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Abstract

In this thesis, I report on the realization of a hybrid optomechanical system in which
ultracold atoms are coupled to a micromechanical membrane. The atoms are trapped
in the intensity maxima of an optical standing wave formed by retroreflection of a
laser beam from the membrane surface. Vibrations of the membrane displace the
standing wave, thus coupling to the center-of-mass motion of the atomic ensemble.
Conversely, atoms imprint their motion onto the laser light, thereby modulating the
radiation pressure force on the membrane. In this way, the laser light mediates a
long-distance, coherent coupling between the two systems.

When the trap frequency of the atoms is matched to the membrane frequency, we
observe resonant energy transfer. In addition, by applying simultaneous laser cooling
to the atoms, we can dissipate energy from the coupled system leading to sympa-
thetic cooling of the membrane mode. The experimental data follows the theoretical
estimations that predict the coupling to scale with the number of trapped atoms.
Furthermore, by including the finite temperature of the atoms and their spatially
inhomogeneous trapping potential in the theoretical model of the optomechanical
coupling, we can accurately describe the width and shape of the resonance.

In an improved experimental setup, the membrane is enclosed in a cavity while
the atoms are trapped in the standing wave lattice outside the cavity. The pres-
ence of the cavity results in a considerable enhancement of the coupling strength
in proportion to the cavity finesse. So far we have observed sympathetic cooling of
the membrane mode by a factor of 32 starting from room temperature. Theoretical
estimates show that in such a setup ground-state cooling of the membrane mode
should be possible, allowing one to access the quantum coherent coupling regime.
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1

Introduction

1.1 Hybrid Quantum Systems with Cold Atoms

Laser light can exert a mechanical force on material objects through radiation
pressure and through the optical dipole force [1, 2]. These forces have been
used for decades to achieve extraordinary control over the quantum states of
atoms, molecules, and ions. A diverse toolbox [1, 3] exploiting tailored optical
and magnetic fields provides control and detection of the internal and motional
states of atoms on the level of single quanta. Furthermore, the possibilities to
tune interactions between atoms and ions have made it possible to study exotic
quantum matter [4] and generate entanglement in these systems [5, 6].

Recently, solid-state physicists have started to achieve similar control over
individual vibrational modes of high-quality fabricated mechanical structures. In
the very active field of optomechanics [7, 8, 9, 10, 11], light forces are exploited
for cooling and control of the vibrations of mechanical oscillators ranging from
macroscopic mirrors to micro-membranes and nanoscale cantilevers. Notably,
the ground-state of a single mechanical mode of an optomechanical crystal was
reached by laser-cooling [12]. Experiments with other types of mechanical oscilla-
tors have also reached phonon occupation numbers very close to the ground state
using laser-cooling [13, 14]. In addition, very high-frequency oscillators have been
cooled to their ground state by simply placing them in a dilution fridge [15], and
by using additional radiation pressure cooling in the microwave domain [16].

Beyond cooling, a subsequent goal is to coherently control these mechanical
devices on the quantum level, analogously to what can be achieved with atomic
systems. A necessary prerequisite for this is the quantum coherent coupling
regime, which has been reached in experiments [14, 17, 15]. This would allow
one to study quantum physics on a macroscopic scale [18, 19], possibly revealing
yet unobserved quantum decoherence mechanisms [20, 19, 21, 22]. From a more
applied physics perspective, such devices could provide quantum-limited force-
sensing in precision measurements [23].
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1. Introduction

Combining the aforementioned advancements in atomic and solid-state physics,
a number of recent theoretical articles have proposed that light forces could be
used to couple the motion of atoms in a trap to the vibrations of a single mode of a
mechanical oscillator [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. In the resulting hy-
brid optomechanical system, the well-established toolbox of atomic physics could
be used to control the vibrations of an engineered mechanical device. Atoms could
be used to read out the motion of the oscillator, to manipulate its dissipation, and
ultimately to perform quantum information tasks such as coherently exchanging
the quantum state of the two systems. Moreover, the oscillator could serve as a
new tool in atomic physics experiments. By functionalizing the oscillator with
an electric charge or magnetic moment, it could serve as a universal transducer
between otherwise incompatible systems, for example coupling atomic and molec-
ular degrees of freedom. This could facilitate the construction of more advanced
quantum networks, where quantum signals are shuttled between di↵erent type of
elements performing quantum operations.

Atomic systems and solid-state oscillators are complementary in their ben-
efits, while they can compensate each others disadvantages. Atomic quantum
systems live in an ultra-high vacuum environment, whereas solid state systems
are integrable and scalable [35]. Exceptionally long coherence times up to several
seconds can be achieved in atomic systems as compared to mechanical oscillators
whose coherence time can reach about a hundred microseconds. The coherence
of the mechanical oscillator is limited by coupling to the support. A special case
in this context are levitated mechanical oscillators, where a direct connection to
the bath is missing similarly to atoms [22, 36].

The challenging prerequisite for any quantum hybrid experiment is the cre-
ation of a coherent, quantum interface between the atoms and the mechani-
cal oscillator. Our group has studied di↵erent interfaces between atoms and
mechanical oscillator based on magnetic [37], van der Waals [38], and optical
forces [39, 40, 33, 31, 41, 32]. A graphical summary of these experiments and
proposals is illustrated in Fig. 1.1. In the pioneering interface-experiments atoms
were used to detect vibrations of micromechanical oscillators using magnetic
forces in the J. Kitching’s group [42], and surface-force coupling in our group [38]
(Fig. 1.1a+b). However, the backaction of the atoms onto the oscillator’s mo-
tion, which is required for cooling and manipulating the oscillator with the atoms,
could not yet be observed. Furthermore, both of these coupling mechanisms rely
on short-distance interactions, requiring the atoms to be in close vicinity of the
oscillator. A qualitatively di↵erent setting can be created by using optical fields,
which can provide coupling over long distances. In this thesis, a novel type of
an optical interface is described [39, 40] (see also [43]), as illustrated in Fig. 1.1c.
Using the optical interface we have demonstrated the backaction of an ensemble
of atoms onto a mechanical oscillator for the first time.

Beyond atomic-mechanical oscillator systems, a variety of other types of quan-
tum hybrid systems have been proposed, where a mechanical oscillator is coupled
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1.2 This Thesis

coupling via atom-surface forces

coupling via optical lattice

ZatZm

cavity-mediated coupling

magnetic coupling to atomic spin

a) b)

c) d)

Figure 1.1: Di↵erent types of interfaces between atoms and a mechanical oscillator
studied in our group. a) Experiment: Coupling of a Bose-Einstein condensate and an
AFM tip via van der Waals surfaces forces [38]. b) Proposal: Coupling of Zeeman-states
of atoms and a magnetized cantilever [37]. A related experiment has been done in the
group of J. Kitching [42]. c) Experiment: Coupling of atoms and a membrane oscillator
via an optical lattice [39, 40]. See theory in [33, 41]. d) Proposal: Cavity-mediated
coupling between a single atom and a partially reflecting membrane [31].

to a microscopic solid-state quantum system. Examples include coupling of a
mechanical resonator to NV centers, quantum dots, charge or spin qubits [44].
In addition, there are also hybrid quantum systems that involve for example
superconducting resonators instead of a mechanical oscillator [35]. All in all,
the diversity of atomic and solid-state quantum systems in the context of quan-
tum hybrid-systems has led to interdisciplinary sub-fields in both theory and
experiment within quantum information science, condensed matter physics, and
many-body physics.

1.2 This Thesis

In the hybrid optomechanical system described in this thesis, an ultracold en-
semble of a few million atoms is coupled via laser light to a mechanical oscillator
as illustrated in Fig. 1.1c. The atoms are trapped in free-space in the inten-
sity maxima of a standing wave that is formed by retro-reflecting a laser beam
from the mechanical oscillator. This trap configuration is commonly known as a
one dimensional optical lattice. The optical lattice creates both the trap for the
atoms and simultaneously mediates long-distance coupling between the two sys-
tems. The mechanical oscillator is a silicon nitride membrane on top of a silicon
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1. Introduction

frame and it has dimensions of 0.5 mm⇥0.5 mm⇥50 nm. We chose silicon nitride
membranes as they exhibit surprisingly low dissipation [45], but also have a rea-
sonable reflectivity at infrared frequencies. The membrane resides in a separate
vacuum chamber from the atoms. This type of modular setup is experimentally
advantageous as the membrane properties can be studied independently of the
atoms, and the membranes can be exchanged relatively quickly without breaking
the ultra high vacuum necessary for the atom preparation.

The membrane motion couples to the center of mass-mode of the atomic en-
semble. As the membrane is displaced, the lattice potential minima shift spatially
by the same amount. Consequently, the atoms feel a restoring optical dipole force
towards their equilibrium position. This force mediates the direct action of the
membrane onto the atoms. On the other hand, the dipole force results in re-
distribution of photons between the two running-wave components that form the
standing wave. This leads to a power modulation of the laser beam that has
passed trough the atoms and travels towards the membrane. As a result, the
radiation pressure force on the membrane becomes also modulated. This gives
rise to the backaction of the atoms onto the membrane. If optical losses in the
beam path and the finite transmission of the membrane are neglected, the forces
experienced by the atoms and the membrane are equal in magnitude, but op-
posite in sign - in accordance to the action-reaction principle. However, in our
experimental realization the losses lead to a unique situation of asymmetric cou-
pling, which in the quantum regime is described in terms of a cascaded quantum
system.

In a simplified picture, where all of the atoms move in a common mode in an
ideal harmonic trapping potential, the atomic and the membrane motion form a
pair of coupled harmonic oscillators. The coupling constant scales with the mass
ratio of the atoms and the membrane and is thus collectively enhanced by the atom
number. Furthermore, continuous laser-cooling of the atoms during the coupling
results in sympathetic cooling of the membrane mode. A propitious feature of our
setup is that the atomic cooling rate is tunable and can be switched o↵ at will.

In a proof-of-principle experiment, we detect the coupling by measuring the
damping induced upon the membrane by the atoms [39, 40]. The atoms are
continuously damped at a rate of 2⇡ · 130 kHz. The trap frequency of the atoms
can be tuned by changing the laser power of the lattice beam. When the atoms
are tuned to resonance we observe an increased damping by a few percent of the
oscillations of the membrane. This damping scales linearly with the atom number
in the trap as predicted by the theory. The observed shape of the resonance di↵ers
considerably from what is expected for coupled and damped, simple harmonic
oscillators, but it can be accurately explained with a theoretical model that takes
into account the finite temperature of the atoms and the spread in the vibrational
frequencies of the atoms in the trapping potential. This is the first demonstration
of backaction of ultra cold atoms on a mechanical oscillator.

In a second experiment, we switch the laser cooling of the atoms o↵ and excite
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1.2 This Thesis

the membrane with a piezoelectric transducer. We observe resonant heating of
the center of mass mode which confirms that the coupling is indeed bi-directional.
At the same time, the narrow membrane excitation serves as a probe for the
distribution of vibrational frequencies in the lattice.

One route to considerably enhance the coupling is to enclose the membrane
inside an optical cavity, which results in an enhancement of the coupling propor-
tional to the cavity finesse. The atoms remain trapped outside the cavity in the
standing light-wave that is formed in reflection from the cavity. The theory for
this system shows that the optimal cavity finesse is restricted to relatively low
values in the non-resolved sideband regime [41]. By implementing the cavity to
the experimental setup, we have been able to cool the membrane mode starting
from room temperature to a steady-state temperature of 9K. With the significant
improvements that are underway in the new cavity-enhanced setup, observation
of normal mode splitting and sympathetic ground state cooling of the oscillator
seems a feasible goal [41].

Organization of the Chapters

• The second Chapter provides an introduction to mechanical oscillators
in the classical and quantum regimes. The description of optomechanical
systems can often be reduced to that of two coupled harmonic oscillators.
This is briefly introduced from the viewpoint of coupling atoms to mechan-
ical oscillators. The latest significant advancements in optomechanics are
reviewed, and finally a harmonic oscillator formed by an ensemble of ultra
cold atoms in an optical lattice potential is discussed. The optical lattice
theory is derived for the case of a partially reflecting mirror.

• A semiclassical model captures the essential features of the original free-
space and the cavity-enhanced atom-membrane coupling schemes, as dis-
cussed in the third Chapter. The model is used to derive the coupling con-
stant, sympathetic damping rate of the membrane and the normal modes
of the system. In order to analyze the fundamental quantum limits of
the system performance, a quantized description of the system is briefly
introduced. The theory was developed in collaboration with P. Zoller’s
group [41].

• The fourth Chapter describes characterization measurements on the com-
mercial, low and high-stress silicon nitride (SiN) membranes used in the
experiment. The mechanical quality factors of the membranes depend
strongly on the mounting of the membranes to a supporting structure. By
optimizing the mounting, ultrahigh (> 106) quality factors are obtained.
The absorbance of the low-stress stress membranes is found to be consid-
erably higher (1.5 · 10�3) than that of the high-stress ones (. 2 · 10�5) at
780 nm. Absorption related heating in the membrane results in a decrease
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1. Introduction

of the eigenfrequency via a reduction in its tensile stress. At discrete eigen-
frequencies, the membrane mode couples to a mode of the frame, which
manifests itself as a dramatic drop in the quality factor of the membrane
mode.

• The experimental setup for the free-space experiment and the optomechan-
ical coupling results are presented in the fifth Chapter. The optomechan-
ical coupling is observed both as a resonant temperature increase of the
atoms and as a resonant enhancement in the damping of the membrane. A
theoretical model is developed to accurately describe the shape of the ob-
served resonance. The model takes into account experimental details of the
inhomogeneous lattice beam profile and the finite temperature of the atoms.
The results presented in this Chapter demonstrate a proof-of-principle and
are used for optimizing the experimental parameters. The Chapter con-
cludes with proposals of direct improvements that can be applied to the
setup to boost up the coupling.

• Chapter six focuses on the theory and implementation of the new mem-
brane module, where a membrane is placed in the middle of a cavity. The
basic principles of optical cavities are first covered and then the optome-
chanical coupling between the membrane and the cavity is explained. It is
found out that fine-positioning a low-loss membrane inside an asymmetric
cavity can increase the cavity finesse beyond its free-space value due to clas-
sical interference e↵ects inside the cavity. After the theoretical part, the new
experimental membrane module is described in detail. By using the cavity-
enhanced module in a new series of atom-membrane coupling experiments,
we have so far been able to sympathetically cool the membrane using the
atoms from room temperature to a steady-state temperature of 9 K, which
is a considerable improvement compared to the original free-space setup.

• Chapter seven summarizes the work and presents an outlook on the short
and long term goals of the main experiment. Improvements to the current
setup are suggested to enhance the coupling further towards the coherent
coupling regime.
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2

Background

This Chapter introduces the basic concepts related to our atom-membrane cou-
pling experiment, namely a mechanical oscillator, ultra cold atoms and the light
field which mediates the coupling between the two.

Section 2.1 introduces the concept of a mechanical harmonic oscillator both
in the classical and quantum regimes. It also gives a general description of two
harmonic oscillators coupled via a distance-dependent force from the viewpoint
of coupling atoms to mechanical oscillators. The quantum regime of a mechanical
oscillator has become relevant in optomechanical experiments, where the mechan-
ical mode is coupled to a light field. A brief overview of optomechanical coupling
is given in Sec. 2.2.

Section 2.3 describes the properties of ultra-cold atoms in an optical lattice
potential. The center of mass mode of a cold atom cloud in an optical lattice can
be described with a harmonic oscillator. The atoms can be readily ground-state
cooled and manipulated on a quantum level with laser fields, making them an
attractive system to couple to.
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2. Background

2.1 Mechanical Oscillator

2.1.1 Mode Function and E↵ective Mass

Continuum mechanics gives an accurate description of long-wavelength vibra-
tions and allows to calculate the eigenmodes of bulky geometries. The mechan-
ical modes of di↵erent type of geometries may be solved via the elastic wave
equation [47],

⇢
@2u (r, t)

@t2
= r · T + f (r, t) , (2.1)

where u (r, t) is a displacement field as a response to some externally applied force
f (r, t), ⇢ is the density of the material, and T is an elastic stress tensor. For more
complex geometries one often needs to resort to numerical solutions, especially in
cases where material inhomogeneity or anisotropy is present [47]. Furthermore,
for large deflections from equilibrium, non-linear e↵ects start taking place, and
Eq. 2.1 must be adapted to include these.

In a few simple cases, the equations of motion can be readily derived from first
principles. Here we take as an example a thin, square, homogeneous membrane
that has displacement along x within the linear-response regime. The membrane
has a side length of lm. Let us consider a situation, where the membrane is
released from some initial deflection x0. In this case, the wave equation (Eq. 2.1)
reduces to

⇢
@2u (y, z, t)

@t2
= S

✓
@2u (y, z, t)

@y2
+

@2u (y, z, t)

@z2

◆
, (2.2)

where S is the tensile stress in the membrane. The eigenfrequencies of the mem-
brane are [48]

!
ij

=
⇡

lm

s
S

⇢
(i2 + j2), (2.3)

and the corresponding mode functions are harmonic

u
ij

(y, z, t) = x
ij

(t) sin

✓
i
⇡

lm
y

◆
sin

✓
j
⇡

lm
z

◆
(2.4)

x
ij

(t) = x0 sin (!
ij

t + �) , (2.5)

where i, j = (1, 2, 3..). Figure 2.1 shows the lowest order eigenmodes for a square
membrane.

In the following description, we will treat a mechanical mode of any type of
oscillator as a simple harmonic oscillator with a single position coordinate and
a single momentum coordinate. For this purpose we define an e↵ective mass for
the oscillator, M , so that that the potential energy of the oscillator system is
Epot (t) = 1

2M!2
mxm(t)2, where xm(t) and !m correspond to the peak displace-

ment and eigenfrequency of the system. For a square membrane the potential
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2.1 Mechanical Oscillator

x

y

z

Figure 2.1: An example of the lowest order modes (i, j) = (1, 1); (2, 1); (2, 2) for a
square membrane.

energy of the vibrational mode is

Epot (t) =
1

2

Z

l

m

Z

l

m

Z

d

m

u2
ij

!2
m⇢dydzdx =

1

2
!2
m
l2mdm⇢

4
xm(t)2, (2.6)

where dm is the thickness of the membrane. From this we can identify the e↵ective
mass to be 1/4 of its physical mass and equal for all the modes of the membrane:

M =
1

4
⇢dml

2
m. (2.7)

2.1.2 Damped and Driven Harmonic Oscillator

The equation of motion for a velocity-damped oscillator is given by [49]

Mẍm(t) + M�mẋm(t) + M!2
mxm(t) = F (t), (2.8)

where �m is the energy damping rate of the oscillator in angular units, !m is the
mechanical resonance frequency in angular units, M is the e↵ective mass, and
F is an external driving force. The equation can be conveniently solved in the
frequency domain. By applying the Fourier transform of the form

f(!) =

Z 1

�1
f(t)e�i!tdt, f(t) =

Z 1

�1

1

2⇡
f(!)e+i!td! (2.9)

to both sides of the equation Eq. 2.8 we get

�M!2xm(!) + iM!�mxm(!) + M!2
mxm(!) = F (!). (2.10)

The linear response of the oscillator to an external force can be expressed in terms
of the mechanical susceptibility as

�(!) ⌘ xm(!)/F (!) =
1/M

!2
m � !2 � i�m!

. (2.11)
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In the case, where the driving force is harmonic, F (t) = F0 sin(!t), the oscilla-
tor has a solution on the time-domain xm(t) = x0 sin (!t� �) with an amplitude
and phase lag

x0 =
F0/Mq

(!2
m � !2)2 + !2�2m

(2.12)

� = tan�1

✓
�m!

!2
m � !2

◆
. (2.13)

If the excitation vanishes abruptly, F (t > 0) = 0, the amplitude of a weakly
damped oscillator (�m ⌧ !m) will decay in time from an initial value x0 as

xm(t) = x0e
� �

m

2

t sin

"
t

r
!2
m � �2m

4
� �

#
. (2.14)

A useful quantity to characterize mechanical oscillators is the quality-factor Q

Q =
!m

�m
, (2.15)

which describes how many oscillations the oscillator experiences before its energy
has decreased by a factor of e. In other words, a high Q means that the oscillator is
well decoupled from its environment. Figure 2.2a shows an example of a ringdown
for an oscillator that has Q = 10.

In the absence of external driving, Eq. 2.14 suggests that the amplitude of
the oscillator will decay to zero. In reality, the oscillator is always coupled to an
environment at some finite temperature Tbath, or in other words, to a thermal
bath. The bath can be described as an infinite sum of harmonic oscillators exert-
ing a force of equal amplitude but di↵erent frequency, which gives rise to a noise
power spectral density given by the fluctuation-dissipation theorem [50, 11]

SF(!) = 4k
B

Tbath�mM. (2.16)

In order to avoid confusions with factors of two, it is noted that Eq. 2.16 is the
single-sided power spectral density in the domain of positive angular frequencies
! > 0. Fluctuations of F drive the fluctuations of xm via the susceptibility as [51]

S
x

(!) = |�(!)|2SF(!) =
4k

B

Tbath�m
M

· 1

(!2
m � !2)2 + !2�2m

(2.17)

⇡ 4k
B

Tbath

M!2
m�m

· 1

1 + 4 (!m � !)2 /�2m
, (2.18)

where the last approximation holds when the oscillator is weakly damped, i.e.,
�m ⌧ !m. The thermal vibration amplitude is related to the power spectral
density by

hx2m(t)ith =

Z 1

0
S
x

(!)d!/2⇡ =
k
B

Tbath

M!2
m

, (2.19)
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2.1 Mechanical Oscillator

resulting in a r.m.s thermal amplitude of the oscillator

xth =
p

hx2m(t)ith =

s
k
B

Tbath

M!2
m

. (2.20)

For example, we use a thin SiN membrane in our experiment which has di-
mensions (0.5 mm)2 ⇥ 50 nm, tensile stress S = 98MPa [46], and density ⇢ =
2.9 g/cm3 [46]. These result in a fundamental eigenfrequency !m = 2⇡ · 270 kHz,
e↵ective mass M = 8ng and a thermal amplitude of xth = 13pm at room tem-
perature. Such an amplitude can be easily detected with interferometric means.
Figure 2.2b shows the power spectral density of the membrane in room temper-
ature.

0 2 4 6 8 10
−1

−0.5

0

0.5

1

 x
m

t (s)

a)

0 100 200 300 400 500
10−18

10−16

10−14

10−12

10−10

p
S
x

(m
/p H

z
)

!/2⇡ (kHz)

b)

Figure 2.2: a) An example of a ringdown of an initially excited oscillator of !
m

= 10,
Q = 10. b) Power spectral density in room temperature, T

bath

= 293K, for a SiN
membrane that has !

m

= 2⇡ · 270 kHz, M = 8 ng, Q = 106. Dashed line corresponds to
Eq. 2.17 and solid line to Eq. 2.18.

2.1.3 Quantum Mechanical Harmonic Oscillator

In non-relativistic quantum mechanics, the evolution of a state  (x, t) is governed
by the Schrödinger equation [52]

i~ ̇ (x, t) = H (x, t) =

✓
p2

2M
+ V (x)

◆
 (x, t) , (2.21)

where H is the Hamiltonian operator of the system, p is the momentum operator,
and V (x) is the potential. In the coordinate representation

p = �i~ @

@x
, (2.22)
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we obtain the corresponding Hamiltonian for a harmonic oscillator,

H = � ~2
2M

@2

@x2
+

1

2
M!2

mx
2. (2.23)

It is useful to introduce new operators b and b† and define the position and
momentum in terms of these as

x =

r
~

2M!m
(b + b†) = xzp(b + b†) (2.24)

and

p = iM!m

r
~

2M!m
(b† � b) = iM!mxzp(b

† � b). (2.25)

As x and p obey the commutation relation [x, p] = i~, it follows that b and b† will
obey the bosonic commutation relation [b, b†] = 1. Substituting Eqs. 2.24 and
2.25 into Eq. 2.23 the Hamiltonian can be written in terms of b and b† as

H = ~!m(b†b +
1

2
). (2.26)

The Schrödinger equation has been transformed into an eigenvalue problem for
the so-called number operator N = b†b as N |ni = n|ni. The infinite set of
eigenvectors for each eigenvalue of n = 0, 1, 2... is the so-called Fock-states [53]

|ni =
1p
n!

(b†)n|0i, (2.27)

where the ground-state of the harmonic oscillator, |0i, corresponds to the lowest
eigenvector n = 0. The Fock states are orthogonal, hn|mi = �

nm

, and complete,P1
n=0 |nihn| = 1. The eigenenergies corresponding to the Fock-states are each

spaced by discrete quanta of ~!m and given by

E
n

= ~!m(n +
1

2
), (2.28)

where n defines the quanta of excitation of the harmonic oscillator. From Eq. 2.28
we see that the oscillator has a non-zero ground-state energy, so called zero-point
energy, which has the value

E0 =
1

2
~!m. (2.29)

In the coordinate representation, the ground-state wave function is given
by [53]

 0(x) = h0|xi =

✓
M!m

⇡~

◆1/4

exp

✓
�M!m

2~ x2
◆
. (2.30)
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By using the expectation values of the position operator and its square

hxi
n

= h 
n

|x| 
n

i = 0 (2.31)
⌦
x2
↵
n

=
⌦
 

n

|x2| 
n

↵
=

~
M!m

✓
n +

1

2

◆
, (2.32)

we find the ground-state amplitude to be

q
hx2i0 � hxi20 =

r
~

2M!m
⌘ xzp. (2.33)

Another peculiar set of states are the eigenstates of the annihilation operator
b, known as coherent states. A coherent quantum state resembles most closely
a classical harmonic oscillator and is defined as [52, 54]

|↵i = exp

✓
� |↵|2

2

◆ 1X

n=0

↵n

p
n!
|ni. (2.34)

Unlike the Fock-states that are characterized with discrete excitation quanta n
(Eq. 2.28), coherent states are minimum uncertainty states, such that

(�x)2
↵

(�p)2
↵

=
~2
4
. (2.35)

Furthermore, coherent states are not orthogonal and form an over-complete basis,
i.e.,

R
d2↵|↵ih↵| = ⇡.

The probability of finding n excitations in a coherent state follows Poisson
statistics

P
n

= exp(�|↵|2) |↵|
2n

n!
, (2.36)

with an average excitation number and variance

hni = |↵|2, (2.37)

hn2i = |↵|2 + |↵|4, (2.38)

such that (�n)2 = hn2i � hni2 = hni. The probability function for a coherent
state is plotted in Fig. 2.3a. An example of a coherent state is light emitted from
an ideal laser source. If the photon number distribution of a laser is dominated
by a coherent-state distribution, the laser is said to be shot noise limited.

So far, we considered only pure states of the harmonic oscillator. If the system
is in contact with the environment, it can be described by a mixed state, which is
a statistical mixture of pure states. A harmonic oscillator in thermal equilibrium
with a bath at temperature Tbath is an example of such a state, also generally
known as a thermal state. A thermal state can be written in terms of the
density matrix as [54]

⇢ =
X

n

n̄n

th

(1 + n̄th)
n+1 |nihn|, (2.39)
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where the mean phonon number follows the Bose-Einstein statistics

n̄th =
1

exp
⇣

~!
m

k

B

T

bath

⌘
� 1

. (2.40)

In high temperature, k
B

Tbath � ~!m

n̄th ⇡ k
B

Tbath

~!m
. (2.41)

The probability distribution for a thermal state (Eq. 2.39) is plotted in Fig. 2.3b.
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Figure 2.3: Probability to find n phonons in a) a coherent state, b) thermal state.

In general, the larger the zero-point uncertainty given by Eq. 2.33, the easier
it is to experimentally detect the quantum fluctuations of the resonator. For
this one would prefer to have small M and !m. In practice, a more stringent
condition is set by the coupling of the oscillator to its bath, Eq. 2.41. In the
absence of auxiliary cooling mechanisms the oscillator mode thermalizes with the
bath temperature. To reach the ground-state we must require

~!m � k
B

Tbath. (2.42)

This is a stringent condition for practical, bulky mechanical oscillators. For
example, at Tbath = 300 K and for an oscillator with !m = 2⇡ · 1 MHz we get
n̄th = 6 · 106 phonons, whereas at Tbath < 50µK, n̄th < 1. Hence, in order
to explore macroscopic mechanical oscillator in the quantum regime, low mass
and high frequency oscillators are required. Quite remarkably, in the experiment
reported in Ref. [15], bulk refrigeration of a 6 GHz mechanical oscillator in a
dilution fridge was su�cient to reach phonon occupation of n̄th = 0.07. In general,
however, auxiliary cooling mechanisms are needed to enter the quantum regime.
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2.1 Mechanical Oscillator

Dissipation via Thermal Bath

To treat dissipation and noise in a mechanical system quantum mechanically,
an open quantum system approach is required [55]. The mechanical oscillator
is coupled to a large number of degrees of freedom of the environment which
leads to an irreversible decay of the oscillator state. During this process the bath
remains approximately in thermal equilibrium. This can be described in terms
of the master equation formalism [52, 55], which is briefly reviewed here.

