states. See Section 2.7.2).
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Figure 6.8: Cell parameters scanning the buffer gas filling pressure for a range of
common buffer gases, in a 140µm thick cell at T = 140◦C. a) T1 and T2 times
and b) relaxation rates as a function of Pfill; c) T1 and T2 times as a function of
buffer gas induced optical broadening, which is the limiting factor for the buffer
gas pressure; d) spatial resolution for an imaging time of dtimage = 10µs, again
as a function of optical broadening.

orders of magnitude higher, and disqualify Xe for our purposes. In order to limit
radiation trapping, we also need some N2 in the cell, and so the optimal cell filling
is with a mixture of Kr and N2.
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Figure 6.10: a) T1 and T2 times and b) relaxation rates as a function of cell
thickness for a range of common buffer gases. The buffer gas pressure is Pfill =
150 mbar, and the cell temperature is 140◦C.

6.3.2 Optical Response

Figure 6.11 shows calculated optical absorption spectra in cell U1 at T = 140◦C for
various Kr filling pressures. The Kr shifts and broadens the optical lines, obscuring
the 87Rb signal with 85Rb absorption, and reducing the on-resonance OD. This
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Figure 6.11: Absorption spectra for various Kr pressures, calculated for the
140µm thick cell at 140◦C. a) The entire natural-Rb absorption spectrum. b)
The 87Rb component of the spectrum. As the buffer pressure increases, the line
shifts and broadens, and the on-resonance OD decreases.

places an upper limit on the allowable buffer gas pressure in order to have a given
absorption signal strength.
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Figure 6.12: Example experimentally obtained absorption profiles using the
U1 cell, with the following parameters: a) No buffer gas, Tres = 144◦C and
Tcell = 158◦C; b) Cell filled with 75.3 mbar Kr and 20.1 mbar N2, Tres = 126.4◦C
and Tcell = 144◦C.

Examples of measured absorption spectra are shown in Figure 6.12. The spectra
are taken with no buffer gas, in Figure 6.12.a, and a mixture of 75.3 mbar Kr
and 20.1 mbar N2 in Figure 6.12.b. The spectra are compared with the saturated
absorption spectroscopy of an enriched 87Rb cell, at room temperature and without
buffer gas.
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Figure 6.13: OD87 (colourmap) and T1 (contour lines, units µs) as a function of
temperature and buffer gas pressure in the 140µm thick cell, for a laser resonant
with the centre of the shifted 87Rb F = 2 → F ′ = 2 peak. The buffer gas
pressure is plotted as the sum of Kr and N2 pressures, assuming a 3 : 1 pressure
ratio. For high temperatures, the T1 rapidly decreases with temperature, as
Rb-Rb spin exchange collisions come to dominate relaxation.

Figure 6.13 is a map of OD87 and T1 as a function of temperature and buffer
gas pressure. The calculations are performed for the U1 cell, filled with Kr and N2

in a 3:1 mixture. The figure highlights the competition between signal strength,
OD87, and relaxation lifetime, T1. OD87 increases with temperature and decreases
with buffer gas pressure, while T1 decreases with temperature and increases with
buffer gas pressure. For high temperatures, there is very little return in increasing
the buffer gas pressure, as the relaxation rate is largely determined by Rb-Rb SE
relaxation.
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Figure 6.14: Atomic projection noise limited sensitivity (colourmap) and spatial
resolution (contour lines, units µm) as a function of temperature and buffer gas
pressure in the 140µm thick cell. The laser is resonant with the centre of the
shifted 87Rb F = 2 → F ′ = 2 transition. The buffer gas pressure is plotted as
the sum of Kr and N2 pressures, assuming a 3 : 1 pressure ratio.

6.3.3 Sensitivity and Spatial Resolution

We can apply the models presented in Section 3.4, to estimate the sensitivity and
spatial resolution for imaging microwave magnetic fields. Calculations are performed
for imaging on the i = 4 transition, with optical pumping and probing on the 87Rb
F = 2→ F ′ D2 line. We recall the atomic projection noise limited sensitivity,

δBatom =
~
µB

1√
Nat τ2 Tmeas

, (6.3)
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Figure 6.15: Photon shot noise limited sensitivity (colourmap) and spatial res-
olution (contour lines, units µm) as a function of temperature and buffer gas
pressure in the 140µm thick cell. The laser is resonant with the centre of the
shifted 87Rb F = 2 → F ′ = 2 transition. The buffer gas pressure is plotted as
the sum of Kr and N2 pressures, assuming a 3 : 1 pressure ratio.

and the photon shot noise limited sensitivity,

δBphoton =

√
dtrun
Nshots

2

dtmw

~
µB

ODmin

ODmax
mw

exp(dtmw/τ2), (6.4)

where ODmax
mw = 1

3OD87 and ODmin =
√

2[QIprobe e
−OD Adtprobe/(~ωL)]−1/2. The

spatial resolution is estimated by

∆x =
√

2Ddtmw. (6.5)

This definition of spatial resolution provides the resolution for the optimised sensi-
tivity parameters, where dtmw = τ2. One should keep in mind, however, that the
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definition is not optimal for examining the change in spatial resolution with tem-
perature and pressure. If τ2 is reduced but not D, such as through the increase in
SE relaxation with temperature, then the spatial resolution will appear to improve,
even though there would be little change in ∆x for a given fixed value of dtmw.

Figure 6.14 shows spatial resolution and δBatom in a 140µm cell as a function of
temperature and buffer gas pressure; Figure 6.15 shows the same for δBphoton. The
model parameters are: Tmeas = 1 s, Q = 0.27, Iprobe = 30 mW/cm2, dtprobe = 0.3µs,
A = 2DT1, Nshots = 150, dtrun = 30 s, and dtmw = τ2. I used τ2 = T1, due to
the relative simplicity and reliability of the T1 calculation, and their approximately
equal experimental values (at least for the conditions used in Chapter 7). The laser
is resonant with the centre of the shifted 87Rb F = 2→ F ′ = 2 transition. The cell is
filled with Kr and N2 buffer gas, in a 3:1 ratio and with Tfill = 22◦C. Parameters such
as Natom, T1, and the OD are calculated using the models presented in Chapter 2.
These parameters match with those used for Figure 6.13.

The optimisation of δBatom is a balance between maximising Natom and min-
imising relaxation. Figure 6.14 shows that for low temperatures, δBatom improves
with increasing temperature, as Natom increases. At higher temperatures, δBatom is
degraded by the reduction of T1 (and thus τ2) due to SE relaxation. The change in
relaxation with buffer gas pressure also plays a minor role. δBatom is optimised over
a broad line to give δBoptimal

atom = 3 pT Hz−1/2, corresponding to a spatial resolution
of ∆x = 45µm.

Figure 6.15 shows that δBphoton has a similar temperature response, with δBphoton
improving with temperature at low temperatures, but degrading with temperature
as SE relaxation comes to dominate. δBphoton is more strongly dependent on τ2 than
δBatom, and for low buffer gas pressures, δBphoton improves with increasing pressure
due to the suppression of wall relaxation. δBphoton degrades at higher buffer gas
pressures, due to the reduction of OD with buffer gas broadening. An optimal value
of δBoptimal

photon = 80 nT Hz−1/2 is reached for T = 130◦C and Pfill = 60 mbar, cor-
responding to a spatial resolution of ∆x = 57µm, OD87 = 0.7, OD = 1.2, and
T1 = 6.8µs.

We can perform similar analyses for cells filled with pure 87Rb or for 200µm
thick cells. The results are presented in Table 6.1.

6.4 Optical Pumping and Relaxation

6.4.1 Modelling Optical Pumping and Relaxation with the Diffu-
sion Equation

Following the theory used in Chapter 4, we can use the diffusion equation to model
optical pumping and relaxation in the ultrathin cells, which are well-suited to a 1D
treatment. The diffusion equation is essentially the 1D version of Eq. (4.4),

∂

∂t
u(z, t) = D

∂2u

∂z2
− (γ1 + Γp)u(z, t) + Γp, (6.6)
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where ΓP is the optical pumping rate, γ1 is the T1 relaxation rate, and z is the
position between the cell walls (the front and back windows), which are at z = 0
and z = d. The steady state solution gives the distribution of optical pumping across
the cell,

u0(z) = A exp(µ z) +B exp(−µ z) + u∞, (6.7)

where u∞ = ΓP /(ΓP + γ1) and µ =
√

(ΓP + γ1)/D, as in Chapter 4. The constants
A and B are determined by the boundary conditions,

∂u

∂z

∣∣∣
z=0
− ε/2

(1− ε/2)L
u(0) = 0,

∂u

∂z

∣∣∣
z=d

+
ε/2

(1− ε/2)L
u(d) = 0, (6.8)

where again L = 2
3λ, where λ is the Rb mean free path. Applying the boundary

conditions to Eq. (6.6) yields

A = S u∞
µ+ S + (µ− S) exp(−µd)

(µ+ S)2 − (µ− S)2 exp(−µd)
,

B =
A(µ− S)− S u∞

µ+ S
, (6.9)

where

S ≡ ε/2

(1− ε/2)L
, (6.10)

and ε is again the wall collision depolarisation probability. We can obtain the T1

time in the cell by again setting Γp = 0 at t ≥ 0 and numerically solving Eq. (6.6)
with the initial condition Eq. (6.7) and the boundary conditions given in Eqs. (6.8).
The T1 time is again the 1/e decay rate given by Eq. (4.11).

Figure 6.16 shows the optical pumping efficiency and T1 time along z, in cells of
varying thickness. The modelling is performed for the conditions presented in Ta-
ble 2.7. In addition, I have used ΓP = 106 s−1 and ε = 1. The modelling is presented
for a range of cell thicknesses. This demonstrates the effect of the uncertainty in the
cell thicknesses, and also the differences between the 100µm and 200µm thick cells.

The dashed lines in Figure 6.16 show the limits of optical pumping efficiency
and T1 imposed by SE and buffer gas relaxation. The lines are given by u∞ =
ΓP /(ΓP + γ1SE + γ1bg) = 0.95 and T∞1 = (γ1SE + γ1bg)

−1 = 19.1µs, respectively,
using the values of γ1SE and γ1bg listed in Table 2.7. The dotted lines include wall
relaxation in a 140µm cell, assuming it is described by the lowest order diffusion
mode, as in Eq. (2.71). The dotted lines are given by uavg∞ = ΓP /(ΓP + γ1) = 0.89
and T avg1 = γ−1

1 = 7.9µs, using the γ1 listed in Table 2.7. Comparison with the
140µm cell u0 and T1 multimode diffusion curves show that the dotted lines are
approximate averages of the multimode curves.

The cell thickness and diffusion constant are only sufficient to form a cell-bulk
region in the thicker cells, where the central atoms are sufficiently separated from
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Figure 6.16: Calculated a) optical pumping efficiency and b) T1 time in a 1D
slice through cells of various thickness. z = 0 and z = 1 correspond to the front
and back cell windows. The black dashed lines in (a) and (b) correspond to
u∞ and T1 calculated considering only bulk relaxation mechanisms (ie SE and
buffer gas relaxation). The dotted purple lines include the wall relaxation rate
for a 140µm cell, assuming only lowest-order diffusion.

the walls so that they do not interact with the walls. Despite using ε = 1, u0 6= 0
at the walls, due to the flux of polarised atoms diffusing in from the cell bulk. This
flux also results in a nonzero T1 at the walls.

6.4.2 Characterisation of Optical Pumping

I performed a series of characterisation measurements on the optical pumping of
the cured U1 cell, shortly after taking the data presented in Figure 6.7.b. I used
two techniques for the characterisation measurements. In the first, I looked at the
change in absorption of a probe beam immediately after an optical pumping beam
is turned on, obtaining the change in OD induced by optical pumping, ∆ODpump,
and the optical pumping rate, ΓP . I called this an OPR (optical pumping rate)
sequence. In the second measurement, I used a Franzen sequence (see section 3.2.2)
to measure ∆ODpump and also the T1 time. Franzen measurements are insensitive
to optical pumping from the probe beam, and are thus the better way to measure
∆ODpump. I found that for a sufficiently weak probe beam, both OPR and Franzen
measurements did yield similar results.

Figure 6.17 shows example data from each of the OPR and Franzen charac-
terisation sequences. The experiment parameters are runs 1 and 2 in Table 6.2.
With similar pump beam intensities and a weak probe beam intensity of Iprobe =
0.56 mW/cm2, the OPR and Franzen methods yield similar optical pumping values,
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Figure 6.17: Example data for the two measurement types used to characterise
optical pumping in the 100µm cell. Data is shown in blue, and fitted curves
in red. The text gives the optical pumping intensity, Ipump, as well as values
extracted from the fitting.

of ∆ODpump = 0.37 and ∆ODpump = 0.38, respectively. I assumed ΓP87 ≈ ΓP85

(see Eq. (2.32), and fit the OPR data with a single exponential,

∆OD = −∆ODpump(1− exp[−ΓP t]), (6.11)

where ∆ODpump and ΓP are fit parameters. ∆ODpump is the change in OD in-
duced by optical pumping, ΓP is the optical pumping rate, and A is a fit constant.
Eq. (6.11) is equivalent to Eq. (2.18), which describes the response of the ground
state populations to optical pumping, derived from a 3-level model. The Franzen
data was fit with the equation

∆OD = A−∆ODpump exp[−t/T1], (6.12)

where ∆ODpump, T1, and A are fit parameters. The data could also be fit using the
1/e fitting described in Section 4.4.

Low Optical Pumping Efficiency

Figure 6.18 shows ΓP and the optical pumping efficiency, u0, as a function of pump
laser intensity, Ipump. The experimental parameters are listed in Table 6.2. The
optical pumping efficiency was calculated as u0 = ∆ODpump/OD, equivalent to the
definition used in section 2.4.1. The two striking features are the large variation
between data sets, and the low optical pumping efficiency. The saturation of u0

requires 10s of mW/cm2 of pumping intensity, and gives u0 values around 0.3, but
with variation from 0.15 to 0.6. In the model presented in section 2.4.1, the total
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Figure 6.18: Optical pumping rate, ΓP , and efficiency, u0, as a function of optical
pumping power, for two different pumping lasers. The experimental parameters
are listed in Table 6.2.

saturated pumping efficiency was u0 = 0.75 and the 87Rb efficiency was u87
0 =

0.85. The data sets were taken with a range of beam sizes, beam intensities, and
temperatures. Runs 5 and 6 were performed using a loaned TA Pro laser for optical
pumping7.

Much of the scatter in Figure 6.18 is likely to be due to the difficulty in accu-
rately measuring Ipump and the OD. At the point of taking this data, there was a
significant amount of residue built up on the cell windows (this is discussed further
in Appendix F). This created large OD background in the cell which had to be
accounted for when measuring the Rb OD, and partially blocked the optical pump-
ing beam. The residue build-up was non-uniform across the cell, and increasing in
time, resulting in a baseline OD ranging over ODcell = 0.2− 0.6. The data sets are
internally consistent, in that if we plot u0 against u∞ = ΓP /(ΓP + γ1), we find that
u0 ∝ u∞, with the proportionality constant different for each data set.

ΓP is reasonably consistent between runs 1− 4, and the variation in u0 between
the runs is likely to be due to the variations in Iprobe. Runs 3 and 4 used probe
intensities large enough to cause significant optical pumping on their own, which
would then have reduced the observed ∆ODpump and thus u0.

The large beams used in runs 5 and 6 may have been clipped on the powermeter,
resulting in an underestimation of Ipump. Moreover, since rprobe � rpump in runs
5 and 6, we may have only probed the centre of the pumped region, where the
Gaussian pump beam profile gave large ΓP and u0. The changes in the pump and

7Toptica, 2 W TAPro tapered amplifier laser
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Figure 6.19: Comparison of data sets 1 and 2 (see Table 6.2) with the optical
pumping model presented in section 2.4.1. The model has been fit (by hand) to
the data by tuning a radiation trapping parameter (see text).

probe beam sizes seem to have minimal influence on optical pumping with the IF
laser, however. The insensitivity to beam size on a millimeter scale matches with
what we would expect from the diffusion speeds in the cell, where D ≈ 1.6 cm2/s.

Both ΓP and u0 are substantially higher when using the TAPro laser. It is
unclear exactly why this is. Some possible reasons have been discussed above, but
a definitive answer is not possible without retaking the data under more controlled
conditions. It is also possible that the difference is due to properties of the lasers
themselves, rather than calibration errors or differences in experiment parameters.
Despite the possibly superior nature of the TAPro laser, I kept using the IF-laser for
optical pumping. Aside from the considerable cost and ordering time associated with
ordering a new TAPro (I was borrowing the one used here), I found that the IF-laser
was sufficient for use in imaging, as seen in Chapter 7. Figure 6.18 indicates that
an investigation of alternative pumping lasers would be of interest when designing
a next-generation, optimised setup though.

Comparison with the Optical Pumping Model

Figure 6.19 compares the data from runs 1 and 2 in Table 6.2 with the optical
pumping model presented in section 2.4.1. Runs 1 and 2 were chosen because of
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their self-consistency and weak probe beam. The model parameters were calculated
using the theory presented in Chapter 2, for a 140µm thick cell, filled with Pfill =
80.4 mbar of Kr, and operated at T = 126◦C. The laser, locked to the F = 2 →
F ′ = 2/3 crossover peak, was detuned by ωshift = −2π × 444 MHz from the level
|2〉 resonance. This gave γ1 = 1.05 × 105 s−1, Γ∗ = ∆ωbroad = 2π × 2 GHz, and
unpumped ODs of OD = 0.90, OD87 = 0.34, and OD85 = 0.56. I included radiation
trapping in the model by introducing light that was resonant with levels |1〉, |4〉,
and |5〉. The intensities of the 3 new frequencies were fit by hand to the data, to
give I1,4,5 = 0.16× I2, where I2 was the input laser intensity. The optical excitation
rates were then given by the sum of the excitation driven by each of the four optical
frequencies,

RtotalPα =
∑
n

RPα(ωn), (6.13)

where ωn is the angular optical frequency, n = 1, 2, 4, 5, and RPα is the optical
excitation rate due to a single optical frequency, given by Eq. (2.24). Figure 6.19
shows that the apparently low optical pumping efficiency can be explained by a
combination of radiation trapping, the presence of 85Rb, optical broadening, and
the detuning of the laser from the collisionally shifted 87Rb line.

6.4.3 Optical Pumping During Imaging Experiments

The data presented in Chapter 7 was taken with a broad range of buffer gas pres-
sures, due to a leak in the cell valve that had developed by that time. The leak is
discussed further in section 6.5.1. We can examine this inadvertent scan of buffer gas
pressure to further characterise optical pumping in the ultrathin cells, as presented
in Figure 6.20.