The time evolution of the density operator is governed by the master equation

⇢̇ = � i

~ [H, ⇢] + L⇢, (2.43)

where H is the Hamiltonian of the system, and the Liouvillian L⇢ describes the
coupling to a Markovian reservoir. A reservoir is called Markovian when it has
no short-term memory, i.e., the bath correlations decay faster than any other
time-scale of interest in the problem. In general, L⇢ can be expressed in the
Lindblad form

L⇢ =
�m
2

(n̄th + 1)D(b)⇢ +
�m
2
n̄thD(b†)⇢, (2.44)

where we use the shorthand notation

D(b)⇢ = 2b⇢b† � b†b⇢� ⇢b†b. (2.45)

The term �m is the decay or relaxation rate of interest.
Importantly, the master equation can be used to determine the evolution of

the expectation of system operators. For example, the average phonon number
in the oscillator

hb†bi = tr
⇣
⇢b†b

⌘
(2.46)

evolves as
dhb†bi
dt

= ��mhb†bi + �mn̄th. (2.47)

For large times, the average number of phonons in the oscillator equilibrates to
that of the bath, i.e., hb†bi = n̄th. Another insight into the above equation is
obtained by re-expressing it as

dhb†bi
dt

= ��mhb†bi (n̄th + 1) + �mn̄th

⇣
hb†bi + 1

⌘
, (2.48)

where we see that there is an imbalance between the leakage (emission) of phonons
from the system to the bath and from the bath into the system. In both terms the
+1 is the contribution of spontaneous emission and has no classical counterpart.
When the bath is at zero temperature, only spontaneous decay from the system
to the reservoir is left. On the other hand, if the bath has a finite temperature
Tbath, phonons enter the system at a thermal decoherence rate

�th = �mn̄th =
k
B

Tbath

~Q . (2.49)
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The asymmetry predicted by Eq. 2.48 has been observed in an experiment, where
a mechanical oscillator is operated close to its quantum ground-state [56].

2.1.4 Coupled Harmonic Oscillators

The description of harmonic oscillators coupled by a spring is a simple, but general
description of many mechanical hybrid-systems operating at the quantum regime.
The model of two coupled harmonic oscillators is covered in many textbooks,
see for example Ref. [49]. Here the coupled oscillator model is described from
the general perspective of direct coupling of the motion of an atom or ion in a
harmonic potential to the vibrations of a mechanical oscillator via a distance-
dependent force. The goal is to derive an expression for the coupling constant.
The description follows the in-depth discussion in Ref. [34].

Let us consider an atom with a mass m in a harmonic potential with trap
frequency !at,0 and a mechanical oscillator of mass M and eigenfrequency !m,0

H =
p2m
2M

+
1

2
M!2

m,0x
2
m +

p2at
2m

+
1

2
m!2

at,0x
2
at + Uc [d + xat � xm] . (2.50)

The constant d is the absolute distance between the two oscillators, and xm,
xat describe amplitude of the oscillators around their equilibrium. The coupling
potential Uc depends only on the relative distance xm � xat between the two
oscillators. For small oscillation amplitudes (xm, xat ⌧ d), the coupling potential
can be expanded

Uc [d + xat � xm] ⇡ Uc [d] + U 0
c [d] (xat � xm) +

1

2
U 00
c [d] (xat � xm)2 . (2.51)

The first term in the expansion is a constant and does not influence the oscillator
dynamics. The second term proportional to U 0

c results in a shift of the equilibrium
positions of the oscillators. The third, quadratic term gives rise to the mechanical
coupling. By expanding it, 1

2U
00
c [d] (xat � xm)2 = 1

2U
00
c [d]

�
x2at � 2xatxm + x2m

�
,

it is evident that it includes terms contributing to a change in the oscillation
frequencies as

!2
m = !2

m,0 +
U 00
c [d]

M
(2.52)

!2
at = !2

at,0 +
U 00
c [d]

m
(2.53)

but more importantly it has a term linear in the oscillation amplitudes xatxm.
This term can be interpreted as the interaction part of the Hamiltonian

Hint = U 00
c [d]xatxm. (2.54)

It is useful to write
Hint = ✏ ·m!2

atxatxm, (2.55)
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where the coupling strength parameter is defined as

✏ =
U 00
c [d]

m!2
at

. (2.56)

Note that the condition |✏|  1 must hold, otherwise the atom trap vanishes [34].
The interaction Hamiltonian can be quantized in terms of the annihilation and
creation operators defined as in Eq. 2.241,

Hint = ✏
~!at

2

r
!at

!m

r
m

M

⇣
a† + a

⌘⇣
b† + b

⌘
. (2.57)

The coupling is strongest on resonance, !m ⇡ !at. We neglect the fast, counter-
rotating terms of the form a†b† and ab (rotating-wave approximation, RWA) and
the resulting total Hamiltonian has the simple form

H = ~!ata
†a + ~!mb

†b + ~g
⇣
a†b + ab†

⌘
, (2.58)

where the near-resonant coupling constant is defined as

g = ✏
!at

2

r
m

M
. (2.59)

Three important features are evident in the coupling constant g:

• The coupling constant scales with the mass ratio of the oscillators
p
m/M .

This ”impedance” mismatch imposes quite strict limit on the coupling
strength in atom-mechanical oscillator systems. A single atom or ion with
a mass m = 10�22 g coupled to a micro- or nano-structured oscillator with
M ⇠ 10�13 � 10�7 g [57, 58] has

p
m/M = 10�8 � 10�5.

• The coupling constant scales with the resonance frequency. This is limited
by the experimentally realizable potential curvature. Magnetic and optical
traps for neutral atoms can reach !at/2⇡ ⇡ 1 MHz [59, 60]. Ions in electric
traps can have frequencies up to 50 MHz [61].

• The coupling scales with ✏, which in most cases is quite small, ✏ ⌧ 1.

In order to overcome the small mass ratio, one can experiment with molecular-
scale oscillators such as carbon nanotubes [34]. Another trick to overcome the
small coupling rate is to use high-finesse optical cavity, as is standard in the
cavity QED experiments [62]. In the experiment described in this thesis, we
overcome the small mass-ratio by using an ensemble of N atoms. This results in
a collectively enhanced coupling by

p
N as described in Chapter 3. Furthermore,

in our system, the coupling potential provides both the coupling and the trap for
the atoms, in which case ✏ = 1.

1The zero-point energy contributions are omitted from the Hamiltonian from now on, as is
the typical convention in the literature.
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2.2 Optomechanics with Micromechanical Oscillators

Light forces can be exploited for cooling and control of the vibrations of me-
chanical oscillators ranging from macroscopic mirrors to micro-membranes and
nanoscale cantilevers. The optomechanical setups vary from free-space Michelson
interferometers [19, 63] to various types of cavity based setups [11], to waveg-
uides [64] and evanescently coupled systems [65], where the latter experiments
are operating on a chip. For an excellent review on the current state of optome-
chanics the reader is referred to Ref. [11] by M. Aspelmeyer, T. Kippenberg, and
F. Marquart. Here we briefly discuss the most well-known optomechanical sys-
tem of a Fabry-Pérot cavity in which a mechanical oscillator is used as one of the
end mirrors of the cavity. In such a setup, the radiation pressure provides the
dominant optomechanical coupling. Such a system has analogies to the coupling
rate and cooling e�ciency in our atom-membrane coupling experiment.

2.2.1 Dispersive Optomechanical Coupling

xm

Figure 2.4: An optomechanical Fabry-Pérot cavity. Figure taken from [8].

A standard Fabry-Pérot based optomechanical system is illustrated in Fig. 2.4.
A reflective mechanical oscillator is used as the other end mirror of a cavity.
The reflection or transmission signal from the cavity gives information about the
position fluctuations of the oscillator. The Hamiltonian for the system is

H = ~!cava
†a + ~!mb

†b, (2.60)

where !cav is the cavity resonance frequency, a†a refers to the optical mode and
b†b describes the mechanical mode oscillating at !m. The cavity is resonant to
the incoming light, when q� = 2Lcav, where q is an integer, � is the wavelength of
laser light, and Lcav is the cavity length2. The resonance frequency of the cavity
is then !cav = q⇡c/Lcav. When the end mirror moves by xm, the cavity resonance

2For more details on the basics of Fabry-Pérot cavities, see Sec. 6.2.1
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frequency changes by

!cav ⇡ !cav +
@!cav

@xm
xm = !cav �Goptxm, (2.61)

where Gopt = �@!cav/@xm is the optical frequency shift per displacement. For
the simple Fabry-Pérot cavity, Gopt = !cav/Lcav. Using this in Eq. 2.60, the
coupled Hamiltonian can be expressed as

H = ~!cava
†a + ~!mb

†b� ~Goptxma
†a. (2.62)

We can express xm in terms of its quantum operators, Eq. 2.24, and the interac-
tion part of the Hamiltonian becomes [11]

Hint = �~g0a†a
⇣
b† + b

⌘
, (2.63)

where the single photon–single phonon optomechanical coupling is defined by

g0 = Goptxzp. (2.64)

The interaction of the oscillator with a single photon is fundamentally a non-
linear process on a single photon level.

2.2.2 Driven Cavity, Linearized Coupling

Often the single-photon interaction is small. To increase the interaction the cavity
can be driven with a strong, coherent laser field [11]. A standard way to write the
driven cavity field is in terms of its coherent amplitude hai = ↵ and the quantum
fluctuations �a around the amplitude as

a = ↵ + �a. (2.65)

Using this in Eq. 2.63 and keeping only terms of first order in �a we get the
linearized interaction term

Hint ⇡ �~g0
⇣
↵⇤�a + a�a†

⌘⇣
b + b†

⌘
. (2.66)

The term proportional to |↵|2 is omitted in Eq. 2.66 as it is a constant and results
in an o↵set of the equilibrium position of the mirror. Finally, by writing this in
the rotating-frame at �c = !L � !cav, where !L is the laser frequency incident
on the cavity, we encounter the linearized Hamiltonian of two coupled harmonic
oscillators

Hint = ~!mb
†b� ~�c�a

†�a� ~gopt
⇣
�a + �a†

⌘⇣
b + b†

⌘
. (2.67)

Here the coupling constant gopt is defined as

gopt = g0↵ ⌘ g0
p
n̄cav. (2.68)
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The resulting Hamiltonian is linear in the displacement of the mechanics and
quantum fluctuations of the laser field. Furthermore, the overall coupling becomes
collectively enhanced via the square root of the number of cavity photons,

p
n̄cav,

and can consequently have large values.
In the strong-coupling regime, defined by gopt > 2, �m, the coupling leads

to optomechanical normal mode splitting [66]. To enter the quantum coherent
coupling regime, the system must further satisfy

gopt > 2, �th, (2.69)

where �th = �mn̄th is the thermal decoherence rate. For example, in the Fabry-
Pérot type of experiment in Ref. [66], the experimental parameters for the oscil-
lator were !m = 2⇡ · 947 kHz, m = 145 ng corresponding to xzp = 2.4 · 10�16 m;
and for the cavity Lcav = 2.5 mm, !cav = 2⇡ · 2.82 · 1014 Hz. The e↵ective single
photon coupling strength is g0 = 2⇡ · 2.7 Hz. By enhancing the intensity inside
the cavity, the total coupling was increased to gopt = 2⇡ · 325 kHz, which satis-
fied the strong coupling condition. Stronger single photon couplings have been
achieved in another type of systems, e.g., Ref. [12] reports g0 = 2⇡ ·910 kHz. The
quantum coherent coupling regime has been demonstrated in Ref. [14], where a
toroidal micro-cavity (Lcav = 31µm) is coupled to an intrinsic breathing mode
(!m = 2⇡ · 78 MHz) of the toroid. In this experiment, gopt = 2⇡ · 2 MHz, which
exceeds both the 2 and the thermal decoherence rate at a base temperature of
Tbath = 0.65 K.

2.2.3 Optical Cooling of a Mechanical Oscillator

Optomechanical quantum control requires the oscillator to be close to its ground
state, which necessitates the cooling of the selected mode of the oscillator. The
first radiation pressure cooling experiment was demonstrated using an active
optical feedback [67] for the vibrations of a cavity end-mirror. The position fluc-
tuations of the oscillator were read from the cavity reflection signal (as illustrated
in Fig. 2.4), and the information was used to modulate the intensity inside the
cavity via an active feedback. Similar feed-back-cooling was later demonstrated
in free-space, and in lower base-temperatures [68, 69]. The active optical cooling
schemes operate usually in the adiabatic regime, where !m < 2, or in free-space.
It has been theoretically shown that ground state cooling via active feedback is
possible [70].

In the sideband-resolved regime !m > 2, the e↵ects of dynamical backaction
are larger than in the adiabatic regime, and can result in significant passive
optomechanical cooling. Let us consider the Fabry-Pérot cavity in Fig. 2.4. The
mechanical oscillator motion modulates the cavity resonance (Eq. 2.61), which in
turn will lead to a modulated intensity inside the cavity. The intensity leads to
radiation pressure modulation on the oscillator that has a phase lag with respect
to the oscillator phase, due to the finite cavity decay time (2)�1. The e↵ect of
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2.3 Oscillator of Ultracold Atoms

backaction damping is largest when the �c = �!m which will result in damping
of the mechanical mode at a rate [11]

�opt = 4n̄cav
g20
2

=
2g2opt


. (2.70)

In order to reach a high cooling rate, 2 should be small, which requires the use
of high-finesse cavities. By using passive optical cavity cooling and starting from
a cryogenic base temperature, Refs. [12, 14] have reached the ground state regime
of a mechanical oscillator. A versatile spread of other types of optomechanical
systems are also operating close to, or approaching the ground state regime [11].

2.3 Oscillator of Ultracold Atoms

In the main experiment we couple atoms to mechanical oscillator via a long-
distance optical interface. The interface is an optical lattice which provides a
nearly harmonic, periodic confinement for the atoms and mediates the long-
distance coupling. In general, optical lattices have a broad range of applications
varying from studying the dynamics of many-body Hamiltonians in periodic po-
tentials (for review see Ref. [4]), usage as platforms for quantum information
processing (for review see Ref. [71]), or serving as setups for precision measure-
ments in atomic and molecular physics [72]. These systems allow to manipulate
and detect the motional and internal states of atoms, and control atom-atom
interactions on a single quantum level [4].

2.3.1 Optical Potential

Polarizable Particle in an Electric Field

When a polarizable particle is placed into an electric field E (r, t) = ê12E0 (r) e�i!t+
c.c, the field will induce a dipole moment p in the particle along its polarization
direction ê. The dipole moment oscillates at the frequency of the driving field,
and is related to the field by

p = ↵(!)E, (2.71)

where ↵ is the complex polarizability of the particle. At the same time the electric
field interacts with the induced dipole giving rise to a dipole potential [73]

Vdip = �1

2
hp ·Ei (2.72)

= � 1

2✏0c
Re (↵) I (r) . (2.73)

The angular brackets in Eq. 2.72 denote the time average and the field intensity
in Eq. 2.73 is

I (r) =
1

2
✏0c |E0 (r)|2 . (2.74)
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The real part of the polarizability gives rise to a conservative dipole force

Fdip (r) = �rVdip (r) =
1

2✏0c
Re (↵)rI (r) . (2.75)

which is proportional to the intensity gradient of the trapping light. The imagi-
nary part of the polarizability describes the out-of-phase component of the dipole
oscillation and results in dissipative scattering of photons from the field at a rate
[73]

�sc (r) =
1

~✏0c
Im (↵) I (r) . (2.76)

This description holds in general for any polarizable particle in an oscillating
electric field.

Rubidium Atom in an Electric Field

Let us consider a 87Rb atom interacting with an optical field. The optical field
is detuned by �L = !L � !0, from the resonance frequency !0 of the atomic
transition. When |�L| is a lot larger than the hyperfine splitting of the excited
state, the atom experiences a dipole potential of the form [73]

V (r) =
⇡c2�se
2!3

0

✓
2 + PgFmF

�2,F
+

1 � PgFmF

�1,F

◆
I (r) . (2.77)

Here gF is the Lande-factor and P characterizes the laser polarization; P = 0,±1
for linearly and circularly �± polarized light. The natural line width of the
Rubidium D-line is �se = 2⇡ · 6 MHz. The detunings �2,F and �1,F are defined
with respect to the center of the D2 and D1 lines, respectively, where F=1,2 is
the ground hyperfine state of the atom.

The ground state hyperfine splitting is small (2⇡ · 6.8 GHz) for 87Rb in com-
parison to the ground and excited state separation, (|�2,F ��1,F | = 2⇡ ·7.1 Thz).
By tuning the laser close to the D2-line, we can neglect the D1-line. In this case,
and for linearly polarized light, the potential has a simple form

Vdip =
⇡c2�se
2!3

0

2

�2,F
I (r) (2.78)

This can be further written in terms of the saturation intensity Is = ~�se!3
0/12⇡c2

of a two-level atom as

Vdip =
~�2se

12�2,F

I (r)

Is
. (2.79)

2.3.2 Optical Lattice with a Partially Reflecting Mirror

A periodic interference pattern of two or more beams is called an optical lattice,
consisting of a large number of micro-traps for atoms. A simple, one dimensional
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2.3 Oscillator of Ultracold Atoms

lattice is formed by retro-reflecting a laser beam onto itself. Let us assume a
Gaussian laser beam with a wave vector k = 2⇡

�

propagating along the z-axis.
The Gaussian beam is focused to a waist of w0 at the position z = 0. The
Gaussian beam is described by its complex amplitude [74]

A (r, z) = A0
w0

w (z)
exp


� r2

w2 (z)

�
exp


�ikz � ik

r2

2R (z)
+ i⇠ (z)

�
. (2.80)

The term w (z) = w0

✓
1 +

⇣
z

z

0

⌘2◆1/2

is the (1/e)2radius of the beam intensity,

and it increases within the Rayleigh range, z0 = ⇡w

0

2

�

, by a factor of
p

2. The term

R (z) = z
⇣
1 +

�
z

0

z

�2⌘
is the curvature of the wave fronts, and ⇠ (z) = arctan

⇣
z

z

0

⌘

is the phase retardation due to the curvature, generally known as the Gouy-phase.
When the Rayleigh length of the beam is a lot larger than the extension of the
atomic ensemble trapped in the focus of the beam, the variation in the beam
envelope along z can be neglected, and the complex amplitude can be written as

A (r, z) = A0 exp

✓
� r2

w2
0

◆
exp (�ikz) . (2.81)

Let us now consider a case, where a linearly polarized Gaussian beam is retro-
reflected from a mirror to create a lattice for atoms. We extend the general theory
on optical lattices [73] to include experimental losses of the lattice light in the
system. Experimental losses originate for example from the optical components in
the beam path between the atoms and the mirror. We denote the finite amplitude
transmissivity between the atoms and the mirror with t. Furthermore, the mirror
is allowed to have a finite amplitude reflectivity rm  1. This case is of specific
interest to our experiment, where the lattice-mirror is a partially reflecting SiN-
membrane. Under these considerations, the beam reflected from the mirror has
a reduced amplitude by rmt

2 at the position of the atoms. Consequently, the
resulting interference pattern at the position of the atoms,

I(r) = |Ainc + Aref |2 = |Ainc + rmt
2Ainc|2, (2.82)

will consist of a sinusoidally modulated part and an o↵set as

I = I0 exp

✓
�2r2

w2
0

◆⇣�
1 + rmt

2
�2 � 4rmt

2 sin2 (2kz)
⌘
. (2.83)

Here I0 is the intensity at the focus of the incoming Gaussian beam, and it is
defined as I0 = |A0|2 = 2P/(⇡w2

0). Consequently, the peak intensity of the lattice
has a value

�
1 + r2mt

4 + 2rmt2
�
I0  4I0.

The intensity distribution results in a dipole potential of similar form, and
according to Eqs. 2.79 and 2.83 we get

V (r, z) = exp

✓�2r2

w0
2

◆�
V0 � Vm sin2 (kz)

�
, (2.84)
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where the total potential and the modulation depth are given by

V0 =
~�2se

12�2,F

I0
Is

�
1 + rmt

2
�2

, (2.85)

and

Vm =
~�2se

12�2,F

I0
Is

4rmt
2. (2.86)

If the thermal energy k
B

T of an atomic ensemble is much smaller than the
modulation depth Vm, the extension of the atomic wave function is radially small
compared to the beam waist and axially small compared to the wavelength. In
this case, the lattice potential wells can be approximated by a harmonic potential.
By using the Taylor expansion, the trap frequencies !rad and !ax can be calculated
by taking the harmonic term from an expansion of Eq. 2.84:

!rad =

✓
4|V0|
mw0

2

◆1/2

(2.87)

!ax ⌘ !at =

✓
2|Vm|k2

m

◆1/2

. (2.88)

The ratio of the axial and radial trap frequencies is

!ax

!rad
=

✓
2w2

0k
2rmt

2

(1 + rmt2)
2

◆1/2

, (2.89)

which implies that the axial trap frequency is higher by a factor of ⇠ w0/� than
the radial one. The trap frequencies of the atoms can be tuned experimentally,
simply by changing the ratio of I0/�. Optical traps for neutral atoms can reach
!at/2⇡ ⇡ 1 MHz [34, 60].

An example of a partially modulated, one dimensional lattice potential is
shown in Fig. 2.5. The potential is calculated using Eq. 2.84 and beam parameters
similar to those used in our main experiment (see Ch. 5): P = 64 mW, w0 =
355µm, �2,F = �2⇡ · 20.8 GHz, r = |rm|2 = 0.28, t = |t|2 = 0.81. For 87Rb the
parameters are m = 1.44·10�25 kg, �se = 2⇡ ·6.0 MHz, and Is = 1.7 mW/cm2 [75].
The modulation depth is |Vm| = 197µK and the total potential depth is |V0| =
253µK. The resulting radial and axial trap frequencies are !rad/2⇡ = 141Hz and
!ax/2⇡ = 246 kHz. Figure 2.6 shows the validity of the harmonic approximation.
The closer the atoms are to the bottom of the trap, the better the approximation.

2.3.3 Cooling of Atoms

Typical dipole traps have depth on the order of hundreds of µK to mK [73]. In
order to trap an atom in a dipole trap it needs to have a temperature below
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2.3 Oscillator of Ultracold Atoms

Figure 2.5: Optical lattice potential for 87Rb. The potential is calculated using Eq. 2.84
and assuming P = 64 mW, w

0

= 355µm, � = 780 nm, �
2,F

= �2⇡ · 20.8 GHz, r = 0.28,
t = 0.81. The potential consist of a linear chain of tightly confining microtraps along the
z-axis which are spaced by �/4. The potential wells are harmonic around their minimum.

the trap depth. Once trapped, further cooling can be continued in the lattice
to reach the motional ground state of the harmonic potential. The motional
ground state requires that the temperature of the atoms is less than ~!at/kB,
where k

B

is the Boltzmann constant. A standard way to capture atoms from
background pressure is to use a magneto-optical trap which provides Doppler-
and polarization gradient cooling on the atoms. The cold atoms can then be
loaded to the lattice and cooled further in the lattice [76]. By using the powerful
technique of Raman sideband cooling, 3 · 108 atoms have been prepared in the
ground state of a large volume 3D lattice [77]. An excellent review of various
laser cooling schemes is provided by one of the standard introductory books in
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Figure 2.6: a) Trapping potential along the axial z direction (red) and the corresponding
harmonic approximation (dashed blue). b) Trapping potential along the radial direction
r (red) and the corresponding harmonic approximation (dashed blue).

31



2. Background

the field, Reference [78].

2.3.4 Dissipation in Atomic Systems

As the atoms are trapped in free-space, they have no direct contact to their
environment. In a standard setting of ultra-high vacuum only minute external
dissipation is present due to collisions with the background gas.

In an optical trap, a spontaneous scattering event of a photon by the atom
may result in a change of the internal state of the atom. This sets a limit on the
internal state coherence. The scattering rate, Eq. 2.76, can be expressed in terms
of trap depth V0 as

�sc =
�se
~

V0

�L
. (2.90)

Because of the inverse dependence of �sc on the detuning, optical dipole traps are
often operated in the far-detuned regime, where scattering e↵ects are suppressed.
It has been shown experimentally that the spontaneous emission rate in far de-
tuned optical lattices can be of the order of one emission in several minutes [79].
Furthermore, the spontaneous scattering rate is less strong for a blue-detuned
lattice, where �L > 0, than for red-detuned lattices. This is because for a blue-
detuned optical lattice, the lattice sites are at positions of zero laser intensity
while for a red-detuned optical lattice (�L < 0) they are at locations of maxi-
mum laser intensity.

When considering the motion of the atoms in an optical trap, the photon
scattering rate will lead to eventual momentum di↵usion of the atomic motion at
a rate [80]

�di↵at = (klat)
2�

se

V0

~�L
, (2.91)

where lat =
p

~/m!at. In the Lamb-Dicke regime, where klat ⌧ 1, a sponta-
neously scattered photon is unlikely to change the vibrational state of the atoms
along the lattice. The momentum di↵usion rate is smaller than the scattering
rate by the Lamb-Dicke factor (klat)2 and interestingly, it is the same for red and
blue-detuned lattice [80]. The Lamb-Dicke suppression has been experimentally
demonstrated in a tight confining optical lattice in Ref. [77].

An important contribution to the dephasing can arise from the trap anhar-
monicity. The potential created by a retroreflected Gaussian laser beam is har-
monic only around the minimum of the trap, as shown in Fig. 2.6. When the
higher order derivatives of the potential do not vanish in the Taylor expansion,
the oscillation frequency of the atoms will depend on their oscillation amplitude.
This leads to dephasing and excitation of higher order modes of the atomic en-
semble as experimentally shown in Ref. [81]. Furthermore, in a lattice potential
created by a Gaussian beam, the axial trapping frequency has a dependency on
the radial position of the atom [82]. This spread in the axial trapping frequencies
over the ensemble of atoms leads to additional dephasing of the atomic cloud.
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2.3 Oscillator of Ultracold Atoms

This e↵ect is analyzed in detail for a Gaussian lattice beam in Sec. 5.2. The con-
tributions to dephasing from both the anharmonicity and the spread in the axial
trapping frequencies can be minimized by ground state cooling of the atoms. The
spread in axial trapping frequencies can also be reduced by proper beam shaping
of the lattice beam. Other e↵ects on the atomic di↵usion typically originate from
residual heating due to technical noise. In particular, slow drifts of the lattice
parameters lead to a drift in the trap frequency and cause dephasing.

Levitated Nano-Objects

It has been proposed to use optical dipole traps to create conservative harmonic
potential for dielectric objects in the context of optomechanics. The advantage
of an optically levitated particle is its decoupling from the environment as dis-
cussed previously for the case of atoms. In two similar proposals [83, 84], a
dielectric nano-object is trapped in a standing wave formed inside a cavity. The
estimated Q-factor of a nano-sphere in a background pressure of 10�10 Torr is
around 1012 [84]. In a wilder vision, the trapped nano-particle could be a living
organism, like a virus. By creating a quantum superposition in the living object,
one could test the quantum nature of living organisms [83].

Levitation of micro-meter size silica spheres in vacuum has been first demon-
strated by Ashkin [85], and their cooling to ⇠mK regime has been achieved in
Ref. [86]. Since then, also sub-micrometer sized particles have been trapped inside
a vacuum and cooled via active feed-back [87] and cavity-cooling [88] techniques.