Each run gave experimentally measured values of ∆ODexp
pump and T1. The T1 time

was obtained from the reference image, which was taken using a Franzen sequence.
In some cases I also measured the OD (ODexp), and could directly calculate the
optical pumping efficiency, uexp0 = ∆ODexp

pump/ODexp. However, the time constraints
imposed by buffer gas loss over the course of a day meant that I generally performed
the Bmw imaging without measuring the OD, and I had to extract the OD from the
measured temperature, Tstem, and T1 times. The extraction involved first fitting
the buffer gas pressure, P calcfill , to the observed T1 and then using the extracted

P calcfill to calculate ODcalc. I assumed that Kr and N2 were present in a 3:1 ratio.

I could then use the extracted ODcalc and measured ∆ODexp
pump to give ucalc0 =

∆ODexp
pump/ODcalc. This is obviously a process subject to a degree of error, driven

primarily by uncertainties in the temperature and cell thickness, and the ucalc0 values
in Figure 6.20 can be seen to be lower than uexp0 , due to an overestimation of ODcalc.
The ucalc0 /uexp0 ratio appears reasonably constant, however, and the ucalc0 values are
useful because they are available for every run.

I could also model optical pumping, using the model presented in Chapter 2,
modified to include radiation trapping as described in section 6.4.2. For each ex-
perimental data point, I used the extracted ODcalc and P calcfill as input parame-
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Figure 6.20: Optical pumping in the U1 cell as a function of a) measured T1 and
b) extracted ODcalc. The top axis of (a) gives an estimate of the total buffer
pressure, based on the measured T1 and assuming a 3:1 mixture of Kr and N2.
See text for details.

ters to obtain values of umodel0 and ∆ODmodel
pump . I used a representative value of

Ipump = 120 mW/cm2 for the optical pumping intensity, which is well within the
saturated pumping regime seen in Figure 6.18. I used the measured values for the
hyperfine relaxation rate, γ1 = 1/T1, and the measured cell temperatures, which
were in a range Tres = (141.5±2)◦C. For radiation trapping, I used I1,4,5 = 0.2× I2.
Despite the presence of N2, this is similar to the value of 0.16×I2 found for the pure
Kr filling in Figure 6.20. This could be explained by the much higher cell tempera-
ture used for the Figure 6.20 data, Tres = (141.5±2)◦C compared to Tres = 124.5◦C,
giving a higher OD and stronger radiation trapping.

Figure 6.20.a plots ∆ODpump and u0 values against the measured T1, whilst
Figure 6.20.b plots the same values against ODcalc. Due to variations in buffer
gas pressure, the T1 times vary from 4µs to 10µs. This corresponds to buffer gas
pressures in a range of 50-100 mbar, as illustrated in the top axis of Figure 6.20.a.
The measured optical pumping efficiency reaches uexp0 = 0.38, slightly higher than
the uexp0 ≈ 0.3 seen in Figure 6.19. There is a dip in u0 for low T1 times and high
ODcalc (low T1 corresponds to low Pfill, and thus low optical broadening and high
OD). Although not reproduced by the model, this drop in u0 is likely to be due to
pumping being inhibited by stronger wall relaxation. The flat nature of u0 outside
of the low-T1 region is reproduced in the model, and likely explained by the varying
OD contributions from 87Rb and 85Rb with buffer gas pressure.

The agreement between measured, calculated and modelled values in Figure 6.20
demonstrates again that the low optical pumping efficiency can be explained by a
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combination of radiation trapping, the presence of 85Rb, optical broadening, and
the detuning of the laser from the collisionally shifted 87Rb line.

6.5 Discussion of Setup and Possible Improvements

6.5.1 Cell Valve Leak

After some months of operation, the U1 cell began developing a leak. This gradually
worsened to the point that the cell was losing several mbar of buffer gas per hour.
At the end of a day, the buffer gas pressure was unusably low, and the cell had to be
refilled at the start of each day. This was a time-consuming process, as the buffer
gas transfer needed to be performed at room temperature, and heating the oven up
each morning took 2-3 hours.

The leak was due to the Viton O-ring used to seal the cell valve. Photos of the
degraded o-ring and valve are shown in Appendix E.6. The O-ring was most likely
attacked by the highly reactive Rb. Reactions with Rb are a bigger problem in
vapor cells than cold atom experiments, as the high temperatures result in large Rb
densities in all of the vacuum system, not just at the position of the trap. Materials
that may be compatible with cold atom experiments are therefore not necessarily
appropriate for vapor cells8. I was also operating close to (or possibly above) the
150◦C recommended long-term operation limit for a Viton seal.

The Rb loss during this period was also extremely high, and I had to perform a
new transfer of Rb from the ampule every two weeks. I was able to operate the cell
for several months before the valve seal degraded and started leaking. If you know
what you are doing, this is a lifetime sufficient for many tasks.

Valves are also available based on copper seals, instead of Viton O-rings. These
are likely to be more resilient to the Rb, and can tolerate much higher temperatures.
The downside is that copper seals have a limited number of open/shut cycles, as the
seal is formed by compressing the copper. If the desired cell filling parameters are
well known however, there may be little need for repeated opening of the valve. In
this case, a copper seal could greatly extend the lifetime of the valves (though I
suspect the valves would still fail at some point).

6.5.2 White Residue

A white residue appeared in the cell after a few weeks of operation. The residue was
unlikely to be Rb2O, which is brown, and was perhaps RbH. The first appearance
was after the second transfer of Rb to the cell, indicating that the source was some
contamination that had built up in the Rb ampule, which was housed at that point
in a crushed copper tube, or from somewhere in the vacuum system. The amount
of white residue grew in time however, so it is possible that there was also a source
within the cell system, such as the cell valve O-ring.

8Though ultrahigh vacuum and bakeout requirements would also prevent a Viton seal from being
used in cold atom experiments.
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The residue was initially only present in the glass-metal transition and under
the cold finger. The residue began building up on the cell windows however, due to
a temperature gradient created by the presence of a microwave device at the end of
the cell, which was slightly cooled through a rudimentary cold finger. The residue
appears to stick strongly to the walls, and did not appear to migrate once it had
struck the cell windows. The fan pattern formed as the residue came out of the cell
channel can be seen in Figure F.2. The residue built up to the point that the OD
of the cell (without Rb) approach unity, rendering the cell inoperable.

I was able to remove the residue from the cell windows by evacuating the cell, and
heating the cell windows to reverse the temperature gradient. Details and photos of
the process, which took several days, are provided in Appendix F.

6.5.3 Mechanical Noise

The filling station setup suffered from vibrational instabilities. These were intro-
duced from the mounting of the vapor cell, and from the raised breadboard that
held the oven, imaging optics, and DUT mount.

The cell chamber was mounted in a vibrationally insecure way, at the end of a
long arm. The closest point secured to the table was at the cell valve. In addition,
vibrations in the vacuum system may have been transferred to the cell. In an
optimised setup, the cell would be secured much closer to the cell chamber.

The initial mounting of the raised breadboard was insufficient for its stiffness,
causing large instabilities in the optical path. This was reduced to a manageable
level by bolting to a rigid frame and taking care not to fix the breadboard under
strain.

6.5.4 Oven and DUT Heating

There are a number of improvements that can be made to the existing oven.

The optical access is currently quite restricted, and would be greatly improved
with enlarged windows. If covered with glass, the windows would likely have little
impact on the insulation provided by the two-layer oven. The size of the oven was
also sometime quite restrictive when mounting test devices and their cables.

The heating and cooling of the oven is currently a slow process, taking 2-3 hours
to heat up and 1-2 hours to cool down. This means that debugging of the setup is
a very inefficient process, if there is a problem inside the oven area.

A more fundamental issue is that the DUT (device under test) must be placed
inside the oven along with the vapor cell. Although this may not be a problem
for some devices, many are unlikely to be compatible with operation at such high
temperatures. For near-field imaging, it is unlikely to be feasible to remove the DUT
from the oven entirely, due to the required proximity of the cell and DUT. However,
there are a number of options available to reduce the heating of the DUT.

Our first thought might be to actively cool the DUT. I have used this to re-
duce the DUT temperature to approximately 100◦C from the oven temperature of
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140◦C. However, it is difficult to cool the DUT without also producing a tempera-
ture gradient in the cell, and thus quickly causing a build-up of residue on the cell
windows.

One of the many benefits of using isotopically pure 87Rb would be a reduction in
the temperature required to reach a given 87Rb density. At 140◦C in a natural Rb
cell, the 87Rb density is 1.7× 1013 cm−3 (see Table 2.7). An isotopically pure 87Rb
cell would achieve this density at 117◦C. If Cs is used instead of Rb, the temperature
can be reduced even further, with similar Cs density achieved at 102◦C [205]. This
is because Cs only has a single naturally occurring isotope, and has a higher vapor
density than Rb for a given temperature.

There are also options for controlling the Rb density without heating the DUT.
The technique of LIAD (light induced atomic desorption) uses pulses of blue or UV
light to desorb atoms from the cell walls [198, 206]. This can be used to give a
temporary boost in atomic density without heating the cell. It is not immediately
clear how well this would work with the high buffer gas pressures used in our cells.
The most promising option is to directly heat the cell using a laser, as performed
with a 1.5µm laser in Chapter 8. With a heating laser, it may be possible to locally
heat the cell with minimal heating of the DUT.

6.5.5 Buffer Gas Filling

The cell valve leak led to the imaging presented in Chapter 7 being performed with
a large range of buffer gas pressures. The modelling presented in Section 6.3.3
indicates that the optimum pressure for a 3 : 1 Kr:N2 mixture is 60 mbar, however
this remains to be experimentally verified.

The optimum ratio of Kr for Rb localisation and N2 for quenching is unclear at
this point. The low observed optical pumping efficiencies are likely to be in part due
to radiation trapping, despite the presence of N2 as a quenching gas, implying that
more N2 is needed. The optical pumping and radiation trapping model presented in
Ref. [98] would be a good starting point for an analysis of the required quenching
gas pressure.

6.5.6 Isotopically Pure 87Rb

Isotopically pure or enriched 87Rb is significantly more expensive than natural Rb,
and we have so far avoided its use. As discussed throughout this thesis however,
the presence of 85Rb can be highly detrimental, and an optimised setup should
use pure 87Rb. Benefits would include: 1) There would be no background OD
due to 85Rb, giving increased stability and better signal to noise ratio; 2) For a
given operating temperature, we would see a fourfold increase in 87Rb density, and
thus signal strength; 3) For a given 87Rb density, SE relaxation would be reduced
by a factor of 4. This would either allow us to operate at higher temperatures
(giving a stronger signal) or give us longer relaxation times. This increase in the SE
relaxation ‘ceiling’ would be essential to taking full advantage of a wall coated cell
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(see Section 6.5.7); and 4) For a given 87Rb density, we could significantly reduce
the operating temperature (see Section 6.5.4).
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Figure 6.21: Calculated optical pumping efficiency and T1 time through a
140µm antirelaxation coated cell, for various ε values. Following section 6.4.1,
the black dashed lines correspond to u∞ and T∞1 far away from the cell walls.
The blue dotted lines include wall relaxation assuming ε = 1, and lowest order
diffusion. Modelling is shown for both a natural Rb cell (a+b) and a pure 87Rb
cell (c+d).

6.5.7 Antirelaxation Coated Cells

Antirelaxation coatings are a natural consideration in an environment dominated
by wall collisions, such as in our ultrathin cells. As discussed in section 2.8, OTS is
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a promising candidate for use in our cells. It gives 100s to 1000s of bounces, and is
stable at long-term operation temperatures of up to 160◦C [155]. Figure 6.21 shows
modelling of the optical pumping efficiency and T1 time in a 1D slice through an
antirelaxation coated cell. The model is presented in section 6.4.1, and I have used
natural Rb and the values in Table 2.7 as the input parameters. As the coating
effectiveness increases (lower ε), the profiles approach the bulk limits, u∞ and T∞1 ,
given by γSE and γbg. Panels (a+b) show modelling for a natural Rb cell, and panels
(c+d) show modelling for cell filled with pure 87Rb. The temperature of the enriched
cell has been reduced to give the same 87Rb density in both cells, and the resulting
decrease in SE relaxation gives a dramatic improvement in pumping efficiency and
T1 time in the enriched cell.

It is interesting to note how close the curves for ε = 1 and ε = 0.5 are, and
that the effect of a factor of 2 reduction in wall relaxation probability would be very
difficult to experimentally detect.

6.5.8 Other Notes

I used the edges of the cell chamber to calibrate the pixel size in images. The cell
and pixel sizes are of a very different order however, being 6 mm and ∼ 20µm,
respectively. An optimised setup would have 10µm-order calibration marks on the
glass near the cell chamber.

I have not considered molecular buffer gases in this thesis, beyond N2. Ref. [146]
lists several species, such as C2H4, that have attractively low relaxation cross sec-
tions. There may be heavy buffer gases that give superior relaxation cross sections
and diffusion coefficients to Kr. Hydrocarbons may make good candidates, for sim-
ilar reasons to their suitability as wall coatings.

In magnetometry experiments, broadband lasers are used with linewidths from
10s of MHz to a few nm [207]. The observable in these experiments is 〈mF 〉, and
so they are not required to optically resolve the F = 1 and F = 2 ground states.
We may be able to operate with a slightly more broadband laser, say 10s of MHz
instead of the current 1 MHz. Such a laser is likely to be cheaper and simpler to
operate, which would be attractive for industrial applications.
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Table 6.1: δBoptimal
photon and optimised parameters for different 87Rb purities and

cell thicknesses. As illustrated in Figure 6.15, the optimal parameter space is
quite large, with only a small change in δBphoton for a broad range of buffer
pressures and temperatures.

87Rb Thickness T Pfill ∆x
OD OD87

T1 δBoptimal
photon

purity (µm) (◦C) (mbar) (µm) (µs) (nT Hz−1/2)

0.2783 140 130 60 57 1.2 0.7 6.8 80
1 140 125.5 145.5 52 0.97 0.97 13.8 28

0.2783 200 121.8 54.6 79 1.2 0.76 12.2 30.1
1 200 115.5 121.2 74 0.94 0.94 24.4 11.3

Table 6.2: The experiment parameters for the data presented in Figure 6.18.
For all data, the cell was filled with 80.4 mbar of Kr buffer gas, the GS-laser
was used as the probe beam, and both pump and probe beams were locked to
the 87Rb F = 2 → F ′ = 2/3 crossover peak. The OD for sets 3 and 4 (marked
with ∗) was estimated from the cell temperature.

#
Pump rpump rprobe Iprobe Tstem Tcell OD

T1 Method
Laser (mm) (mm) (mW/cm2) (◦C) (◦C) (µs)

1 IF 1.2 1.2 0.56 124.5 140.6 0.53 OPR
2 IF 1.2 1.2 0.56 124.5 140.6 0.53 13.6 Franzen
3 IF 2 2.5 9.8 124.5 140.6 0.53∗ OPR
4 IF 2 1 8 126 141 0.56∗ OPR
5 TAPro 2.6 0.7 1.2 129.7 146 0.68 OPR
6 TAPro 2.6 0.7 11 129.7 146 0.68 12.3 Franzen
7 IF 1.1 1.1 1.4 110 123 0.2 OPR
8 IF 1.1 1.1 1.4 110 123 0.2 15.6 Franzen
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Chapter 7

Imaging Microwave and DC
Magnetic Fields with < 100µm
Spatial Resolution

In this chapter, I demonstrate the capabilities of the high-resolution imaging system
described in Chapter 6, through the imaging of microwave magnetic near-fields above
a selection of microwave circuits. As an illustration of the flexibility of our vapor
cell system, I also present vector-resolved images of the dc magnetic field above a
wire loop. The material presented in this chapter was published in Ref. [53].

7.1 Experiment Parameters

Much of the experiment setup and operating parameters are described in Chapter 6.
The microwave imaging was performed using the U1 cell (140µm thickness), and
the dc magnetic field imaging was performed using the U2 cell (200µm nominal
thickness). Rabi sequences were used for microwave imaging, and Ramsey sequences
for dc field imaging. Typical operating parameters were: separate pump and probe
lasers, both locked to the F = 2 → F ′ = 2, 3 crossover peak of the 87Rb D2 line;
pump laser intensity of 110 − 140 mW/cm2; probe laser intensity of 30 mW/cm2;
probe pulse duration of dtprobe = 0.3µs; cell filled with Kr and N2 buffer gas in a 3:1
ratio, with Tfill = 22◦C; measured temperatures of Tres = 140◦C and Tcell = 145◦C.
As discussed in Section 6.2, the measured temperatures may overestimate the actual
temperatures. Equation (6.1), with A = 0.9, suggests that the actual reservoir
temperature may have been closer to 128◦C. For Pfill = 100 mbar, T = 140◦C
gives a Rb diffusion distance during a measurement of δx =

√
2DT1 = 48.5µm,

whilst T = 128◦C gives δx =
√

2DT1 = 53.7µm. We thus take the area of each
diffusion-limited sensor to be 50× 50µm2 (see Section 3.4).

The 1:3.6 demagnification given by the imaging lens meant that the CCD pixels
corresponded to 21× 21µm2 in the imaging plane. I did not bin the CCD pixels for
the images presented in this Chapter, and so the ‘image pixels’ and ‘CCD pixels’
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are identical (see Section 3.3.1). However, the 21 × 21µm2 pixel area was a factor
of 2.42 smaller than the 50 × 50µm2 diffusion limited sensor area. In Section 7.5,
I therefore considered 2 × 2 binned CCD pixels with an area of 42 × 42µm2, in
order to better estimate the experimental sensitivity. This binning is relevant for
the analysis presented in Figures 7.7 to 7.9.

7.2 ODmw Images

For Chapters 6-8, I used a slightly different absorption imaging sequence to the
previous Chapters. As described in Section 3.3, the reference image sequence was
changed to include an optical pumping pulse, making the presence of the microwave
the only difference between the actual and reference images. This gives images of
ODmw, the change in OD induced by the microwave. The effects of the microwave
are clearer, giving more robust and faster fitting. In addition, the reference image
sequence, consisting of optical pumping, waiting, and probing, is a Franzen sequence,
and can be used to obtain T1 and ODpump for each shot.

Figure 7.1.a shows ODmw images for different Rabi pulse durations above the
Zigzag chip (described in Section 7.3.2). The chip surface is at approximately Z =
0. The ODmw images trace out contour lines of the microwave magnetic field.
Peaks in ODmw correspond to atoms at the top of a Rabi oscillation (and so a
(2n − 1)π local microwave pulse), and troughs correspond to atoms at the bottom
of a Rabi oscillation. The outermost/rightmost n = 1 contour line corresponds to
atoms at the peak of their first oscillation (π pulse). Moving inward/left, the nth

contour line corresponds to atoms at the top of their nth oscillation. As discussed in
Refs. [50, 54, 157], it is possible to reconstruct a component of the microwave field
from only a single ODmw image, from the n value of each contour line. Over time,
we see the oscillations ‘propagating’ into the cell, and the signal washing out due to
relaxation. As discussed in Chapter 6, the dominant relaxation mechanism in the
ultrathin cells is collisions with the front and back cell walls.