2.3.5 Backaction of Atoms on Trapping Beams

The light field creates a potential for the atoms, but the atoms also a↵ect the
light field. If an atom is displaced by xat from the bottom of its potential well,
it experiences a restoring optical dipole force according to Eq. 2.75

Fd = � @V

@xat
= �m!2

atxat (2.92)

from the lattice. On a microscopic level, Fd arises from absorption followed
by stimulated emission, leading to a redistribution of photons between the two
running wave components forming the lattice [89, 90]: the displaced atom pref-
erentially absorbs photons from one of the lattice beams and re-emits them into
the other. Each redistribution event results in a momentum transfer of ±2~k to
the atom. On the other hand, the absorption and stimulated emission of photons
from the same beam have no net e↵ect on the atom. Let the rate of photon
redistribution events be given by ṅ, then the change of momentum per unit time
is 2~kṅ = NFd, where N is the number of atoms in the lattice. Consequently,
the photon redistribution modulates the power of the laser beam as

�P = ~!ṅ =
c

2
NFd. (2.93)

33



2. Background

a) b)

Figure 2.7: a) Configuration to measure the backaction of atoms on lattice laser beams:
A laser beam is split at the beam splitter (BS). The phase modulator (PM) at the other
arm is used to abruptly displace the minima of the lattice potential along the lattice axis.
b) The moving atoms atoms redistribute light between the counter-propagating lattice
beams until they reach the equilibrium. This e↵ect has been studied in References
[89, 91, 90]. Figure by courtesy of G. Raithel [92].

This type of backaction of atoms onto the light field has been previously
studied in Ref. [89, 91, 90]. A simple schematic of the setup used in Ref. [89]
to directly measure the �P predicted by Eq. 2.93 is shown in Fig. 2.7a. In the
experiment, two counter-propagating laser beams form an optical lattice. The
lattice minima are abruptly displaced by a phase modulator acting onto one of
the lattice beams (as illustrated in Fig. 2.7). The power in each of the beams
is measured after they have interacted with the atoms. A typical plot of this
power modulation as a function of time is shown in Fig. 2.7b. Importantly, the
amplitude of the oscillation decays in time. This is due to both anharmonic
dephasing and decoherence due to spontaneous emission, as discussed previously.

Such an experimental setting has been used to determine the position of the
oscillating wave-packet in time, and study the collapse and revival dynamics of
the atoms in the lattice [89]. Furthermore, this technique has been used for
real-time feedback control of the atomic motion [91], in analogy to passive cavity
cooling of mechanical oscillators [93], and since then it has been extended to
study and control polarizable particles in an optical trap [94].

Finally, and most importantly regarding this thesis, this type of backaction
is the essence of our atom-membrane coupling scheme: the atoms imprint a
signature of their motion as a power modulation onto the light field. This power
modulation results then in a modulated radiation pressure force on the mechanical
oscillator. This is discussed in detail in Chapter 3.
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Theory of Atom–Membrane Coupling

This Chapter describes the theory of a hybrid optomechanical system, where the
center of mass mode of an ensemble of ultracold atoms in an optical lattice is
coupled via the lattice laser light to a microscopic membrane oscillator. Two
related scenarios are discussed. In the first scenario, the atoms are trapped in a
light field that is directly reflected from the membrane. In the second scenario,
the membrane is enclosed inside an optical cavity, and the atoms are trapped in
the light field directly reflected from the cavity. This theory was developed in
collaboration with the group of P. Zoller. It is described in detail in References [33,
41].
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3. Theory of Atom–Membrane Coupling

membrane atoms in lattice
Zm Zat

P ZL

xm M

7bath

xat m

Figure 3.1: Schematic setup for long-distance, optomechanical coupling of ultracold
atoms and membrane oscillator. The membrane is coupled to a thermal bath at temper-
ature T

bath

. The membrane oscillates at its eigenfrequency !
m

and with an amplitude
x
m

. A laser beam of power P and frequency !
L

is partially reflected at the membrane of
reflectivity r = |r

m

|2, and forms a one-dimensional optical lattice for an ultracold atomic
ensemble. The atoms oscillate in the lattice at !

at

. The transmission losses in the optics
between the membrane and the atoms are denoted by t = |t|2.

3.1 Coupling in Free-Space

The coupling scheme we investigate is illustrated in Fig. 3.1. The membrane and
atoms reside in separate vacuum chambers. The membrane has an eigenfrequency
of !m, and it is connected to a support at temperature Tbath. A laser beam of
power P , whose frequency !L is red detuned with respect to an atomic transition,
impinges from the right onto the membrane and is partially retroreflected. The
symbol r = |rm|2 denotes the power reflectivity of the membrane. The reflected
beam is overlapped with the incoming beam such that a 1D optical lattice po-
tential of the form V (x) = V0 � Vm sin2 [k (x� xm)] is generated (Eq. 2.84). The
potential is harmonic at the bottom of the potential wells and the axial trap
frequency of the atoms is denoted by !at (Eq. 2.88). The modulation depth Vm

is large enough to trap the pre-cooled ensemble of ultracold atoms. In addition,
continuous laser cooling of the atoms in the lattice can be provided by additional
laser beams.

3.1.1 Semiclassical Model

In the system presented in Fig. 3.1, the membrane-light coupling is due to radi-
ation pressure and the atom-light coupling is due to the optical dipole force. To
understand this coupling, let us start by investigating the e↵ect of the membrane
onto the atoms, which is illustrated in Figure 3.2a. A displacement of the mem-
brane, xm, displaces the lattice potential, resulting in a dipole force F = m!2

atxm
onto each atom, where m is the atomic mass. The membrane motion thus couples
through Fcom = NF to the center of mass (c.o.m.) motion of an ensemble of N
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Figure 3.2: a) Illustration of the action of the membrane onto the atoms. b) The atoms
act back onto the membrane via redistribution of photons between the two counter-
propagating laser beams, which causes a power modulation �P of the light that hits the
membrane.

atoms trapped in the lattice. An oscillating membrane will parametrically excite
the atoms that have a trap frequency equal to that of the membrane.

Vice versa, the atoms will imprint a signature of their c.o.m. motion onto
the light field. An atom displaced by xat from the bottom of its potential well
experiences a restoring optical dipole force

Fd = � @V

@xat
= �m!2

atxat (3.1)

from the lattice. This is illustrated in Figure 3.2b. The dipole force is due to
a redistribution of photons between the two running wave components forming
the lattice, as discussed in Sec. 2.3.5. The photon redistribution modulates the
power of the laser beam traveling towards the membrane by

�P = ~!ṅ = � c

2
NFd, (3.2)

where ṅ is the total photon redistribution rate due to the N atoms. This leads
to a modulation of the radiation pressure force acting on the membrane

�Frad =
2

c
rt�P = �rtNFd = rtNm!2

atxat. (3.3)

Some of the photons that have interacted with the atoms are lost from the system
because of the finite reflectivity of the membrane and losses in the optics rt < 1.
The lost photons do not contribute to the force on the membrane, which leads to
asymmetric coupling, i.e., |�Frad| = rt|Fcom|. If the losses in the beam path and
finite membrane reflectivity are neglected (rt = 1), the forces experienced by the
displaced atoms and the membrane are exactly equal in magnitude, but opposite
in sign, following the action-reaction principle.
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3.1.2 Coupled Oscillator Dynamics under Dissipation

In a simple model of damped harmonic oscillators coupled through Fcom and
�Frad, the equations of motion for the fundamental vibrational mode of the
membrane and the c.o.m. motion of the atoms can be written as

ṗat = ��atpat �Nm!2
atxat + Nm!2

atxm

ẋat = pat/Nm

ṗm = ��mpm �M!2
mxm + rtNm!2

atxat

ẋm = pm/M, (3.4)

where �m (�at) is the motional damping rate of the membrane (atoms). The
atomic and membrane momentum and displacement can be conveniently written
in terms of the quadratures. For example, for the atoms we define

a =

r
Nm!at

2~ (xat +
i

m!at
pat) (3.5)

resulting in

xat =

r
~

2Nm!at

⇣
a† + a

⌘
(3.6)

pat = i

r
~Nm!at

2

⇣
a† � a

⌘
. (3.7)

Using similar quadratures for the membrane and denoting the membrane anni-
hilation operator by b, Eqs. 3.4 can be written as

ȧ = �i!ata +
�at
2

(a† � a) + ig(b† + b) (3.8)

ḃ = �i!mb +
�m
2

(b† � b) + irtg(a† + a) (3.9)

where the coupling constant is defined as

g :=
!at

2

r
Nm!at

M!m
. (3.10)

Eqs. 3.8 and 3.9 can be transferred to a frame rotating at !m using the variables

c := aei!m

t (3.11)

d := bei!m

t (3.12)

resulting in the coupled equations of motion for the atoms and the membrane

ċ = �i(!at � !m)c +
�
a

2
(c†ei2!m

t � c) + ig
⇣
d†ei2!m

t + d
⌘
, (3.13)

ḋ =
�m
2

⇣
d†ei2!m

t � d
⌘

+ irtg
⇣
c†ei2!m

t + c
⌘
. (3.14)
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The two systems can exchange energy, when they are near-resonantly coupled,
!m ⇡ !at. Furthermore, if !m ⇡ !at � g, �at, �m, as is the case in our experiment,
the fast rotating terms / e±i2!

m

t can be neglected in the equations of motion for
c and d. This rotating-wave approximation (RWA) results in a set of coupled
equations:

ċ = �i�c� �at
2
c + igd

ḋ = ��m
2
d + irtgc, (3.15)

where � = !at � !m is the atom-membrane detuning.
Even though the mass ratio of an atom to the membrane will be exceedingly

small under reasonable conditions (m/M ⇡ 10�14), the coupling constant g can
still be significant due to collective enhancement by the large number of atoms
N . The coupling leads to both a modified damping rate (dispersive part of the
coupling) as well as a frequency shift (reactive part). Both e↵ects are obtained
by solving for the eigenvalues v± of Eqs. (3.15):

v± = ��at + �m + 2i�

4
±
s✓

�at � �m + 2i�

4

◆2

� rtg2. (3.16)

The normal mode oscillation frequencies are given by Im{v±}, while the am-
plitude damping rates are given by �Re{v±}. In our experiment (described in
Ch. 5), we operate in the weak-coupling regime, where �at � g, �m. In this
regime, the frequency shift due to the coupling is zero on resonance within the
RWA. A calculation beyond the RWA shows that the frequency shift is ⌧ 1 Hz
for our parameters, and thus not observable in the experiment. On the other
hand, in the strong-coupling regime where g � (�at, �m), the coupling leads to a
normal-mode splitting of 2g

p
rt on resonance.

Weak-Coupling Regime

In the weak-coupling regime (�at � g, �m), the energy damping rate of the mem-
brane, �2Re{v+}, is given to lowest order in g by

�c = �m + �at
g2rt

�2 + (�at/2)2
. (3.17)

The second term in Eq. (3.17) is the additional dissipation rate of the membrane
motion due to coupling to atoms,

�� = �c � �m = �at
g2rt

�2 + (�at/2)2
(3.18)

=
�at
4

Nm

M

!at

!m

!2
atrt

�2 + (�at/2)2
/ N, (3.19)
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3. Theory of Atom–Membrane Coupling

which scales linearly with N .
In the experimental realization, we have two di↵erent contributions to the

overall atomic damping rate
�at = �

�

+ �c. (3.20)

The first term, �
�

, describes additional dephasing of the c.o.m. motion due to
finite temperature of the atoms and the spatial dependence of the trap frequency
on the lattice laser intensity profile. The value of �

�

is intrinsic to the experi-
mental realization and constant when the atomic motion is in steady-state. The
second term, �c, is the laser cooling rate of the atoms, which can be adjusted,
and thus provides an experimental handle to tune the dissipation in the system.
In the experiment, we apply strong laser cooling to the atoms, �

c

� g, �m, so
that the atomic c.o.m. amplitude is approximately in steady state (ċ ' 0) on
the much slower timescale of membrane dynamics. This results in sympathetic
damping of the membrane vibrations as (Eq. 3.17)

b(t) = b0e
��

c

2

te�i!

m

t. (3.21)

Thus, the atoms can be used for sympathetic cooling of the membrane mode.
An estimate for the change in the damping of the membrane due to the atoms

is shown in Fig. 3.3. In the weak-coupling regime, the width of the resonance
in Eq. 3.18, is dominated by �at. As long as �c � �

�

, we can neglect the e↵ect
of �

�

on the coupling strength. The full quantum calculation in Ref. [33] solves
the dynamics of the system beyond the weak-coupling regime and shows that
an optimum for the laser-cooling rate exists. The optimum is reached at � = 0,
when �c ⇠ g. Increasing the atomic cooling rate �

c

further will only broaden the
atomic resonance, but does not increase the cooling rate of the membrane.

3.1.3 Quantum Dynamics

The foregoing considerations did not provide any information about the noise
processes that fundamentally limit the performance of our system, and essentially
define the final phonon occupation number in the membrane mode. The semi-
classical description allows the membrane amplitude (Eq. 3.21) decay to zero
which is in controversy with the quantum mechanical description of zero-point
fluctuations, as discussed Sec. 2.1 (Eq. 2.29). To account for these e↵ects, a
fully quantized treatment of our system has been developed together with K.
Hammerer, K. Stanningel, C. Genes and P. Zoller, and is described in Ref. [33].
The theory shows that the results of the simple model described above hold for
the corresponding quantum-mechanical expectation values in the absence of noise
processes.1 Here, the relevant noise terms are reviewed in terms of the master

1Note a di↵erence in notation: here and in Ref. [39] we define the coupling constant as g =
!at
2

q
Nm!at
M!m

, whereas in Ref. [33] it is defined as g = !
at

q
Nm!at
M!m

. Note also that there is a typo

in the e↵ective cooling rate on resonance given in Ref. [33], it should read �
c

= �
m

+ rg2/�cool

at

using the notation of that paper.

40



3.1 Coupling in Free-Space
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Figure 3.3: The increase in the damping of the membrane due to coupling to atoms
using Eq. 3.18 and for two di↵erent atomic damping rates: �

at

= 2⇡ · 10 kHz (blue)
and �

at

= 2⇡ · 20 kHz (green). The other parameters assumed in the calculation are:
!
m

= 2⇡ · 250 kHz, N = 1 · 106, m = 1.4410�25 kg, M = 1 · 10�11 kg, r = 0.28, t = 0.82.

equation formalism.

Master Equation of a Quantum Cascaded System

The total Hamiltonian for our optomechanical system is

H = Hm + Hat + Hfield + Hm�f + Ha�f , (3.22)

where Hm, Hat and Hfield describe the free evolution of the mechanics, the ex-
ternal atomic degrees of freedom, and the field modes. Further, Hm�f represents
the coupling between mechanical and field modes, and Hat�f is the interaction
between atoms and field modes. We are only interested in the dynamics between
the membrane and the atoms that is mediated by the light field. In the regime,
where retardation e↵ects of the light-field do not play a role, the light field is
assumed to be in steady-state on the time-scale of the atomic and membrane
dynamics. Such a Born-Markov approximation justifies an adiabatic elimination
of the light field, and the resulting quantized Hamiltonian [41]

He↵ = ~!mb
†b + ~!ata

†a� ~gx̃mx̃at, (3.23)

corresponds to that of two coupled harmonic oscillators, similar to the description
in Sec. 2.1.4. In equation 3.23 we use dimensionless variables x̃at = 1p

2

�
a† + a

�

and x̃m = 1p
2

�
b† + b

�
. Using this notation g is defined by Eq. 3.10.

In the limit where the reflectivity of the membrane is r = 1, Eq. 3.23 can be
used to describe our system. However, when r < 1 we encounter asymmetric cou-
pling between the membrane and the atoms. This implies that the dynamics are

41



3. Theory of Atom–Membrane Coupling

not anymore purely Hamiltonian. The semiclassical model in Sec. 3.1.1 explains
well the asymmetric coupling between the atoms and the membrane originat-
ing from the finite reflectivity of the membrane r. To include the asymmetry in
the quantized description, the dynamics of the system can be derived from the
following master equation [33]

⇢̇ = � i

~ [He↵ , ⇢] + C⇢ + Lm⇢ + Lat⇢, (3.24)

where He↵ is as in Eq. 3.23, and the second term

C⇢ = � i

2
(1 � r)g([x̃m, x̃at⇢] � [⇢x̃at, x̃m]) (3.25)

accounts for the asymmetry in the coupling. C⇢ is proportional to the mem-
brane transmittivity, (1 � r). The peculiar form of this term is a generic fea-
ture of so-called cascaded quantum systems [95, 96]. This type of cascaded mas-
ter equation reproduces the semiclassical considerations on the asymmetry as
hṗati = �ghxmi + ...., while hṗmi = �grhxati + ..., where the dots denote terms
that do not depend on g. The other Lindblad terms in Eq. 3.24 are addressed
below.

Decoherence and Imperfections at the Membrane: Lm⇢

The Lindblad term Lm describes thermal heating of the membrane due to clamp-
ing losses and absorption, and in addition takes into account the radiation pres-
sure noise on the membrane. Let us assume the membrane support is at temper-
ature T0. The heating of the membrane due to absorbance can be modeled by
introducing an e↵ective bath temperature Tbath = T0 + �T , where �T = P

abs

K

th

is the temperature increase of the membrane due to absorbed power Pabs in the
center of the membrane. Kth is the thermal link that connects the center of the
membrane to the support. It is defined by the thermal conductivity and the size
of the membrane, as well as the beam waist of the laser on the membrane (see
Ch. 4.2 and Eq. 4.14). Consequently, an e↵ective bath occupation can be defined
as

n̄th ⇡ k
B

Tbath

~!m
=

k
B

~!m
(T0 +�T ) , (3.26)

which gives rise to a thermal decoherence rate

�th = �mn̄th ⇡ k
B

(T0 +�T )

~Q . (3.27)

The Lm also includes the radiation pressure noise on the membrane, which
scales linearly with the power on the membrane as [33, 97]

�di↵m =

✓
4rPmem

Mc2

◆✓
!L

!m

◆
, (3.28)

where !L is the photon frequency.
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3.1 Coupling in Free-Space

Decoherence and Laser Cooling of the Atoms: Lat⇢

The atoms undergo di↵usion processes in the lattice. Lat accounts for the mo-
mentum di↵usion rate of the atoms [80, 41] according to Eq. 2.91

�di↵at = (klat)
2�

se

V0

~|�L| , (3.29)

where �
se

is the natural line-width of the transition, lat =
p
~/m!at and V0, is

the depth of the potential. Uniquely, we can also introduce controlled dissipation
into the system via continuous laser cooling of the atoms at a rate �c.

Sympathetic Cooling

In the weak-coupling limit, �at ⇠ �c � g, �m, �
di↵
m , �di↵at , a strong laser-cooling of

the atoms results in sympathetic cooling of the membrane mode at a rate given
by Eq. 3.17. The membrane dynamics follow the equation

d

dt
hb†bi = ��c

⇣
hb†bi � n̄ss

⌘
, (3.30)

where the steady-state phonon occupation of the membrane mode is [33, 41]

n̄ss ⇡ �mn̄th + �di↵m /2

�c
+

✓
�c

4!at

◆2

+
�di↵at

2�c
⌘ n

ss,1 + n
ss,2 + n

ss,3. (3.31)

The n
ss,i

are contributions due to mechanical heating, ’counter-rotating’ terms
in the coupling (ba, b†a†) and atomic heating, respectively.

3.1.4 Experimental Requirements for Coherent Coupling

Theoretical estimates show that sympathetic ground-state cooling of the mem-
brane via the atoms as well as the strong coherent coupling regime could be
achieved with present technology [33]. This is, however, very challenging. The
coherent coupling regime becomes accessible, when the condition

g > �di↵at , �di↵m , �th, (3.32)

is fullfilled. One possible set of membrane and lattice parameters that fulfill the
requirements for coherent coupling regime is tabulated in Tab. 3.1.

The parameters for the atom module result in an optical lattice that satisfies
the resonant coupling requirement !m ⇠ !at ⇠ 2⇡ · 0.86 MHz. As the coupling
scales with

p
N , large atom number in the trap is crucial. Atom numbers as

large as N = 3 · 108 have been prepared in the ground-state of a 3D-lattice using
Raman sideband cooling. At the same time, Raman sideband cooling rate of
�c = 20 kHz was demonstrated [77]. This would result in sympathetic cooling
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3. Theory of Atom–Membrane Coupling

Membrane Lattice

size (150µm)2 ⇥ 50 nm � 780 nm
!m 2⇡ · 0.86 MHz !at 2⇡ · 0.86 MHz
M 8 · 10�13 kg P 7 mW
Q 107 w0 230µm
r 0.31 �L �2⇡ · 1 GHz

Rates
g 40 kHz

�di↵m 52 Hz
�di↵at 16 kHz
�th 6 kHz

Table 3.1: An example of experimental parameters required to enter the strong, co-
herent coupling regime starting from a cryogenic bath temperature of 500mK. The pa-
rameters are those of Ref. [33]. The membrane reflectivity r and the atom number N
are demonstrated in Refs. [58] and [77]. The table on the right displays the resulting
coupling and decoherence rates.

of the membrane by a factor of n̄th/n̄ss ' 2 · 104 [33], resulting in a n̄ss=0.8 at
Tbath = 500µK.

The inhomogeneous intensity profile of the lattice beam will lead to some
spread �!at of atomic vibrational frequencies as discussed in Sec. 2.3, which
leads to dephasing of the center of mass motion of the atoms. This e↵ect can
be neglected, when considering the sympathetic cooling of the membrane in the
weak-coupling regime as long as

�!at ⌧ �c. (3.33)

For the coherent coupling regime we must in addition require

�!at ⌧ g. (3.34)

The estimates given in Tab. 3.1 assume operation in a regime, where Eqs. 3.33
and 3.34 are satisfied.

The challenge on the membrane side is set by the thermal decoherence rate.
This can be reduced by decreasing the bath temperature. For example, �th is
4 MHz at room temperature, but only 6 kHz at 500 mK cryogenic environment.
Another factor a↵ecting �th is the heating of the membrane due to absorption.
The heating can be modeled as an increase in the bath temperature of the mem-
brane, Eq. 3.27, which is determined by the thermal conductivity and absorbance
Im (nm) of the membrane. We have measured Im (nm) to be 1.5 · 10�3 and
. 2 · 10�5 for low-stress and high-stress membranes, respectively (see Ch. 4.2).
On the other hand, the thermal conductivity of thin SiN membranes in cryo-
genic temperatures is not well known. As an example, assuming Im (nm) ⇠ 10�5

and a thermal link Kth = 2.5 · 10�7 W/K, the resulting temperature increase is
�T ⇠ 0.22 K, which would increase the �th by a factor of 1.4. The value of Kth

is calculated here assuming the measured 2 K heat conductivity for low-stress,
SiN membranes from [98]. However, for a high-stress membrane the value can
be di↵erent, and furthermore it seems to depend on the thickness of the mem-
brane [99].
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3.2 Cavity-Enhanced Coupling

3.2 Cavity-Enhanced Coupling

A relatively simple trick to enhance the atom-membrane coupling is to enclose
the membrane inside an optical cavity as illustrated in Fig. 3.4. In this scheme,
the atoms remain outside the cavity, as they are trapped in the light field reflected
from the cavity. Adding the cavity to the setup preserves the modularity, while
the coherent coupling between the two system is enhanced by the cavity finesse in
addition to the collective enhancement via the

p
N . Furthermore, the asymmetric

coupling is not encountered anymore, as all the light is reflected back to the atoms
by the cavity.

3.2.1 Theoretical Model

The enhancement in the coupling due to the cavity can be understood qualita-
tively. A laser beam comes from the right, passes through the atoms and enters
the resonant cavity as illustrated in Fig. 3.4. The membrane is placed inside the
cavity on the middle of the cavity field slope, where its coupling to the cavity field
is largest. The cavity is single-sided, such that most of the light inside the cavity
is reflected back forming an optical lattice for the atoms. A displacement of the
membrane inside the cavity by xm detunes the cavity (Eq. 6.25). This leads to a
phase-shift �✓ ⇠ Fxm/� of the reflected light in proportion to the cavity finesse F
(Eq. 6.12). The phase shift results in spatial translation of the lattice potential.
As the dipole force acting onto the atoms scales linearly with the translation
(Eq. 3.1), the action of the membrane onto the atoms becomes enhanced / F.

On the other hand, the oscillating atoms will imprint a power modulation
onto the lattice (Eq. 3.2) which will be enhanced on the membrane by the cavity
F, resulting in a radiation pressure force on the membrane that is increased by
F. Overall, these e↵ects will lead to an increase of the atom-membrane coupling
constant defined in Eq. 3.10 as

g / m!2
at

r
m

M
F
p
N. (3.35)

A rigorous, quantum mechanical treatment of this type of cavity-enhanced
coupling scheme has been derived in Ref. [41]. The optical cavity is operated in
the non-resolved sideband regime, where the cavity half line-width is much larger
than the mechanical frequency, i.e.,  � !m,!at. This is illustrated schemati-
cally in Fig. 3.5. In this regime, the time retardation between mechanics and the
atomic ensemble is short compared to the systems evolution, and consequently
the light field follows the dynamics of the membrane and atoms instantaneously.
This assumption corresponds to the Born-Markov approximation and allows sim-
ilar elimination of the light field from the Hamiltonian dynamics as in the free-
space case discussed earlier. The remaining Hamiltonian is that for two coupled
oscillators (cf. Eq. 3.23)

He↵ = ~!ma
†
mam + ~!at!

†
at � ~gx̃mx̃at, (3.36)
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F

r2 r1

Figure 3.4: In a modified coupling scheme the membrane is enclosed inside an opti-
cal cavity. The optical cavity is single-sided such that the back mirror has reflectivity
r
2

⇠ 1 and most of the light in the cavity is transmitted via the input mirror r
1

⌧ r
2

creating an optical lattice trap for the atoms. Such a simple modification results in an
enhanced coupling strength proportional to the cavity finesse, F, while it still preserves
the modularity of the coupling scheme.

where a unified coupling constant can be defined as [41]

g =
!at

2

p
N

r
m

M

2F

⇡
. (3.37)

The coupling constant g di↵ers by a factor of 2F/⇡ from the free-space g in-
troduced in Eq. 3.10. This result can be intuitively understood in terms of the
power enhancement on the membrane, which is exactly 2F/⇡ at the slope of the
intracavity field. The optomechanical coupling of a membrane and a cavity is
discussed further in the experimental Chapter. 6.

3.2.2 Quantum Dynamics

The presence of the cavity will increase the power level on the membrane. Both
the thermal decoherence rate and the radiation pressure noise on the membrane
increase as F is increased. These decoherence processes will fundamentally limit
the F and consequently the achievable coupling rate g / F. On the other hand,
the atomic di↵usion does not depend on F (Eq. 3.29).

Decoherence and Imperfections at the Membrane

The circulating intra-cavity power scales with cavity finesse F as

Pcirc =
2P

⇡
F, (3.38)
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3.2 Cavity-Enhanced Coupling

Figure 3.5: The light fields involved in mediating the e↵ective coupling. The laser light
!
L

is resonant to the cavity. The laser light photons are converted to sidebands photons
!
L

± !
at,m

(blue and red). The cavity response is presented with the green dashed line.
As the cavity linewidth  is � !

at

,!
m

� g2
at

, g2
m

one can eliminate the light field from
the dynamical equations. g

at

and g
m

are the coupling of the light field to the atoms and
membrane, respectively. Figure adopted from Ref. [41].

where P is the incoming lattice beam power and mode-matching of the beam
into the cavity is assumed to be 1. The peak power for a standing wave inside
the cavity is Pst = 4Pcirc. Here we assume that the membrane is placed on the
slope of the intracavity field where the power on the membrane is

Pmem =
4P

⇡
F. (3.39)

Let us first consider the thermal decoherence rate of the membrane. The
absorbed power in the membrane can be written in terms of the absorbed fraction2

a2m = 1 � r� t as

Pabs = a2mPmem = a2m
4P

⇡
F / F. (3.40)

The absorbed power results in an increase of the bath temperature by �T . This
leads to increased thermal decoherence rate (Eq. 3.27) as

�th = �mn̄th ⇡ k
B

~!m

✓
T0 +

a2m
Kth

4P

⇡
F

◆
. (3.41)

As the membrane absorbance is in general in the range of a2m < 2 · 10�5, for low
F the absorbance plays a small role. However, for higher finesse, �th / F, and
the absorption becomes significant.