Figure 7.1.b shows a zoomed-in section of the dtmw = 4.65µs ODmw frame.
Peak-to-trough feature sizes as small as 70 ± 10µm can be seen in the highlighted
section. This is approaching the estimated diffusion-limited spatial resolution, ∆x =√

2Ddt = 37µm, where I have used D = 1.5 cm2/s and dt = 4.65µs, corresponding
to a buffer gas mixture of 75 mbar of Kr and 25 mbar of N2.

Figure 7.1.c shows signals in time for a pixel at Z = 0.48 mm, Y = 2.6 mm in
Figure 7.1.a. We fit the ODmw oscillations using Eqs.(3.25) and (3.26), for Ramsey
and Rabi sequences, respectively.

7.3 Imaging Microwave Fields Above Test Structures

In order to characterise and demonstrate our imaging system, we created three test
structures. The structures, shown in Figures 7.2-7.4, respectively, are: a coplanar
waveguide (CPW); a waveguide making several bends across its substrate, which we
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Figure 7.1: a) ODmw images for various dtmw durations. The surface of the
Zigzag chip (see Section 7.3.2) is at Z = 0; b) zoomed in section of ODmw for
dtmw = 4.65µs. The zoomed-in section is indicated by the white box in (a).
The smallest feature size, highlighted in the zoomed-in image, is only 70µm
peak-to-trough; c) ODmw in time for the pixel at (Z = 0.48 mm, Y = 2.6 mm),
showing Rabi oscillations as the microwave pulse length is scanned.

dubbed the ‘Zigzag’ chip; and a split-ring resonator (SRR). All of the microwave
field measurements were made using the U1 cell. S-Parameter characterisations of
the three structures are provided in Appendix H.
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Simulations of the microwave fields were based on the microwave simulation pro-
gram Sonnet. Sonnet outputs the microwave current in the devices, from which we
used the Biot-Savart law to calculate the microwave near field. This approximation
is valid in the near-field limit, i.e. for distances, r, above a device much smaller
than the microwave wavelength, λmw. As λmw = 4.4 cm for 6.8 GHz microwaves,
and we are probing the microwave field over a range r = 0.15− 6 mm, the condition
r � λmw is easily satisfied. The only free parameters in comparisons with measure-
ment were the amplitude of the input microwave signal and the exact position of
the cell relative to the chip.

I assumed that the external wall at the end of the cells was given by its specified
value, 150µm, however the manufacturing tolerances allowed for the wall to be up
to 200µm thick. The agreement between measured and simulated fields indicates
that the external wall thickness was within the manufacturing tolerance, but it is
difficult to draw much stronger conclusions without a direct measurement of the
glass thickness.

7.3.1 CPW

CPWs are a ubiquitous building block of microwave circuits [189], and provide a
simple structure which can be readily and robustly compared with simulations. The
CPW used in this thesis, shown in Figure 7.2.a, has a 500 µm wide central signal
strip, with 105 µm gaps to ground planes on either side. Figure 7.2.b shows images
of the Z and Y components of the CPW microwave magnetic field (the very weak
X component was not imaged). Simulations of the microwave field are shown as
overlaid contour lines. The slight asymmetry is related to the bends in the wires. The
strong agreement with the simulated field demonstrates the reliability of the imaging
technique. Discrepancies may be due to imperfect coupling into the waveguide, and
the use of a finite mesh size for modelling the microwave field through the bends.
The images in Figure 7.2.b demonstrate the importance of thin external vapor cell
walls: a vapor cell with standard millimeter-scale external walls would see none of
the interesting features.
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Figure 7.2: a) Photo of the CPW chip, with the orientation of the chip in re-
lation to the coordinate system defined by the imaging cell shown on the right.
The approximate position of the imaging plane is indicated by a blue line, and a
white arrow indicates the microwave insertion port; b) Experimentally obtained
images of the Y - and Z-components of the microwave magnetic field above the
CPW. The waveguide surface is at approximately Z = 0. The simulated mi-
crowave field is shown in black contour lines, starting at 1 µT for the outermost
line and increasing in 5 µT steps inwards.
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Figure 7.3: Experimentally obtained images of |Bmw|, the absolute microwave
magnetic field amplitude, in several cross-sections 150µm above the Zigzag chip
(see Sec. 7.3.2). The central signal line is shown in red, and the ground planes
in orange. Black lines show the positions of the imaging planes on the chip.
Differences in field shape at each position are due to differences in the relative
phase of the microwave signal on the three loops of the signal line. The field at
the middle imaging position is examined in more detail in Figure 7.4.

7.3.2 Zigzag Chip

The Zigzag chip, shown in Figure 7.4.b, has smaller and more complex features than
the CPW, allowing us to highlight the spatial resolution of our setup. The Zigzag
waveguide has a 200 µm thick central signal strip, with 50 µm gaps to ground planes
either side. The waveguide goes through two bends, resulting in a cross-section in
the imaging plane containing three waveguide sections, each separated by 900 µm.
Figure 7.3 shows quasi-2D slices of the absolute microwave amplitude, |Bmw|, at
three positions above the Zigzag chip. The variation in field shape between the
positions is due to the standing wave produced in the waveguide. Figure 7.4.a then
examines the middle imaging plane of Figure 7.3 (indicated by the blue line in
Figure 7.4.b) in more detail, showing images of each of the polarisation components
of the microwave field above the chip, which are compared with contour lines from
simulation. Cross-sections of the field near the edge of the vapor cell are shown in
Figure 7.4.c. The wide field of view in Figures 7.3 and 7.4 (> 6 mm) was obtained
by stitching two sets of images together.

There is general agreement between the measured and simulated fields in Fig-
ure 7.4, but not for all features. The amplitude of the simulated X component of
the field is well below the experimental sensitivity, and the measured X component
of the field is likely to be some projection of the Y and Z components, caused by
imperfect orthogonality between the chip, cell, and coil axes. Additionally, as seen
in the cross-sections in Figure 7.4.c, the measured microwave field is much broader
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Figure 7.4: a) experimentally obtained images of the X, Y , and Z components
of the microwave magnetic field above the Zigzag chip. The magnitude of the

microwave field, |Bmw| =
√
B2
X +B2

Y +B2
Z , is also shown on the far right. The

waveguide surface is at approximately Z = 0. The simulated microwave field
is shown in black contour lines, starting at 2 µT for the outermost line and
increasing in 3 µT steps inwards; b) Photo of the Zigzag chip. The approximate
position of the imaging plane for (a+c) is indicated by a blue line, and a white
arrow indicates the microwave insertion port; c) Cross-sections of the experi-
mentally obtained microwave field (blue dots) approximately 250µm above the
Zigzag chip surface, and comparison to simulation (red lines).

than the simulation around Y = 3 mm to Y = 4.5 mm. Given the spatial resolution
shown at Y = 5.6 mm, it is reasonable to conclude that this broadening is a real
feature of the microwave field. It is unlikely to be due to perturbations induced by
the vapor cell, for which we were unable to measure any effect with the Zigzag or
CPW chips. Such discrepancies highlight the difficulty of accurately manufacturing
and simulating even relatively simple structures such as the Zigzag chip, and the
need for direct measurements.
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Figure 7.5: a) Photo of the SRR chip, demonstrating a second operation mode
of the imaging setup, with the glass cell parallel to the transparent chip surface;
b) Experimentally obtained images of the X, Y , and Z components of the
microwave magnetic field above the split-ring resonator (SRR). The waveguide
surface is parallel to, and a few millimeters in front of, the cell. Black outlines
show the positions of the signal line and ring.

7.3.3 Split-Ring Resonator

The SRR chip, shown in Figure 7.5.a, consists of a signal line coupling inductively
into a split ring. The split-ring is built on a transparent glass substrate, allowing
us to operate in a second mode, with the SRR placed in front of and parallel to the
vapor cell. The resonator linewidth was 160 ± 20 MHz, corresponding to a quality
factor of 40± 5.

The presence of the vapor cell significantly changed the properties of the SRR,
by filling the space around the resonator with a glass dielectric. We used this to
tune the resonance frequency to match the 6.835 GHz splitting of the 87Rb ground
states, adjusting the gap between the cell and the SRR until the resonance was in
the desired position (see Appendix H). A shift of 1µm corresponded to a shift in
resonance of 5.7 MHz. Note that we were unable to detect any influence of the cell
on the CPW or Zigzag chips.

The SRR field is shown in Figure 7.5.b. Like in a solenoid, the SRR field is
strongest inside the split-ring, parallel to the split-ring axis in the X direction. The
field then turns outward, seen in the Y and Z component images, before returning
with a less-dense flux in the X direction outside the split-ring. The minima in the
centres of the Y and Z components are because the field lines travel out from the
field centre, and so cancel out along the central axes. The lopsided nature of the Y
component is due to the presence of the split in the ring.

132



X-component

Z (mm)
0 1 2 3 4 5

Y
 (

m
m

)

0

1

2

3

4

5

6 -100

-50

0

50

100

Y-component

Z (mm)
0 1 2 3 4 5

Y
 (

m
m

)

0

1

2

3

4

5

6 -100

-50

0

50

100

Z-component

Z (mm)
0 1 2 3 4 5

Y
 (

m
m

)

0

1

2

3

4

5

6 -100

-50

0

50

100

7T 7T 7T

Figure 7.6: Experimentally obtained images of the X, Y , and Z components
of a dc magnetic field 0.6 mm above a wire loop. Positive and negative field
values represent opposite directions. The field of view corresponds to the X
component of the SRR microwave magnetic field, which was used to drive the
Ramsey oscillations used to image the dc field. Outlines show the positions of
the current loop (blue) and SRR (black). The coordinate system is the same as
shown in Figure 7.5.a.

7.4 Vector Imaging of a DC Magnetic Field

Similar to the clock characterisation presented in Chatper 5, we can also use a
Ramsey sequence in our ultrathin cells to image dc magnetic fields. Driving Ramsey
oscillations on the magnetic field sensitive |F = 1,mF = 1〉 → |F = 2,mF = 1, 2〉
transitions (i = 6, 7), the oscillation frequency of the Ramsey fringes is equal to the
detuning of the microwave from resonance, allowing us to measure the Zeeman shift
induced by the applied dc magnetic fields.

The Ramsey Bdc measurement technique is fundamentally scalar, as the Zeeman
shift is determined by the absolute value of the dc magnetic field. There are standard
tricks for using scalar magnetometers for vector imaging, however [13]. For an
applied dc magnetic field, C, that is much larger than the field of interest, B, we
are primarily sensitive to the component of B that is parallel to C. For C along the
X axis, the measured field, Bmeas, is

Bmeas =
√

(C +BX)2 +B2
Y +B2

Z ≈ C +BX . (7.1)

We can obtain C in a separate reference measurement, and subtract this from Bmeas
to obtain BX . The full vector magnetic field can be obtained by imaging with the
C field applied along each of the X, Y , and Z axes. In our case, C is provided by
the coil cage around our system (described in Section 6.1.5).

Figure 7.6 shows images of the DC field above a 2 mm diameter wire loop. The
images were taken using the U2 cell (200µm nominal thickness), after replacing the
leaking valve and the U1 cell (see Section 6.5.1). The cell was filled with 70 mbar of
Kr and 20 mbar of N2, and operated at Tres = 130◦C, Tcell = 135◦C. The Ramsey
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oscillations were driven using the X component of the SRR field, which defines the
field of view1. We see a solenoid-like field, with a strong, uniform X component,
and the field turning outwards in the Y and Z components.

7.5 Sensitivity

We estimate the imaging sensitivity from the fitting uncertainty to the Rabi os-
cillations. Figure 7.7.a shows images of the Z component of Bmw and the fitting
uncertainty, δBmw, above the Zigzag chip in the leftmost imaging plane shown in
Figure 7.3.a. The highest sensitivity region is in the centre of the topmost lobe.
The high sensitivity is most likely due to a combination of relatively homogenous
field and low field amplitude. The best spatial resolution, on the other hand, is
closer to the chip surface in the high-field region on the left, where atomic diffusion
over a Rabi period is smallest. The distance from the end-wall of the cell (near
Z = 0) is inconsequential, as the skin of reduced optical pumping efficiency near
the walls (see Figure 4.3) in the ultrathin cells is on the order of 10s of µm only.
The fitting error to our microwave Rabi data was as low as ∆Bexp

mw = 21 nT per
sensor2. This gives a sensitivity of δBexp

mw = 1.4µT Hz−1/2 per sensor over the 4440 s
measurement time (148 averaged runs). Depending on the size of the microwave
field gradients, integrating over a larger volume would give an increase in sensitivity
at the expense of spatial resolution. We have a similar sensitivity for Bdc imaging,
observing δBexp

dc = 1.6µT Hz−1/2 for a 42× 42× 200µm sensor.

We can estimate the photon shot noise limited sensitivity for our experiment
parameters using the model presented in Section 3.4. We recall

δBphoton =

√
dtrun
Nshots

2

dtmw

~
µB

ODmin

ODmax
mw

exp(dtmw/τ2), (7.2)

where for an operating temperature of Tres = 140◦C, ODmax
mw = 1

3OD87 = 0.24 and

ODmin =
√

2[QIprobe e
−OD Adtprobe/(~ωL)]−1/2 = 1.0× 10−2. I use the parameters

Q = 0.27, Iprobe = 30 mW/cm2, dtprobe = 0.3µs, A = 42× 42µm2, τ2 = T1 = 7.8µs,
dtmw = 22.5µs, Nshots = 150, and dtrun = 30 s. The laser is red-shifted by an
AOM 80 MHz from the 87Rb F = 2 → F ′ = 2/3 crossover peak. The cell is
filled with Kr and N2 buffer gas, in a 3:1 ratio, with Tfill = 22◦C, and Pfill =
100 mbar. Parameters such as the OD are calculated using the models presented
in Chapter 2. We obtain δBphoton = 0.45µT Hz−1/2. As discussed in Section 6.2,
it is possible that the operating temperature was closer to Tres = 130◦C, which
would give δBphoton = 0.28µT Hz−1/2. We therefore conclude that our measured

δBexp
mw = 1.4µT Hz−1/2 is 3− 5 times the photon shot noise limit determined by our

1The restricted field of view compared to the X-component image in Figure 7.5 is explained
by the fact that we are using a different cell in Figure 7.6, with a different chip-cell distance and
alignment.

2I.e., per 2× 2 binned pixels, corresponding to 42× 42× 140µm3.
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Figure 7.7: a) Images of Bmw and the fitting uncertainty δBmw above the Zigzag
chip; b+c) an example pixel corresponding to the red dot in (a), with data for 2
averaged runs (b) and 148 averaged runs (c). Fits are shown considering all of
the data, and also just the first and second halves; d) Data for the pixel marked
by an orange dot in (a), which is well away from the microwave chip (and field).
The kink in the Bmw curve around dtmw = 7µs is due to some unidentified
problem in the reference image sequence.
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Figure 7.8: Extracted Bmw as a function of the number of averaged runs. Data
is shown for the Figure 7.7.b pixel, with Bmw obtained from fits to all of the
data, and just the first and second halves. The error bars are given by ∆Bmw,
the fitting uncertainty.

(non-optimal) experiment parameters. Noting that the optimal photon shot noise

limited sensitivity was determined in Section 6.3.3 to be δBoptimal
photon = 0.08µT Hz−1/2,

we could expect a factor of 17.5 improvement in sensitivity by optimising the buffer
gas pressure, temperature, and laser frequency, assuming that we reach the photon
shot noise limit by reducing noise from the camera and other sources.

We can measure the imaging noise by performing a run without microwave field.
The noise is given by the standard deviation in ODmw between experiment shots.
Excluding the kink in ODmw, discussed below, this yields ∆OD = 1.8 × 10−2 for
a single shot, which is 1.6 (2.6) times the photon shot noise limit of ∆ODphoton =
1.1 (0.68)×10−2 for Tres = 140 (130)◦C. Approximately half of the δBexp

mw in excess of
δBphoton is therefore caused by imaging noise, due to factors such as camera readout
noise, and fluctuations in the intensities and frequencies of the lasers. We have not
fully identified the sources for the second half of the excess noise, but they include
fitting errors and problems with the experiment sequence, as discussed below.

Figures 7.7.b and c show data from an example pixel in the high sensitivity
region of Figure 7.7.a (the approximate location is marked with a red dot). The
data is shown for both 2 averaged runs and 148 averaged runs, and almost two Rabi
oscillation periods can be seen. We were curious as to whether better results could
be found by only taking data at select times, and if the first or second half of the
data were more important to the fit. I therefore show fits to all of the data, and to
the first and second halves. The conclusion is that fitting to all of the data gives
far more precise, and likely more accurate results. In addition, the first half of the
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data, where the signal is strongest, is the most important and reliable for obtaining
Bmw. This is more easily seen in Figure 7.8, which plots Bmw for each of the three
fits as a function of the number of averaged runs. After the first 5 runs, the fit to
all of the data gives a very consistent Bmw value, with uncertainties smaller than
the data points. The fits to the first and second halves of the data give considerable
disagreement however, and much larger uncertainties. The drifts of Bmw extracted
from the second half are particularly striking. In fitting the data, I left the phase
as a free parameter. This may have been unfair to the second-half fits, which would
probably have been significantly better constrained by fixing the (reasonably well
known) initial phase.

In Figures 7.7.b and c, data taking stopped before the Rabi oscillations did. This
is clearly non-optimal: more data was available for collection, with which we would
probably have been able to achieve a better fit (see discussion above). The broad
range of microwave amplitudes seen in a near field, which drops off exponentially
with distance from the source, presents a problem for optimal spacing of a finite
number of data points. In this thesis, the spacing was determined by the temporal
resolution required to see the fastest Rabi oscillations (Ω > 1 MHz). An optimised
sequence would most likely have closely spaced data points at the start, to see the
fast oscillations, and more widely spaced data points towards the end, to more
completely observe the slower oscillations. It would be interesting to perform a
similar analysis to Figure 7.8, comparing fitting using all of the data points in the
first half of the run, and every second data point across the entire run. Any binning
of CCD pixels could also be varied across an image in order to match the image pixel
size with the local spatial resolution, as defined by the distance of atomic diffusion
during a Rabi oscillation period.

In the averaged data in Figure 7.7.c, a kink (marked by an arrow) can be seen
around dtmw = 7µs. In Figure 7.7.b, the kink is obscured by the statistical noise.
This kink is not due to the microwave, but rather due to some unidentified problem
in the reference image sequence. This can be seen in Figure 7.7.d, which compares
the actual and reference images, and the corresponding ODmw image, for a pixel
well away from the microwave source, marked in Figure 7.7.a by an orange dot. The
data is shown for 148 averaged runs. The kink appears in other data sets, and may
be more a function of shot number than dtmw. A reasonable conclusion is that the
kink is due to some bug in the reference image sequence, resulting in a deterministic
timing jitter. This kink would have made a significant contribution to the noise in
δBexp

mw in excess of that imposed by the imaging noise, ∆OD. There also appears to
be some slight difference in the actual and reference image sequences, as indicated
by the slight offset of the average OD from zero. If we exclude the dip and examine
only the data from dtmw = 70µs, we have ODmean = (3.9± 0.2)× 10−3.

Figure 7.9 shows the reduction in ∆Bmw with measurement time. Data is plot-
ted for 2× 2 binned pixels located under the red and black dots in Figure 7.7.a, and
is compared to δBphoton calculated for the experiment parameters, and the optimal

δBoptimal
photon and δBoptimal

atom , as calculated in Section 6.3.3. There is a 4 orders of mag-
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Figure 7.9: Uncertainty in the microwave amplitude, ∆Bmw, as a function of
measurement time. Data is shown for the pixels under the red (76,112) and
black (95,120) dots in Figure 7.7.a. The data is compared with the photon
shot noise, calculated using both experimental and optimal parameters, and the
optimised atomic projection noise.

nitude gap between δBoptimal
photon and δBoptimal

atom , primarily due to our poor experiment
duty cycle, as discussed in Chapter 3. We are limited by the camera readout speed
and data saving time, which give a 30 s duty cycle for an experiment run comprised
of 150 shots3, and result in the atoms sitting uninterrogated for the vast majority
of the time.

Although we do not expect to reach the atomic projection noise in the near
future, orders of magnitude improvement in the sensitivity seem achievable. The
minimisation of dead-time will ultimately require moving to some quasi-continuous
measurement scheme, possibly based on Faraday rotation [13, 111]. For sufficiently

31 shot =1 actual + 1 reference image. See Chapter 3.
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Figure 7.10: Measured microwave sensitivity as a function of measured T1, for
single (21×21µm2) pixels. The top axis shows the buffer gas pressure, estimated
from T1 and assuming a 3:1 Kr:N2 ratio.

fast detection speeds (e.g. on the order of 105−106 fps), weakly-perturbing Faraday
measurements could even be used to observe Rabi oscillations in real-time. The
camera frame rate could be dramatically sped up with a different camera and camera
operation mode. 50× 50 pixel imaging of ultracold atoms has been reported with a
continuous4 frame rate of 2500 fps [167].

The cell valve had a leak during the microwave field measurements. As discussed
in Section 6.5.1, the buffer gas pressure dropped over the course of a day, meaning
that the buffer gas pressure for each measurement was unknown, and lower than
optimal. In Section 6.4.3, I analysed optical pumping in this inadvertent scan of
buffer gas pressure. Figure 7.10 considers the effect on sensitivity. The measured
sensitivity for single (21 × 21µm2) pixels is plotted as a function of measured T1.
The top axis shows an estimate of the corresponding total buffer gas pressure. There
is a large scatter in the data, but the best sensitivity is achieved with the longest
T1, and thus highest buffer gas pressure.

4Continuous, as opposed to burst-imaging, where a small number of images are taken very
quickly. In Ref. [167], a series of 2000 images were taken of the same cloud of ultracold atoms, using
the technique of dark field Faraday imaging.
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Figure 7.11: Microwave field images above the Zigzag chip, with the cell touch-
ing the chip, 100µm above, and 200µm above the chip. The microwave field
patterns are extremely similar for all three images.

7.6 Effect of the Cell on the Microwave Field

From Maxwell’s equations, the presence of the dielectric glass walls of the vapor cell,
and to a lesser extent the presence of the Rb atoms themselves, will necessarily have
a perturbing effect on the fields we are imaging. The perturbation should generally
be minimal compared to measuring the microwave field using a metallic antenna.
As noted in Section 7.3.3 however, this can be quite significant for resonant devices.

The effect of the cell on non-resonant devices appears negligible. Figure 7.11
shows images of the Z component of Bmw above the Zigzag chip, in the rightmost
imaging plane in Figure 7.3.a. Bmw is shown with the cell touching the chip, and
then at separation distances of 100µm and 200µm. Figure 7.12 then compares rows
of pixels along Z for different Y values. The two figures show that any effect of
the cell on the Zigzag chip microwave field is below our detection sensitivity. The
field patterns in Figure 7.11 are extremely similar between the images, and the data
points in Figure 7.12 are overlapping. The images also highlight the importance of
thin cell walls in imaging close above microwave devices.
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Figure 7.12: Comparisons of rows of pixels from Figure 7.11 at different Y values.
The data points fall on the same lines, regardless of the distance between the
chip and cell, indicating negligible perturbation of the field by the presence of
the cell.
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7.7 Imaging both Bmw and Emw

For far field electromagnetic fields, there is a straightforward relationship between
the electric and magnetic components, given by Maxwell’s equations. In a near field
however, the relationship is non-trivial, meaning that the electric and magnetic com-
ponents must be independently obtained for a full characterisation of the microwave
near field above a device. Vapor cell atoms in Rydberg states have been successfully
used to detect [47, 48] and image [49] the electric component of microwave fields,
Emw. The electric dipole transitions between the closely spaced Rydberg states are
at microwave frequencies, and are extremely sensitive to electric fields, with polar-
isabilities on the order of 1000 times stronger than for transitions from the ground
state. Rydberg states are relatively fragile however, and are quickly destroyed in
collisions with buffer gas atoms. Emw imaging using Rydberg atoms is therefore in-
compatible with the high buffer gas pressures we use for Bmw imaging with ground
state atoms. For sealed cells, such as the M1 and M2 cells used in Chapters 4 and 8,
this means that Bmw and Emw measurements must be performed using different
vapor cells. This is clearly non-ideal, and for field characterisations requiring high
spatial resolution, would bring significant experimental challenges in cell alignment.
However, we have full control of the buffer gas pressure inside our ultrathin cells5,
which are attached to a filling station. This makes our setup ideal for measurements
of both field components. With the addition of a 480 nm laser to excite Rb Rydberg
states, the filling station setup would allow us to perform an Emw measurement
without buffer gas, then fill the cell with buffer gas and image Bmw.

We could use our ultrathin cells to improve the spatial resolution and distance of
approach for Emw imaging by orders of magnitude. As seen in Table 7.1, to date, the
proof-of-principle Emw detection and imaging demonstrations have been performed
in large and bulky cells. Similarly to our proof-of-principle experiment for Bmw

imaging in vapor cells [50], Emw imaging has been limited to distances more than
2.7 mm above a microwave device [49]. The longitudinal spatial resolution was at
best 3 cm, given by the cell thickness. The 66µm transverse resolution is somewhat
more comparable to the transverse Bmw resolution seen in this Chapter, and is
essentially given by the resolution of the imaging optics, rather than atomic motion.
This is because the Rydberg Emw measurements are performed in the frequency
domain, and the response of atomic level splittings to local fields as atoms move
through the cell can be considered effectively instantaneous.

Emw imaging would also allow us to detect substantially weaker microwave fields
than in our current setup. We can perform an approximate comparison of published
sensitivities by using the relationship between E and B for monochromatic plane
waves in a vacuum. Maxwell’s equations yield

B = E/c, (7.3)

where c is the speed of light. We can use this relationship to estimate the equivalent
Bmw (Emw) near field amplitude, given Emw (Bmw), as shown in Table 7.1. Due to

5Now that we have replaced the leaking valve.
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the strong electric polarisability of Rydberg transitions, Emw measurements using
Rydberg atoms can be seen to be orders of magnitude more sensitive than even Bmw

sensing using ultracold atoms.

Table 7.1: Comparison of published Bmw and Emw sensitivities, spatial reso-
lutions, and distances of approach. For Rabi-imaging with hot atoms, I give
the experimentally achieved sensitivity for a single sensor, and the equivalent
sensitivity required by a single scanning sensor to match our parallel measure-
ments on a 120× 120 sensor array. I also give the optimised photon shot noise
(δBoptimal

photon ) and atomic projection noise (δBoptimal
atom ) limits for a single sensor in

a 140µm cell (see Section 6.3.3). The Rydberg imaging is described in terms of
minimum detectable field, rather than sensitivity.

Technique δEmw (µV δBmw Sensor Size Approach

cm−1 Hz−1/2) (T Hz−1/2) (µm3) (µm)

Ultracold Bmw

Single [54] 6× 104 2.0× 10−8 8.2× 8.2× 100 10

Vapor cell Bmw

Single: δBexp
mw 4.2× 106 1.4× 10−6 50× 50× 140 150

Parallel: 1
120δB

exp
mw 3.5× 104 1.2× 10−8 50× 50× 140 150

δBoptimal
photon 2.4× 105 8.0× 10−8 50× 50× 140 150

δBoptimal
atom 9 3.0× 10−12 50× 50× 140 150

Rydberg Emw
Photodiode [47] 30 1.0× 10−11 100× 100× 105

Imaging [49] 50 µV/cm 1.7× 10−11 T 66× 66× 3000 2700
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Chapter 8

Frequency Tunable Imaging

In Chapters 6 and 7, I presented a setup capable of imaging microwave fields above
real world devices at the fixed frequency of 6.8 GHz. Wider applications require a
frequency tunable technique, with microwave frequencies above 18 GHz of particular
interest. In this Chapter, I present a proof-of-principle setup, where a large solenoid
is used to Zeeman shift the hyperfine ground state splitting, allowing us to detect
microwaves with frequencies ranging from 2.3 GHz to 26.4 GHz.

In this Chapter, all frequencies are given in units of cyclic frequency, not angular
frequency. This includes Rabi frequencies.

8.1 Hyperfine Transitions in an Arbitrary DC Magnetic
Field

In order to find the 87Rb microwave transition strengths and frequencies in an ar-
bitrary dc magnetic field, we first need to find the hyperfine level energies and
eigenvectors. From Chapter 3, we recall that the Hamiltonian for the hyperfine
splitting of an atom in an external dc magnetic field B0 = Bzẑ is

H = Hhfs +HZ = AhfsI · J + µB(gIIz + gJJz)Bz, (8.1)

The angular momentum matrices Iz and Jz are given in Appendix C. The energies
of each hyperfine level can be obtained numerically from the eigenvalues of H, or
analytically by using the Breit-Rabi formula (Eq. (3.8)). The energy splitting of the
hyperfine levels as a function of dc magnetic field is shown in Figure 8.1.a. The levels
are labelled A1 → A8, in order of increasing energy (E1 < E2... < E8). Figure 8.1.b
plots the resulting hyperfine transition frequencies. Transitions between levels Ai
and Af are labelled Tif , with energies Eif = Ef −Ei. The σ+ transitions are shown
in red, π transitions in green, and σ− transitions are shown in blue.

The HZ term in Eq. (8.1) means that as the magnetic field is scanned, the
eigenfunctions of the Hamiltonian must change. It is therefore best to describe the
hyperfine levels in some field-independent basis, for which the |mI ,mJ〉 basis is a
convenient choice. The composition of each of the hyperfine levels in this basis is
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Figure 8.1: a) Energy splitting of the 87Rb hyperfine ground state levels as a
function of applied dc magnetic field; b) Hyperfine transition frequencies as a
function of applied dc magnetic field. The legend lists the transitions in order
of decreasing frequency. The σ+ transitions are shown in red, π transitions in
green, and σ− transitions are shown in blue. Dashed lines are used for clarity.
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Table 8.1: Notation used in this Chapter for the 87Rb 5S1/2 hyperfine levels.
The levels A1 → A8 are in order of increasing energy.

Weak Field General Strong Field
(|F,mF 〉) (|mI ,mJ〉) (|mI ,mJ〉)

A1 |1, 1〉 a1 |3/2,−1/2〉+ b1 |1/2, 1/2〉 |3/2,−1/2〉
A2 |1, 0〉 a2 |1/2,−1/2〉+ b2 |−1/2, 1/2〉 |1/2,−1/2〉
A3 |1,−1〉 a3 |−1/2,−1/2〉+ b3 |−3/2, 1/2〉 |−1/2,−1/2〉
A4 |2,−2〉 |−3/2,−1/2〉 |−3/2,−1/2〉
A5 |2,−1〉 a5 |−3/2, 1/2〉+ b5 |−1/2,−1/2〉 |−3/2, 1/2〉
A6 |2, 0〉 a6 |−1/2, 1/2〉+ b6 |1/2,−1/2〉 |−1/2, 1/2〉
A7 |2, 1〉 a7 |1/2, 1/2〉+ b7 |3/2,−1/2〉 |1/2, 1/2〉
A8 |2, 2〉 |3/2, 1/2〉 |3/2, 1/2〉

given Table 8.1. In general, each hyperfine level is a superposition of two |mI ,mJ〉
states, and the coefficients a and b can be determined by numerically diagonalising
H1. The two stretched states, |F = 2,mF = ±2〉 ↔ |mI = ±3/2,mJ = ±1/2〉, are
comprised of only a single |mI ,mJ〉 for all fields. In the absence of dc magnetic field,
a and b are given by the Clebsch-Gordon coefficients, listed in Table 8.2. As the dc
field strength increases, a→ 1 and b→ 0.

Figure 8.2 plots the a and b coefficients for each level as a function of dc magnetic
field, showing the changing composition of each hyperfine level in the |mI ,mJ〉 basis.
The subplots are ordered according to the weak field |F,mF 〉 positions of the states,
with the F=2 states on the top row, and the F=1 states on the bottom row. The
superposition states are listed above each subplot, with the a coefficient state, which
dominates at high dc magnetic fields, listed on top. Even at a field strength of 1 T,
the b coefficient is still non-negligible, with an approximate value of b = 0.1.

Table 8.2: Coefficients a and b in the |mI ,mJ〉 basis for the 87Rb 5S1/2 hyperfine
levels in the absence of external static magnetic field. The coefficients are the
relevant Clebsch-Gordon coefficients for each state [208].

|F,mF 〉 a b

A1 |1, 1〉
√

3/2 −1/2

A2 |1, 0〉 1/
√

2 −1/
√

2

A3 |1,−1〉 1/2 −
√

3/2
A4 |2,−2〉
A5 |2,−1〉 1/2

√
3/2

A6 |2, 0〉 1/
√

2 1/
√

2

A7 |2, 1〉
√

3/2 1/2
A8 |2, 2〉

1I.e. a and b are the coefficients of the eigenvectors for each hyperfine level.
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The strengths of the hyperfine transitions also change with the dc magnetic
field, and are proportional to the 〈f | Jγ |i〉 matrix element, where γ = −, π,+ is the
transition polarisation. Figure 8.3 gives the strengths of σ± and π transitions from
each hyperfine level for varying static magnetic field, plotting the 〈f | Jγ |i〉 matrix
elements as a function of dc magnetic field. The subplots are again ordered according
to the weak field |F,mF 〉 positions of the states. Transitions within each of the two
hyperfine groups (ie F = 1, F = 2 at weak fields and mJ = +1/2, mJ = −1/2 at
strong fields) are shown in dashed lines. The key feature of Figure 8.3 is that as
the magnetic field strength is increased, σ+ transitions come to dominate, and σ−
and π transitions become weak. The σ+ transition strengths within the hyperfine
groups also go to zero at high dc fields. As a practical comparison, for 〈f | Jγ |i〉 = 1,
a Bmw = 1µT microwave field will drive ΩR = 28 kHz Rabi oscillations, whilst for
the same microwave field, 〈f | Jγ |i〉 = 0.1 results in ΩR = 2.8 kHz Rabi oscillations2.

2Remember, all frequencies in this Chapter are given in units of cyclic frequency, and not angular
frequency.
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Figure 8.2: Composition of the 87Rb 52S1/2 hyperfine levels in the |mI ,mJ〉
basis as a function of applied dc magnetic field. The |mI ,mJ〉 states for each
hyperfine level are listed above each subplot, with the |mI ,mJ〉 state dominating
at high magnetic fields listed on top.
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Figure 8.3: Strengths of the σ+, π, and σ− hyperfine transitions within the 87Rb
52S1/2 ground state, as a function of external dc magnetic field.
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Figure 8.4: Strengths of the σ+, π, and σ− hyperfine transitions within the 87Rb
52S1/2 ground state, as a function of of the microwave transition frequency. The
black vertical line is at 6.835 GHz.

8.1.1 Hyperfine Transitions for Microwave Sensing

The important considerations when choosing a hyperfine transition for microwave
sensing are: the microwave frequency of interest, the hyperfine transition strength,
the optical resolution of the hyperfine transition states (i.e. the degree to which
absorption due to each state can be distinguished), the microwave polarisation of
interest, and the dc magnetic field required to tune a hyperfine transition to fre-
quency of interest. Figure 8.4 provides a useful analysis tool, showing the σ+, π,
and σ− transition strengths as a function of microwave transition frequency.

T45 is the most versatile σ+ transition, covering all microwave frequencies above
dc. Above 0.6 GHz, it is also the strongest σ+ transition for a given microwave
frequency. As seen in Section 8.4, however, the optical resolution of the neighbour-
ing A4 and A5 states can be poor, particularly at low Bdc (corresponding to low
microwave frequencies). For microwave sensing of frequencies above 6.835 GHz, the
best σ+ transition is therefore generally T18. The A1 and A8 levels are maximally
spectrally resolved from one another, and optical transitions from these levels enjoy
minimal background absorption due to 85Rb. The T18 transition is almost as strong
as T45 for a given microwave frequency, and requires much smaller Bdc to be tuned to
a given frequency. For example, to achieve an 18 GHz microwave transition requires
Bdc = 0.44 T on the T18 transition, but Bdc = 0.81 T on the T45 transition.

The selection of π microwave transition is less clear-cut. T26 is the strongest π
transition, but the difference with T17 and T35 is not dramatic. T17 has the best
optical resolution, due to the low 85Rb absorption background for optical transitions
from A1 and the large spectral separation of the A1 and A7 levels. The T35 transition
is first-order insensitive to dc magnetic fields around Bdc = 0.12 T, corresponding to
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Table 8.3: Summary of the transitions available in various alkali species for
sensing the σ+, π, and σ− components of a microwave field. I is the nuclear
spin. I took the maximum σ+ frequency as the highest transition frequency
available at our maximum solenoid field, Bdc = 0.8 T. Plots of the transitions
strengths as a function of transition frequency are given in Appendix D.

Isotope Abundance I Ehfs/h (GHz) Min. (GHz) Max. (GHz)

23Na 1 3/2 1.772
σ+ 0 23.8
π 1.53 5.90
σ− 0.56 2.35

39K 0.9326 3/2 0.462
σ+ 0 22.8
π 0.40 1.54
σ− 0.15 0.61

85Rb 0.7217 5/2 3.036
σ+ 0 25.0
π 2.26 10.1
σ− 0.74 4.15

87Rb 0.2783 3/2 6.835
σ+ 0 27.9
π 5.92 22.8
σ− 2.17 9.06

133Cs 1 7/2 9.193
σ+ 0 30.8
π 6.08 30.6
σ− 1.62 12.7

a microwave frequency of 5.92 GHz, and is thus the optimal transition around this
point. Figure 8.4 indicates that the π transitions can be used for sensing microwaves
even above 20 GHz, with the T26 transition strength dropping to 〈6| Jπ |2〉 = 0.15
at 22.8 GHz.

The σ− transition strengths quickly drop away for microwave frequencies above
6.835 GHz, with the T16 and T25 transition strengths dropping to 〈f | Jσ− |i〉 = 0.15
at 9.06 GHz. However, the T34 transition can be used to detect microwaves below
6.835 GHz. The T34 transition strength drops to 1/e 〈4| Jσ− |3〉 = 0.15 at 2.17 GHz.