The radiation pressure shot noise on the membrane, Eq. 3.28, can be written
in terms of the F as

�di↵m =
4P

Mc2
!L

!m
r

✓
2F

⇡

◆2

. (3.42)

2The membrane absorption is defined in terms of the Im (n
m

) in Sec. 4.2. This is related to
a2
m

as a2
m

⇡ 2kIm (n
m

) d
m

.
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3. Theory of Atom–Membrane Coupling

This scales as / F2 and will eventually dominate the decoherence for high F.

Optimizing the Cavity Finesse

Using the expressions for the various decoherence rates, one can optimize the
ratio of total decoherence to coherent coupling or the ground-state membrane
occupation. In doing so, a clear trend towards minimizing the atomic detuning
emerges: while increasing the F, the power on the membrane can only be reduced
by reducing P , while at the same time keeping the ratio P/�L fixed such that
!at ⇠ !m. For su�ciently large detuning and linear polarization, all ground-
state hyperfine levels mF experience the same trapping potential. At smaller
detunings, the potential becomes state dependent and optical pumping between
di↵erent mF levels induced by scattering of photons from the light will reduce the
coupling to the membrane. In order to leave such e↵ects outside this discussion,
we consider �L = 2⇡ · 1 GHz as a compromise in our optimization.

Membrane Lattice

size (1 mm)2 ⇥ 50 nm
!m 2⇡ · 400 kHz !at 2⇡ · 400 kHz
M 3.6 · 10�11 kg !L 2⇡ · 384 THz
Q 107 �L 2⇡ · 1.0 GHz
T0 1.6 K m 1.44 · 10�25 kg
�T 4 K P 2.8 mW
Kth 4 · 10�7 W/K N 108

a2m 10�6 w0 350µm
r 0.47
F 450

Rates
g 214 kHz

�di↵m 60 kHz
�di↵at 8 kHz
�th 73 kHz

Table 3.2: Optimized parameter set for cavity-enhanced experiment [41]. The two left-
most columns show mechanical and atomic parameters, respectively, while the column
on the right displays the resulting couplings and decoherence rates. Values for N , Q,
and a2

m

have been measured previously [77, 100, 101, 102]. The value of K
th

is consistent
with available literature.

Table 3.2 introduces one set of optimized experimental parameters for a
membrane with eigenfrequency of !m = 2⇡ · 400 kHz and lattice detuning of
�L = 2⇡ · 1 GHz. The lattice beam waist is chosen to be w0 = 350µm. Fixing
the value of �L and w0 fixes the value of the input laser power P such that
!m ⇠ !at. This leaves F as the remaining experimental parameter. Figure 3.6
compares the ratio of the decay rates to the coupling constant g as a function of
F using the parameters in Tab. 3.2. It is useful to make general statements of the
ratio between the di↵erent coupling rates in relation to g. First of all, the atomic
di↵usion rate �di↵at is constant, and hence �di↵at /g decreases as 1/F (light blue
dashed line). On the other hand, there is a trade-o↵ between mechanical heating
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Figure 3.6: A calculation of the ratios �di↵

at

/g, �di↵

m

/g, and �
th

/g as a function of finesse
to illustrate the coherent coupling conditions in 3.32. A trade-o↵ between thermal heating
(�th

m

) and radiation pressure noise (�di↵

m

) is visible. Parameters other than F are taken
from Tab. 3.2. Figure adopted from Ref. [41].

(blue dash-dotted line) and the radiation pressure noise (green dashed line). For
higher F the radiation pressure noise on the membrane will be the limiting deco-
herence mechanism, and there is an optimum for the F around 300. The red line
shows the ratio of the sum of the decoherence rates, �decall = �di↵at + �di↵m + �th to
g. Around the optimal F, �decall /g ⇡ 1, and the coherent coupling regime defined
in Eq. 3.32 becomes accessible.

In the weak-coupling regime, the quantum dynamics of the cavity-enhanced
system follow the description presented in Sec. 3.1.3 with the cavity-enhanced
coupling constant given by Eq. 3.37. The final steady-state occupation number
can be calculated using Eq. 3.31. A full calculation beyond the weak-coupling
limit for the n̄ss results in an optimum finesse of F ⇡ 450 [41]. The exact solution
of the for n̄ss is presented as a function of F and the atomic cooling rate �c in
Figure 3.7. Like in the free-space setup presented earlier an optimum for the
laser cooling rate of the atoms exists when g ⇡ �c. Further details on the exact
calculation can be found in Ref. [41].

3.3 Comparison with Cavity Cooling

Both of the optomechanical systems discussed in this Chapter share some features
with optomechanical cavity cooling, as described in Sec. 2.2. In a standard cavity-
optomechanical scheme, the coupling constant gopt is collectively enhanced by
the intra-cavity photon number

p
n̄cav using a strong laser drive. In the atom-

membrane systems, similar collective enhancement is provided by the number of
atoms

p
N . Furthermore, by comparing Eq. 3.17 to the corresponding equation

for cavity-optomechanical cooling, Eq. 2.70, we find that our atomic damping
rate �at is analogous to the cavity decay rate 2 in the resolved-sideband regime.
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Figure 3.7: Exact steady state occupation number nexact

ss

as a function of F and �
c

. The
top axis displays the corresponding coherent coupling g and the contours indicate the
associated occupation numbers. The assumed parameters are from Table 3.2. Details of
this exact calculation are presented in Ref. [41]. Figure adopted from [41].

Laser cooling of the atoms results in sympathetic cooling of the membrane, similar
to side-band resolved cavity cooling. However, in contrast to the usual cavity-
optomechanical setup where  is a fixed parameter, in our system �at is tunable via
�c. Thus, the atomic cooling can be conveniently switched o↵ when the ground-
state regime has been reached, allowing one to study the system evolution in the
regime of strong coherent coupling.

Another experimental benefit of our cavity scheme is that it does not re-
quire ‘resolved sideband’ conditions for the cavity. The sideband-resolved regime
is experimentally challenging to reach for low-frequency oscillators such as the
membranes. On the contrary, we want to operate in a regime where  � !m,!at,
which greatly relaxes the experimental requirements on the cavity. Hence, this
type of resonant cooling setup could prove useful in the context of cooling other di-
electric objects in a cavity such as levitated dielectric particles, or even molecules,
which also have frequencies in the hundreds of kHz regime [83, 84].
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Silicon-Nitride Membranes

Silicon nitride (SiN) membranes have garnered a great deal of interest in op-
tomechanics experiments owing to their extraordinary mechanical and optical
properties [100, 101, 46, 103, 36, 30, 63]. Laterally millimeter scale but 50 nm
thin SiN membranes support mechanical modes which can reach Q-values > 107

even in room temperature [104], which means that the mechanical mode is ex-
tremely well decoupled from its environment. At the same time the membrane
mass amounts to some nanograms. Furthermore, such a thin membrane can serve
as a partially reflecting mirror at optical frequencies.

One of the first important steps into the field of membrane optomechanics was
taken by J. Harris’ group, where they simply placed a commercially available SiN
membrane inside a high-finesse cavity [100, 58, 105]. By passive optomechanical
cavity cooling they reduced the mode temperature of the membrane by a factor
of 4.4 · 104 below the room temperature. Their experimental approach solved
some of the technical issues related to integrating micromechanical elements into
a high-finesse cavity. Furthermore, in such a setup the optomechanical coupling
can be tuned from linear to quadratic, which may allow quantum non-demolition
measurement on the membrane state [102]. Recently, C. Regal’s group measured
radiation pressure shot noise on a membrane [106], which truly highlights the
quantum-scale sensitivity available in integrated membrane-systems.

The membranes we use in the experiments are commercially available from
Norcada Inc. [107]. A photograph of such a membrane is shown in Fig. 4.1a. The
membranes are square in shape, have thickness of 50 nm and their areal size can
be customized. The SiN membranes are fabricated by depositing SiN on Si sub-
strate using low pressure chemical vapor deposition techniques (LPCVD). Such
membranes are more generally used as sample holders for transmission electron
microscopy and as vacuum windows for x-ray spectroscopy. Owing to their ex-
cellent optomechanical properties, many groups working with optomechanics use
these commercial membranes “o↵-the-shelf”. Recently, some groups have also
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0.5 mm 

t = 50 nm
M =  1 × 10-11 kg
tensile stress: 100 MPa

a) b)

Figure 4.1: a) A photograph of a commercially available SiN membrane. We use a sim-
ilar membrane in the main experiment described in Ch. 5. b) A ringdown measurement
of the membrane reveals an extraordinarily high Q-factor of 2 · 106.

started to fabricate and develop membranes that are tailored for optomechanics
experiments [108, 101, 109, 36, 110, 111, 112]. For example, by structuring the
membranes, one can significantly reduce their damping [108]. This could enable
membrane optomechanics experiments on quantum scale above cryogenic base
temperatures, possibly even in room temperature [101, 109].

This Chapter discusses the optomechanical characterization measurements
we perform on the commercially available SiN membranes that are used in our
main experiments. In the first, free-space experiment, we use SiN membranes
which have a relatively low tensile stress S0 = 70 MPa [100]. In the second,
cavity-enhanced experiment, we use high-stress SiN membranes of tensile stress
S0 = 1 GPa [101]. We characterize the Q-factor and eigenfrequency of these
membranes as a function of laser power on the membrane, and determine their
absorbance and reflectivity at 780 nm.
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4.1 Membrane Characterization Setup

4.1 Membrane Characterization Setup

Before integrating a membrane into the main experiment, its eigenfrequency !m

and Q-factor for the fundamental mode are characterized in a separate test cham-
ber. The test chamber is also used to study the absorbance properties of the mem-
branes. The membrane characterization setup was initially built by M. Mader
as part of a bachelor thesis project [113]. Figure 4.2 shows a photograph of the
vacuum chamber that can accommodate 18 membranes at the same time. The
membrane holder is designed such that it can be directly transferred to the main
experiment (see Fig. 6.11b for the technical details of the holder design).

Figure 4.2: The membrane characterization chamber for measuring the eigenfrequency,
Q-factor and absorption. One sees an array of membranes in the chamber. The lens
visible in the front is used to focus the read-out laser beam onto the membrane.

Requirement for the Vacuum

When the lateral membrane size lm is smaller than the mean free path lmfp of
the surrounding gas particles, the membrane is in a free molecular flow damping
regime. The mean free path of an ideal gas is given by lmfp = kBT/

p
2⇡d20Pgas,

where Pgas is the gas pressure. Assuming the diameter of a typical residual gas
particle to be d0 ⇡ 4 · 10�10 m [114], and the lateral size of the membrane lm =
1.5 mm, the free molecular flow regime is reached for Pgas < 4 ·10�2 mbar. In this
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regime, the air damping limits the quality factor of the membrane to [115, 116]

Qgas =
⇢dm!m

4

r
⇡

2

r
RT

MNA

1

Pgas
/ 1

Pgas
, (4.1)

where ⇢ = 2.9 g/cm3 is the density of SiN [98], MNA = 28.96 g/mol is the mo-
lar mass of air, T is the air temperature, and R is the ideal gas constant. In
room temperature (T = 293K) and for !m = 2⇡ ·250 kHz and dm = 50nm we get
Qgas = 2·107, when Pgas = 10�5 mbar. Consequently, the pressure in the chamber
should be less than 10�5 mbar such that our quality factor measurement is not
limited by gas damping. We have also experimentally measured the dependence
of the Q of the membrane on the pressure in the chamber, and observed that
below 5 · 10�5 mbar the Q of a 277 kHz membrane is indeed independent of back-
ground pressure. The measurement result is shown in Fig. 4.3. For the membrane
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Q

Figure 4.3: The Q-factor of a high-stress SiN membrane with !
m

= 2⇡ · 277 kHz as a
function of pressure in the vacuum chamber. This measurement was carried out by our
Master student T. Lauber.

characterization measurements, the test chamber is in vacuum of 2 · 10�7 mbar
and in room temperature. In such a low pressure Qgas � 8 · 108 for any of the
membranes we use in the experiment and we can neglect air damping.

4.1.1 Interferometric Read-Out and Heating Laser

The laser setup for the membrane study is shown in Fig. 4.4. A Michelson inter-
ferometer (MI) at 852 nm is used to read out the membrane motion. For further
details of the MI see the main experimental section Sec. 5.3, where a similar
read-out scheme is explained in more detail. The interferometer is stabilized by
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Oscilloscope

PZ
T

PZT

Lock-In
>100 kHz

Figure 4.4: Experimental setup. The SiN membrane in a Si frame is glued at one
edge to an aluminum holder inside a room-temperature vacuum chamber. The heating
laser (red) at 780 nm is power stabilized to 2 · 10�4 RMS in a bandwidth of 12 kHz, and
focused onto the membrane under an angle. The membrane vibrations are read out with
a stabilized Michelson interferometer (blue). The interferometer signal is also used for
feedback driving of the membrane with a piezo (PZT). The figure is modified from that
presented in Ref. [46].

the DC to 20 kHz part of the photodiode (PD) signal. The incident power on
the membrane is 580µW in a diameter of 150µm and the position sensitivity is
1 · 10�14 m/

p
Hz. The > 100 kHz part of the signal is fed into a lock-in amplifier

with integrated phase locked loop, which measures the membrane amplitude and
drives its motion via a piezo mounted outside of the vacuum chamber. To mea-
sure the Q-factor of the membrane, we switch the membrane drive o↵ and record
the amplitude decay. An example of such a ring-down measurement signal on
the PD is shown in Fig. 4.1b. The Q-factor is then straightforwardly determined
using Eq. 2.15. In order to characterize absorbance-related e↵ects, we have in-
tegrated another laser into the system operating at 780 nm. The laser is power
stabilized to 2 · 10�4 (r.m.s) and focused onto the membrane to a diameter of
350µm. This laser is the same as the one used for the lattice and described in
Sec. 5.1.2.

4.1.2 Membrane Mounting

The exact way in which the membrane frame is mounted on its holder can in-
fluence the Q-factor of the membrane by several orders of magnitude. Initially,
we glued the membrane frame rigidly to its holder by applying a drop of glue to
its all 4 corners and measured Q values of maximally 103 (low stress membrane,
0.5 mm ⇥ 0.5 mm ⇥ 50 nm). Thereafter we experimented with di↵erent type of
glues and applied just a minute drop of glue to one or more of the corners of
the membrane. The best results were obtained by gluing the frame only from
one of its corners. Furthermore, viscous, liquid-like glues resulted in higher Q-
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factors. We obtained good results when the membrane frame was glued either
with OP-4-20632 from DYMAX, or with OG116-31 from EPOTEK. The DYMAX
glue has low outgassing, is single component and UV/Visible curable. Impor-
tantly, the glue has ultra low shrinking during curing. In a characterization mea-
surement series done with high-stress membranes of 1.5 mm⇥1.5 mm⇥50 nm in
size, the Q-factor of the DYMAX-glued membrane was measured to be Q = 3·106.
The glue from EPOTEK is UV-curable, UHV compatible, and single component
glue. The EPOTEK-glued membrane had a Q of 2 · 106.

In the experimental setup for free-space coupling discussed in Ch. 5, the
membrane is placed vertically into the vacuum chamber (see Fig. 5.14) and gluing
of the frame to its holder is required. The second generation cavity-enhanced
coupling setup, introduced in Ch. 6, is designed such that the membrane can
be placed horizontally to its holder. Thus, the membrane frame can rest free-
lying on top of the holder, supported by gravity and friction alone, as shown
in Fig. 6.12. So far, the first Q-factor measurement we have performed with a
free-lying membrane ((1.5 mm)2 ⇥ 50 nm) resulted in Q of 6 · 107. This is the
highest Q-value we have measured, suggesting that the free-lying configuration
may be optimal for maintaining the high Q of the membrane.

4.2 Membrane Absorbance

The absorbance of the membrane results in heating when laser hits the membrane.
The heating results in thermal expansion of the membrane and a subsequent
reduction in its stress. As a consequence, the eigenfrequency of the membrane
!m shifts. By comparing the temperature increase required to cause the measured
shift in !m with a theoretical model for heat transport in the membrane, we make
estimates on the absorption coe�cient of the membrane. At certain power levels,
we also observe a non-monotonic dependence of the mechanical Q on power. We
have reported these kind of measurements for low-stress membranes in Ref. [46].
Here we extend these measurements on stoichiometric, high-stress membranes
and discuss a model for the thermal decoherence rate in the membrane.

4.2.1 Shift of Membrane Eigenfrequency

The eigenfrequencies of a square membrane under tension are given by

f
m,n

=
1

2lm

s
S

⇢
(m2 + n2), (4.2)

where lm is the side length, ⇢ = 2.9 g/cm3 is the density [98], and S the tensile
stress in the membrane. The modes are labeled by the number of anti-nodes
m and n along the two dimensions. The stress S = E (lm � l0) /l0, where E
is Young’s modulus, arises in the fabrication process when the SiN membrane is
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stretched from its equilibrium length l0 to the length lm of the Si frame. Figure 4.5
shows the recorded mode spectrum as a function of heating laser power P at
780 nm. The spectra are recorded by Fourier transforming the PD signal. One
can see a reversible decrease of all mode frequencies f

m,n

with P .

(1,1)

(1,2) (2,1)

Figure 4.5: Shift of the lowest eigenfrequencies of a low-stress membrane versus power
at 780 nm. The membrane modes are labeled by (m,n). The membrane has dimensions
of (0.5 mm)2 ⇥ 50 nm and is similar to that used in the main experiment described in
Ch. 5.

The change in frequency as a function of power P , can be attributed to a
thermal expansion of the membrane �l0/l0 = ↵0�T + ↵1�T 2, where �l0 is the
equilibrium length change and ↵0 (↵1) the first (second) order expansion coef-
ficient for a temperature change �T . A temperature change a↵ects the tensile
stress by �S = �E (�l0/l0). In a simple model, we assume a spatially homoge-
neous and linear temperature change with power as [46]

�T = �P, (4.3)

and describe the power-dependence of the stress as

S = S0 � E (�l0/l0) = S0 � E
�
↵0�P + ↵1�

2P 2
�
. (4.4)

By using an auxiliary measurement, as described in Ref. [46], we have determined
the thermal expansion coe�cients in Eq. 4.4 to be ↵0 = 1.6 · 10�6 m/K and
↵1 = 1.3 ·10�8/K2 for the SiN membranes. Using these values we fit Eq. 4.2 with
Eq. 4.4 to the data and determine a value of � = 0.6 K/mW for the low stress-
membrane. The fit of f1,1(P ) to the data describes the observed dependence
within ±1 kHz.
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4.2.2 Determining the Absorbance

The absorbed power is related to the imaginary part of the refractive index of
the membrane Im (nm) as

Pabs = Pmem

⇣
1 � e(�2kIm(n

m

)d
m

)
⌘
⇡ 2kIm (nm) dmPmem, (4.5)

where Pmem is the power on the membrane and dm is the thickness of the mem-
brane. In order to extract the absorption of the membrane, Im (nm), we model
the heat transport in the membrane explicitly, as described also in Ref. [41]. This
resulting temperature increase in the membrane is then compared with the ex-
perimental value determined using Eq. 4.3. For a circular membrane of diameter
l, a simple analytical solution can be obtained and the case of the square mem-
brane can then be approximately described by including a “geometric prefactor”
of order unity. The results of the analytical model are checked against a finite
element method (FEM) simulation.

Heat transport inside the membrane is governed by the heat equation

⇢cp
@T

@t
= thr2T + Qth, (4.6)

where th is the thermal conductivity, ⇢ the mass density, cp the specific heat
capacity of the membrane material, r2 the Laplace operator, and Qth is a source
term describing the power dissipated per unit volume. The heating laser is mod-
eled as a circular disk of radius wh at the position of the membrane. This gives
rise to absorbance within a circle of area Am = ⇡w2

h. Thus, the source term can
be expressed as

Qth = Pabs/(Amdm). (4.7)

For a 2D temperature distribution inside a thin membrane (dm ⌧ l) in steady-
state (@T/@t = 0), the heat equation reads

r2T =
1

r

@

@r

✓
r
@T

@r

◆
+

1

r2
@

@�

✓
@T

@�

◆
= �Qth/th. (4.8)

A simple solution can be found for the circular membrane. Making use of the
azimuthal symmetry (@T/@� = 0), the equation simplifies to

1

r

@

@r

✓
r
@T

@r

◆
=

(
�Qth/th for 0  r  wh,

0 for wh < r  l/2.
(4.9)

We solve this equation subject to the boundary condition that the frame is at
constant temperature, T (r = l/2) = T0, yielding the temperature distribution

T (r) =

8
<

:
T0 +�Tcal � Q

th

4
th

r2 for 0  r  wh,

T0 +
Q

th

w

2

h

2
th

ln
�

l

2r

�
for wh < r  l/2,

(4.10)
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where
�Tcal = T (r = 0) � T0 =

Q
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is the temperature increase of the membrane center compared to the frame. The
average membrane temperature, obtained by integrating T (r) over the membrane,
is

Tavg = T0 +
Q

th

w

2

h

4
th

h
1 � 2

�
w

h

l

�2i
. (4.12)

We have confirmed the analytical results to agree with a FEM simulation.
Running the FEM simulation instead for a square membrane of side length lm,
we obtain similar results but with a geometric prefactor f

g

so that �Tsquare =
f
g

�Tcal, where f
g

decreases from f
g

= 1.075 for wh/lm = 0.3 to f
g

= 1.017 for
wh/lm = 0.01 [41]. The absorbance of the membrane can be now determined
by comparing the measured �T in Eq. 4.3 with the analytical formula for the
average temperature increase in the membrane �Tavg = Tavg � T0.

Low-Stress Membrane

For low power of the heating laser we observe a linear shift of�f1,1 = �363 Hz/mW
as shown in Fig. 4.5. A fit to the experimental data gives � = 0.6 K/mW. Using
Eqs. 4.3 and the average temperature increase in the membrane from Eq. 4.12,
and assuming th = 3 WK�1m�1 and S0 = 70 MPa (see Tab. 4.1) we find an
absorption of Im (nm) = 1.5 · 10�3 at 780 nm. This is an order of magnitude
larger than the absorption in low-stress membranes at 1064 nm [58, 105].

High-Stress Membrane

The absorbance of a stoichiometric membrane is measured by placing a (1.5 mm)2⇥
50 nm membrane into the middle of the field slope of a symmetric optical cavity
and monitoring the shift of the membrane frequency as a function of intra-cavity
power. The cavity has finesse of F = 78 and it is locked on-resonance. More de-
tails on the cavity and the membrane read-out can be found in Secs. 6.3 and 6.5.
The absorbed power for a membrane sitting on a slope of the intracavity intensity
standing wave is given by Pmem = 2Pcirc = 2F

⇡

Pin, such that we obtain half peak

power at the position of the membrane. Here Pcirc = F
⇡

Pin, where Pin is the power
coupled into the cavity.

The power spectral density of the membrane is shown in Fig. 4.6 for two dif-
ferent power levels, Pmem = 64 mW and Pmem = 21 mW. We observe �f1,1 =
0.40 Hz/mW, and determine � = 6.5 · 10�3 K/mW and S0 = 0.92 GPa from
Eqs. 4.2-4.4. The measured � is two orders of magnitude lower than that of the
low-stress membrane. There is broad range of values reported for the thermal
conductivity of Si3N4. A general reference [117] reports th � 25�36 WK�1m�1.
Since the appearance of Ref. [117], a lot of research has been done on nanoscale
thin films in room temperature. A recent paper, Ref. [99] reports thermal con-
ductivity of 2.7 WK�1m�1 for 50 nm thin Si3N4 films. Other references report

59



4. Silicon-Nitride Membranes

room temperature values of 0.4 � 4 WK�1m�1 for films thinner than 500 nm
(see [99] and references therein). Using here the value of 2.7 WK�1m�1 we get
Im (nm) = 1.4 · 10�5 at 780 nm. Our measurement is consistent with the ab-
sorption of high-stress membranes at 1064 nm, which has been measured to be
Im (nm) = 0.6 · 10�5 [101]. Importantly, our measurement indicates that absorp-
tion of 780 nm light in high-stress membranes is lower by two orders of magnitude
compared to the low-stress membranes.
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Figure 4.6: The power spectrum of the membrane placed into the middle of the cavity
field slope. The power at the membrane is 64 mW (red) and 21 mW (blue). The smaller
peak to the left of the membrane signal is electronic noise. It originates from our custom-
built lock-box, and has since the measurement been suppressed.

Thermal Decoherence Rate

The heating of the membrane due to absorption leads to a faster thermal deco-
herence rate of the membrane. This is modeled by introducing an e↵ective bath
temperature Te↵ = T0 +�Tcal, where

�Tcal =
Pabs

Kth
(4.13)

is the temperature increase due to absorbed power Pabs in the center of the
membrane. Using equation 4.11, we can define the temperature increase via the
thermal link as

Kth =
Pabs

�Tcal
=

2⇡thdm

ln
⇣

l

2w
h

⌘
+ 1

2

. (4.14)

60



4.2 Membrane Absorbance

10−6

10−5

10−4

1/
Q

160 180 200 220 240 260 280
0

0.02

0.04

0.06

Fr
am

e 
Am

pl
itu

de
[m

V]

Frequency [kHz]

Figure 4.7: Top panel: The resonances in the inverse quality factor of a membrane Q�1

as a function of the eigenfrequency of the fundamental mode of the membrane. Bottom
panel: Eigenfrequencies of the frame. The eigenfrequencies of the frame overlap with
the resonances in Q�1 of the membrane. The measurement is performed on a low stress
membrane that has dimensions of (0.5 mm)2 ⇥ 50 nm and is similar to that used in the
main experiment described in Ch. 5.

The thermal link Kth depends on the membrane geometry, the beam waist, and
the thermal conductivity th. This equation is used for the estimates of thermal
decoherence in Sec. 3.1.3.

4.2.3 Quality Factor

We measure distinct resonances of the Q of the low-stress membrane as a func-
tion of membrane frequency f

n,m

(P ). At certain laser powers P , the Q (f1,1)
is observed to be more than two orders of magnitude smaller than the highest
recorded value, as shown by the measurement result in the top panel of Fig. 4.7.
The sudden decrease in Q (f1,1) takes place when the membrane mode becomes
resonant with a mode of the frame. We have identified the frame modes interfer-
ometrically by focusing the laser beam onto the frame (Fig. 4.4). The measured
frame modes clearly overlap with the resonances in Q�1 as shown in the lower
panel of Fig. 4.7. Further details on the analysis can be found in Ref. [46].
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4.3 Membranes in the Main Experiments

Free-Space Coupling Experiment

In the first, free-space, experiment we use a low-stress SiN membrane, which
has specified dimensions of 0.5 mm ⇥ 0.5 mm ⇥ 50 nm [107], power reflectivity of
r = |rm|2 = 0.28 at � = 780 nm, quality factor of Q = 2 · 106, and a fundamental
vibrational mode with !m/2⇡ = 272 kHz. The reflectivity of the membrane is es-
timated by measuring the transmission and reflection signal from the membrane.
The amplitude reflectivity depends on the membrane thickness as

|rm| =

�����

�
n2
m � 1

�
sin knmdm

2inm cos knmdm + (n2
m + 1) sin knmdm

����� . (4.15)

The amplitude reflectivity as a function of membrane thickness is plotted in
Fig. 4.8. The measured reflectivity together with Eq. 4.15 would imply a thickness
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Figure 4.8: Amplitude reflectivity as a function of membrane thickness calculated for
low-stress membrane assuming n

m

= 2.2+1.5i · 10�3, where Re (n
m

) is taken from [105].
The calculation is done for 780 nm. From the measured reflectivity one can estimate the
thickness and thus the mass of the membrane.

of dm = 45 nm instead of the stock-specified value of 50 nm. Indeed, previous
extensive studies have shown the commercial film thicknesses to vary as much
as 30% [118]. On the other hand, the lateral dimensions of the membranes
match the specified values, as confirmed by SEM imaging, also the membrane
eigenfrequencies match the calculated values of Eq. 4.2. The mass of a 45 nm
membrane is M = 8 · 10�12 kg.

In the main experiment (Ch. 5) we detect the optomehcanical coupling of the
atoms to the membrane as a small change (⇠ 1 %) in the Q of the membrane
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over a range of lattice power levels. We choose to measure the coupling at pre-
defined power levels of the lattice beam, where !m is tuned away from the frame
resonances and the Q of the membrane is high.