We can perform a similar analysis for other alkali species. Plots of microwave
transition strengths as a function of transition frequency for 23Na, 39K, 85Rb, and
133Cs are given in Appendix D. The ranges of detectable frequencies for σ+, π, and
σ− polarised microwaves are summarised in Table 8.3. The frequency range was
defined as that for which there is a transition with a strength above 〈f | Jγ |i〉 = 0.15,
neglecting transitions between states with the same mJ value. Strong σ+ polarised
transitions are available at all microwave frequencies and dc magnetic field strengths,
however, and order to compare the different alkali species, I took the maximum σ+

frequency as the highest transition frequency available at our maximum solenoid
field, Bdc = 0.8 T. Vapor cells filled with multiple species can be used to span larger
frequency ranges. For example, a natural Rb cell provides π transitions over the
range 2.26− 22.8 GHz.
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8.2 Reconstruction of Microwave Fields of Arbitrary
Frequency

In this section, I provide a framework for reconstructing a microwave magnetic
field using 87Rb atoms in an applied static magnetic field (B0) of any strength. This
builds on the framework given for the weak field regime in Chapter 3. The framework
is not restricted to 87Rb, and is valid for microwave transitions in a general system.

Recalling Chapter 3, the components of the microwave magnetic field are defined

B−e
−iφ− ≡ 1

2

[
Bx′e

−iφx′ + iBy′e
−iφy′

]
, (8.2)

Bπe
−iφπ ≡ Bz′e−iφz′ , (8.3)

B+e
−iφ+ ≡ 1

2

[
Bx′e

−iφx′ − iBy′e−iφy′
]
, (8.4)

with the Rabi frequencies defined

Ω− ≡
2µB
~
〈f | J− |i〉B−e−iφ− , (8.5)

Ωπ ≡
2µB
~
〈f | Jz |i〉Bπe−iφπ , (8.6)

Ω+ ≡
2µB
~
〈f | J+ |i〉B+e

−iφ+ . (8.7)

The angular momentum matrices, Jγ , are given in Appendix C, where γ = −, π,+
is the polarisation of the transition. The microwave amplitude is then given by

Bγ = |αif |
~
µB
|Ωγ |, (8.8)

where if labels the hyperfine transition, and

αif ≡
1

2 〈f | Jγ |i〉
. (8.9)

8.2.1 Microwave Amplitude

From Eq. (8.6), it is straightforward to determine the amplitudes of the microwave
magnetic field (Bx, By and Bz) when strong π transitions are present. The matrix
element 〈f | Jz |i〉 can be calculated numerically for a any static magnetic field, and
so we can obtain the amplitudes along each axis by measuring |Ωπ| with the quan-
tisation axis along X, Y and Z respectively. The π (and σ−) transitions become
very weak in the strong field regime, however, and in the general case, we need to
determine the microwave field amplitudes using only σ+ transitions.

In the following discussion, the superscript index represents the quantisation
axis in the lab frame, i.e. the direction of the applied static magnetic field. Thus
for example, Ω+y

+ (B+y
+ ) means Ω+ (B+) for B0 pointing along the Y axis in the
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positive direction, whilst Ω−y+ (B−y+ ) is for B0 pointing along the Y axis in the
negative direction.

We begin by finding the sum of B2
− and B2

+. From Eq. (8.7) we see that for
σ+ transitions, we only obtain B+. However, for measurements along a given axis,
B+ measured antiparallel to that axis is equivalent to B− measured parallel to the
axis. That is, B−+ = B+

− . By measuring |Ω+| with the static field both parallel and
antiparallel to our axis of measurement, we can thus obtain both B+ and B−. This
gives us

B2
− +B2

+ =
~2

4µ2
B

[ ∣∣Ω−+∣∣2
|〈f | J+ |i〉|2

+

∣∣Ω+
+

∣∣2
|〈f | J+ |i〉|2

]
. (8.10)

We can also find the B2
− + B2

+ sum using Eqs. (8.2) and (8.4). Equating this with
Eq. (8.10) gives

1

2
(B2

x′ +B2
y′) =

~2

4µ2
B

[ ∣∣Ω−+∣∣2
|〈f | J+ |i〉|2

+

∣∣Ω+
+

∣∣2
|〈f | J+ |i〉|2

]
. (8.11)

Defining

K+ ≡
∣∣Ω−+∣∣2

|〈f | J+ |i〉|2
+

∣∣Ω+
+

∣∣2
|〈f | J+ |i〉|2

, (8.12)

we can write

B2
x′ +B2

y′ =
~2

2µ2
B

K+. (8.13)

Next, we apply this formula with the quantisation axis defined along each of the
X, Y and Z axes. Starting with B0 along the X axis, and thus with z′ along x,
we transform from the primed coordinate system back into the unprimed lab frame,
according to the following coordinate transformation:

x′ = −z, (8.14)

y′ = y, (8.15)

z′ = x. (8.16)

(8.17)

This transforms the microwave magnetic field phasor to

B ≡

Bx′e−iφx′By′e
−iφy′

Bz′e
−iφz′

 =

−Bze−iφzBye
−iφy

Bxe
−iφx

 ,

with

Bx′ = Bz φx′ = φz + π,

By′ = By φy′ = φy,

Bz′ = Bx φz′ = φx. (8.18)
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Applying this coordinate transformation to Eq. (8.13) then gives us

B2
z +B2

y =
~2

4µ2
B

Kx
+, (8.19)

with Kx
+ defined in Eq. (8.25). We can follow a similar process for B0 along the Y

and Z axes to get

B2
z +B2

x =
~2

4µ2
B

Ky
+, (8.20)

B2
x +B2

y =
~2

4µ2
B

Kz
+. (8.21)

Solving these equations simultaneously gives the magnitude of the magnetic field
along the (lab frame) X, Y , and Z directions,

B2
x =

~2

8µ2
B

[
−Kx

+ +Ky
+ +Kz

+

]
, (8.22)

B2
y =

~2

8µ2
B

[
Kx

+ −K
y
+ +Kz

+

]
, (8.23)

B2
z =

~2

8µ2
B

[
Kx

+ +Ky
+ −Kz

+

]
, (8.24)

where Kγ
+ is defined as

Kγ
+ ≡

∣∣∣Ω−γ+

∣∣∣2
|〈f | J+ |i〉|2

+

∣∣∣Ω+γ
+

∣∣∣2
|〈f | J+ |i〉|2

. (8.25)

∣∣∣Ω−γ+

∣∣∣ and
∣∣∣Ω+γ

+

∣∣∣ are experimentally determined quantities. The matrix element

〈f | J+ |i〉 can be calculated numerically for a general applied static magnetic field,
B0.

8.2.2 Microwave Phase

To reconstruct the field phases, φx, φy and φz, we begin with the difference of B2
− and

B2
+. Again, this can be found using Eq. (8.7), measuring |Ω+| with the static field

both parallel and antiparallel to our axis of measurement, and also using Eqs. (8.2)
and (8.4):

B2
− −B2

+ =
~2

4µ2
B

[ ∣∣Ω−+∣∣2
|〈f | J+ |i〉|2

−
∣∣Ω+

+

∣∣2
|〈f | J+ |i〉|2

]
= Bx′By′ sin(φy′ − φx′).

This time we define

K− ≡
∣∣Ω−+∣∣2

|〈f | J+ |i〉|2
−

∣∣Ω+
+

∣∣2
|〈f | J+ |i〉|2

,
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and so we have

sin(φy′ − φx′) =
~2

4µ2
BBx′By′

K−. (8.26)

We measure |Ω+|2 parallel and antiparallel to the X, Y , and Z axes, and use equa-
tion 8.26 with the same coordinate transformations as in Section 8.2.1. Inserting
the field magnitudes obtained with equations 8.22-8.24, we get

sin(φz − φy) = 2
[
(Kx

+ −K
y
+ +Kz

+)(Kx
+ +Ky

+ −Kz
+)
]−1/2

Kx
−, (8.27)

sin(φx − φz) = 2
[
(−Kx

+ +Ky
+ +Kz

+)(Kx
+ +Ky

+ −Kz
+)
]−1/2

Ky
−, (8.28)

sin(φy − φx) = 2
[
(−Kx

+ +Ky
+ +Kz

+)(Kx
+ −K

y
+ +Kz

+)
]−1/2

Kz
−, (8.29)

with Kγ
+ as defined in equation 8.25 and Kγ

− defined as K− for a static magnetic
field along the direction γ:

Kγ
− ≡

∣∣∣Ω−γ+

∣∣∣2
|〈f | J+ |i〉|2

−

∣∣∣Ω+γ
+

∣∣∣2
|〈f | J+ |i〉|2

. (8.30)

∣∣∣Ω−γ+

∣∣∣ and
∣∣∣Ω+γ

+

∣∣∣ are experimentally determined quantities. The matrix elements

〈f | J− |i〉 and 〈f | J+ |i〉 can be calculated numerically for a general applied static
magnetic field, B0.

8.3 Experiment Setup

I used two vapor cells in this Chapter, both produced using the same design by the
Mileti group in Neuchâtel, Switzerland [10, 177]. I primarily used the M1 cell, filled
with natural Rb and 63 mbar of N2 buffer gas, which was also used in Chapter 4.
The second cell, M2, was filled with Rb enriched to 75% 87Rb and a buffer gas
mixture of 15.3 mbar of N2 and 18.7 mbar of Ar.

For simplicity, I used a single laser beam for optical pumping and probing. The
commercial 780 nm laser3 was chosen for its large, 80 GHz mode-hop-free tuning
range, which allowed us to measure the optical spectrum in a single sweep.

I experimented with a range of microwave devices, including antennas, microwave
horns, and a coplanar waveguide. For the results presented in this Chapter, I simply
used an SMA jack4, as seen in Figure 8.5.c. The SMA jack responded relatively well
over the broad range of microwave frequencies used, and was small enough to easily
fit within the tight geometry imposed by the solenoid.

3Newport, TLB-6712 Velocity Laser. This is a great laser when it works, but it is very time-
consuming to get repaired in Europe, as all repairs are performed in the USA. Our brand new laser
broke after less than an hour of use, and repairs took 2 months.

4Molex, 73251-2120
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Figure 8.5: a) Photo of the M1 cell, which was predominantly used in this
Chapter. The design of the M2 cell is identical; b) photo of the experiment
setup, showing the solenoid in grey; c) the vapor cell sandwiched between two
RG-9 glass pieces and mounted on the PEEK frame inside the solenoid. The
gold microwave output coupler can be seen above the cell, near the optimised
point for coupling 18 GHz microwaves in to the microwave cavity created by the
solenoid cones; d) schematic of the experiment setup.
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8.3.1 Solenoid

I used a 0.8 T solenoid5 to provide the dc magnetic field in this Chapter. As seen in
Figures 8.5.b and 8.5.c, the solenoid is comprised of two sets of water-cooled wires,
each wrapped around a metal (presumably iron) core. The cores extend as tapered
cones towards the solenoid centre, and are separated by a gap of 26 mm.

The solenoid field is homogeneous to better than 10−3 in the region seen by
the cell (as seen in Figure 8.11.a). However, as the dc magnetic fields were on the
order of 1000 G, the inhomogeneities were nevertheless on the order of a few gauss.
Atomic motion through this inhomogeneous Bdc field was the dominant dephasing
mechanism, resulting in coherence times on the order of τ2 . 20µs ≈ 0.1T1, and
presenting a significant experimental challenge.

To align the cell to the centre of the Y and Z components of the dc field, I used
quasi-real-time streaming of OD images, as described Section 3.4.6. I illuminated the
cell with a near-resonant microwave field, so that the OD image streaming provided
images of ODmw in the cell (like that in Figure 8.11.b), with a 0.3 Hz frame rate. To
optimise the cell position along the X axis, I passed a narrow laser beam through
the spatial centre of the dc magnetic field, and adjusted the cell position with a
translation stage to minimise the FWHM DR peak.

In an attempt to flatten the inhomogeneous field in the centre of the solenoid,
I installed three sets of coils, along each of the X, Y , and Z axes. The Z axis pair
can be seen in red in Figure 8.5. The correction field needed to be on the order of
1-5 G to match the size of the solenoid field inhomogeneities. Application of the
correction field then shifted the atomic transition frequency by a few MHz. This
shift was too large to practically use the offset coils, as it would quickly shift the
transition outside of a given microwave frequency scan range.

The solenoid magnetic field experiences drifts on the order of gauss on a 10s of
minutes timescale. This prevents taking many runs to average together, and meant
that I had to optimise the microwave frequency immediately before running each
Rabi sequence. The optimisation was performed either using the DR signal in the
centre of the dc magnetic field, detected on a photodiode, or by using streamed
ODmw images and manually scanning the microwave frequency.

The two solenoid cores imposed boundary conditions on the microwaves in the
26 mm space between them, and may have formed a crude microwave cavity. The
strongest microwave signals in the cell were generally seen when the SMA jack
was placed near one of the solenoid cores, rather than directly over the cell (see
Figure 8.5.c), and the resulting microwave fields appeared reasonably uniform over
the cell volume. Although the influence of the solenoid on microwave fields was not
critical in the proof-of-principle microwave imaging presented in this Chapter, it is of
course of major concern when attempting to image the near fields above microwave
devices. We may find, however, that the solenoid influence becomes negligible in a
high resolution setup, such as the ultrathin cells used in Chapters 6 and 7. The cell

5Brukner, B-E 10 solenoid with B-MN C4 power supply. Made in 1979 and found in the base-
ment.
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wall thickness of the M1 and M2 cells prevented imaging microwave fields closer than
2 mm from a microwave source. The ultrathin cells, on the other hand, allow imaging
as close as 150µm from a source, at which distance the amplitude of microwaves
reflected from the solenoid may be negligible compared with the near field produced
by the device.

8.3.2 Temperature Control by Laser Heating

Due to the high dc magnetic fields and spatial constraints imposed by the solenoid,
we avoided using resistive heaters in this setup. Instead, we heated the cell using a
1500 nm laser6. The cell was placed between two 2 mm thick pieces of RG9 glass,
which is strongly absorptive at 1500 nm, but has better than 90% transmission
at 780 nm7. The use of a 1500 nm laser with RG9 glass has seen great success
in low-power, miniaturised vapor cell devices, such as chip-scale atomic clocks and
magnetometers [209]. In Ref. [209], a (1.5 mm)3 cell was heated to 150◦C using
only 140 mW of heating power. Our setup is somewhat less efficient, requiring
approximately 2 W of laser output power to achieve cell temperatures of 90−120◦C.
This is due to a number of factors, in particular thermal isolation, and also the
heating laser beam size and alignment. The best efficiencies are reached for vapor
cells placed inside a second vacuum cell. Nonetheless, I found that using a laser to
heat the cell was extremely effective. The temperature of the cell quickly responded
to the heating laser, reaching equilibrium within minutes of heating (compared to
hours for the filling station setup in Chapters 6 and 7). The direct heating of the cell
windows ensures that there is no build-up of Rb on the windows, and the localised
cell heating will be advantageous for future imaging of the microwave fields produced
by temperature-sensitive devices.

The local nature of the heating made it difficult to measure the cell temperature
with external sensors, and the only reliable measure was the atoms themselves. I
could obtain the cell temperature by fitting the absorption spectra (taken at Bdc = 0)
with the OD model described in Section 2.3.

One downside of the RG9 glass is that it is opaque over the visible spectrum.
This complicates the alignment of the heating lasers with the cell windows, which
cannot be seen. The temporal response of the cell temperature is reasonably fast,
however, on the minute scale or faster, and a DR signal can be used for a coarse
optimisation of the heating laser alignment.

In an optimised setup, the heating laser would only illuminate one side of the
cell, and the front RG9 thickness would be 0.25 mm, chosen to absorb 50% of the
heating light [209]. The back RG9 piece would remain thick, to ensure complete
absorption of the remaining heating light. It may also be possible to directly heat
the cell windows, without the use of RG9 glass. This would be less efficient, requiring
more heating laser power, but it would eliminate the 780 nm light losses through

6Seminex, 15P-112, 4 W maximum output
7RG9 Schott glass, data sheet available, for example, at http://www.vpglass.com/filter_

glass/schott_rg9_filter_glass.html
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the RG9 glass. Although these losses are relatively small in the current setup, RG9
losses would become problematic in the multipass cells discussed in Chapter 9.

8.4 Optical Transitions in an Arbitrary Magnetic Field

The dc magnetic fields used to shift the hyperfine transitions also affect the optical
transitions. Figure 8.6 shows calculated and measured optical spectra in the M1
and M2 cells for a selection of dc magnetic field strengths. The calculated spectra
were obtained using the program ElecSus [90], with zero detuning corresponding
to the centre of the 87Rb D2 line. The measured spectra were obtained from the
transmission of a weak laser illuminating the entire cell, which was detected using a
photodiode. The laser intensity was I = 35µW/cm2 for the M1 cell measurements,
and I = 400µW/cm2 for the M2 cell measurements. The laser polarisation is
controlled by a λ/2 plate placed after a polarising beam-splitter. With the laser
propagation perpendicular to the quantisation axis provided by the solenoid, the
laser polarisation can thus be tuned from π polarised, through an equal mixture
of π, σ−, and σ+ polarisation (33% each), to an equal mixture of σ−, and σ+

polarisation (50% each). Measured spectra are shown for the 50/50 σ−/σ+ mixture
and for π polarised light. ElecSus is currently only able to analyse σ transitions,
and so only the 50/50 σ−/σ+ calculated spectrum is shown. The data represent
a single frequency sweep of the laser, without averaging, and with a sweep rate
of 1 Hz. Differences in the calculated and measured spectral shapes (e.g. for the
Bdc = 0.2 T M2 cell spectrum) can be attributed to small differences between the
experimental dc magnetic field and that used for modelling. For the M2 cell, the
flattened left-most peak measured in the zero-field spectra is due to the high OD,
and corresponding loss of signal on the photodiode.

Figure 8.6 shows that the π, σ−, and σ+ optical transitions diverge in frequency
as Bdc is increased, as is also seen in the hyperfine transitions. This implies that
for a laser polarisation of 50/50 σ−/σ+ light, a single transition can absorb at most
50% of the laser light, limiting peak heights to OD = 0.7. Due to the large spectral
separation of the transition frequencies for each polarisation, this is not affected by
the 1-1.5 GHz optical linewidths in the two cells. However, the measured spectra for
both cells in Figure 8.6 show OD � 0.7 for absorption due to σ− or σ+ transitions.
This implies that the laser polarisation (as defined by the solenoid Bdc field) changes
as the beam passes through the cell. It is not immediately clear how this occurs.
One possibility is that the laser polarisation undergoes sufficient Faraday rotation
through the cell such that incident σ− polarised light can be significantly absorbed
by σ+ transitions. In order to match the theory and measured spectra, I calculated
the spectra in Figure 8.6 separately for σ± transitions, assuming 100% σ± polarised
incident laser light, and then summed the resulting absorption spectra. To roughly
match the experimental and calculated OD amplitudes, I multiplied the calculated
spectra by a factor α = 0.5. Regardless, the experimental data shows larger absorp-
tion on the π peaks, and I therefore performed the microwave detection and imaging
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Figure 8.6: a) Calculated and b) measured optical spectra as a function of dc
magnetic field in the M1 cell; c) calculated and d) measured spectra in the M2
cell. Solid lines show spectra for light 50% σ− polarised and 50% σ+ polarised
(solid lines). Measured spectra are also shown for π polarised light (dotted
lines). The spectra at different Bdc are vertically offset for clarity.
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Figure 8.7: Calculated optical spectra, including the contributions from 87Rb
and 85Rb, for a) the M1 cell and b) for the same cell but with enriched 87Rb.
The spectra are shown for Bdc = 0.44 T and 50/50 σ−/σ+ polarised light. The
coupling to each of the a and b coefficient states is labelled in (b).

using π polarised light.

Figure 8.7 examines optical spectra for Bdc = 0.44 T in more detail. The spectra
were calculated using ElecSus, and Bdc = 0.44 T was chosen as it was the dc field
used for imaging 18 GHz microwaves in Section 8.6. Like for Figure 8.6, I calculated
the spectra separately for σ± transitions, assuming 100% σ± polarised incident laser
light, and summed the resulting absorption spectra. In order to roughly match with
the experimental spectra, I then multiplied the summed spectra by a factor α = 0.5.
The contributions of 87Rb and 85Rb, OD87 and OD85, are shown for both the M1
cell and for an identical cell filled with Rb enriched to 75% 87Rb. The spectra show
σ− transitions on the left, and σ+ transitions on the right. For each polarisation,
there are 14 OD87 transitions, coupling to each of the a and b coefficient states (see
Section 8.1) of the 8 87Rb hyperfine ground state levels [93]. Transitions coupling
to the a states are strongest, as a → 1 as Bdc increases. From right to left, the a
transitions couple to levels A1 → A8. There are 3 b transitions on either side of
the a transitions, although the b transitions near zero-detuning in Figure 8.7 are
not well-resolved8. The b transitions are barely visible for the vertical scale used
in Figure 8.6. For coupling to a1 → a4, the σ+ transitions are strongest, whilst for
coupling to a5 → a8, the σ− transitions are strongest. This is reversed for transitions

8There are only 6 b transitions, as the stretched states, A4 and A8, are comprised of only a single
|mI ,mJ〉 state.
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Figure 8.8: Double-resonance peaks demonstrating the detection of microwaves
with frequencies ranging from 2.3 GHz to 26.4 GHz. Each peak is a single
experimental run. The data was taken on both the T34 (blue) and T18 (red)
transitions.

coupling to the b states.
The 87Rb a transitions cover a wider frequency range than those of 85Rb, due

to the larger 87Rb hyperfine splitting. This means that there is relatively minimal
background OD due to 85Rb for the transitions coupling to a1, a4, a5, and a8.

8.5 Double-Resonance Microwave Detection

As we tune the dc magnetic field, we are able to detect microwaves over a broad
range of frequencies. As a demonstration, Figure 8.8 shows experimentally obtained
DR peaks for microwaves spanning 2.3 GHz to 26.4 GHz (see Section 3.2.1 for a
description of double-resonance spectra). Each peak represents a separate measure-
ment in the M1 cell. Peaks in the range 7 − 26.5 GHz (red) are measured on the
σ+ T18 transition, whilst the peaks in the range 2− 6 GHz (blue) are measured on
the σ− T34 transition. I used three different amplifiers to span the frequency range.
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Figure 8.9: Double-resonance peaks for microwave frequencies near 18 GHz,
showing how the dc magnetic field can be used to fine-tune the microwave de-
tection frequency.

As described in Section 3.5.3, these were: amplifier 1 over the 6 − 19 GHz range;
amplifier 2 over the 20− 26.5 GHz range; and amplifier 3 over the 2− 5 GHz range.
The laser was π-polarised, with a typical intensity of I = 5 mW/cm2. The variation
in peak height is primarily due to variations in the microwave amplitude and the
cell temperature. The microwave amplitude varied with the output power of the
amplifiers (a function of frequency), the free-space output-coupling efficiency of the
microwave device used to illuminate the cell, and the coupling efficiency into the
microwave cavity created by the solenoid. One of the heating lasers was misaligned
for the 2 − 5 GHz measurements, reducing the signal amplitude. The decreasing
strength of the T34 transition with increasing Bdc (decreasing microwave frequency)
would have also reduced the DR peak amplitudes.

The lower limit on microwave frequency in Figure 8.8 was imposed by asymptotic
behaviour of the T34 transition frequency at high Bdc (see Figure 8.1.b), and the
upper limit was imposed by our microwave frequency generator. In general, the
upper limit is likely to be given by equipment constraints, rather than the atoms
themselves, such as the frequency generator or the available dc magnetic field. For
the T45 transition, the ultimate lower limit is likely to be given by the optical
resolution of the A4 and A5 states. The optical overlap between two states increases
as the transition frequency decreases, reducing the optical pumping efficiency and
the OD contrast induced by population oscillations between the states. This does
not affect the Rabi (or Ramsey) oscillation frequency. The lower detection limit will
therefore be given by the optical linewidth, on the order of 0.5-2 GHz, depending
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Figure 8.10: Optical absorption spectrum used to determine the cell temperature
for the data presented in Figure 8.9. The data has been fit using the model
described in Section 2.3, with the temperature as a free parameter.

on the buffer gas.

The dc magnetic field also allows us fine control over the microwave detection
frequency, as shown in Figure 8.9. Each DR peak represents a single measurement in
the M1 cell on the T18 transition, with the zero of the horizontal axis corresponding
to a microwave frequency of 18 GHz. The laser was π-polarised, with an intensity
of I = 5 mW/cm2 over its central 3 mm, measured upstream of an aperture used
to reduce the beam diameter to 0.6 mm. The laser probed the approximate spatial
centre of the dc magnetic field, with variations in the dc field resulting in a 1 MHz
linewidth (see Figure 8.11). The cell temperature was (99 ± 1)◦C. As shown in
Figure 8.10, the temperature was obtained by fitting the OD model presented in
Section 2.3 to the optical absorption spectrum measured with the solenoid turned
off. I used Pfill = 63 mbar of N2, Tfill = 80◦C. The measured frequency axis was
scaled using Gaussian fits to the spectrum to match the frequencies of the four 85Rb
and 87Rb D2 lines to published values [88, 89]. The discrepancies between data
and theory are not explained by reasonable variations in temperature or buffer gas
pressure (e.g. ±5◦C or ±10 mbar N2), and are likely to be due to non-linearities in
the scan of laser frequency as a function of time.

8.6 Microwave and DC Magnetic Field Imaging

In this section, I present images of the σ+ component of an 18 GHz microwave field
(Figure 8.11.a), and the Bdc field required to tune the T18 transition to resonance
with the applied microwave field (Figure 8.11.b). Both the Bdc and Bmw data were
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taken on the T18 transition. The data is the average of 5 runs, with fitting performed
on the averaged data. The intensity of the π-polarised laser was I = 30 mW/cm2,
and the laser frequency was tuned to address the A1 level. The length of the probe
laser pulse was dtprobe = 1.2µs. The change in OD due to optical pumping across
the cell was measured to be ODpump = 1.0 ± 0.1, and the T1 time in the cell bulk
ranged from 90µs at the top of the cell to 150µs at the bottom (see Figure 8.13).
The origin of the gradient in T1 is unclear: it does not correspond to the 780 nm
laser profile, but may be due to a temperature gradient induced by the 1500 nm
heating laser or the fact that the top of the cell is open to the air. From optical
absorption spectra with the solenoid turned off, the cell temperature was found to
be approximately Tcell = 110◦C.

Figure 8.11.a shows an image of the σ+ component of an 18 GHz microwave
field in the M1 cell, with the field of view defined by the region of relatively homo-
geneous Bdc field. The zoomed-in region of the cell is marked with a white box in
Figure 8.11.c, and is the same region shown in Figure 8.11.d. I used the local mea-
sured value of Bdc to calculate the coupling constant between the Rabi frequency
and microwave amplitude, α18, for each pixel. In principle, we should also use the
local microwave detuning, δF , to calculate the Rabi frequency, ΩR =

√
Ω2 − δF 2.

However, this proved impractical due to the 67 kHz ∆F step size (discussed be-
low), which was larger than the observed Ω ≈ 50 kHz oscillation frequencies. The
determination of α18 is less affected, as α18 is only weakly field dependent at kG dc
magnetic fields (see Figure 8.3). In future measurements, a ∆F image with finer step
size should be recorded immediately after the Rabi sequence. For the data presented
in Figure 8.11, I used ΩR = Ω. The transverse dimensions of the Bmw field of view
are approximately 0.6 × 0.6 mm2. This is several times the Rb diffusion distance
during a measurement. For Pfill = 63 mbar N2, Tfill = 80◦C, Tcell = 110◦C, we have
D = 3.3 cm/s. Using ∆x =

√
2Ddt, the diffusion distance during the coherence

time dt = τ2 = 16µs is ∆x = 0.1 mm, and the diffusion distance during the time
Rabi oscillations are visible, dt = 60µs, is ∆x = 0.2 mm. We can therefore conclude
that we are indeed imaging the microwave field with an array of sensors (albeit a
much smaller array than used in the previous Chapters).

Figure 8.11.c shows ODmw, the change in OD induced by the microwave, for
a microwave pulse of dtmw = 19.5µs. The microwave field in the solenoid cavity
appears reasonably uniform, and the ODmw image traces out a contour line of the dc
magnetic field, showing the regions of the dc field where the Paschen-Back splitting
brings the T18 transition frequency on resonance with the applied microwave. As
seen in Figure 8.11.f, dtmw = 19.5µs corresponds to a 2π microwave pulse in the
centre of the Bdc field, which can be seen as a dip in ODmw at the crossing point of
the contour lines.

Figure 8.11.e shows Rabi oscillations for an example pixel at (Z = 2.29 mm,
Y = 1.68 mm). This is marked by a cross in Figure 8.11.a, and is the same location
as the example DR pixel in Figure 8.11.f. The data has been fit using

ODmw = A+B exp(−dtmw/τ1) + C exp(−dtmw/τ2) sin2(1
2Ω dtmw + φ), (8.31)
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where A, B, C, τ1, τ2, Ω and φ were fitting parameters. For (Z = 2.29 mm,
Y = 1.68 mm), the oscillation frequency is Ω = 49.8 kHz9 and the local Bdc gives
α18 = 0.49. Making the approximation ΩR = Ω, this gives a microwave amplitude
of Bmw = 1.75µT. The fitting uncertainty, of ∆Bmw = 10 nT, corresponds to a
sensitivity of δBmw = 0.1µT Hz−1/2 over the 5 × 30 s = 150 s measurement time.
This sensitivity is an order of magnitude better than that obtained with the ultrathin
cells in Chapter 7. However, the sensor volume here is two orders of magnitude
larger: V = 0.05 × 0.05 × 0.14 mm3 = 3.5 × 10−4 mm3 in Chapter 7, compared to
V = 0.1× 0.1× 2 mm3 = 2× 10−2 mm3 here.

The Bdc data was obtained by taking a pulsed DR spectrum of the cell. This
gave the frequency of the T18 transition across the cell, from which Bdc could be
numerically calculated10. Although a Ramsey sequence can in principle be used to
image dc fields of any magnitude, it is impractical for imaging the large variations
in the solenoid field. The dynamic range of the Ramsey technique is limited by the
reduction in signal strength with microwave detuning, and the difficulty in detecting
the fast Ramsey oscillations associated with large detunings. The dynamic range of
the DR imaging technique, on the other hand, is limited only by the number of shots
in an experiment run (150 in this case), and the subsequent trade-off between the
desired field resolution and dynamic range. The DR imaging sequence was the same
as the Rabi imaging sequence used in Chapter 7, but the microwave pulse length was
fixed at dtmw = 8.5µs, and I scanned the microwave frequency between shots. The
microwave pulse length was chosen to give a π pulse in the centre of the Bdc field (see
Figure 8.11.e). For Figure 8.11, the dynamic range was chosen to cover microwave
detunings over the range −5 MHz < ∆F < 5 MHz, giving a step size between data
points of 67 kHz. The microwave frequency was given by Fmw = CF + ∆F , where
the centre frequency of the scan was CF = 18.00065 GHz.

Figure 8.11.b shows an image of the Bdc field inside the vapor cell. The ∆F scan
limits correspond to a detection range of 440 mT < Bdc < 440.4 mT. The field is
saddle-shaped, rising up from the centre along the Z axis towards the solenoid cones,
and dropping away from the centre along the Y axis. The variation along the X axis
through the 2 mm thickness of the cell is integrated out, but from the cylindrical
symmetry of the solenoid, it is reasonable to assume that the field variation along the
X axis is similar to that along the Y axis. The cell is well-aligned with the centre of
the X-component of Bdc, as the cell position was adjusted with a translation stage
to minimise the DR linewidth. Gradients in Bdc present the primary dephasing
mechanism in the cell. Although the homogeneity of the dc magnetic field across
the cell is better than 10−3, the variation in Bdc across the cell is several Gauss
(1 G = 0.1 mT).

Figure 8.11.d shows δF , the detuning of the T18 transition frequency from CF =
18.00065 GHz, in a zoomed-in region around the centre of the Bdc field. This region

9Remember, all frequencies in this Chapter are given in units of cyclic frequency, and not angular
frequency.

10I compared the measured microwave frequencies with numerically obtained eigenvalues of the
Hamiltonian given by Eq. (8.1). One could also use the Breit-Rabi formula.
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is marked by a white box in Figure 8.11.b. We see variation in the T18 frequency
of ±250 kHz, with a resolution of 67 kHz given by the ∆F step size.

Figure 8.11.f shows an example pixel from the centre of the Bdc field, at (Z =
2.29 mm, Y = 1.68 mm), marked by a cross in Figure 8.11.d. Due to the sharpness
and non-Gaussian nature of the DR peak, I simply took δF to be given by the value
of ∆F where ODmw is largest. The resolution in δF was then given by the 67 kHz
frequency step size. However, the frequency step size was too coarse to measure the
width of the DR peak without fitting the data. We can estimate the FWHM by
fitting two Gaussians, and taking the weighted average of their respective widths,

FHWMav =
A1

A1 +A2
FWHM1 +

A2

A1 +A2
FWHM2, (8.32)

where A1(2) and FWHM1(2) are the respective amplitudes and widths of the two
Gaussians. At (Z = 2.29 mm, Y = 1.68 mm), we find a width of FWHMav =
214 kHz. This is 4 times the Rabi frequency at the same location (Figure 8.11.e).

8.7 Atomic Relaxation

The dc magnetic field has a significant effect on the collisional relaxation processes
in the cell. The Rb SE rate has been found to decrease by a factor of 3 in a
6 kG field [114–116]. Relaxation due to the spin rotation interaction (γ(r)SSS ·NNN)
in collisions with the buffer gas is suppressed at high dc magnetic fields [86, 126],
however the Carver rate (δA(r)III ·SSS) increases, and is able to induce T1 relaxation.

Figure 8.12 shows measured T1 values as a function of the applied dc magnetic
field. The measurements were made using Franzen imaging sequences. The cell
temperature was Tcell = 100◦C, as estimated from the optical absorption spectrum
with the solenoid turned off. The π-polarised laser intensity was 30 mW/cm2, and
the probe pulse duration was dtprobe = 0.6µs. I measured the dc magnetic field by
taking a DR spectrum of the T18 transition, and numerically obtaining Bdc from
the T18 resonance frequency. I began measurements at Bdc = 4800 G, and adjusted
the laser frequency as I decreased Bdc in order to maximise the DR signal, ensuring
that the laser remained resonant with the A1 level. At Bdc ≈ 0, the laser was thus
probing the 87Rb F = 1 state.

The T1 time in Figure 8.12 increases with Bdc, although the effect appears min-
imal below Bdc = 1000 G. This delayed suppression of relaxation was not seen in
Ref. [114], however it is likely that our curve is nonetheless primarily due to sup-
pression of Rb SE. The contribution of buffer gas collisions is minimal at low fields,
with γbg � γwalls, γSE for our cell parameters, and is unlikely to change by orders
of magnitude as Bdc is increased. As shown in Figure 8.13, there was a gradient in
T1 across the cell, with T1 lower at the top of the cell. The T1 values in Figure 8.12
are the averaged values in the region of the cell bulk marked by a white box in
Figure 8.13. The error bars represent the standard deviation in the T1 time over
this region. There is good agreement between the exponential and 1/e fits.
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Figure 8.12: Measured T1 time as a function of Bdc. The error bars are the
standard deviation in the range of T1 values seen across the cell bulk (see
Figure 8.13). T1 increases with Bdc, primarily due to the suppression of Rb
spin-exchange collisions.

It is unclear how the changing level structure affects T1. Although optical pump-
ing has been studied at high dc magnetic fields [210, 211], I am not aware of detailed,
state-dependent relaxation studies. Neglecting the contribution of 85Rb for a mo-
ment, T1 at low Bdc is the lifetime of the population difference between the 87Rb
F = 1 and F = 2 states. At high Bdc, where the laser predominantly only interacts
with the A1 state, T1 is the lifetime of the population depletion of A1. More lev-
els are involved for intermediate fields, large optical linewidths, and when 85Rb is
considered. It is conceivable that the changing nature (or definition) of T1 in these
various regimes could result in some variation in the observed T1 time, even if the
underlying collisional processes remain the same.

8.8 Conclusions

In this Chapter, I presented a proof-of-principle demonstration of microwave mag-
netic field imaging for microwaves of any frequency, imaging an 18 GHz microwave
field, and detecting microwaves from 2.3 GHz to 26.4 GHz. I also demonstrated a
new, high dynamic range technique for imaging dc magnetic fields, based on a dou-
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Figure 8.13: Images of a) T1 and b) ODpump at Bdc = 4402 G. T1 is longest at
the cell bottom, and shortest at the top. The white box marks the region whose
averaged values are plotted in Figure 8.12.

ble resonance sequence. The 87Rb σ− and π hyperfine transitions are only available
over the frequency ranges 2.2− 9.1 GHz and 5.9− 22.8 GHz, respectively. However,
σ+ transitions are available at all microwave frequencies, and I have shown that it is
possible to completely reconstruct the vector components of the microwave magnetic
field amplitude, and the relative phases between them, using only σ+ transitions.
The reconstruction requires images of B+ with the dc magnetic field both parallel
and anti-parallel to each of the X, Y , and Z axes. Given the required tesla-order
field strength, orientation of the Bdc field is likely to present a significant future
engineering challenge, and it may prove simpler to rotate the device under test and
imaging optics instead (which would also require some engineering work).