Cavity-Enhanced Coupling Experiment

In the second, cavity-enhanced experiment we use a stoichiometric Si3N4-membrane
supplied by Norcada [107]. The membrane has specified dimensions of 1.5 mm⇥
1.5 mm ⇥ 50 nm, fundamental vibrational mode of f1,1 (P = 0) = 274 kHz and
quality factor of Q = 3 · 107. We determine the reflectivity of the membrane via
its optomechanical coupling to the cavity, as discussed in Sec. 6.7, and find a value
of r = |rm|2 = 0.1733. Assuming nm = 1.98 [118]1, we estimate the thickness of
the membrane from its reflectivity (Eq. 4.15) to be 42 nm, and the correspond-
ing mass M = 6.4 · 10�11 kg (assuming ⇢ = 2.7 g/cm3 [101]). The high-stress
membrane has a considerably lower absorption at 780 nm than the low-stress
membrane, on the order of Im (nm) . 2.0 · 10�5. This reduces the technical and
fundamental limitations in the main experiment due to membrane absorbance. In
the power regime we operate at the moment (Pmem . 2 W), we observe constant
Q (P ), which eases the technical requirements for the measurements.

Table of the Science Membrane Properties

The parameters of the low- and high-stress science membranes in the respective
free-space (Ch. 5) and cavity-enhanced (Ch. 6) experiments are listed in Tab. 4.1.

1A value of n
m

= 2.0 has also been reported in Ref. [102] for similar stoichiometric mem-
branes, whereas the reported value for the low stress membranes is n

m

= 2.2 [105].
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SiN membrane low-stress stoichiometric
Density ⇢ 2.9 g/cm3 [46] 2.7 g/cm3 [101]
Thermal conductivity th 3 WK�1m�1 [46] 2.7 WK�1m�1 [99]
(293 K) 0.4 � 4 WK�1m�1 [99],

25 � 36 WK�1m�1 [117]
Specified dimensions (0.5 mm)2 ⇥ 50 nm (1.5mm)2 ⇥ 50 nm
Re (nm) (1064 nm) 2.2 [105] 1.98 [118], 2.0 [102]

Tensile stress S0 70 MPa [46] 0.92 GPa
Measured dimensions (0.5 mm)2 ⇥ 45 nm (1.5 mm)2 ⇥ 42 nm
E↵ective mass M 8 ng 64 ng
f1,1 272 kHz 274 kHz
Q 2 · 106 3 · 106

r at 780 nm 0.28 0.17
Im (nm) at 780 nm 1.5 · 10�3 . 2 · 10�5

Table 4.1: Material properties of the low-stress and stoichiometric SiN membranes used
in our main experiment. The values are for room temperature. The upper part of the
table contains literature values, and the lower part separated by the two horizontals,
summarizes the measurement results reported in this Chapter.
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5

Observation of Backaction of
Ultracold Atoms on a Mechanical
Oscillator

This Chapter describes in detail the experimental realization of the free-space,
optomechanical interface between an ensemble of ultra cold atoms and membrane
oscillator, which has been addressed theoretically in Sec. 3.1. By using ⇠ 106

atoms in an optical lattice that is formed by retroreflecting a laser beam from
the membrane, we measure energy transfer between the two systems when they
are tuned on resonance. Moreover, we demonstrate sympathetic damping of the
membrane motion via continuous laser cooling of the atoms. The experiments
described in this Chapter represent the first observations of the backaction of
ultra cold atoms on a macroscopic object. This is striking, as the mass ratio
between the membrane and the atoms is on the order of 108.

Figure 5.1 gives an illustrative guideline on the experimental realization and
the main topics that are covered in this Chapter. The membrane and the atoms
are placed into separate vacuum chambers and a long-distance coupling is pro-
vided by an optical lattice. The atom module is built by partially exploiting an
already existing magneto-optical trapping system (MOT) for 87Rubidium atoms,
whereas the membrane module is built up completely from scratch. As we had no
previous experience in experimenting with the membranes, we benefit consider-
ably from the modularity of the setup which allowed us to change the mechanical
oscillators relatively quickly without a↵ecting the cold atom preparation in the
ultra-high vacuum (UHV) chamber and optimize the two modules independently.

For resonant coupling, the trap frequency of the atoms is matched to the os-
cillation frequency of the membrane, !at ⇠ !m ⇠ 2⇡ · 250 kHz, which constrains
us to work with a near-resonant lattice. Section 5.1 will focus on the optical
lattice setup. The membrane module is discussed in Sec. 5.3. We probe the
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MOT with Rb atoms membrane
a) b)
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Figure 5.1: Main features of our two experimental modules: a) The 87Rb atoms
are collected and cooled in a magneto-optical trap (MOT) inside an ultra-high vacuum
chamber. The cold atoms are loaded from the MOT into an optical lattice. Inset: The
atoms are detected via absorption imaging. b) The SiN membrane (inset) resides in
a separate vacuum chamber at room-temperature and serves as partially reflective end
mirror for the 1D optical lattice. The membrane motion is detected interferometrically
(not shown). The distance between the atoms and the membrane is about 1 m in the
laboratory setup.

optomechanical coupling via the atoms and the membrane independently to ver-
ify that the coupling is bi-directional. On the atom module, we use absorption
imaging to monitor the resonant temperature increase of the atoms in the trap,
as discussed in Sec. 5.4. On the membrane-side, we measure a resonant enhance-
ment in the damping of the membrane motion as represented in Sec. 5.5. The
finite temperature of the atoms and a spatially inhomogeneous trapping potential
lead to inhomogeneous broadening of the atomic resonance which is addressed in
Sec. 5.2. By taking this into account in our theoretical model, we can accurately
model the e↵ect of the atoms onto the membrane 5.5.

Historical Remarks

The measurements presented in this Chapter were performed in Munich in the laboratory

of Prof. T. W. Hänsch. During Summer 2010 we measured a significant coupling between

the membrane and the atoms [39]. In Fall 2010, we moved from the labs in Munich to

Basel, where P. Treutlein had been appointed as assistant professor. This meant a

complete disassembling of the setup, a part of which was left in Munich and a part

of which moved in pieces with us to Basel. Motivated by the results described in this

Chapter, we designed a dedicated, second generation setup in Basel starting from scratch

(see impressions from the lab move in App. C).
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5.1 Atom Preparation in the Lattice

5.1 Atom Preparation in the Lattice

This section describes the atom preparation procedure in the lattice. The atom
module is built by partially exploiting an already existing magneto-optical trap-
ping system (MOT) for 87Rubidium atoms. The existing MOT was built on an
atom chip [119, 120, 121] and originally intended for di↵erent purposes [120, 122],
but with slight modifications it is successfully used to load and cool atoms into
the new lattice. The lattice is relatively near-resonant as the trap frequency of
the atoms, !at, is required to match the oscillation frequency of the membrane,
!m ⇠ 2⇡ · 250 kHz. The atoms are loaded to the lattice from the chip-MOT and
imaged via absorption imaging. A sophisticated imaging sequence is developed to
image only the atoms trapped in the lattice while the MOT resides in the back-
ground. The MOT alone is not su�cient to cool the atoms to the ground-state
of the lattice potential, but by using subsequent molasses cooling this is possi-
ble. Characterization measurements on the MOT- and molasses-loaded lattice
are presented.

5.1.1 Magneto-Optical Trap

Before the atoms are loaded into the lattice, they are spatially confined in a
magneto-optical trap (MOT) and simultaneously cooled to a su�ciently low tem-
perature to allow optical trapping in the lattice. The MOT consists of a set of
red-detuned laser-beams that laser-cool the atoms in a quadrupole magnetic field.
The magnetic field gradient provides position dependence on the laser cooling-
forces, thereby creating a trap minimum where the atoms are collected. The
reader is referred to Ref. [123] for basic introduction to the operation principle
of a MOT.

Atom Chip MOT Configuration

In our experiment the MOT is on an atom chip [119, 120, 121]. The atom chip
forms one facet of a glass cell that is attached to a compact ultrahigh vacuum
system as shown in Fig. 5.2. Rubidium atoms are released into the UHV chamber
by a resistively heated alkali dispenser. The magnetic potential is generated by a
“U”-shaped current-carrying copper wire behind the chip (illustrated in Fig. 5.4).
The wire field is then superimposed with a homogeneous bias field created by
three pairs of Helmholtz coils that surround the vacuum cell. At the point in
space, where the bias field exactly compensates the U-wire field, a quadrupole
field minimum is created.

A standard laser field configuration for MOT-cooling consists of three cir-
cularly polarized, counter-propagating and perpendicular beam pairs to provide
cooling of the atoms in 3D [78]. As the chip blocks the light along one axis, we use
a so-called mirror-MOT configuration instead [124, 120]. It replaces two cooling
beams by the reflection of two beams inclined by 45� on a dielectric mirror that
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Figure 5.2: a) The atom chip is attached to a glass cell which is connected to a vacuum
system. b) Photograph of the glass cell. A copper block for cooling the the chip structures
is mounted on top of the chip. The figure is taken from [122].

is applied on the chip. Figure 5.4 shows an illustration of the 45� MOT beams
and the other beam pair which we denote as the horizontal beams (hor). The
atom chip used in this experiment was fabricated by D. Hunger and the details
of the chip can be found in his doctoral thesis, Ref. [122].

The laser system for the optical cooling, optical pumping and absorption
imaging of atoms is based on home made diode lasers. This is documented in
detail in Ref. [122]. An overview of the laser frequencies used is shown in Fig. 5.3.
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Figure 5.3: Level scheme of the 87Rb D2 line and laser frequencies used in our experi-
ment.
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• The cooling lasers are provided by home-built grating stabilized diode-
lasers. The frequency of the cooling lasers is stabilized by Doppler-free
saturation spectroscopy in a Rb vapor cell [125] and frequency-locked via a
feedback signal to the grating piezo [122]. The laser cooling beam is locked
to the F = 2 ! F 0 = (2, 3) crossover resonance and frequency-shifted with
a double-pass AOM near to F = 2 ! F 0 = 3 resonance.

• The cooling light drives some atoms via the non-resonant transition F =
2 ! F 0 = 2. The excited state F 0 = 2 can also decay to the ’dark’ F = 1
ground state. To bring the population in this state back to the cooling cycle
we use a so-called repump beam, which is tuned to the F = 1 ! F 0 = 2
transition. The repump beam is coupled into the 45� fibers (Fig. 5.3).

• Lastly, the beam for absorption imaging (see Sec. 5.1.3) is derived from a
cooling laser and frequency-shifted with an AOM to the resonant transition
F = 2 ! F 0 = 3. The imaging beam propagates along the horizontal MOT
beams, as illustrated in Fig. 5.3.

In the main experiment, we typically load 2 · 107 atoms in the MOT in 3 s
and the measured temperature is around 150µK. The MOT has a magnetic field
gradient of 15 Gauss/cm along the lattice and the circular-polarized MOT beams
are detuned by �MOT = �2.2 �se from the F = 2 ! F 0 = 3 transition of the
Rubidium D2 line. To reduce the temperature below the values achievable in a
MOT, we perform optical molasses cooling and reach temperatures below 10µK.

Optimization of the MOT Loading Rate

The experimental sequence to measure the atom-membrane coupling requires the
experiment to run stable over several days. Hence, it is important to minimize
the time required for each experimental step within the complete measurement
run. The MOT loading rate, which is one of the most time consuming phases
in the run, is optimized with respect to the rubidium dispenser current that sets
the rubidium pressure in the chamber.

The time dependence of the MOT population N(t) can be modeled by [126]

dN

dt
= ↵nss � (�nss + �)N(t) = R0 � �0N(t). (5.1)

The first term corresponds to the capturing of the atoms, with ↵ proportional
to the trapping cross section. The capturing rate, R0 = ↵nss, depends on the
fraction of slower Rb atoms in the chamber and is thus proportional to the density
of the untrapped Rb atoms, nss in the chamber. The second term describes the
collisional loss processes, where � describes the collisions between untrapped and
trapped Rb atoms, and � describes the collisions between other background atoms
and trapped atoms. The solution for Eq. 5.1 is

N (t) =
R0

�0

�
1 � exp��

0

t

�
, (5.2)
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Figure 5.4: Laser configuration for the mirror-MOT on a chip. The chip forms one end
facet of the glass-vacuum cell. The U-shaped copper wire is shown in orange on top of
the chip. Two horizontal beams and two beams inclined by 45� with respect to the chip
provide cooling and repumping light. Imaging is done along the x-axis. The picture is
modified from Ref. [120].

where R

0

�
0

is the stationary number of trapped atoms in the MOT, which is reached

on time scale of ��1
0 is the MOT.

We measure the MOT loading curve for various dispenser current values Idisp.
After changing the dispenser current to the subsequent value, the pressure in the
chamber is allowed to equilibrate for an hour. The equilibrium pressure in the
chamber is observed to increase linearly with Idisp within the explored range.
Figure 5.5 shows the MOT loading rate as a function of Idisp in the chamber.
The �0 follows linearly the Idisp as observed in Fig. 5.5a. On the other hand, the
steady state number of atoms increases with the Idisp and levels o↵ when �nss � �
as shown in Fig. 5.5. A dispenser current of Idisp = 4.55 A corresponding to a
pressure reading of p = 1.26 · 10�9 mbar was chosen for the experiments. This is
still su�ciently far from the point where the collisional losses with the background
Rb atoms limit the loading, but yet enables relatively fast loading of the MOT.

70



5.1 Atom Preparation in the Lattice

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

0.3
0.4

0.5

0.6
0.7

0.8

0.9
1.0

1.1

I
disp

 (A)

0 (1
/s

)
*

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

 
 

I
disp

 (A)

R 0
/*

���
��

� �

a) b)

Figure 5.5: Optimizing the MOT loading. a) The �
0

, as defined in Eq. 5.1; and b) the
steady-state number of atoms as a function of dispenser current I

disp

. Note that our ion
gauge does not accurately measure the absolute pressure in the whole chamber, since the
Rubidium atoms may locally contaminate the cell walls and create local variations in the
pressure.

5.1.2 Laser System for the Optical Lattice

Figure 5.6 presents a schematic of the lasers in our experimental setup. The
lattice laser light is provided by a master-amplifier configuration in order to have
su�cient laser power. The master laser is a grating stabilized diodelaser (DLPro,
Toptica Photonics), operating around 780 nm (LD-0780-0100-AR-1). The max-
imum output power of the DLPro is 80 mW and its linewidth is specified to be
100 kHz (within 5µs). The DLPro can be tuned mode-hop free over ⇠ 4 GHz.
We characterize the lattice for various detunings, and for the main coupling ex-
periment, the detuning is set to �L = �2⇡ · 21 GHz from the D2-line of 87Rb
(F = 2 $ F 0 = 3). The frequency drift of the DLPro is observed to be very slow
at room-temperature and negligible compared to �L on a time scale of days. This
allows us to operate the laser free-running.

The master laser is seeding a tapered amplifier (BoosTA, Toptica Photonics,
chip TA 780 808). The master+BoosTA configuration can deliver up to 1W of
laser power when properly aligned. The output of the TA is coupled into an
acousto-optic modulator (AOM), and the first order di↵racted beam out of the
AOM is coupled to a polarization maintaining fiber1. The AOM is driven by
a custom-designed AOM controller by Anton Scheich (Ludwig-Maximilians Uni-
versität, München). The power output of the AOM is regulated via an intensity
stabilization circuitry that stabilizes the power level of the lattice beam to a given
setpoint. In addition, the AOM controller has an option for fast switch-o↵ of the
output voltage in the nanosecond range, which can be used to quickly turn o↵

1Fiber PM780-HP, and aspheric mode-matching lens f
1

= 4.51mm, C230TME-B. Both from
Thorlabs.
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Figure 5.6: The optical lattice laser is provided by a frequency tunable DLPro laser
operating at 780 nm. The DLPro beam is injected to a tapered amplifier (TA). The
TA output is coupled to an optical fiber. The polarization of the fiber output is cleaned
(polarizing beam splitter, PBS) and the intensity of the fiber output is actively stabilized
via the acousto-optic modulator (AOM).

the lattice (⇠ 50 ns).
The fiber output is collimated2 and its polarization is cleaned and aligned with

a �/2-plate and a polarizing beam splitter (PBS). A fraction of the horizontally
polarized lattice beam is picked up by a thin glass wedge (4%) for the intensity
stabilization of the lattice beam. The rest of the beam is focused (f3 = 400mm)
to a waist size of w0 = 350 ± 30µm in the center of the vacuum cell, where the
ultracold atoms are prepared in a MOT. After exiting the MOT vacuum chamber,
the laser is focused on the membrane to a spotsize of 50µm (f4 = 260mm,
f5 = 150mm). The reflected and incoming laser beams are overlapped, forming
an optical lattice at the position of the atoms.

Aligning the Lattice

The lattice output coupler is coarse aligned with the center of the optimized MOT
by modulating the lattice laser around the F = 2 ! F 0 = 2 resonance. When the
lattice traverses through the center of the MOT, a strong in-situ modulation in
the fluorescence of the MOT on top of the fluorescence due to cooling is observed
on a CCD camera that is connected to a TV-screen. The fine adjustment of the
lattice output coupler is done by monitoring the atom number loss from the MOT
by means of absorption imaging (Sec. 5.1.3). After this the backreflected beam
is overlapped with the incoming lattice beam in the cell, and fine-aligned with

2Aspheric mode-matching lens f
2

= 6.24mm, C110TME-B, from Thorlabs.
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respect to the maximum atom number trapped in the lattice (Sec. 5.1.3).

Lattice Parameters

The optical fiber can provide up to 300 mW of power at the position of the
MOT. However, the operating power of the lattice beam is constrained by the
requirement that the trap frequency of the atoms needs to match the oscillation
frequency of the membrane, i.e., !at ⇠ !m  2⇡·270 kHz. The power of the lattice
beam on the membrane is further restricted for two reasons: the absorbance of
the membrane and the resulting heating, and by the power-dependent coupling
of the membrane eigenfrequency to the supporting frame modes, as described
in Chapt. 4. These constraints limit us to work with relatively near resonant
lattice, where the lattice power is less than 150 mW, and the detuning is |�L| 
2⇡ · 30 GHz. Another practical constraint on the lattice parameter regime is the
lattice-lifetime, which sets a lower limit on the detuning, as discussed in Sec. 5.1.5.

The reflected beam is weaker than the incoming beam due to the finite reflec-
tivity of the membrane, |rm|2 = r = 0.28, but also due to the transmission losses
in the optical components between the membrane and the atoms, which for a
single pass amount to t = 0.82. This results in a lattice potential that consists
of a modulation part on top of an o↵set, as described in Sec. 2.3. For the main
experiment, we choose w0 = 350 ± 30µm, and �L = �2⇡ · 21 GHz. For these
parameters with an incoming beam of P = 76mW, the calculated modulation
depth of the sinusoidal potential is Vmod = k

B

⇥ 290 ± 50µK resulting in a cal-
culated trap frequency of !at/2⇡ = 305± 25 kHz (Eq. 2.88), which is close to the
membrane eigenfrequency. At P = 76 mW, we typically load N = 2 · 106 atoms
into the lattice from the MOT with a temperature of T = 100µK.

Intensity Stabilization of the Lattice

The intensity of the TA output was observed to fluctuate by 2 · 10�2 (rms) for
frequencies below 10 kHz. Such power fluctuations cause fluctuations in the trap
frequency of the atoms and also in the membrane eigenfrequency !m (P ) due to
absorbance e↵ects. In addition, a change in the power impinging on the mem-
brane may result in a dramatic drop in the Q-factor of the membrane mode, as
explained in Sec. 4.2. As we want to measure a small change in the Q-factor of
the membrane due coupling to the atoms, stable laser power is necessity.

The power stabilization circuitry is based on a PI-servo amplifier design [127],
which is schematically illustrated by the gray box labeled “PI”-box in Fig. 5.6.
A small glass wedge picks up a part of the lattice beam. The picked-up power is
measured on a photodiode (PD), and the PD-current is converted into a voltage
at the input of the PI-circuitry. This voltage is then compared with the setpoint
value, and their di↵erence is fed as a correction signal with a proper gain to the
external control input of the AOM controller. The setpoint to the PI-circuitry is
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given via a linearly responding analog input, which is computer controlled and
programmed as a part of the experimental sequence.

The stabilization circuit diagram is presented in App. B. The filtering of
the power supplies of the operational amplifiers (OPAs in App. B) with high
capacitors of 100 nF is essential to reduced the supply noise. The bandwidth of
the circuit is limited to 12 kHz and the intensity stability is measured with an
independent photodiode (1 MHz) to be 1.8 · 10�4 (r.m.s).

Furthermore, we observed that the AOM controller’s power supply imprints
50 Hz noise onto the laser. In addition, the TA output has intrinsic power mod-
ulations around 1� 300 kHz depending on the exact operation setting of the TA.
Both of these intensity noise sources are suppressed by capacitive filtering.

5.1.3 Detection of the Atoms

The number of trapped atoms and their temperature are determined by standard
absorption imaging [128]. The atoms are irradiated perpendicular to the lattice-
direction with a 50µs long pulse of �+-polarized light resonant with the cycling
transition F = 2 ! F 0 = 3 and the light that has passed through the atoms is
detected on a CCD camera. To account for spatial modulations of the imaging
beam, two images are taken: one with atoms (A) and a second without (B).
In addition, a third image without the imaging beam is taken once a day that
accounts for the dark counts and stray light (C). These three images allow us
to determine the pixelwise optical density (OD). When the imaging intensity
I is considerably smaller than the saturation intensity of the atomic transition,
Is = 1.67 mW/cm2, the atoms cast a shadow onto the camera with optical density

OD = � ln
A� C

B � C
. (5.3)

The two dimensional atomic column density can then be calculated as

n (y, z) = OD (y, z) /�0, (5.4)

where �0 is the on-resonance absorption cross section. For �+-polarized light this
is given by

�0 =
3�2

2⇡
= 2.905 · 10�13 m2. (5.5)

The atom number located in an area Apixel is then calculated by summing over
all relevant pixels

N =
Apixel

�abs

X

i,j

OD (i, j) . (5.6)

The temperature of the atoms is determined by monitoring the expansion of
the thermal cloud. For a harmonic trap and a thermal cloud well above the BEC
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transition temperature, the in-trap density distribution follows the Boltzmann
distribution

n (r) = n0 exp
� 1
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✓
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, (5.7)

where r2 = x2 + y2, n0 is the peak atomic density,

n0 =
N

(2⇡)3/2�z�2
r

, (5.8)

and we have defined the cloud widths �z,r as

�2
z,r =

1

!2
z,r

k
B

T

m
. (5.9)

When the confining potential is switched o↵ at time t = 0, the cloud starts to
expand ballistically and begins to fall under gravity. The evolution of the cloud
width is defined by the Boltzmann distribution as [128]

� (t)2z,r = � (t = 0)2z,r +
k
B

T

m
t2. (5.10)

By releasing the atoms from the trap and letting them expand by a varying time-
of-flight (TOF) before imaging them allows us to determine the temperature of
the atoms.

We image the atoms along x-axis, perpendicular to the lattice propagation
axis (z), as illustrated in Fig. 5.7. We use a CCD camera from JAI with a quantum

e�ciency of 35% at 780 nm. The pixel size is
�
8.4 · 10�6

�2
m2. The imaging beam

is provided by a fiber output coupler that collimates the beam to a diameter of
8 mm with an acromatic lens of f = 40mm. We use a peak intensity of  0.2Is to
avoid saturation of the atoms. In front of the CCD camera we use two acromatic
lenses with f1 = 100mm and f2 = 150mm, resulting in a magnification of 1.28
and a resolution of 9µm.

5.1.4 Imaging of the Lattice in the Presence of the MOT

The lattice is loaded from the MOT, after which the MOT is switched o↵ and the
MOT atoms that are not trapped in the lattice, start to di↵use and accelerate
due to gravity. In order to determine the number of atoms trapped in the lattice
independently of these background MOT atoms, the background MOT atoms are
optically pumped to the ’dark’ state F = 1 before imaging, and the number of
atoms in the lattice occupying the state F = 2, N2 is measured. In an auxiliary
measurement, we determine the fraction of atoms in the lattice occupying the
ground-state F = 1, N1. The total number of atoms in the lattice is then given
by N = N1 + N2.

The MOT scatters atoms into F = 1 via non-resonant transition F = 2 !
F 0 = 2 (see the 87Rb level diagram in Fig. 5.3), which are then pumped back to
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Figure 5.7: Laser configuration for the MOT, lattice and the imaging system. The
lattice is aligned with respect to the center of the MOT and the lattice beam propagates
along the z-direction. The imaging is along the x-direction, and the 45� beams propagate
in the zy-plane in 45� angle with respet to both of the axis, as illustrated in Fig. 5.4.

the cooling cycle by the repump beam. The optical pumping rate of the MOT,
�21,MOT (F = 2 ! F = 1), is measured without the presence of the lattice by
switching the repump beam o↵ after loading the MOT for 2 s. After a varying
MOT hold time, we measure the number of atoms remaining in the state F = 2
and determine �21,MOT = 2.7 · 103 s�1. In the presence of the lattice, the total
pumping rate increases to �21,MOT+L = 4.5 · 103 s�1. Thus, by switching the
repumper o↵ for 1.5 ms, we expect to pump most of the MOT atoms (> 99%) to
the ’dark’ state F = 1 in the presence of the lattice. We do this at the end of the
MOT-loading stage.

In the absence of the repumper, the lattice beam creates a steady-state
population-distribution between the states F = 1 and F = 2. Figure 5.8 shows
a measurement of the atom number decay in the lattice imaged both with (red
datapoints) and without (black datapoints) the presence of the repumper after a
long lattice hold time of > 20 ms. A fit to either one of the data sets results in
the same exponential decay, and we determine the lattice lifetime to be 25ms in
this measurement. The single exponential decay in Fig. 5.8 indicates that mostly
lattice-bound atoms are imaged and the MOT has fallen out of the imaging re-
gion. We observe that the atom number with repumper on is 1.76 times larger,
i.e., N = N1 + N2 = 1.76N2. Thus, to determine the total atom number in the
lattice in the presence of the dark MOT atoms, we measure the atoms in F = 2
and scale the result with the measured population distribution fraction. The
number of atoms initially trapped in the lattice can be then extrapolated from
the measured lattice lifetime.
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Figure 5.8: The number of atoms remaining in the lattice in state F=2 after a hold-time
of t

hold

imaged with (red dots) and without (black dots) the repumper. Exponential fits
to the data give a same value for the 1/e- lattice decay time, namely ⌧ = 25 ms, and
indicate the initial total atom number in the lattice to be 1.6 · 106 (red fit). The lattice
detuning is �

L

= �2⇡ · 20.8 GHz.

5.1.5 Simultaneous MOT and Lattice Operation

In the atom-membrane coupling measurements presented in this Chapter, the
lattice is loaded directly from the MOT. The MOT is also kept continuously on
during the back-action measurement, such that the atoms are constantly replen-
ished into the lattice and the atomic motion is roughly in steady-state during the
measurement.

When the optical lattice beam is switched abruptly on, the membrane eigen-
frequency starts to shift. Only after the membrane is thermalized with respect
to the absorbed heat, we can measure the membrane eigenfrequency and excite
the membrane motion at this frequency, which is required for our back-action
sequence. The membrane excitation to the desired value takes about 2 s (see
Sec. 5.3). Hence, in our main coupling experiment (Secs. 5.4 and 5.5), the MOT
and the lattice are switched on simultaneously. In this way, we can excite the
membrane motion during the loading of the MOT, and simultaneously load the
atoms into the lattice.

In the absence of the lattice, we typically trap 2 · 107 (after 3 s of loading)
atoms in the MOT and the typical temperature of the MOT is around 150µK.
When the lattice is overlapped with the MOT, we observe a decrease in both
the atom number in the MOT, and the temperature of the MOT. The former is
measured to be 1 ·107 and the latter 100µK (for P = 70mW, �L = �2⇡ ·21 GHz,
w0 = 350±30µm, i.e., for the resonant lattice parameters). The number of atoms
trapped in the lattice is ⇠ 2 · 106.

77



5. Observation of Backaction

The presence of the lattice changes the MOT operation, as the lattice e↵ec-
tively detunes the MOT beams further o↵ from the atomic resonance. The lattice
beam creates a light shift of the F = 2 ground-state of

�E0 = V0/~ / P, (5.11)

where V0 is the overall depth of the dipole trap. The �E0 is on the order of
�se when the lattice power is around 70 mW. This is comparable to the absolute
detuning of the MOT beams, �MOT = �2.2 �se from the F = 2 ! F 0 = 3
transition (see Fig. 5.3). The MOT cooling rate, and consequently the final
temperature of the atoms in the MOT depends on the e↵ective detuning of the
MOT fields, �0

MOT = �E0 +�MOT, as [78]

TMOT / 1

�0
MOT

. (5.12)

Therefore, we measure lower TMOT in the presence of the lattice. On the other
hand, in the near-resonant MOT regime, the capture velocity of the MOT depends
inversely on the detuning [78]:

v
c

/ 1/(�0
MOT). (5.13)

This explains the observed drop in the atom number of the MOT in the presence
of the lattice beam.

Figure 5.9 shows an example of an absorption image of the MOT after 4 ms of
time of flight (TOF) without (a) and with (b) the lattice beam. The lattice beam
appears as a density bump in the spherically shaped MOT cloud. The lattice is
aligned to the center of the MOT.

5.1.6 Lattice Lifetime Measurements and Choosing the Detuning

Losses from the trap can be caused by heating mechanisms and scattering pro-
cesses. Contributions to heating can arise from spontaneously scattered lattice-
light photons, background gas collisions, intensity fluctuations, and the point-
ing instability of the lattice beam. The two latter contributions are minimized
by intensity stabilization of the lattice beam and robust mounting of the fiber
output-coupler of the lattice. Furthermore, a large beam waist is preferred to
make the trap less sensitive to beam pointing fluctuations due to vibrations of
the components in the beam path.

Typically, optical lattices are operated in the far-detuned regime to minimize
scattering e↵ects, which scale with detuning �L and intensity I as �sc / I/�2

L.
This requires high intensity, to obtain a large trap depth V0 / I/�L (Eq. 2.90
and Ref. [73]). However, in our experiment the lattice detuning is constrained
by the requirement of the lattice frequency, !at ⇠ !m, which essentially fixes
the ratio I/�L. In addition, we want to keep the overall power level below
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Figure 5.9: An absorption image of the MOT cloud after 3 s of loading a) without, and
b) in the presence of the lattice. For this image the repumper was not switched o↵ (see
Sec. 5.1.4). The TOF is 4 ms. Insets: blue curve is the 1D integrated atomic density,
Eq. 5.4, and red curves result from 2D Gaussian fits to the respective 2D profiles.

150 mW to avoid significant heating of the membrane due to absorbance. For
small detunings, |�L|  2⇡·16 GHz, we measure the lattice losses to be dominated
by detuning-dependent e↵ects, i.e, the spontaneous scattering events and light-
assisted collisions, resulting in a lattice lifetime < 10 ms. Thus, for the main
experiment, a higher lattice detuning of �L = �2⇡ · 20.8 GHz is chosen, where
the lattice lifetime is around 25ms.

We characterize the atom number decay in the lattice for the chosen �L =
�2⇡ · 20.8 GHz over the power regime (0...140mW). The lattice is loaded for 3 s
from the MOT, and the atom number is measured after a varying hold time of
the lattice. Typical decay curves are shown in Fig. 5.10a and b for the distinct
cases of a shallow and a deep lattice.

For shallow lattices, two di↵erent time constants are visible in the atom num-
ber decay in Fig. 5.10a, whereas the atom number decay in a deep lattice is
described by a single exponential. An exponential fit N (t) = N0e

�t/t

i is used to
characterize both the first 8� 17 ms (ti = t1, blue curve) and the last 21� 36 ms
(ti = t2, red curve) atomic decay. A summary of the fitted decay constants t1
and t2 as a function of lattice power is presented in Fig. 5.11a.

For shallow lattices, initial evaporation is observed during the first 20ms of
lattice hold time. This is mostly due to the MOT atoms that reside in the lattice
volume, but are not bound in the lattice. During the 20 ms these atoms di↵use
and drop due to gravity away from the lattice region. This initial evaporation
reduces as the depth of the potential is increased, as is visible in Fig. 5.11a. For
deep lattices, the losses are well described by a single exponential decay, and we
measure t1 ⇠ t2, as shown by the red data points in Fig. 5.11a.

Interestingly, the lattice lifetime t2 stays nearly constant when the power is
increased. Since the trap depth V0 scales linear with P , this suggests that the
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Figure 5.10: Atomic decay in the lattice for lattice power of a) 60mW and b) 99 mW
as a function of lattice hold time. The blue and red curves are single exponential fits to
the beginning and end of the atom number curve.

e↵ects contributing to heating and eventual evaporation of the atoms out of the
trap would also scale linearly. Such scaling is expected for heating due to spon-
taneous scattering. Indeed, in the main experiment, Fig. 5.24, we observe linear
temperature increase as a function of lattice power. Note that losses due to light-
assisted collisions would also increase with power, but would not be compensated
by the increasing trap depth.

The red data points in Figure 5.11b show an estimate for the initial atom
number bound in the lattice, N0. The N0 is extrapolated from the t2 fits. The
N0 increases as the lattice depth is increased and saturates to a constant value of
⇠ 1.2 · 106. This value is influenced by the MOT density. The blue data points
in Figure 5.11b show an estimate of the initial atom number within the lattice
volume as extrapolated from the t1 fits. This is the sum of the lattice-trapped
atoms and the higher-energy MOT atoms that are not trapped in the lattice.
From this we can infer the MOT density to stay roughly constant within the
lattice region over the P regime of interest.

Ground State Cooling of Atoms in the Lattice

We made initial trials on molasses cooling of the atoms in the lattice in order to
reduce the temperature of the atoms in the trap. Using an optical molasses
configuration we can cool the atoms to the axial ground state of the lattice
potential, defined by atomic temperature of T ⇠ ~!at/kB. The experimental
sequence starts with a 3 s optimized MOT phase. For a subsequent molasses
phase, the MOT magnetic fields are switched o↵, such that only the compensation
fields for the external magnetic field remain, and the MOT beams are detuned
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from �2.2 �se to �12 �se. During 4 ms of molasses phase the atoms are cooled
to 5µK. Thereafter the lattice is switched on and the molasses-cooled atoms are
loaded into the lattice.

We measured the molasses-loaded lattice lifetime ⌧ for various lattice detun-
ings as reported in Tab. 5.4. Figure 5.12 shows a typical measurement of the
atom number decay in the lattice. The lifetime of the lattice is estimated from
a single exponential decay. In comparison, Figure 5.12b shows the atom number
decay in the lattice with continuous molasses cooling. This curve is characterized
by two time constants, and we estimate the lattice lifetime to be given by the
longer time constant, ⌧cool. The initial decay constant has a value ⇠ 20 ms in all
the measurements reported in Tab. 5.4. The initial faster decay in the presence
of the molasses light may be due to light-assisted collisions as the molasses is
colder and denser than the MOT.

We did not investigate the molasses-loaded lattice performance at this stage
any further. Within our parameter regime of interest, the molasses-loaded lattice-
lifetime remains short in comparison to the ring-down time of the membrane (on
the order of seconds), which is the time scale over which we measure the op-
tomechanical coupling (as described in Sec. 5.5). Thus, for the first coupling
experiment, we decided to load the optical lattice directly from the MOT and
provide continuous MOT cooling for the atoms during the backaction measure-
ment. In this way we assure the atom number to stay in steady-state in the
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Figure 5.12: a) Lifetime measurement of the molasses loaded optical lattice. An ex-
ponential fit results in a lattice lifetime of ⌧ = 30ms. b) The lattice lifetime with
simultaneous molasses cooling. The lifetime of the molasses-cooled lattice is estimated
from the longer decay to be ⌧

cool

= 155ms. The lattice parameters in this measurement
are: P = 31mW, w

0

= 145µm, �
L

= �2⇡ · 6.3 GHz.

Power (mW) �L/2⇡ (GHz) ⌧ (ms) ⌧cool (ms)
31 -6.3 30 155
47 -9.7 46 119

71.6 -14.3 39 140
93 -18.7 66 143

Table 5.4: Molasses-loaded lattice lifetime without (⌧) and with (⌧
cool

) continuous
molasses cooling for di↵erent lattice P and �

L

. The ratio of P/�
L

is roughly fixed such
that V

0

is comparable for the various measurements.

lattice during the optomechanical coupling measurement. The continuous MOT-
cooling is simple to implement into the experimental sequence, but it comes with
a trade-o↵. The MOT-cooled atoms have a relatively high temperature in the
trap which results in broadening of the atomic resonance, as will become clear in
the following Sections 5.2, 5.4 and 5.5.

5.2 Spatial Spread in the Trap Frequencies

Due to the Gaussian nature of the lattice beam, the axial trap frequency of
the atom depends on its radial position around the potential minimum. The
MOT-cooling is not su�cient to cool the atoms to the ground-state of the lattice
potential. As a consequence, part of the atoms will oscillate further away from
the beam axis at lower trap frequencies. Before discussing the optomechanical
coupling results, it is useful to get some insight into the magnitude of the spread
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5.2 Spatial Spread in the Trap Frequencies

in the atomic vibrational frequencies in our trap. The spread in the vibrational
frequencies of the atoms, �!at, has already been introduced in Eqs. 3.33 and 3.34.
It contributes to the overall dephasing of the center of mass motion of the atoms,
which we denote �

�

(Eq. 3.20).
Figure 5.13a shows a calculation of the potential distribution for a single lat-

tice site. The calculation is done using Eq. 2.84 and assuming the following exper-
imental parameters for the Gaussian lattice beam: P = 76 mW, w0 = 370µm,
�L = �2⇡ · 20.8 GHz. The simulation also takes into account the single pass
transmission loss t = 0.82 in the optical path between the atoms and the mem-
brane that is present in the experiment. The modulation depth of the sinusoidal
potential is Vm = 260µK (Eq. 2.86) and the total potential depth is V0 = 310µK
(Eq. 2.85), where the o↵set derives from the finite reflectivity of the membrane
r = 0.28. As the potential is radially symmetric, we define r2 = x2 + y2.

The Gaussian intensity profile gives rise to a radial dependence of the axial
trap frequency, !at (r). This distribution is shown in Fig. 5.13b. We assume
the atoms are radially distributed in the potential according to the Maxwell-
Boltzmann distribution

n(r, T ) = n0e
�V (r)/k

B

T , (5.14)

where T is the temperature of the atoms. The inset in Fig. 5.13c shows ra-
dial density of atoms 2⇡rn (r) for three di↵erent atomic temperatures: T =
(100, 50, 20)µK. We normalize the total atom number to N = 2 · 106 within the
region where |V | > 1µK.

While the atoms at the bottom of the trap are expected to oscillate at the
harmonic vibrational frequency, the more energetic ones have a lower frequency,
because of the decreased curvature of the potential. The density of atoms oscil-
lating within a frequency interval d!at is given by

n (!at) =
2⇡rn (r) dr

d!at
. (5.15)

Figure 5.13c shows n (!at) for the above-mentioned temperatures. As an estimate
for the e↵ective spread in the vibrational frequencies we calculate the range �!at

which contains half of the atoms. We find �!at = 2⇡ · (148, 37, 11) kHz for
T = (100, 50, 20)µK.

This analysis shows that combination of the relatively large temperature of
the atoms together with the spatially inhomogeneous trapping potential leads to
inhomogeneous broadening of the atomic resonance. By reducing the temperature
of the trapped atoms, the e↵ect of spatial inhomogeneities can be made smaller.
In the long term we want to operate the lattice in the ground-state regime, where
the atoms have a spatial spread given by

p
~/2m!at (Eq. 2.33). In this regime,

the intensity variation of the lattice beam over the cloud of atoms is small, and
the e↵ect of �!at on the dephasing of the atoms is suppressed.
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Figure 5.13: Simulation of the radial variation in the vibrational trap frequencies for
a Gaussian lattice beam with P = 76 mW, � = �2⇡ · 20.8 GHz, and w

0

= 370µm.
a) Spatial potential distribution. b) The radial distribution of trap frequencies. c) The
e↵ective density of atoms oscillating at !

at

, when the temperature of the atoms is 100µK
(brown), 50µK (red), and 20µK (blue). The distribution is normalized to N = 2 · 106

within the region where |V | > 1µK. The colored area shows the corresponding cut-o↵ in
!
at

. Inset: the radial distribution on atoms around the potential minimum.

84



5.3 Detection of the Membrane Motion and the Ringdown Technique

5.3 Detection of the Membrane Motion and the Ring-
down Technique

5.3.1 Membrane Mounting and Vacuum System

The membrane is glued on a metallic flat spacer with a UV-curable glue by ap-
plying a minimal amount of glue between one edge of the membrane frame and
the spacer. This type of gluing procedure is critical in order to maintain the high
Q-value of the membrane (see Sec. 4.1). The metallic spacer is further screwed
onto a bigger aluminum block which is mounted with screws to a vacuum flange.
The vacuum flange encloses the top part of a 6-way cross (CF40) vacuum cham-
ber, such that the membrane plane is fixed vertically in the chamber. Figure 5.14
shows a picture of the membrane mount. The chamber has two broadband antire-

a) b)

Figure 5.14: a) A SiN membrane is glued from one corner to a metallic, ring-shaped
spacer. The spacer is then screwed to a bigger lever type of holder that is fixed to one
of the vacuum flanges. In the picture one also sees a piezo attached to the membrane
holder. b) View from the backside of the membrane holder. The SiN membrane has an
areal size of 0.5⇥0.5 mm2 and a thickness of 50 nm. The frame has dimensions of 5 mm2.

flection coated windows which are mounted on opposite sides of the membrane.
The good optical access allows us to focus a laser beam onto both sides of the
membrane and in addition image the membrane. The plane of the membrane is
tilted by 10 � with respect to the vacuum windows in order to avoid interference
e↵ects due to reflections from the windows. A vacuum of 10�7 mbar is achieved
and sustained with a standard turbo+ion pump configuration. The membrane is
at room temperature.
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Figure 5.15: The membrane motion is read out with a Michelson interferometer which
is enclosed within blue dashed line. For the read-out we use a diode laser at 825 nm
(blue line), which is fiber coupled for mode-cleaning and intensity stabilized via the pick-
up PD. It is separated from the lattice laser (red dashed) with a �/2-plate (WP), a
polarizing beam splitter (PBS) and a dichroic mirror (DM). The interferometer signal
from the photodetector (PD) is frequency-split: the low-frequency part (LP) is used for
interferometer stabilization; the high-frequency part (HP) including the membrane signal
is used for readout and a piezo (PZT) feedback drive of the membrane. The membrane
amplitude is measured with a lock-in amplifier and an oscilloscope. We can also measure
the membrane motion in the frequency domain with a spectrum analyzer. The driven
membrane amplitude is stabilized with a PI regulator and a voltage controlled amplifier
(VCA) in the feedback loop.

86



5.3 Detection of the Membrane Motion and the Ringdown Technique

5.3.2 Displacement Readout: Michelson Interferometer

We use a Michelson interferometer (MI) for read-out of the membrane motion,
where the membrane acts as an end mirror for one arm of the interferometer.
Our Michelson interferometer is illustrated in Fig. 5.15. A home-built, grating-
stabilized diode laser at 825 nm is used as a coherent light source. The beam
is coupled into a single-mode, polarization-maintaining fiber for mode-cleaning
(Thorlabs PM-780HP). Both fiber end facets are angle cleaved to avoid unwanted
reflections in the Michelson interferometer. A part of the fiber output is picked
up by a glass plate for intensity stabilization of the laser. A PI-servo amplifier
stabilizes the intensity to 2 · 10�3 (r.m.s) via the current controller of the laser
beam. The lattice beam enters the vacuum chamber from one side (red dashed
line in Fig. 5.15). The part of the lattice beam that transmits the membrane
is filtered out of the Michelson interferometer by a wave plate, polarizing beam
splitter and a dichroic mirror. In this way the transmitted lattice beam does
not interfere or cause a background on the detected signal at the MI-photodiode
(PD). A photograph of the MI is shown in Fig. 5.16.

vacuum 
chamber

membrane

MI laser
PZT mirror

PZT
lattice laser

dichroic mirror

MI PD

to atom cell

dump

Figure 5.16: Membrane module. The Michelson Interferometer (MI) is shown in the
front and the laser path of the MI is illustrated with a red line. On the left upper corner
one sees the membrane vacuum chamber. The MI laser beam is reflected from one side
of the membrane and the lattice laser (green dashed line) from the other. Part of the
lattice light transmits the membrane, which is filtered in the MI by a dicroic mirror.

The membrane motion causes a change in the relative phase between the
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two arms and thus an intensity variation which is detected on the PD. The
sensitivity to this variation depends on the path length di↵erence X and the
di↵erence in the intensities in the two arms, and the overall intensity in the
interferometer. The X will vary as a result of the temperature changes in the lab
and acoustic perturbations. In order to resolve amplitudes equal and smaller than
the thermal motion of the membrane, that is on the order of 10�12 m, we stabilize
the path length di↵erence X electronically. The interferometer is locked to the
optimum X by a piezo (PZT) that is attached to the other end mirror of the MI
(Fig. 5.15) via a PI regulator. Next we will discuss the optimal locking point for
our interferometer and the sensitivity to membrane motion. The discussion here
will follow that in Ref. [129].

The power at the PD depends on the phase di↵erence � between the two arms
of the interferometer [130, 129]

PPD =
1

2
↵P0 (1 + C sin�) , (5.16)

where P0 is the input power to the interferometer, ↵ is an attenuation of this
power due to reflections at the glass-air interfaces and due to the finite reflectivity
of the membrane. C is a contrast factor accounting for the inequality of the power
in the two arms. The factor 1

2 takes into account the fact that half of the power
is reflected back to the fiber at the beam-splitter (BS). The sinusoidal membrane
motion, xm = x0 sin!mt, will be imprinted on the phase as

� = [2 (X + xm) /�]2⇡. (5.17)

The current at the PD is given by IPD = ⌘q

h⌫

PPD, where ⌘ is the quantum
e�ciency of the PD, q is the electron charge, and ⌫ = c/� is the laser frequency.
For small membrane amplitudes, x0 ⌧ �, the current is given by [129]

IPD =
⌘q

h⌫

1

2
↵P0


1 + C sin

✓
4⇡X

�

◆
+

✓
4⇡xm
�

◆
C cos

✓
4⇡X

�

◆�
= hIPDi + Isig.

(5.18)
The third term contains the information about the membrane motion, Isig, whereas
the first and the second terms determine the mean current hIPDi, from which the
shot noise can be calculated [129]

⌦
i2
↵

= 2q hIPDi�f, (5.19)

for a measurement bandwidth �f . The signal to noise ratio can then be defined
as

S =
�hI2sigi/hi2i

�1/2
=

2⇡x0
�

N1/2
e

✓
C2 cos2 (4⇡X/�)

1 + C sin (4⇡X/�)

◆1/2

. (5.20)

where N
e

= ⌘↵P0/2h⌫�f is the number of electrons generated in the PD within
a measuring time.
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First of all, by inspecting Eq. 5.20, we see that the S scales as
p
P0. Fur-

thermore, the S depends both on the inequality of the power between the two
arms and the path length di↵erence X. Quite interestingly, if C < 1, the optimal
lock-point X is not necessarily at the middle of the interference fringe, i.e., at
X/� = 0.25. Fig 5.17 shows the mean PD current and S as a function of the
locking point X for contrast values C = 0.99, 0.8, 0.16. In order to optimize the
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Figure 5.17: a) The mean photodiode current hI
PD

i /[(⌘q/h⌫) 1

2

↵P
0

] is a sinusoidal

function of the path length di↵erence X. b) The signal to noise ratio, S/ (2⇡x
0

/�)N1/2

e

,
depends strongly on the contrast C and the locking point X. The blue, green and orange
lines are calculated assuming contrast C = 0.99, 0.8, 0.16.

S in our experiment we place an optical attenuator to the reference arm of the
MI to compensate for the unequal intensities in the two arms, mostly originating
from the membrane transmittance. In practice it is impossible to get the contrast
exactly to 1. Final optimization of the path length X can be done by monitoring
the S at the spectrum analyzer, while adjusting the DC-o↵set of the PZT mirror.
Furthermore, to reduce possible frequency noise, the MI arms should ideally have
equal lengths.

Figure 5.18 shows the Brownian motion of a membrane measured with a
spectrum analyzer. The power, P0 into the MI was 0.4 mW. The sensitivity of
our interferometer is < 10�14 m/

p
Hz. We can calculate the theoretical optimum

for our system, assuming that photon shot-noise on the PD is the limiting factor.
To compensate for the membrane reflectivity, we add an optical density to the
reference arm, such that ↵ = 0.5 and C = 0.9. Using Eq. 5.20 and assuming
P0 = 0.4 mW, � = 825 nm, ⌘ = 0.65 (BPW 34), �f = 1 Hz, and C = 0.9 we get
N

e

= 3.8 · 1014, X = 0.3� and xmin = 8.5 · 10�15 m. Our detection sensitivity is
consistent with shot-noise limited detection 3.

3The example shown in Fig. 5.18 was measured after rebuilding the interferometer in Basel.
We measured shot-noise sensitivity with the same interferometer also in Munich [43].
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Figure 5.18: An example of the Brownian motion of a membrane (blue) on the spectrum
analyzer. The input power to the MI was 0.4 mW. The red line is the photodiode signal
when there is no light in the interferometer, the yellow and green lines are the signals
produced by a single interferometer arm when the other arm is replaced by an absorbing
and non-reflecting element.

5.3.3 Stabilized Amplitude-Drive and Ring-Down Technique

The backaction of atoms onto the membrane is measured by recording a change
in the ring-down time of an initially excited membrane. We also monitor the
direct action of the membrane onto the atoms by driving the membrane with a
stable amplitude and measuring the resonant temperature increase of the atomic
ensemble. For these measurements we actively excite the membrane motion by
feeding the measured membrane oscillations back to a piezotransducer in the
vicinity of the membrane.

The membrane excitation scheme is shown in Fig. 5.15. The MI signal con-
tains information about the membrane oscillations at !m (Eq. 5.18). The MI-
signal is high-passed filtered (HP) (> 200 kHz), phase shifted and sent to the
piezo transducer (PZT) via a voltage controlled amplifier (VCA). Another part
of the high-passed MI-signal is sent to a Lock-In amplifier, where the signal also
serves as the reference oscillator. The Lock-In measures both quadratures of the
membrane motion. The information of the amplitude is sent to a PI regulator,
which actively stabilizes the drive amplitude via the VCA gain. Further details
on the circuitry can be found in Ref. [43].

The PZT is mounted on top of the membrane vacuum chamber. We also
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5.3 Detection of the Membrane Motion and the Ringdown Technique

have a piezo clamped directly to the membrane holder, as shown in Fig. 5.14,
but the electrical feedthroughs got disconnected during the vacuum assembly.
However, the high Q of the membrane makes excitation outside the vacuum
chamber possible. The typical time scale for excitation from thermal noise, xth,
to xd = 30 · xth requires < 2 s. This type of self-excitation of the membrane
motion is useful as it ensures that the membrane is always driven on-resonance
despite possible long-term drifts or the power dependence of the eigenfrequency.

To perform a ring-down measurement, the excitation feed-back is switched
o↵ by an electrically controlled relay, and the decay of the membrane amplitude
is monitored on an oscilloscope that is connected to the Lock-In. An example
of a membrane ringdown is shown in Fig. 5.19a. The backaction of the atoms
onto the membrane is observed as a faster ringdown as illustrated in Fig. 5.19b.
In principle, one could also monitor the increased damping of the membrane
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Figure 5.19: a) An example of a measured membrane ring-down on the oscilloscope.
The exponential decay is described by Eq. 2.14. b) A simple and exaggerated illustration
of the backaction measurement, where the optomechanical coupling is observed as a faster
ring-down of the membrane amplitude (see also Eq. 3.21).

in the frequency-domain on the spectrum analyzer as shown in Fig. 5.18 and
described by Eq. 2.18. However, for our experimental parameters we expect the
linewidth �m = 0.8 Hz to change by a few mHz. Such a small change would be
lost within the minimum resolution bandwidth of 1 Hz of the spectrum analyzer.
On the other hand, the high Q of the membrane makes it possible to measure
such minute changes in the Q in the time domain using the ring-down technique.
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5.4 Direct Action of Membrane onto the Atoms

In the first experiment, we study the action of the membrane onto the atoms
and use the atoms as a probe for the optomechanical coupling. The resonant
coupling is observed by monitoring the temperature increase of the atoms in the
lattice as a function of their trap frequency, !at. On resonance, when !at ⇠ !m

we observe significant heating of the atoms, which for longer interaction times
leads to evaporation of the atoms out of the trap. We call this type of resonant
energy transfer the direct action of the membrane onto the atoms. A careful
analysis of the fine details of the direct action gives valuable information about
the thermalization dynamics and the spread in the vibrational frequencies of
the atoms in the trap. Essentially, the high-Q membrane provides a narrow,
parametric drive for the atoms and can serve as a sensitive probe for the trap
vibrational modes.

5.4.1 Parametrically Driven Lattice

The membrane motion modulates the spatial position of the lattice minima and
parametrically couples to the motion of the atoms that oscillate at the same
frequency !at ⇠ !m in the trap. The atoms are not ground-state cooled and
occupy higher laying vibrational levels in the trap as discussed in Sec. 5.2. This
implies that a modulation at a single frequency will be resonant with a few trap
levels only.

The membrane eigenfrequency depends on the lattice laser power P on the
membrane, !m (P ) (see Sec. 4.2). Hence, it is useful to define the detuning of the
atomic frequency from the membrane frequency as a function of P

� (P ) = !m (P ) � !at (P ) , (5.21)

where !at (P ) is the nominal trap frequency in the center of the lattice, given
by Eq. 2.88, and !m (P ) is a measured value, according to Fig. 4.5. The power
dependence of !at and !m is illustrated in Fig. 5.20. The top axis in the fig-
ure denotes the detuning � (P ). For low lattice laser powers P , the membrane
modulation is blue-detuned with respect to !at, whereas for high P -regime the
membrane modulation becomes strongly red-detuned.

5.4.2 Experimental Sequence and Data Analysis

To study the e↵ect of the membrane oscillation onto the atoms, the membrane
is driven with a stabilized amplitude of xd = 330 pm. The lattice is loaded from
a MOT for 3 s. The MOT is switched o↵ and the lattice holds the atoms for an
additional 5ms. The temperature of the atoms both along the axial Tax and radial
Trad directions of the lattice is determined from a fit to 4 di↵erent time-of-flight
(TOF) measurements (see Sec. 5.1.3), namely to TOF values of 1, 2, 3 and 4 ms.
For each TOF value the measurement is repeated 5 times. This measurement
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Figure 5.20: Membrane eigenfrequency !
m

and the calculated nominal atomic trap
frequency as a function of power in the lattice beam. The assumed lattice parameters
are: beam waist w

0

= 350µm, detuning �
L

= �2⇡ · 20 GHz. The top axis shows the
detuning �/2⇡ = (!

m

� !
at

) /2⇡, which is nonlinear in P . The red dashed lines denote a
regime where the membrane is red-detuned with respect to the atoms and blue dashed
lines denote the blue-detuned regime.

series is then compared with a similar reference measurement series, where the
membrane is not driven, but oscillates at its thermal amplitude of xth = 12 pm.
The driven and reference measurements are done for lattice power levels between
P = 0 � 130 mW.

Figure 5.21 shows an example of an absorption image and a corresponding
2D Gaussian fit for a power value of P = 56 mW and a TOF of 3ms when the
membrane is driven. The 2D Gaussian fit has an o↵set that takes into account the
background atoms from the MOT. The fitting region is fixed with respect to the
TOF and is the same for the measurements where the membrane is driven and
undriven, allowing quantitative comparison of the atom number and temperature
of the two measurement series.

The relative uncertainties in the Gaussian widths, ��
i

/�
i

, where i = (ax, rad)
for di↵erent lattice powers are shown in Fig 5.22a and b for the reference and
driven measurements. In general, the fitting is less reliable for lower than for
higher lattice powers. This is because the background signal from the remaining
MOT atoms in the lattice region becomes relatively large compared to the small
number of atoms initially trapped in the lattice. The same reasoning holds for
longer TOFs that require larger fitting region and consequently the background
signal from the MOT is larger. All in all, the relative error stays less than
5 ·10�3 over the whole lattice power regime allowing reliable determination of the
temperature of the atoms using the Gaussian fits.