The invasiveness of the large Bdc fields and their influence on devices under test
is not yet clear, and one could imagine that for some devices, the Bdc fields would
modify the device operation. The setup could be miniaturised by replacing the bulky
solenoid with permanent rare-earth magnets [39, 212]. Tuning of the dc magnetic
field strength could then be achieved by adjusting the distance of the magnets from
the cell.
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Chapter 9

Outlook

In this thesis, I have described the development of new techniques for imaging mi-
crowave and dc magnetic fields and atomic relaxation in alkali vapor cells. We built
a microwave imaging setup with sufficient sensitivity, spatial resolution, and distance
of approach to characterise real world devices at the fixed frequency of 6.8 GHz. The
setup can also be used to image dc magnetic fields. Our microwave field, dc field,
and relaxation imaging techniques are already being adopted by the atomic clock
community for characterising the fields inside high-performance, miniaturised vapor
cell atomic clocks [52]. Wider applications require a frequency tunable microwave
imaging technique, with imaging above ∼ 18 GHz of particular interest to industry,
as microwave simulations become less reliable at high frequency. I have extended
our microwave imaging well into this regime, demonstrating in a proof-of-principle
setup that we are able to image microwaves at any frequency. I presented imaging of
an 18 GHz microwave field, and the detection of microwaves with frequencies from
2.3 GHz to 26.4 GHz.

There are now a number of promising directions available for us to explore, which
I discuss in the following sections.

Optimisation of Imaging with the Ultrathin Cells

As discussed throughout this thesis, particularly at the end of Chapter 6, there are
several optimisations that can be made to our high resolution imaging setup.

A next-generation ultrathin cell should be filled with pure 87Rb, and use an
antirelaxation coating, most likely OTS. This would provide: longer atomic state
lifetimes (T1 and T2), improving our field sensitivity; an increased signal-to-noise
ratio; reduced sensitivity to laser frequency drifts; and the option to operate at a
lower temperature for the same signal strength. Another option would be to instead
use Cs, which is isotopically pure (133Cs is the only stable isotope), and gives a higher
vapor pressure for a given temperature. The larger (9.2 GHz) hyperfine splitting
would allow for higher buffer gas pressures whilst maintaining optical resolution
of the hyperfine ground states, which would provide better spatial resolution and
reduced wall relaxation. Drawbacks would include the larger number of mF states,
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and the incompatibility with some of our current optics equipment.

We should move to primarily heat the cell with a laser, allowing us to reduce
the heat load on the device-under-test. This is simple to achieve in a permanently
sealed cell, such as the microcells used in Chapters 4 and 8. For the ultrathin cells
attached to the filling station, however, laser heating of the entire cell, glass-to-metal
transition, and valve is somewhat impractical. We could wrap this section in heating
tape, and only optically heat the cell chamber. Subsequent generations of ultrathin
cells will also be permanently sealed.

We could enhance our imaging signal by perhaps 1-2 orders of magnitude by
placing the cell in a cavity or multipass cell [213–215]. Such configurations have been
used with single-channel detection, but we would need to make some adaptations
for CCD camera imaging. This may require the use of a low-finesse cavity with large
diameter mirrors, or the use of an array of microcavities or multipass cells. Ideally,
the mirror surfaces would be on the inside of the cell, to minimise loss through
the cell windows. The mirror surfaces would then need to be coated with a thin
protective layer, such as Al2O3 [213], in order to protect them from reactions with
the Rb.

The ultimate spatial resolution may be obtained by constructing an array of
microcells, with individual microcell dimensions on the order of, say, 5−20µm. The
cells would be antirelaxation coated, and connected through channels (which would
need to provide a reasonably good conductance). Depending on the quality of the
coating, the cell may or may not require buffer gas.

Our sensitivity is severely limited by our experiment duty cycle, which is dom-
inated by camera readout and data saving. In a 30 s experiment run, we currently
take 300 images (150 actual, 150 reference) at approximately 20 fps, and then wait
15 s for data saving. Dramatic improvements are possible with a different camera
and data processing techniques, such as gating of the CCD and on-chip binning, and
the acquisition of 2000 images at 2500 fps has been demonstrated in ultracold atom
experiments [167]. Even faster detection may be possible by replacing the CCD
camera with an array of photodiodes.

An important future step will be the integration of frequency tunable imaging
with the ultrathin cells and filling station. The integration will probably be best
achieved through the use of permanent rare-earth magnets [39, 212].

Faraday Rotation Measurements

The best sensitivity in dc and rf vapor cell magnetometers has been achieved mea-
suring the Faraday rotation of a far-detuned probe beam through the atomic va-
por [20, 111, 214, 216]. We could also use Faraday rotation measurements, to non-
destructively observe Rabi or Ramsey oscillations in real time. The experiment
sequence would consist of a brief optical pumping pulse, followed by observation of
coherent oscillations driven by an applied microwave. For sufficiently fast detection
speeds (105 − 106 s−1), the Rabi oscillations could be observed in real time, and the
dead-time between probing of the atoms could be effectively eliminated. The off-
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resonant probe intensity could be increased to reduce the effect of photon shot noise,
potentially allowing us to reach the atomic projection noise limit. To my knowledge,
CCD or CMOS cameras cannot currently provide more than a few 1000 fps [167],
and we would need to use a photodiode (or array of photodiodes) for detection.

Real-Time Imaging

I have found that streaming data sequences and displaying images of the OD in
real time can be a useful experimental tool, for example during the alignment and
parameter optimisation phase. Streaming of a Rabi sequence provides images of
ODmw, and thus contour lines of the microwave magnetic field. The streaming
frame rate is currently limited by the image processing speed on the PC, rather
than by the camera, and is currently only 0.3 Hz. This is already useful, but with
the same equipment and improved programming, the frame rate could be increased
above 100 Hz. With a frame rate of 24 Hz we would achieve visually ‘real time’
imaging of ODmw, which would greatly help during cell-chip alignment, and could
even replace the need for time-consuming reconstructions of Bmw for some device
characterisation applications. One could envisage a characterisation station where
a microwave device could be brought up to a cell, to display contour lines of the
microwave magnetic field on a screen. Scanning the microwave device around over
the cell would allow the user to intuitively explore the microwave field in real time.
Such a process could take minutes or less, and would be ideal for characterisations
and debugging ‘on the fly’.

Microwave Electrometry

The full characterisation of a microwave near field requires measurements of both
the electric (Emw) and magnetic (Bmw) components, as there is no straightforward
relationship between the components. Alkali atoms in Rydberg states have proven
to be excellent sensors of Emw [47–49, 81, 82], and are able to detect far weaker
microwave amplitudes than our Bmw imaging technique, as detection is performed
using Rydberg electric dipole transitions, which are much stronger than the magnetic
dipole transitions we use for Bmw detection. However, Rydberg states are relatively
delicate compared to the hyperfine ground states we use for Bmw imaging, and are
quickly destroyed in collisions with buffer gas atoms. The vapor cell requirements
for Bmw and Emw imaging would therefore seem somewhat incompatible: we require
high buffer gas pressures to prevent wall relaxation and provide spatial resolution
for Bmw imaging, but require that there is little to no buffer gas present for Emw
imaging. The problem could be easily solved with our ultrathin cells attached to
the filling station, described in Chapter 6. With the addition of a 480 nm laser
to excite Rb Rydberg states, the filling station would allow us to perform an Emw
measurement without buffer gas, then fill the cell with buffer gas and image Bmw.
A filling station is the ideal setup for such a measurement of both components, as
it avoids the errors that using two different cell would bring, such as cell alignment
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and structural differences between the two cells.

Microwave Circuit Characterisation

Much of the drive of our microwave imaging project has been towards applications
in integrated circuit (IC) characterisation. Scientific applications include the char-
acterisation of atom chips and ion traps. There are also potentially vast industrial
applications, with microwave ICs particularly important in the telecommunications
sector. The trend towards ever smaller and denser chips, operating at higher fre-
quencies, represents a significant characterisation challenge [56].

Industry is interested in characterisation techniques for non-linear devices, and
devices operating at frequencies above 18 GHz. Our current high resolution setup
is already of interest for non-linear devices operating at 6.8 GHz, and we have made
contact with a major microwave company for collaboration, performing an early
characterisation of a prototype 6.8 GHz non-linear device. An imaging system com-
bining the high resolution and distance of approach presented in Chapter 7 with
the frequency tunability presented in Chapter 8, and possibly also the Emw imaging
discussed above, will be a competitive solution to the characterisation problem faced
by industry. Characterisation of microwave fields from 1-50 GHz should be achiev-
able with room-temperature solenoids (which can operate to 1.6 T), and it may be
possible to image fields up to 1 THz using the strongest available superconducting
solenoids (35 T).

Applications in Medical Imaging

Microwave sensing and imaging (MSI) is an emerging field that has shown promise
in a range of applications, including imaging of the brain for strokes and cerebral
edema, breast cancer screening, bone imaging, and heart imaging [217]. Microwaves
are applied to the body of interest, and features are identified through the differing
permittivity and conductivity between tissue types. Microwave imaging is attrac-
tive compared to established tools such as X-ray, MRI, and CT imaging, as mi-
crowaves are non-ionising, and microwave techniques promise to be relatively cheap
and portable. Breast imaging has received particular interest, due to the physical
accessibility of the breast, the high signal contrast between tissue types, and the
high incidence of breast cancer [218, 219].

There has been considerable effort in recent years to develop practical imaging
techniques [217]. The choice of microwave frequency is a trade-off between mi-
crowave penetration and spatial resolution, and imaging is typically performed in
the 0.5-10 GHz frequency band [218, 220]. The sensitivity requirements can be con-
siderable, as microwave attenuation through the breast can result in an output signal
100 dB below the input signal. Current microwave detection systems consist of an
array of microwave antennas, sensitive to Emw [221]. Optimal image reconstruction
requires a high sensor density, however the density is limited by cross-talk between
antennas, and by their perturbations of the microwave field. Sensor calibration is
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also a significant concern [217].
Atomic sensors offer an attractive alternative to antennas, either using ground

state atoms to measure Bmw or atoms in Rydberg states to measure Emw. The sen-
sors are intrinsically calibrated, there is no cross-talk between sensors [209], and field
perturbation due to the glass vapor cell is minimal compared to metallic antennas.
Sufficient sensitivity may be engineered through a faster experiment duty cycle and
larger vapor cells, and we have shown that atomic sensors can cover the frequency
band of interest. As noted in Chapter 7, Emw sensing with Rydberg atoms is able
to detect much weaker microwaves than our Bmw imaging. Current MSI techniques
only investigate Emw however, and it may be that measurements of both microwave
components can improve the sensitivity and specificity (i.e. diagnostic accuracy) of
the technique.

Following the success of vapor cell magnetometers in diagnostic imaging of the
heart [33, 34] and brain [35–38], microwave imaging with vapor cells may also prove
to be an attractive medical tool. The implementation would require a long-term
research collaboration with the existing MSI community, and perhaps also with the
medical vapor cell magnetometer community.
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Appendix A

Constants and Rb Data

Table A.1: Selected fundamental constants, from Ref. [88].

Planck’s constant
h 6.626 068 72(52)× 10−34 Js
~ 1.054 571 596(82)× 10−34 Js

Speed of light c 2.997 924 58× 108 m/s

Bohr magneton µB
9.274 009 15(23)× 10−24 J/T
h · 1.399 624 604(35) MHz/G

Boltzmann’s constant kB 1.380 650 4(24)× 10−23 J/K

Elementary charge e 1.602176487× 10−19 C

Bohr radius a0 0.52917720859× 10−10 m

Table A.2: 87Rb data, from Ref. [88] unless otherwise indicated.

Rel. natural abundance 27.83(2)%

Nuclear spin I87 3/2

Atomic mass m87 1.443 160 648(72)× 10−25 kg

52S1/2 hyperfine constant Ahfs h · 3.417 341 305 452 15(5) GHz

52S1/2 hyperfine splitting ∆Ehfs h · 6.834 682 610 904 312 GHz [159]

Table A.3: 85Rb data, from Ref. [89].

Rel. natural abundance 72.17(2)%

Nuclear spin I85 5/2

Atomic mass m85 1.409 993 199(70)× 10−25 kg

52S1/2 hyperfine constant Ahfs h · 1.011 910 813 0(20) GHz

52S1/2 hyperfine splitting ∆Ehfs h · 3.035 732 439 0(60) GHz
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Table A.4: Rb D2 line data, from Refs. [88, 89].

Nuclear spin g-factor gI −0.000 995 141 4(10)

52S1/2 g-factor gJ 2.002 331 13(20)

52P3/2 g-factor gJ 1.336 2(13)

Wavelength (in vacuum) λ 780.241 209 686(13) nm

Frequency ω0 384.230 484 468 5(62) THz

Decay rate /
Γnat

38.117(11)× 106 s−1

Natural linewidth 2π · 6.065(9) MHz

Saturation Intensity
Isat 1.669(2) mW/cm2|F = 2,mF = ±2〉 → |F ′ = 3,mF = ±3〉

cycling transition (σ± polarised light)
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Appendix B

Lineshape Functions

Here, I describe the lineshape functions used in Chapter 2 to model the OD in
vapor cells. The natural and collisionally broadened lineshapes are described by a
Lorentzian,

L(ω) =
1

π

2Γ

(ω − ω0)2 + 4Γ2
, (B.1)

where ω is the laser frequency, ω0 is the frequency of the atomic transition, and Γ
is the Lorentzian FWHM. Doppler broadening of atomic lines results in a Gaussian
lineshape,

G(ω) =
1√
2πσ

exp
(
− (ω − ω0)2

2σ2

)
, (B.2)

where

σ =
∆ω

2
√

2 ln 2
, (B.3)

is the Gaussian r.m.s. width, and ∆ω is the FWHM. The optical lineshape is given
by a convolution of the Gaussian and Lorentzian lineshapes, known as a Voigt profile,

V (ω) =

∫ +∞

−∞
G(ω′)L(ω − ω′)dω′. (B.4)

The Voigt profile can also be written in terms of the complementary error function,

V (ω) =
1

σ
√

2π
<e[exp(−z2)erfc(−iz)], (B.5)

where z = 1
σ
√

2
(ω + iΓ), and erfc(z) is defined for all complex z by

erfc(z) =
2√
π

∫ +∞

z
exp(−t2)dt. (B.6)
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Appendix C

Angular Momentum Matrices

For transitions between hyperfine states, the angular momentum matrix elements
are given by

Iz|I,mI〉 = mI |I,mI〉, (C.1)

Jz|J,mJ〉 = mJ |I,mJ〉, (C.2)

I±|I,mI〉 =
√

(I ∓mI)(I ±mI + 1)|I,mI ± 1〉, (C.3)

J±|J,mJ〉 =
√

(J ∓mJ)(J ±mJ + 1)|J,mJ ± 1〉. (C.4)

Our definition of the Rabi frequencies (see Section 3.1.3) sets

Ix =
1

2
(I+ + I−), Jx =

1

2
(J+ + J−), (C.5)

Iy =
1

2i
(I+ − I−), Jy =

1

2i
(J+ − J−). (C.6)

For transitions between the 87Rb 5S1/2 hyperfine states, and using the basis ψ1 =
|mJ = 1/2,mI = 3/2〉, ψ2 = |mJ = 1/2,mI = 1/2〉, . . . ψ8 = |mJ = −1/2,mI =
−3/2〉, the explicit matrices are

Iz =



3/2 0 0 0 0 0 0 0
0 1/2 0 0 0 0 0 0
0 0 −1/2 0 0 0 0 0
0 0 0 −3/2 0 0 0 0
0 0 0 0 3/2 0 0 0
0 0 0 0 0 1/2 0 0
0 0 0 0 0 0 −1/2 0
0 0 0 0 0 0 0 −3/2


,
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I+ =



0
√

3 0 0 0 0 0 0
0 0 2 0 0 0 0 0

0 0 0
√

3 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0
√

3 0 0
0 0 0 0 0 0 2 0

0 0 0 0 0 0 0
√

3
0 0 0 0 0 0 0 0


,

I− =



0 0 0 0 0 0 0 0√
3 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0

0 0
√

3 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0
√

3 0 0 0
0 0 0 0 0 2 0 0

0 0 0 0 0 0
√

3 0


,

Jz =



1/2 0 0 0 0 0 0 0
0 1/2 0 0 0 0 0 0
0 0 1/2 0 0 0 0 0
0 0 0 1/2 0 0 0 0
0 0 0 0 −1/2 0 0 0
0 0 0 0 0 −1/2 0 0
0 0 0 0 0 0 −1/2 0
0 0 0 0 0 0 0 −1/2


,

J+ =



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,

J− =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0


.
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Appendix D

Hyperfine Transitions for
Microwave Sensing

Here I expand upon the discussion in Section 8.1.1 for 87Rb, and give the microwave
transition strengths and frequencies for other alkali species.
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Figure D.1: Strengths of the σ+, π, and σ− hyperfine transitions within the 23Na
32S1/2 ground state, as a function of of the microwave transition frequency. The
black vertical line is at 1.772 GHz. Data for 23Na was taken from Ref. [222].
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Figure D.2: Strengths of the σ+, π, and σ− hyperfine transitions within the 39K
42S1/2 ground state, as a function of of the microwave transition frequency. The
black vertical line is at 0.417 GHz. Data for 39K was taken from Ref. [223].
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Figure D.3: Strengths of the σ+, π, and σ− hyperfine transitions within the 85Rb
52S1/2 ground state, as a function of of the microwave transition frequency. The
black vertical line is at 3.036 GHz. Data for 85Rb was taken from Ref. [89].
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Figure D.4: Strengths of the σ+, π, and σ− hyperfine transitions within the 87Rb
52S1/2 ground state, as a function of of the microwave transition frequency. The
black vertical line is at 6.835 GHz. Data for 87Rb was taken from Ref. [88].

Microwave Frequency (GHz)
0 10 20 30

hf
jJ
<
+
jii

0

0.2

0.4

0.6

0.8

1

a) <+ transitions

T1!16

T2!15

T3!14

T4!13

T5!13

T6!12

T7!10

T8!9

Microwave Frequency (GHz)
0 10 20 30

hf
jJ
:
jii

0

0.2

0.4

0.6

0.8

1

b) : transitions

T1!15

T2!14

T3!13

T4!12

T5!11

T6!10

T7!9

Microwave Frequency (GHz)
0 10 20 30

hf
jJ
<
!
jii

0

0.2

0.4

0.6

0.8

1

c) <! transitions

T1!14

T2!13

T3!12

T4!11

T5!10

T6!9

T7!8

133Cs

Figure D.5: Strengths of the σ+, π, and σ− hyperfine transitions within the 113Cs
62S1/2 ground state, as a function of of the microwave transition frequency. The
black vertical line is at 9.193 GHz. For the sake of brevity, the low-frequency
transitions have been excluded from the legends. Data for 133Cs was taken from
Ref. [205].
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Appendix E

Filling Station Operation

This appendix contains supplementary information to Chapter 6, including a more
detailed description and photos of the setup, and operation instructions.

E.1 Ultrathin Cell Preparation

This section gives a step-by-step guide to preparing and installing a cell on the
filling station setup. The cells are epoxied to a glass-metal transition, which is then
attached to the filling station vacuum system.

(a) Prepare the glass-metal (GM) transition1. First, flatten and polish the end of
the glass tube. It is important to keep the tube vertical at all times during
grinding and polishing. We used an Al block, inserting the glass tube into a
conveniently sized hole, as shown in Figure E.1.a. Apply pressure as evenly
downward as possible, and trace out a figure-8 pattern on the polishing mate-
rial. We began with a coarse polishing board2, before moving to successively
finer polishing papers3. At all stages, we used water for lubrication, and fre-
quently wiped the surface clean of loose grit. Each stage requires 5-10 minutes
of polishing. Check at the end of each stage that the polishing has been uni-
form. A good measure of this is the uniformity of the reflectivity of the end
surface. The final surface should be mirror-like.

Once the glass has been polished smooth, clean the GM transition. First wipe
off the ends and outside with a tissue wet with acetone. Then immerse the cell
in acetone and clean for approximately 5 minutes in an ultrasonic bath. Rise
with isopropanol, and then repeat the ultrasonic cleaning in an isopropanol
bath. Rise again with isopropanol, and dry with an air gun.

(b) Prepare the epoxy. We used a two-part epoxy4 which has been identified by

1We use CF-16 to 13 mm diameter Pyrex transitions from Vaacom (T13P).
2Multidiamant, DAS 150.25, RAG 165848.00
330µm, 6µm, 3µm, 1µm, 0.6µm paper, from Thorlabs
4Epotek-377
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a)

d)

b)

c)

Figure E.1: Photos showing the preparation of ultrathin cells: a) Polishing the
end of the GM transition to create a flat and smooth surface for bonding to the
cell; b) Applying epoxy to join the cell and GM transition. The GM transition
is gently held in a mounting frame, and the cell is placed on a heating platform;
c) A weight is placed on top of the GM transition, applying a light pressure to
the epoxy bond. The setup is then covered with Al foil (not shown), and slowly
heated to set the epoxy; d) The cell and GM transition attached to the filling
station.

the Pfau group in Stuttgart as being minimally affected by hot Rb vapours.
Mix in equal parts, and then outgas for around 5 minutes in a (low) vacuum
chamber.

(c) Prepare the cell. It should be clean already – just double-check for bits of dust
that might be on or in it.

(d) Put the cell on to a heating plate, hole-side up. Apply epoxy to the end of the
glass tube, and place it on top of the cell, with stabilising supports as shown in
Figure E.1.b,c. Cover the tube and cell with Al foil, which creates a makeshift
oven. Heat up to around 170◦C, ramping up slowly over an hour or two. Leave
it at equilibrium for another hour, and then let it slowly cool back down.
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(e) The cell and GM transition should now be bonded together and ready to attach
to the filling station, as shown in Figure E.1.d. The angle of the cell can be
adjusted with the help of a spirit-level before screwing the CF connection tight.

E.2 Vacuum System

The vacuum system is divided into several (partially overlapping) heating zones,
as shown in Figure E.2.a. The names I have used for the various valves and other
components are given in Figure E.2.b.

Figure E.3 shows photos of the filling station oven. The main heating is provided
by two heating pads attached to the underside of the fins at the bottom of the oven.
The two heating pads are connected in series, and are referred to as the Oven pads.
There is additional heating around the glass-metal transition and the Cell Valve.

The limit on operating temperature is given by the valves, which have a long-
term maximum operating temperature of 150◦C, due to the Viton rubber used for
the O-ring seals. Viton can survive up to 200◦C for brief periods, however. The
rest of the vacuum system is much more robust, with the CF connections between
the vacuum components compatible with 400◦C. The temperature sensors are not
necessarily placed at the hottest points, and so it is safest to keep the temperatures
of all sensors near the valves well below 150◦C.

E.3 Rb Transfer

We introduce Rb to the vacuum system in a glass Rb ampule placed in a separate
section of the vacuum system (see Figure E.2). After baking out the vacuum system
at a temperature of approximately 140◦C, we break the glass ampule, and transfer
the Rb to the vapor cell. The Rb needs to travel from the Rb ampule, through
the Central CF section, through the Cell Valve and into the cell. The Rb transport
works by heating the ampule to create a large Rb vapor density, and creating a
cold spot where the Rb should condense. The Central CF section should be the
hottest section, in order to prevent Rb buildup there. The cell should be at room
temperature: the colder the cell is, the more efficiently the Rb will transfer. The
transfer takes several days, as the Rb must coat each surface with several monolayers
before it is able to progress further [148].

(a) Evacuate the system, and then close all of the valves. Double-check that the
pressure gauge valve is closed. Otherwise, Rb will cover the gauge components
and you will have to buy a new gauge.

(b) Open the Pump Valve, and evacuate the central CF section. You should be
able to go down to a few 10−8 mbar at the pump (at the time of writing, the
pump pressure was 4× 10−8 mbar with all but the Rb valve open), though a
few 10−7 mbar is a sufficiently low pressure to proceed. If the pressure is too
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Figure E.2: Schematic diagrams of the vacuum system, showing a) the heating
zones, and b) the approximate locations of temperature sensors and the names
of certain pieces.
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Figure E.3: Photos of a) the filling station oven; and b) a close-up of the cell
valve, with heat insulation removed. The cell, DUT (device under test) mount,
and various temperature control components are labelled.
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a)

b)

c) d) e)

Figure E.4: Photos of the Rb transfer process and reservoir, showing a) specks
of Rb appearing in the glass-metal transition during a Rb transfer; b) the white
residue that appeared with the second Rb transfer; c) the Rb reservoir, consist-
ing of macroscopic droplets of Rb formed underneath the cold finger. The white
material on the surrounding glass is heat paste; d) the exhausted Rb reservoir
after the cell curing process; and e) the accumulation of white residue around
the Rb reservoir.
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high, you can heat up the Central CF and Pump Hose sections, with only the
Pump Valve open, for an extra period of baking.

(c) Open the Rb Valve, and pump down on the Rb ampule section. You should
only need to do this briefly, as the Rb itself should act as a strong getter for
most contaminants/leakage into this section (except He). I generally find that
the pressure at the pump jumps (briefly, for less than a minute) up to a few
10−6 mbar when the Rb Valve is opened.

(d) Close the Pump Valve, and then open the Cell Valve. You should now have
all valves closed, except for the Rb and Cell valves.

(e) Now you can start heating everything up. Typical voltages and currents are
given in Table E.1, and steady state temperatures in Table E.2. It is safest to
increase the heating slowly in (say 2-3) stages. You should periodically check
all of the temperature sensors (say once per 30 mins at the start, then less
frequently after). Note that the oven and cell heating should be left off; Rb
will condense best on a room temperature surface5.

(f) The Rb transfer will take a few days. Just wait. After 1-2 days, you will
start to see specks of Rb appear on the glass of the glass-metal transition.
Once these have accumulated to a reasonable level (see Figure E.4.a), turn the
heating off and wait for everything to cool down.

(g) For the final stage of the Rb transfer, close the Cell Valve, and heat the oven
up for a few hours, using the general operation heating parameters given in
Table E.3. The Rb will condense on the glass underneath the cold finger,
forming a reservoir. An example is shown in Figure E.4.c.

Table E.1: Typical heating settings for the filling station during a Rb transfer.

Central Valve Glass-Metal
Oven

Pump Buffer Top Rb
CF Pad Pad Hose Hose Sec. Ampule

127 V 70 V 8 V 0 115 0 55 1.0 A

Table E.2: Oven temperatures (◦C) in the filling station under the Rb transfer
settings given in Table E.1.

Rb P. Gauge Top Rb
Cross

Buffer Pump Buffer Pump
Valve Valve Sec. Ampule Valve Valve Hose Hose

126.5 142.3 49.6 105.0 121.0 120.6 133.1 23.5 149.3

5Or a cooler surface, but then you need to be particularly careful about condensation and strain
due to temperature gradients.
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E.4 Buffer Gas Filling

(a) Start by ensuring there is a good vacuum in all of the system. Open all valves
(except the two that open to atmosphere!), and pump down until a pressure
better than a few 10−7 mbar is reached.

(b) It is a good idea to also vent some buffer gas through the regulator to remove
any contaminants that may have leaked in. Close all valves except the Buffer
and Pump Valves. Open the buffer gas bottle, and adjust the coarse regulator
valve to give a small (sub-mbar) pressure. Slowly open the needle valve, and
vent gas through for a few seconds. Close the buffer gas bottle, and slowly
vent all of the remaining gas in the regulator.

(c) Now we can introduce buffer gas to the system. It is safest to first roughly
find the correct pressure with the Cell Valve closed. Make sure that all of
the valves, including the regulator valves are closed, with the exception of the
the Buffer and Pressure Gauge Valves. Open the buffer gas bottle again, and
adjust the coarse regulator valve to give ∼ 100 mbar of buffer gas pressure.
The exact value is not important, but it should be higher than the desired
filling pressure. Slowly open the regulator needle, and increase the buffer gas
pressure until the (top section) pressure gauge reads the desired pressure. It
is a good idea to practice closing the valve off a few times as you increase the
buffer pressure.

(d) Once you have the desired buffer pressure in the vacuum system, open the
Cell Valve. The pressure reading will fall a bit, and you can carefully add a
little more buffer gas to the system if you are feeling confident. But in most
situations, 1 or 2 mbar difference in buffer gas pressure will not drastically
change the cell performance. Wait 5 minutes or so for things to equilibrate,
and close the Cell Valve. The reading on the pressure gauge will increase as
you close the valve. I used the midpoint of the open and closed values as the
filling pressure.

(e) Double check that the cell valve is closed.

(f) Close all of the other valves, including the buffer gas bottle. The cell is
now ready for use. The cell can be operated for several weeks without need
for refilling (depending on the condition of the cell valve).

E.5 General Operation

For general operation of the filling station setup, we only need to heat the area
around the vapor cell. Typical settings for the heating system are given in Table E.3,
and the resulting temperatures in Table E.4. One thing to note is that for historical
reasons, the heating tape from the Central CF section (T, Cross, Buffer-, Pump,
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Cell, and Rb Valves) is partially responsible for heating the Cell Valve. This means
that the heating for the central CF section also needs to be turned on when operating
the oven. Otherwise, the Cell Valve will be too cold, and the Rb will condense there
instead of under the cold finger.

Table E.3: Typical heating settings for the filling station under general opera-
tion.

Central Valve Glass-Metal
Oven

Pump Buffer Top Rb
CF Pad Pad Hose Hose Sec. Ampule

100 V
84 V 7 V

1.08 A 0 0 0 0
0.15 A 0.13 A

Table E.4: Oven temperatures (◦C) in the filling station under the general
operation settings given in Table E.3.

Fins Fins
Cell

GM GM Cold Oven Cell Chip
(bottom) (top) metal glass finger top Valve Mount

182.5 181.7 146.9 150.4 151.1 130.1 145.4 136.5 84.3

The maximum heating rate with the settings given in Table E.3 is quite slow,
and the oven takes 2-3 hours to heat up. Once the system has been characterised,
this means that the oven heating can simply be switched on, and left to heat up
without further monitoring.

The Cell Valve should be closed at all times during operation. It is a good idea
to close the other valves as well, for example to prevent dirt from the heated central
CF section condensing in the unheated sections. The pumping station should be
turned off, as it otherwise creates mechanical noise in the system.

E.6 Valve Damage

The cell valve developed a leak after several months of operation. As discussed in
section 6.5.1, this was due to Rb degrading the Viton O-ring seal. Damaged seals
may be replaced (in practice, this requires also replacing the cell), and a possible
long-term solution is to instead use a valve with a copper seal. Photos of the damaged
valve are shown in Figure E.5.
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a) c)b)

Figure E.5: Photos of the damaged cell valve, showing a) the valve actuator,
with the O-ring in place; b) the O-ring after removal from the valve; and c)
the brown and black markings left by the O-ring where it pressed into the valve
housing to create a seal.
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Appendix F

Cell Cleaning

Rb in a vapor cell will accumulate at the coldest point available to it. Ideally, this is
somewhere well away from the windows, with a well-defined temperature. The cell
windows are difficult to heat however, due to the need for optical access, and it is
common for Rb and other contaminants to build up on them. This can be tolerated
for some time, but eventually the cell windows become opaque, and must be cleaned.
The build of of Rb and other contaminants is a largely reversible process, and so we
can clean the cells by reversing the temperature gradient. We locally heat the cell
windows, and allow the Rb and contaminants to accumulate in a new cold spot.

Figure F.1 shows the cleaning process for the microcells. Typical cleaning tem-
peratures were ∼ 150◦C. Figure F.2 shows the process for the ultrathin cells. I
created a 15◦C temperature gradient along the cell, and a 30◦C temperature gra-
dient between the far end of the cell and the cold finger. In order to increase the
mobility of the residue, I performed the cleaning at high temperature. The far end
of the cell was at 157◦C, the cold-finger-end was at 143◦C, and the cold finger was
at 128◦C.
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a)

d)

b)

c)

Figure F.1: Photos of the cleaning process for the microcells, showing a) the
M1 cell before cleaning, with Rb and what is most likely Rb2O on the windows;
b) the M1 cell after cleaning. Most of the buildup is gone, but a faint brown
layer can still be seen in the centre; c) the setup used for cleaning, which used
a soldering iron with the tip screwed screwed off and a metal cylinder on top
of a heating plate to locally heat the cell windows; and d) zoomed in picture of
the cylinder and soldering iron, which were covered in Kapton tape in order to
avoid scratching the cell windows.
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a)

c)

b)

d)

e)

Figure F.2: Photos of the cleaning process for the ultrathin cells, showing a)
the U1 cell with a large buildup of white residue on the windows; b) the U1 cell
after 4.5 days of cleaning; c) the clean-as-new U1 cell after several days more of
cleaning; d+e) the cleaning involved wrapping the cell with a heating pad and
insulating Al foil to create a temperature gradient that drove the white residue
back under the cold finger (see also Figure E.4.e).
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Appendix G

How to see Rabi Oscillations

In every new setup, seeing the first Rabi oscillation is something of a process. The
main obstacles are finding the right microwave frequency to drive the atomic transi-
tions, which may have an unknown shift due to buffer gas collisions or a dc magnetic
field, and obtaining microwaves with a sufficiently large amplitude to drive Rabi os-
cillations during the T2 time.

Aside from the larger signal given by a thicker cell, Rabi oscillations are generally
easier to see in a thin cell with high buffer gas pressures. The spatial confinement
of the atoms makes it easier to ensure that the atoms see uniform dc and microwave
magnetic fields over the interrogation time. Additionally, in order to see Rabi oscil-
lations driven by a travelling microwave, the cell dimensions must be significantly
smaller than the microwave wavelength (4 cm for 6.8 GHz). In larger cells, atoms at
different positions in the cell will see different phases of the microwave field, will wash
out phase-sensitive measurements, such as Faraday rotation. Our measurements are
unaffected however, as our absorption imaging measures atomic populations, which
are insensitive to the microwave phase. Cell size is less important in a microwave
magnetron cavity, where the microwave phase is relatively uniform throughout the
cavity.

On the other hand, as the cell thickness decreases, relaxation rates also increase,
both due to wall collisions, and the increased Rb SE associated with a higher op-
erating temperature. Larger microwave amplitudes are then required to drive Rabi
oscillations within the reduced T2 time.

The geometry around the cell is important when driving oscillations with a far
field microwave. Pieces of metal and coils of wire will impose boundary conditions
on the microwave, and it is possible for such items to form a crude microwave cavity.
Although this can provide the benefit of amplifying the microwave, the main result
is that the coupling of the microwave source into the cell region becomes strongly
dependent on source position, and to some extent microwave frequency. Near field
microwaves are less affected by the surrounding geometry, as the perturbing geom-
etry is generally at a distance much larger than the near field length scales.

When attempting to see a first Rabi oscillation, it is best to start with a DR sig-
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nal on an oscilloscope. It is significantly easier to optimise the DR signal, which gives
feedback in real time and has a clearer response to weak or off-resonant microwaves.
The first step is to find the microwave transition frequency of the atoms, which may
not necessarily be known, due to uncertainties in the buffer gas pressure or dc mag-
netic field. This step is best performed using a microwave horn or antenna, which
radiate uniform fields, rather than using a non-uniform DUT near field. Perform
a scan of the microwave centre frequency (CF), with a reasonably large frequency
span (∆F ). The optimal ∆F depends on the system parameters, but is perhaps 10
to 1000 times the transition linewidth. This is a relatively straightforward task for
low dc magnetic fields, and all 7 DR peaks should be visible in a single frequency
sweep (depending on the microwave polarisation). The microwave frequency sweep
rate should not be too fast or too slow, as the signal will wash out in both regimes.
I generally found a 10-50 ms sweep time worked well. Once you find a DR peak,
reduce ∆F to find the resonance frequency. With a DR peak visible on the scope,
the other parameters can then be optimised. These include laser intensity, polari-
sation, and stability, the microwave horn position, and the microwave power. The
microwave source can then be replaced by the DUT, and the parameters, including
DUT placement, optimised again.

In some cases, it is also extremely difficult to see a first DR signal, such as in
the frequency tunable setup presented in Chapter 8. As discussed in Section 3.4.6
and Chapter 9, I have written an absorption imaging sequence that produces ODmw

images, i.e. contour lines of the microwave field, in quasi real time (0.3 Hz, limited
by coding). I found that this was the most robust way to get a first microwave signal,
and could be used to align the microwave source relative to the cell and optimise
the signal. A particular advantage is that the ODmw images give the shape of the
resonant microwave field in the cell, showing if the microwave is only penetrating a
small distance into the cell, or is only resonant with a small fraction of the atoms
(due to large dc field gradients). Once the ODmw images have been used to obtain a
signal, the final optimisation is still best performed using the DR method described
above. This is due in large part to the still relatively slow ODmw image refresh rate.
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Appendix H

S-Parameter Characterisations
of the Demonstration
Microwave Devices

Here, I present S-Parameter measurements of the three demonstration structures
used in Chapter 7. The S-Parameters measure reflection (S11) and transmission
(S12) signals through the two ports on the devices as a function of microwave fre-
quency. The measurements were performed using a vector network analyser1.
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Figure H.1: S11 (reflection) and S12 (transmission) parameters for the CPW.
The dotted line is at 6.835 GHz.

1Agilent PNA N5222A.
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Figure H.2: S11 (reflection) and S12 (transmission) parameters for the Zigzag
chip. The dotted line is at 6.835 GHz.
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Figure H.3: S12 parameter (transmission) for the SRR. Traces are shown for
different chip-cell distances, showing the tuning of the resonance peak. The
variable X accounts for the fact that the absolute chip-cell distance was not
measured. The dotted line is at 6.835 GHz.
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[49] H Q Fan, S Kumar, R Daschner, H Kübler, and J P Shaffer. Subwavelength mi-
crowave electric-field imaging using Rydberg atoms inside atomic vapor cells.
Optics Letters, 39(10):3030–3, May 2014.
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