Figure 5.23 shows an example for P = 56 mW of the axial and radial widths
of the Gaussian (�ax, �rad) for the 4 di↵erent TOF measurements. Each black dot
in the figure consists of 5 overlapping, subsequently measured data points with a
relative standard deviation of less than < 0.5 %, referring to excellent short-term
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Figure 5.21: An absorption image of the initially driven lattice for P = 56mW and
TOF= 3 ms. The color bar on the left indicates the mean number of atoms per pixel.
The bottom and right panels around the image show the result of a 2D Gaussian fit along
the axial and radial lattice directions, respectively. The MOT drops along the y-direction
due to gravity and causes a non-uniform o↵set along y.

stability of the atom preparation. For the short TOF of 1 ms the distribution of
atoms closely reflects the in-trap density distribution �0, while for larger TOFs
the atomic distribution mimics the momentum distribution. A fit of the measured
� values to Eq. 5.10 gives the temperature along the axial and radial directions.
For this power level we measure Tax = 142 ± 0.2µK and Trad = 88 ± 0.1µK.
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Figure 5.22: The relative error in the Gaussian fit for di↵erent TOFs as a function of
the lattice laser power. The lines and the dots correspond to axial and radial errors. a)
Relative uncertainty of the fit when the membrane is oscillating at its thermal amplitude.
b) Relative uncertainty of the fit when the membrane is driven with a constant amplitude
of 330 pm.
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Figure 5.23: An example of the temperature determination of the atoms. 4 di↵erent
TOF measurements are used to determine the temperature of the atoms along the axial
and radial lattice directions. For each TOF value the experiment is repeated 5 times.
The red and blue lines are fits according to Eq. (5.10), and the black dots are the data
points. In this measurement the lattice power was 56 mW and the membrane was driven
at an amplitude of 330 pm.
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Figure 5.24: Direct action measurement. a) Temperature of the atoms in the lattice
along the axial T

ax

(red dots connected with a line) and radial T
rad

(blue dots connected
with a line) lattice directions when the membrane is driven. The axial and radial temper-
atures without the membrane drive, T

ax,ref

and T
rad,ref

, are shown by the red and light
blue dots without a connecting line, respectively. b) Dependence of lattice atom number
N

at

on the lattice power P , for driven and undriven membrane. The lattice hold-time in
these measurements is 5ms.

5.4.3 Result: Direct Action

The absolute temperature of the atoms for various lattice power levels in the
trap is shown in Fig. 5.24a. The detuning of the membrane eigenfrequency from
the harmonic trapping frequency of the atoms is shown on the top axis of the
figure. The membrane amplitude for the data points with drive is xd = 330 pm
and the lattice-hold time is 5 ms. When the membrane is driven, we observe a
clear resonant increase in the axial temperature Tax of the atom cloud for lattice
power levels around 40 ⇠ 80 mW. The increased Tax is accompanied by a resonant
loss in the atom number as shown in Fig. 5.24b. The radial temperature, Trad,
is less a↵ected by the membrane, but follows the same trend as Tax; a relative
temperature increase is also visible in Trad around 40 ⇠ 70 mW in comparison
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to the radial reference measurement. It is worth noting that the data for P �
106 mW for the driven membrane was measured on a di↵erent day. This explains
the small drop in the temperature profiles at P = 106mW.

In conclusion, we observe resonant energy transfer from the membrane to
the atoms when the two systems are tuned on-resonance. As the atoms are not
continuously cooled in this measurement, the direct action of the membrane is
strong enough to heat and eventually evaporate some of the atoms out of the
trap.

Evaporation and Parametric Heating

The observed shape of the resonance reflects the distribution of the vibrational
frequencies in the trap as discussed in Section 5.2. The most energetic atoms
have a much lower frequency than the ones oscillating at the bottom of the trap
because of the decreased curvature of the potential. When the membrane is
red-detuned with respect to the atoms, that is, for � < 0, the most energetic
atoms are parametrically excited and ejected from the trap, and we observe atom
number loss due to forced evaporation. These observations match theoretical
predictions that anticipate the peak in the resonance of atomic losses to occur at
lower excitation frequency than the actual harmonic, nominal frequencies [131].
This type of parametric selective excitation of the atoms has been previously
exploited for evaporative cooling of atoms in an optical lattice [132]. In contrast,
we observe that modulation frequencies resonant with the nominal harmonic trap
frequencies, i.e. � ⇠ 0, excite primarily atoms at the bottom of the trap (which
have the lowest energy), resulting in parametric heating of the ensemble, but
reduced atom number loss.

Temperature Profiles

A generic temperature increase with increasing power of the lattice beam is visible
in all the temperature profiles in Fig. 5.24a. The larger temperature for deeper
traps can be explained by the gain in the potential energy of the atoms during
loading of the optical trap [133]. Other e↵ects a↵ecting the temperature of the
atoms in the lattice are increased heating due to photon scattering at higher
lattice beam powers and possibly light-assisted collisions.

Furthermore, in Fig. 5.24a we observe that the radial and axial reference
temperatures are not equilibrated after a lattice hold time of 5 ms. The Trad,ref is
consistently larger than the Tax,ref . The temperature di↵erence, Trad,ref � Tax,ref ,
seems to scale with power. During longer hold-time of the atoms in the lattice,
collisions between the atoms thermalize the sample. This is observed in another
reference measurement where the membrane motion is thermally driven and the
lattice hold time is 18 ms. The measurement result is shown in Fig. 5.25. In this
measurement the TOF was 3ms which is long enough for the cloud expansion
to be independent of its initial size as shown in Fig. 5.23. The �ax and �rad
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are approaching each other outside the resonance regime. The thermalization
of the atoms for longer hold-times in the lattice suggests that the temperature
di↵erence observed in Fig. 5.24a is due to initial imbalance between the axial
and radial temperatures in the lattice. This may originate from an imbalance
in the radiation pressure force of the MOT along the axial and radial directions.
For example, as the MOT is operated in the presence of the lattice, spontaneous
photon scattering leading to a change in the motional state is suppressed in the
axial direction due to the tight lattice confinement. This could lead to lower axial
MOT temperatures.
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Figure 5.25: a) Axial and radial width of the cloud after an interaction time of 18ms
with a thermally driven membrane. b) The remaining number of atoms in the lattice
after 18 ms.

Brownian Motion of the Membrane

Interestingly, the resonant coupling between the atoms and the membrane is also
visible in Fig. 5.25, where the membrane is thermally driven, but the lattice hold-
time is long, 18 ms. We observe similar features than in the measurement shown
in Fig. 5.24. A clear resonant increase in the axial width of the cloud is visible
in Fig. 5.25a. The resonance is also accompanied by forced evaporation of atoms
from the trap, as is visible in Fig. 5.25b. The maximum in the axial temperature
is shifted to � < 0, and the peak in the resonance of atom loss occurs at even
larger red-detuning of the membrane drive.

Figure 5.26 shows a direct comparison of the behavior of �ax and �rad for both
5 ms and 18 ms lattice hold time for the thermally driven membrane, and a TOF
of 3 ms4. The influence of the longer hold time on the resonant axial heating is

4We made this measurement only with TOF= 3ms, as this measurement was intended for
other purpose. At that point we did not expect to see any e↵ect of the Brownian motion onto
the atoms.
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Figure 5.26: Axial and radial widths of the atom cloud in the reference TOF measure-
ment of 3 ms for lattice hold times of 5ms and 15 ms.

evident, as well as the thermalization of the axial and radial directions outside
the resonance.

Atomic Dephasing

Quantitative modeling of the data in Fig. 5.24 would have to account for trap
anharmonicity, atomic collisions, and evaporation. An estimate for the atomic
dephasing �

�

can be obtained from a Lorentzian fit to the relative axial tempera-
ture increase of the atoms due to membrane drive. Figure 5.27 shows the relative
temperature increase along the axial direction for both the 5 ms driven and 18ms
thermal measurements. We calculate the relative temperature increase along the
axial direction as Trel,5ms = Tax/Tax,ref (red datapoints). For the longer hold-time
measurement we assume the axial and radial directions to be in thermal equi-
librium outside the resonance and define Trel,18ms = �2

ax,18ms/�
2
rad,18ms (blue data

points). We fit a Lorentzian to the data

Trel / w0

1
4⇡2

(� � �0)
2 +

�
w

0

2

�2 , (5.22)

where w0 is the width and �0 is the peak position. The fits result in widths of
w0,5ms = 57 ± 3 kHz and w0,18ms = 93 ± 18 kHz for the two measurements. The
latter value is a better estimate for �

�

, as the e↵ect of evaporation in this mea-
surement is smaller. The evaporation of the hottest atoms out of the trap results
most likely in a relative temperature decrease of the ensemble and e↵ectively
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Figure 5.27: Red data points: relative temperature along the axial direction when
the membrane is driven at 330 pm. The lattice-hold time is 5ms. Blue data points:
relative temperature when the membrane oscillates at its thermal amplitude of 12 pm.
The lattice hold time is 18 ms. The lines are the corresponding Lorentzian fits to the
resonance profiles.

narrower resonance profile. In this case, �
�

� 2⇡ · (93 ± 18) kHz, can be taken as
the lower bound estimate.

Population in F=1 and F=2 states

The last remark will be on the occupation of the states F = 2 and F = 1 in the
lattice. During the lattice hold time, the repumper beam is o↵ and part of the
atoms are pumped into the state F = 1 by the lattice (see p. 77). These atoms see
a shallower trap than the atoms at F = 2, by a factor of �2/�1 and the resulting
trap frequencies are also lower by a factor of

p
�2/�1 = 0.88. The large spread

in the vibrational frequencies of the atoms and the evaporation washes out these
features from our measurement signal. For a colder atomic sample, we would
expect to see a separate resonant feature originating from the atoms at F = 1.
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5.5 Backaction of Atoms onto the Membrane

In the second experiment, we study the e↵ect of the atoms onto the membrane
and use the membrane as a probe for the optomechanical coupling. On resonance,
when !at ⇠ !m, we observe enhanced damping of the membrane, which scales
linearly with the number of atoms in the lattice. We call this type of resonantly
enhanced damping the backaction of the atoms onto the membrane. To interpret
the measurements, we develop a numerical model which can accurately predict
the broad shape of the measured resonance. The model takes into account finite
temperature e↵ects of the atoms, and imperfections of the lattice potential due
to non-Gaussian beam profile of the lattice beam.

5.5.1 Experimental Sequence and Data-Analysis

The backaction of the laser-cooled atomic ensemble onto the membrane vibrations
is observed in membrane ringdown measurements. The lattice is continuously
loaded from the MOT (Sec. 5.1.5) while the membrane is resonantly excited to an
amplitude of xd = 540 pm (see Sec. 5.3). After 3 s of MOT loading, the membrane
excitation is switched o↵ and the decay of the membrane amplitude is recorded.
During the ringdown of the membrane, the MOT is kept on and the atoms are
continuously loaded into the lattice. We perform alternating experiments with
and without atoms in the lattice, where the presence of atoms is controlled by
detuning the MOT laser frequency, while the lattice laser power on the membrane
is kept fixed. This reference measurement allows straightforward determination
of the change in the decay rate �� = �c��m as predicted by Eq. (3.18), without
being perturbed by the change in the Q-factor of the membrane with laser power
(see Sec. 4.2). The membrane used in the experiment has Q = 8.5 ⇥ 105 (Q =
1.5 ⇥ 106) for P = 0 (P = 76 mW). Furthermore, as the Q has abrupt drops at
certain P -levels due to coupling to its frame modes (see Fig. 4.7 and discussion
therein), we choose to measure at values of P , where the coupling to frame-modes
is absent.

For each lattice power we measure 2 ⇥ 550 ringdowns subsequently alternat-
ing the presence of the atoms in the lattice. In this way we can average out any
experimental drifts that occur over the course of the measurement run. One dom-
inant reason for the drifts in the decay constant �m and in the atom preparation
during this particular measurement was a drift in the room temperature of the
laboratory. During the humid and hot summer season of the measurements, the
temperature stabilization feedback gave up, and the lab temperature was drifting
by several degrees within a day. Figure 5.28a shows an example of the statistics of
one such measurement series recorded at a near-resonant power level of 82 mW.
Despite the experimental drifts visible in the data, the subsequent ringdowns
measured with atoms are consistently faster than without atoms. Also, the his-
tograms of these ringdown-sets are clearly separated with respect to their decay
rates and follow a Gaussian distribution as shown in Fig. 5.28b.
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Figure 5.28: a) The decay rate � extracted from exponential fits to individual ringdown
measurements with (blue) and without (red) atoms in the lattice. The uncertainty of fits
is on average ±0.7 mHz. b) Histogram of the decay rates with and without atoms. The
standard deviation of the distributions is 9.6 mHz (with atoms) and 9.9 mHz (without
atoms). The uncertainty of the center of the fitted Gaussian is 0.90 mHz (with atoms) and
0.58 mHz (without atoms), and the di↵erence in energy decay rate is�� = 19.2±2.1 mHz.
This data is measured for lattice power level of P = 82mW.

5.5.2 Result: Backaction

Figure 5.29 shows the change in the membrane dissipation rate due to the atoms
in the lattice as a function of lattice power P and the detuning � (Eq. 5.21). The
plotted value �� = h�c � �mi550 is the mean taken over 550 measurement runs
and the errorbar is the standard error. When the atoms are close to resonance
with the membrane, we observe an enhanced damping of the membrane motion.
The resonance in �� is broad and peaked around P ⇡ 76 mW. The full-width at
half maximum (FWHM) of the resonance is �at = 2⇡ · 130 ± 26 kHz. This is in
reasonable agreement with the observed direct action resonance in Sec. 5.4. The
lower panel in Fig. 5.29 shows the number of atoms in the lattice, which does not
change significantly around the resonance.

We observe that the resonance peak is shifted to � < 0. The shape, magni-
tude, and the position of the resonance can be explained accurately with a more
elaborate theory that includes the finite temperature of the atoms and the spatial
dependence of the trap frequency on the lattice laser intensity profile (Sec. 5.2).
The theory results in the solid curve shown in red in Fig. 5.29. The details of the
theory curve are discussed below.

In a second experiment, we measure the scaling of �� with atom number N .
The system is prepared on resonance (P = 76mW) and the number of atoms that
are loaded into the lattice is varied by changing the power of the MOT repump
laser. We observe a linear dependence of �� on N as shown in Fig. 5.30. This is
in agreement with the theory (Eq. 3.18) that predicts linear scaling with N .

In order to compare quantitatively our measurements with theory, we cal-
culate �� from Eq. (3.18). The overall atomic damping rate �at is taken as
the FWHM of the resonance and the atom number is measured to be N =
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Figure 5.29: Backaction of laser-cooled atoms onto the membrane. Top: measured
additional membrane dissipation rate �� = �

c

� �
m

due to coupling to atoms as a
function of P . The rates �

c

and �
m

are extracted from exponential fits to averaged
decay curves (2 ⇥ 550 experimental runs per datapoint). The solid line results from a
theory for a thermal ensemble in the lattice. Bottom: atom number N in the lattice
measured.

106 · (2.3 ± 0.5). For these values, the theory predicts enhanced damping by
�� = 0.023 ± 0.005 s�1 for � = 0, whereas the measured maximum value is
�� = 0.018± 0.001 s�1. The quantitative agreement of measurement and theory
is rather remarkable, as this theoretical estimate does not explicitly account for
the finite temperature of the atoms, lattice trap anharmonicity, and the spatial
variation of the lattice laser intensity giving rise to a spread in !at. These e↵ects
are only implicitly included in the measured �at.

5.5.3 Shape of the Backaction Resonance

The observed resonance is broad, shifted to � < 0, and asymmetric. It is peaked
around P ⇡ 76 mW and has another less pronounced peak at P ⇡ 110 mW. In
general, the resonance shape may be a↵ected by several factors: the lattice beam
profile and lattice alignment, laser cooling rate of the atoms, the temperature of
the atoms in the trap, and the number of trapped atoms as a function of lattice
power. We include these factors in a more elaborate theoretical model to analyze
their influence on the signal. In particular, we consider the finite temperature of
the atoms and the transverse spread in the trap frequencies originating from the
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Figure 5.30: Measured additional membrane dissipation �� as a function of atom
number N for resonant coupling (P = 76mW). The blue line is a linear fit. The observed
dependence agrees well with theory. Inset: histogram of measurements of � for N =
2.3 · 106 (red) and N = 0 (blue).

intensity profile of the lattice laser beam.

The atoms are described by a thermal density distribution n (r, P ) (Eq. 5.14)
with a temperature T (P ) in the trap. For each atom in the distribution, we
calculate !at(r) from Vm (r) and determine the corresponding membrane damping
rate within the RWA approximation as in Eq. (3.17). We set �at = �c, as the
e↵ects contributing to �

�

are now explicitly modeled. We then sum the damping
rates of all the atoms in the ensemble, and finally do this for all the lattice powers
in the experiment.

For the red theory curve in Fig. 5.29, we assume the temperature of the atoms
to be T (P ) = 100µK in the lattice potential. For simplicity, N is assumed to
be constant for all power levels of the lattice laser beam across the resonance.
The laser cooling rate is assumed to be �c = 2⇡ · 30 kHz. This is motivated by
an estimate of the sub-Doppler laser cooling rate �c ' !rec(2|�0

MOT|/�se), where
�se = 2⇡ · 6.1 MHz is the natural linewidth and !rec = 2⇡ · 3.8 kHz the recoil
frequency of the 87Rb cooling transition [78]. The MOT detuning, �0

MOT =
�2⇡ · 28 MHz, includes the light shift of the cooling transition due to the lattice
laser as discussed in Sec. 5.1.5. Notably, a change of ±2⇡ · 10 kHz in �c does not
significantly change the shape or magnitude of the theory curve. Consequently,
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within our parameter regime we may neglect the power dependence of �c.
The resulting line in Fig. 5.29 shows good agreement with the data for w0 =

370µm and N = 2.0 · 106, within the uncertainty of these parameters. By taking
the experimentally measured N (P ) and T (P ) profiles into account results only
in minute change of the simulation result. In conclusion, this analysis shows that
dephasing due to the spread in !at dominates the atomic damping �at in the
experimental realization.

Note: Validity of the RWA Approximation

The red curve in Fig. 5.29 is calculated within the rotating wave approximation
of Eq. 3.17. A simulation using the exact solution of Eqs. 3.12 that takes into
account the rotating terms is presented in Fig. 5.31 for comparison. The green
dashed line is the exact solution, where �c = 8!rec, and the black dots are result
of the exact solution taking into account the power dependence of �c(P ). The
RWA approximation describes accurately the resonance over the whole lattice
power regime.
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Figure 5.31: Comparison of the RWA approximation to the full calculation. Experi-
mental data (red stars) and simulation. Lattice parameters: w

0

= 370µm, N = 2 · 106,
T = 100µK. Red curve: RWA, assuming �
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= 8!
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. Green curve: full calculation
assuming �
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. Black curve: full calculation taking into account �
c

(P ).

Beam Profile of the Reflected Beam

In the experimental realization the beam profile of the back-reflected laser beam
deviated considerably from a Gaussian at the position of the atoms. This was
noticed during the disassembly of the experimental setup, when the setup was
prepared for the move from Munich to Basel. In the following, we investigate,
whether the feature at P ⇡ 110 mW could originate from the non-Gaussian beam
profile of the lattice beam.
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5. Observation of Backaction

The back-reflected beam profile was measured between the lens f4 and the
atom cell (f4 is shown in Fig. 5.6) by picking it up with a thin glass plate and
directing it to a beam profiler. The measured beam profile is shown in Fig. 5.32.
We observed that the exact profile of the backreflection depends strongly on
the fine-alignment of the lattice. Consequently, there is a large uncertainty on
how strong the beam distortion has been during the backaction measurement.
Fig. 5.32 shows the most Gaussian-like alignment.

Figure 5.32: Backreflected beam profile at the position of the atoms.

A Gaussian fit along the two main axes (denoted by the cross-hairs in Fig. 5.32)
gives respective diameters of 2wy =780 µm and 2wx = 570µm. Along the hori-
zontal cross-hair, which we denote as x-direction, the intensity profile consist of
two spatially separated intensity maxima. The two local intensity maxima in the
back-reflected beam will result in a lattice with two localized potential minima
and give rise to a complex profile of the vibrational frequencies !at(x, y) in the
trap.

To estimate the e↵ect of the beam distortion on the backaction resonance,
we calculate the !at(x, y) for a non-Gaussian backreflection, and determine the
corresponding membrane damping rate as described in Sec. 5.5.3. As an example,
the reflected beam is chosen to be formed by two Gaussians. These are displaced
laterally with respect to the incoming Gaussian beam by x

i

, their beam waist
is w

i

, and each of them carries a power of p
i

, where the sub-indices denote the
beam 1 or 2, respectively. The intensity of the reflected beam is (Eq. 2.82)

Irefl ⌘ |Arefl (x, y, z) |2 = rt2
X

i=1,2

|A
i

(x, y, z, x
i

, w
i

, p
i

) |2. (5.23)
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5.5 Backaction of Atoms onto the Membrane

The parameters are constrained by the total power in the reflected beam, which
is normalized to rt2P at the position of the atoms.
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Figure 5.33: a) Intensity distribution of the reflected beam at the position of the atoms,
z = 0. The The parameters used are w

0

= 350µm, w
1

= 0.2239w
0

, w
2

= 0.9836w
0

,
p
1

= 0.04P , p
2

= 96P , x
1

= �0.553w
0

, and x
2

= 0.9w
0

. The inset shows the intensity
along a line at x = 0 and y = 0. b) The resulting lattice potential has a double well
structure. The potential depth is for P = 76mW.

Even a mild distortion can cause an observable e↵ect on the backaction res-
onance. Let us consider the reflected intensity distribution shown in Fig. 5.33a.
The resulting optical potential is shown in Fig. 5.33b. We calculate the resonant
damping of the membrane for the simplified case of constant atom number and
temperature; T (P ) = 100µK, N(P ) = 2 ·106. Figure 5.34a shows the calculation
for fixed �c = 8!rec (red) and �c = 4!rec (blue). A clear dent in the signal is
visible due to the intensity profile of the lattice beam. Fig. 5.34b shows another
example, where we assume �c = 4!rec (green), and in addition take the temper-
ature dependence of the atoms on the lattice power, T (P ), into account. The
assumed T (P ) is that from the reference measurement in Fig. 5.24.

Essentially, this analysis shows that the finer details of the resonance shape
depend strongly on the exact beam shape of the lattice beam in combination
with the temperature of the atoms and the atomic cooling rate. In conclusion,
the non-Gaussian shape of the lattice beam is a likely reason for the observed
second peak at P ⇡ 110 mW in the back-action resonance.
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Figure 5.34: Simulation of the backaction signal assuming a non-Gaussian backreflected
lattice beam for a) fixed temperature T (P ) = 100µK and �

c
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(red), and �
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=
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rec

(blue); b) T (P ) that is derived from measurement and for �
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= 4!
rec

(RWA -
green, full calculation - black). The atom number in these calculations is N = 2 · 106.

5.6 Concluding Remarks

We have realized a hybrid optomechanical system composed of ultracold atoms
and a membrane where an optical lattice mediates a long-distance coupling.
Despite the enormous mass di↵erence between the atoms and the membrane,
Nm/M ' 10�8, we clearly observe the backaction of the atoms onto the mem-
brane. The measured change in the damping of the membrane and the predic-
tions of the theoretical description in Sec. 3.1 agree remarkably well, suggesting
that the theory can be used for extrapolation to optimized parameters. These
proof-of-principle experiments have inspired us to design a new, second gener-
ation atom-membrane setup, ultimately having the quantum-coherent coupling
regime as a goal.

The experiments presented in this Chapter were performed with a setup where
the optical access to the MOT chamber was rather limited. Our atomchip MOT
traps ⇠ 107 atoms and we loaded ⇠ 2 ·106 atoms into the red-detuned 1D optical
lattice. We demonstrated ground-state cooling of the atoms in the lattice with
optical molasses, but the trap lifetime with continuous molasses cooling remained
short compared to the ringdown time of the membrane. In order to overcome
this, we chose to apply continuous MOT cooling to the atoms. In this way the
number of atoms in the trap could be kept in steady-state during the ringdown
of the membrane. The observed coupling resonance was broad, 2⇡ · 130 kHz. Its
shape was dominated by the spread in the vibrational frequencies of the relatively
hot atoms in the spatially inhomogeneous trapping potential.

In the following, some improvements for both the membrane and atomic mod-
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5.6 Concluding Remarks

ule are proposed which can lead to considerable enhancement of the coupling
strength. The modularity of our setup allows us to easily modify the atom and
the membrane parts independently, and we are currently working towards imple-
menting these improvements in a new setup.

Improvements on the Atomic Module:

• Increase Atom Number in the Lattice: To increase the number of
lattice-trapped atoms, one should improve the MOT density and increase
the lattice volume [76]. One way to improve the loading of the lattice over
the full range of lattice powers, would be to optimize the MOT detuning
with respect to each of the lattice beam powers in order to compensate for
the light shift induced by the lattice beams. Furthermore, more elaborate
loading sequences consisting of ramping up the lattice power and detuning
to the desired value have been demonstrated to considerably increase the
number and lifetime of the atoms in the lattice [133].

In addition, not to be limited by the initial temperature of the loaded
atoms, more e�cient cooling technique is required. Atom numbers as large
as 3 ⇥ 108 have been prepared in the ground state of a large volume 3D
lattice using Raman sideband cooling [77].

• Reduce Spread of Vibrational Frequencies Ground-state cooling of
the atoms [77] would reduce the contributions to �at from spatial inhomo-
geneities of the trapping beam and the finite temperature of the atoms. By
shaping the beam profile of the lattice beam to be ’flat-top’-like, the e↵ect
of the spatial inhomogeneities could be reduced further.

• Sophisticated Lattice Configuration: The atoms could be confined in
the transverse direction by an additional, far detuned 2D lattice. The result-
ing three dimensional lattice isolates the atoms from each other, mitigating
trap loss due to light-assisted collisions [77]. A blue-detuned lattice could
then be used to couple the atoms to the membrane. This would suppress
e↵ects due to spontaneous emission of the atoms and thus allow for smaller
laser detuning and power.

Improvements on the Membrane Module:

• High-Stress Membranes: While performing the experiments presented
in this Chapter, we found out about the stoichiometric SiN membranes [101].
The measured absorbance of a high-stress membrane seems to be at least
two orders of magnitude lower (. 2 · 10�5) at 780 nm than that of the
low-stress membrane (1.5 · 10�3) used in the experiment (see Sec. 4.2).
Consequently, limitations on the actual cooling performance due to heating
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5. Observation of Backaction

of the membrane will be less stringent and the power incident on the mem-
brane can be increased. Operating at lattice power levels, where the power
dependence of !m (P ) and Qm (P ) is minute, sophisticated lattice loading
sequences involving ramps of P are possible.

• Cavity-Enhanced Coupling: A relatively simple trick to enhance the
coupling is to enclose the membrane inside a cavity, as discussed in theory
in Sec. 3.2, and in practice in Chapter 6.

• Reduce Bath Temperature: In the long term, one can enclose the mem-
brane module inside a cryostat to reduce the bath temperature. This is a
prerequisite to explore the ground-state cooling of the membrane with cur-
rent parameter estimates.

• Patterning of the Membrane: One can also work towards optimizing
the oscillator itself. By patterning a SiN membrane with sub-wavelength
di↵raction gratings reflectivity of 99.8% has been achieved [110, 111]. Simul-
taneously the mass of the membrane is decreased. Despite being patterned,
the membrane has a high Q of 106 at room temperature [110, 111].
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6

Experimental Setup for
Cavity-Enhanced Coupling of
Membrane and Ultracold Atoms

This Chapter discusses the experimental realization of our new, second genera-
tion atom-membrane coupling setup. The atom and membrane module designs
are based on the results and conclusions reported in Sec. 5.6. The conceptual
di↵erence compared to the coupling scheme presented in Ch. 5 is that we use an
optical cavity around the membrane. This leads to an enhancement in the atom-
membrane coupling constant g in proportion to the cavity finesse F as discussed
theoretically in Sec. 3.2. Furthermore, our single-sided cavity design allows us to
overcome the leakage of the light out of the system due to finite reflectivity of the
membrane and is expected to improve the read-out sensitivity of the membrane
motion compared to a standard Michelson interferometer.

This Chapter starts with a brief description of the new MOT in Sec. 6.1,
but the focus of the Chapter is on the implementation and operation of the
cavity-enhanced membrane module. Sec. 6.2 covers the basic principles of optical
cavities and proceeds further to explain the optomechanical properties of a cavity
that encloses a membrane in the middle (MIM-setup). Section 6.3 discusses the
MIM-cavity design and the vacuum system. Sections 6.4 and 6.5 describe the
laser system for the cavity mode matching, locking and interrogation, and Sec-
tion 6.6 explains the vibration isolation required to operate the MIM-cavity. The
optomechanical characterization measurements of the MIM-cavity are reported
in Sec. 6.7.

The complete MIM-module is designed and built from scratch as a part of this
thesis and it is now “ready to go” for first atom-membrane coupling experiments.
As an outlook, I discuss our preliminary measurements on sympathetic cooling
of the membrane mode via the laser-cooled atoms in Sec. 6.8. The e↵ect of the
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6. Setup for Cavity-Enhanced Coupling

atoms onto the damping of the membrane is observed to be 104 times larger in
the new setup than in the first, free-space coupling setup, presented in Sec. 5.5.
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6.1 Atomic Module Design

6.1 Atomic Module Design

The atomchip-MOT used in the free-space experiments in Ch. 5 was originally
designed and used for micrometer-scale quantum optics experiments with a BEC
on a chip [120, 122]. The chip-MOT design has a limited optical access and the
MOT can maximally capture a few times 107 atoms. For the new experiment
we decided to set up a standard three-dimensional (3D) MOT. The new MOT
design implements the suggested improvements on the atomic module that are
discussed in the conclusions of Sec. 5.6. It was built up by Andreas Jöckel, and
the details of the MOT construction and operation will be found in his thesis.

a) b)

1 cm

Figure 6.1: a) The second generation MOT layout. The atoms are first loaded in a 2D
MOT (cage colored green, on the left of the figure) and then transported with a push
beam into the main 3D MOT chamber (on the right). The MOT coil-cage is colored
magenta around MOT chamber. The main MOT chamber is casted out of glass for
maximum optical access. The red laser beams impinging the cell are for MOT cooling,
and the blue beams illustrate a possible configuration for the transverse lattice for tighter
confinement of the atoms. The green lines illustrate the optical lattice beam, and also
any other possible laser beams that may be implemented in the future for probing and
controlling the atoms. b) A photograph of the actual MOT cloud inside the glass vacuum
chamber.

The MOT-setup is based on a so-called 2D+3D MOT configuration [134]. An
illustration of the setup is shown in Fig. 6.1a. The Rb atoms are first captured in a
2D MOT from background pressure. The atoms are then transferred with a push
beam via a di↵erential pumping hole to a 3D MOT chamber. Such a sequence
enables higher loading rate of the 3D MOT (1.6 ·109 atoms/s) compared to direct
capture from background pressure (Sec. 5.1.1). In addition, the lifetime of the
atoms in the trap will be longer owing to a lower background pressure in the
main MOT chamber that is around 1 · 10�10 mbar. The new MOT operation
is currently being optimized. So far we have measured MOT lifetimes up to
10 s for an ensemble of 2 · 109 atoms. The number of atoms in the MOT is two
orders of magnitude more than previously. After molasses cooling the atoms
have a temperature of 15µK. A photograph of a MOT inside the glass chamber
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6. Setup for Cavity-Enhanced Coupling

is shown in Fig. 6.1b.
The optical lattice (which is illustrated with the beam colored green and

traversing the glass cell in Fig. 6.1a) is implemented using a similar beam path
and beam parameters as in the free-space experiment, see Sec. 5.1.2. The beam
waist of the lattice is set to w0 = 350µm as before, but we plan to experiment
with a smaller detuning of the lattice beam, �L, which requires less intensity. The
optimization of the optical lattice is work in progress. At the moment we load
⇠ 4 · 107 atoms to the lattice (� = 780 nm, �L = �2⇡ · 20 GHz , P = 70 mW).
We expect to increase this number into the 108 regime. Furthermore, we are
planning to implement step by step the improvements on the lattice configuration
as proposed in Sec. 5.6. These include a 2D lattice for additional transverse
confinement of the atoms, a blue detuned lattice, and an integrated Raman-
sideband cooling scheme.

6.2 Theory: Membrane Inside a Cavity

This section starts by describing the general properties of optical cavities that are
required to understand the more complex cavity operation when a thin, partially
reflecting membrane is placed in the middle of the cavity (MIM-system). The
simplest type of an idealized optical cavity consists of two parallel, planar mir-
rors. This model provides an easy understanding of the axial modes of a cavity.
A practical cavity consisting of non-planar mirrors has in addition a set of trans-
verse modes. I derive these for the experimentally relevant case of a cavity with
spherical mirrors. Finally, in Sec. 6.2.2, I describe the optomechanical properties
of such a cavity when it encloses a membrane in its middle. The discussion of the
MIM-system is restricted to the non-resolved sideband regime (!m ⌧ �!), and
considerations on the optimal cavity-operation regime for the atom-membrane
experiment are discussed.

6.2.1 Optical Cavity Basics

Longitudinal Modes of a Simple Fabry-Pérot Cavity

Let us start by considering a cavity consisting of planar mirrors spaced by a
distance Lcav; the Fabry-Pérot cavity. The optical cavity modes can be calculated
using Maxwell’s equations. A monochromatic light wave of frequency ! inside
the cavity can be written in terms of its complex wavefunction [74]

E(r, t) = A(r)ei!t (6.1)

The complex amplitude A(r) satisfies the Helmholtz equation, i.e., r2A(r) +
k2A(r) = 0, where k = !/c and c = c0/n is the speed of light in the resonator
medium with refractive index n, and c0 is the speed of light in vacuum. The cav-
ity modes are solutions to the Helmholtz equation constrained by the boundary
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Atrans
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Figure 6.2: a) Fabry-Pérot cavity consisting of two parallel mirrors with amplitude
reflectivities r

1

and r
2

. The spacing between the mirrors is L
cav

. The incoming wave
is a plane wave. b) A cavity with spherical mirrors supports Laguerre-Gaussian and
Hermite-Gaussian modes. In order to mode-match the incoming laser beam into the
desired cavity mode, the incoming beam should also occupy the respective spatial mode.

conditions set by the two mirrors. For perfectly reflecting metallic mirrors, the
field at the mirrors must vanish. The standing wave

A(r) = A
q

sin(k
q

z), (6.2)

where A
q

is a constant, satisfies these conditions when k = k
q

= q⇡/Lcav, where
q 2 1, 2, 3, .... This is equivalent to the condition that the round-trip phase �tr

acquired by a resonant wave has to satisfy �tr = 2kLcav = q · 2⇡, so that it
will reproduce itself after each round-trip. Consequently, the solutions for the
eigenfrequencies of the resonator are ⌫

q

= qc/2Lcav. These axial modes are
spaced by the free spectral range (FSR)

FSR =
c

2Lcav
. (6.3)

The cavity losses will change the amplitude of the circulating field inside the
cavity, and also relax the strict condition on the frequencies ⌫

q

permitted to exist
inside the cavity. Let us consider mirrors with finite amplitude reflectivities of
r1 and r2 as illustrated in Fig. 6.2a. The corresponding mirror transmittances

are t1,2 =
q

1 � r21,2 � ↵2
m,1,2, where ↵2

m,1,2 is the power transmittance loss in

the mirrors. Furthermore, a real resonator has always additional loss due to
absorption or scattering losses in the cavity medium/elements inside the cavity,
for example. Any sort of extra loss is modeled by an attenuation coe�cient ↵0,

and we define a round-trip gain in the resonator as h (!) = r1r2e
�2↵

0

L

cav

�i

2!L

cav

c .
Let us assume an incident electric field Ainc on the first mirror, as in Fig. 6.2a.
Consequently, after m round-trips the circulating amplitude has a value [135]

Acirc =
X

m

hmit1Ainc ⇡ it1Ainc

1 � h
, (6.4)
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where the last approximation holds when m ! 1. Thus, the amplitude of the
circulating field is related to the amplitude of the incoming field as

Acirc

Ainc
=

it1
1 � h

. (6.5)

Similarly, the transmitted and reflected fields can be written as

Atrans

Ainc
=

�t1t2p
r1r2

p
h

1 � h
⌘ tcav (!) , (6.6)

and
Aref

Ainc
= r1 � t1

2

r1

h

1 � h
⌘ rcav (!) , (6.7)

which define the amplitude reflection rcav (!) and transmission tcav (!) of the

cavity. The corresponding intensities are simply given by Icirc/Iinc =
���Acirc

A

inc

���
2
,

Itrans/Iinc =
���Atrans

A

inc

���
2
, and Iref/Iinc =

���Aref

A

inc

���
2
.

Figure 6.3a shows the calculated intensity transmission and reflection of a
symmetric Fabry-Pérot cavity consisting of two mirrors of r1 = r2 = 0.96. The
transmission and reflection of the cavity consist of sharp resonance peaks sep-
arated by one free spectral range (Eq. 6.3). On-resonance, the transmitted in-
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Figure 6.3: Typical frequency response of an optical cavity. The power of the trans-
mitted (red solid line) and the reflected (blue dashed line) fields are plotted against
the frequency of the incoming light in units of FSR for a) a symmetric cavity with
r
1

= r
2

= 0.96. b) an asymmetric cavity r
1

= 0.80, r
2

= 0.98. The additional cavity loss
and mirror transmittance loss are assumed to be negligible, i.e., ↵

0

= 0, ↵2

m,1,2

= 0.

tensity is maximum, and in this specific case equal to the incoming intensity.
The reflected intensity is zero. This is an example of impedance matching: when
r1 exactly equals the additional loss terms given by

�
1 � ↵2

m,1

�
r2e

�2↵
0

L

cav , the
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6.2 Theory: Membrane Inside a Cavity

reflected field (Eq. 6.7) becomes zero exactly on resonance. In a real experiment
perfect impedance matching is hard to achieve. On the other hand, in our experi-
ment we intentionally use a single-sided cavity design, that is optimized to reflect
most of the light back to the atoms, and at the same time minimize the resonant
transmission. By choosing the reflectivity of the first mirror lower, the fraction
of reflected and transmitted light can be tuned arbitrarily. Fig. 6.3b shows an
example of a single-sided cavity, where r1 = 0.80, r2 = 0.98.

The bandwidth of a cavity is defined as the full width at half maximum
(FWHM) of the intensity transmission spectrum

Itrans (!)

Itrans (!)
=

����
Atrans

Ainc

����
2

=
t21t

2
2

r1r2

|h (!)|
|1 � h (!)|2 , (6.8)

and it is given by

�! =
2c

d
arcsin

"
1 � h (!q)

2
p
h (!q)

#
⇡ c

d

1 � h (!q)p
h (!q)

, (6.9)

where h (!q) = r1r2e
�2↵

0

L

cav and the last approximation holds when h (!q) ! 1.
The quality, or resolving power, of the cavity is expressed in terms of finesse F as

F =
⇡
p
h (!q)

1 � h (!q)
⇡ 2⇡

FSR

�!
. (6.10)

It is worth noting that in parallel to �! the literature often uses the amplitude
decay rate,  = �!

2 ⇡ ⇡FSR
F . It is the half width at half maximum (HWHM) of

the resonance.

Finally, the phase of a field A (r) is in general given by

✓ (!) = tan�1 Im (A (r))

Re (A (r))
. (6.11)

The phase of the transmitted and reflected cavity fields has a maximum gradient
on resonance with respect to the incoming field. In particular, in our atom-
membrane experiment, we are interested in the phase gradient of the reflected
field A

ref

A

inc

with respect to the incominf field on-resonance (Eq. 6.7), which for
F � 1 can be approximated simply as

@✓ref (!)

@!
|
!=!

q

⇡ � 2F

⇡FSR
. (6.12)

Importantly, the phase gradient scales linearly with F. Figure 6.4 shows the
reflected intensity Iref (!) and ✓ref (!) a for a single sided cavity.
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Figure 6.4: The phase of the reflected field ✓ changes by 2⇡ over cavity resonance and it
has its maximum gradient on-resonance (red line). The width of the reflection resonance
(blue line) and the steepness of the phase-gradient slope are defined by the finesse of
the cavity. Here we assume lossless mirrors of r
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= 0.80, r
2

= 0.98 as in Fig. 6.3b, and
↵
0
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Transverse Modes

The description above was limited to plane waves and cavities consisting of pla-
nar mirrors. In practice, it is unfavorable to make a cavity of planar mirrors,
as they have to be perfectly aligned with respect to each other. Furthermore,
the incoming laser beam should be a perfect plane wave, which would require
infinitely large mirrors for high-performance. Any deviations from this ideal case
causes the light to escape the optical resonator. In most cases, spherical mirrors
are used to make the cavity stable. A cavity consisting of spherical mirrors is
illustrated in Fig. 6.2b. The condition for a cavity of length d to be stable is [74]

0 
✓

1 +
Lcav

C1

◆✓
1 +

Lcav

C2

◆
 1, (6.13)

where C1,2 are the radii of curvature of the cavity mirrors. Planar mirrors have
C = 1, convex mirrors C > 0 and concave mirrors C < 0. Our science cavity is
a symmetric resonator, consisting of two concave mirrors with equal C. Further-
more, the science (lattice) beam coupled into the cavity has a nearly Gaussian
intensity profile defined by Eq. 2.80. In addition to a discrete set of longitudinal
modes, the cavity will now support also a set of transverse modes.
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6.2 Theory: Membrane Inside a Cavity

A mode of a resonator is a self-consistent field configuration. Thus, in order
for the Gaussian beam to be resonant with the cavity, its wavefront radius of
curvature R(z) must match the radius of curvature of the mirrors C at the posi-
tion of the mirrors. This means that the incident beam must match the Rayleigh
length of the cavity [136],

zr,cav =

p
g1g2 (1 � g1g2)

g1 + g2 � 2g1g2
Lcav (6.14)

where g1,2 = (1 + d/C1,2). This is illustrated in Fig. 6.2b. In addition to such a
spatial mode matching requirement, the phase change of the Gaussian beam per
round-trip in the cavity must be a multiple of 2⇡ on resonance. This means that
�tr = 2 (kd +�⇠) = q · 2⇡, where �⇠ is the round-trip Gouy-phase of a Gaussian
beam. Thus, going from a simple plane waves picture to a Gaussian picture, the
free spectral range stays the same, but only the absolute resonance frequency
shifts by �⇠ · FSR/⇡.

The Gaussian cavity mode is the lowest order spatial solution to the wave
equation. The higher-order modes can either take the form of Laguerre-Gaussian
or Hermite-Gaussian modes. The former ones require spherical symmetry, whereas
the latter are more common as they exist in cases where the symmetrical geom-
etry is broken. Although these modes have the same wavefront as the Gaussian
beam, their amplitude distribution di↵ers. The resonance frequencies of these
modes depend on the mode indices (l,m) as [74]

⌫
l,m,q

= q · FSR + (l + m + 1)
�⇠

⇡
· FSR. (6.15)

Some of the lower order cavity modes are shown in Fig. 6.18a that can be also
observed with our experimental cavity. If the mode matching is done carefully,
as discussed in Sec. 6.4.2, almost all of the incident power can be coupled into
the desired mode.
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6.2.2 Membrane in the Middle of a Cavity

A thin membrane inside the cavity will modify the cavity resonances in a non-
trivial way. Next we solve for the steady-state intracavity fields and optomechan-
ical coupling for a system where the membrane is placed in the middle of the
cavity (MIM). We find out that interference e↵ects inside the cavity will lead to a
dependence of the circulating, transmitted and reflected fields on the membrane
position. In the case of a single-sided cavity, the cavity finesse F will also depend
on the membrane position.

6.2.2.1 Optomechanical Coupling

The derivation here follows that in [105] and is generalized for our case of a single-
sided cavity. A dielectric membrane is placed in the middle of the cavity as shown
in Fig. 6.5. The membrane has a thickness of dm and complex index of refraction
nm. The complex-valued amplitude reflection and transmission coe�cients for

Ain

Aref

A1

A2

A3

A4

Atran

r1,t1 r2,t2

L+zm

rm , tm

L-zm

Figure 6.5: Membrane-in-the-middle cavity geometry. A membrane of thickness d
m

has amplitude reflection and transmission coe�cients of r
m

and t
m

, respectively. We
describe the system in terms of left- and right-going plane-waves. The z

m

is the position
of the membrane with respect to the center of the cavity.

the dielectric membrane can be written as

rm =

�
n2
m � 1

�
sin knmdm

2inm cos knmdm + (n2
m + 1) sin knmdm

(6.16)

tm =
2nm

2inm cos knmdm + (n2
m + 1) sin knmdm

. (6.17)

Note that when nm is real, then |rm|2 + |tm|2 = 1. We want to solve the elec-
tric field amplitudes inside and outside the cavity. In the center of the cavity
the Gaussian cavity mode can be well approximated to have planar wavefronts
parallel to the membrane surface, and a plane-wave description is su�cient to
describe the system. The set of equations for the field amplitudes as illustrated
in Fig. 6.5 is

A1 = it1Ain + r1A2e
ik(L+z

m

) (6.18)
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A2 = rmA1e
ik(L+z

m

) + itmA4e
ik(L�z

m

) (6.19)

A3 = itmA1e
ik(L+z

m

) + rmA4e
ik(L�z

m

) (6.20)

A4 = r2A3e
ik(L�z

m

) (6.21)

Aref = it1A2e
ik(L+z

m

) + r1Ain (6.22)

Atrans = it2A3e
ik(L�z

m

) (6.23)

where L ± zm is the length of the cavity formed on the left or right side of the
membrane and zm is the position of the membrane with respect to the center of
the cavity. The total length of the cavity is Lcav = 2L + dm ⇡ 2L. A translation
of the membrane by zm will detune the MIM-cavity. By solving the Eqs. 6.18-
6.23 we obtain the variation in the cavity resonance frequency as a function
of membrane position. In practice, we are interested in the case, where the
membrane absorbance is small and the cavity finesse is high, F � 1. For the
case where membrane absorption is neglected, Im (nm) = 0, the solution has an
analytical form [105]

!cav (zm) = FSR
⇥
2�r + 2 cos�1 (|rm| cos (2kzm))

⇤
, (6.24)

where �r = arg (rm). A theoretical calculation for the cavity eigenfrequencies is
shown in Fig. 6.6 for membrane reflectivities of rm = 0.46 (blue), 0.8 (green),
and 1 (red). For |rm| ! 1 we encounter the case of two separate cavities, each of
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Figure 6.6: A plot of the theoretical variation in cavity resonance frequency !
cav
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)
as a function of membrane position z

m

. The cavity resonance !
cav

/2⇡ is plotted in units
of the empty cavity FSR. The di↵erent curves represent di↵erent membrane reflectivities:
r
m

= 0.46, 0.8, 1 for blue, green red.
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6. Setup for Cavity-Enhanced Coupling

which has a FSR of twice the original cavity. On the other hand, for |rm| ! 0
we naturally encounter the case of a single, empty cavity.

The optomechanical coupling constant of the membrane to the cavity field
is defined as Gopt = d!cav/dzm (Eq. 2.61). The coupling vanishes when the
membrane is placed at the node, zm = 2q · �

4 , or anti-node, zm = (2q + 1) �

4
(q ✏Z), of the cavity field, and Gopt has a maximum when the membrane is
placed onto the slope of the cavity field, half between the node and antinode. In
addition, Gopt scales with the reflectivity |rm|. For |rm| ⌧ 1, the optomechanical
coupling reduces to

Gopt ⌘ @!cav

@zm
⇡ FSR · 4k |rm| sin (2kzm) , (6.25)

and the cavity resonance has a sinusoidal dependence on the membrane position.

6.2.2.2 Membrane Absorbance

Membrane absorbance adds to the overall loss of the cavity. This results in
a modified finesse (Eq. 6.10) as a function of the membrane position zm. The
absorbance loss is essentially proportional to the intensity of the cavity field at the
position of the membrane. Consequently, it has its minima and maxima, when
the membrane is placed on an antinode or node of the cavity field. Figure 6.7
shows a calculation of the variation in F (zm) for di↵erent membrane absorbances
Im(nm). The finesse is solved numerically from the width of the transmission
resonances. In this example we use similar parameters as those in Ref. [105] and
find that our numerical calculations are consistent with the results in Ref. [105].
The cavity parameters used for the calculation are: r1 = r2 = 0.99991 and a
power transmission loss of ↵

m,1,2 = 1.52 · 10�4 in the mirrors is assumed, giving
t1 = t2 = 5.28 · 10�3. These parameters give an empty cavity finesse of 1.7 · 104.

Membrane absorbance of Im (nm) = 1.5 · 10�4 (� = 1064 nm) for a low-stress
SiN membrane has been detected with a high finesse cavity of F = 1.65 ·104 [105].
In our experiment, we use high-stress SiN membranes for which we measure the
absorbance to be Im (nm) . 2 · 10�5 at 780 nm (Sec. 4.2). Absorbance values of
Im (nm) = 0.6 · 10�5 at 935 nm [101] and Im (nm)  1.5 · 10�6 at 1064 nm [102]
have been reported previously. In our experiment, we work with a relatively low
finesse cavity (F < 300). The maximum deviation of the finesse for an empty
cavity of of F ⇠ 150 due to membrane absorbance of Im (nm) = 1.0 · 10�5 is
�F (zm) /F (zm) ⇠ 9 · 10�4.

6.2.2.3 Interference inside MIM-Cavity

The cavity reflection and transmission are modified as a function of zm due to
interference of the light circulating in the left and right halves of the cavity as
illustrated in Fig. 6.5. It is important to distinguish interference e↵ects from the
absorbance of the membrane, or any other loss mechanisms present in the cavity.
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Figure 6.7: The calculated cavity finesse as a function of membrane position for various
values of membrane absorbance. The membrane thickness is d

m

= 50 nm and the ab-
sorbance is Im (n

m

) = 1.5 · 10�3 (green), Im (n
m

) = 1.5 · 10�4 (red), Im (n
m

) = 1.5 · 10�6

(light blue), and Im (n
m

) = 0 (blue). When n
m

is complex, the intracavity photons can
be lost to the membrane absorption. This additional loss process lowers the cavity finesse
by an amount proportional to the overlap of the cavity mode with the membrane, giving
rise to the dips in the finesse. For a non-absorbing membrane the finesse is independent
of z

m

has the same value as an empty cavity (blue line).

One way to qualitatively describe the MIM-system is to think of it in terms
of two subcavities. Let us assume one of the subcavities is resonant with the
light field, and call it CAV1, and the other one, CAV2, is detuned somewhere to
the slope of the subcavity resonance. Consequently, the detuned CAV2 will have
a smaller circulating intensity. As the light leaking out of the resonant CAV1
transmits the CAV2, it will interfere with the light field in the CAV2. This
leads to a modified overall transmittance. If the intensity in the CAV2 is small
compared to the intensity in CAV1, transmission through the CAV2 will mostly
cause a phase shift on the light field. The phase shift depends on the membrane
position with respect to the cavity mode, i.e, on the detuning of CAV2. This
simple picture gives also intuition why the cavity eigenmodes are modified by the
membrane.

When the cavity finesse is high, both interference and membrane absorption
will contribute to the modulation in cavity transmission and reflection as a func-
tion of membrane position. The calculated transmission through the symmetric,
high finesse (F = 1.8 · 104) cavity introduced earlier is shown in Fig. 6.8a for
di↵erent membrane absorbances. The transmission is maximum, when the mem-
brane is on a node of the field, because absorbance loss is minimized. On the

123



6. Setup for Cavity-Enhanced Coupling

0

0.005

0.01

0.015

0.02

0.025

I tr
an
s/
I in
c

 

 

z
m

�O�� O��O���O�� �

a)

0.75

0.8

0.85

0.9

0.95

1

I re
f/I
in
c

 

 

z
m

�O�� O��O���O�� �

b)

1.5-3
1.5-4
1.5-6
0

Im(nm)

Figure 6.8: Resonant a) transmission and b) reflection of a symmetric MIM-cavity
for various values of Im (n

m

). The numerical simulation assumes cavity parameters of
r
1

= r
2

= 0.99991, � = 780 nm, t
1

= t
2

= 5.28 · 10�3; and membrane parameters of
d
m

= 50 nm, Re (n
m

) = 1.98, Im (n
m

) = 1.5 · 10�3 (green), Im (n
m

) = 1.5 · 10�4 (red),
and Im (n

m

) = 1.5 · 10�6 (light blue), and Im (n
m

) = 0 (dark blue).

other hand, the resonant transmission has pronounced dips when the membrane
is away from a node. As the transmission dips derive from absorption, they get
more pronounced as the Im (nm) increases. Note that even if the membrane is
non-absorbing, the transmission is modulated due to interference e↵ects in the
two sub-cavities.

The phase of the light that has been circulating inside the cavity is a↵ected
by the membrane, whereas the phase of the directly reflected part is not. The
reflected light will interfere with the light directly reflected from the left-hand end
mirror resulting in the signal in Fig. 6.8b. The membrane absorption will lead
to an asymmetric dependence of the reflected intensity on membrane position.
Such interference e↵ects have been confirmed by measurements [100].

In the case of an asymmetric cavity, where r1 ⌧ r2, the interference e↵ects
lead to a more pronounced dependence of Itrans and Iref on zm than in the sym-
metric case. Let us next consider our experimental parameter range. We assume
nm = 2.2+i1.5 ·10�5 for the high-stress membrane and r2 = 0.99991 for the high-
reflectivity end-mirror, and vary the input mirror reflectivity r1. In addition to

membrane absorbance loss we assume t1,2 =
q

1 � r21,2, i.e., lossless mirrors. The

transmitted and reflected intensities for various r1 are shown in Figure 6.9a and
Figure 6.9b. When the membrane is placed in the middle of a cavity field slope at
zm = ��/8, the transmitted intensity has a maximum and the reflected intensity
has a minimum. The situation is reversed, when the membrane is placed onto
the opposite slope at zm = �/8.

The absorbance e↵ects of the membrane are negligible in the cavity signal
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cavity as a function of the membrane position z
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The di↵erent colors (blue, green, red) correspond to input coupling mirror reflectivities
of r

1

= (0.96, 0.993, 0.995). The back mirror of the cavity has r
2

= 0.99991.

in Fig. 6.9 and do not contribute significantly to the cavity finesse. A detailed
analysis reveals feeble asymmetry in the reflected signal, but its e↵ect is di�cult
to observe in an experiment. However, the calculations predict that the finesse is
a function of zm for an asymmetric cavity, as shown in Fig. 6.10a. The finesse is
defined here numerically from the width of cavity transmission peaks according to
Eq. 6.10 as F (zm) = 2⇡FSR/�! (zm), where FSR is the empty cavity free spectral
range. The modulation in the finesse derives from interference e↵ects inside the
MIM-cavity and is in contrast to the case of a symmetric cavity, where a non-
absorbing membrane in the middle of the cavity does not influence the finesse (see
Fig. 6.7). The F (zm) obtains its minimum and maximum when the membrane
is placed at the opposing slopes of the cavity field, at zm = ±�/8. Furthermore,
the maximum finesse at zm = ��/8, Fmax is larger than the empty cavity finesse
which is depicted by the dashed horizontal lines in Fig. 6.10a. In general, the
relative modulation in the finesse �F/Fmax increases as r1 decreases, i.e., the
more asymmetric the cavity is. In Ref. [109] it is found out that modulation in
the finesse can also be observed in a symmetric cavity, when the membrane is
not in the middle of a cavity.

6.2.2.4 Cavity for Atom-Membrane Experiment

In the atom-membrane experiment, we operate the MIM-cavity on resonance such
that the light that has interacted with the atoms will be enhanced inside the
cavity. The membrane is placed onto the slope of the resonant cavity field, where

125



6. Setup for Cavity-Enhanced Coupling

0

200

400

600

800

1000

1200

z
m

Fi
ne

ss
e

íλ/2 íλ/4 0 λ/4 λ/2
í��

í�

í�

í�

í�

0

2

4
x 10í�

z
m

∆T
 [r

ad
/p

m
]

íλ/2 íλ/4 0 λ/4 λ/2

a) b)

 0.96
 0.99
0.995

r1

 0.96
 0.99
0.995

r1

Figure 6.10: The calculated F as a function of z
m

for various r
1

= 0.96, 0.99, 0.995.
The cavity end mirror has r

2

= 0.99991. Interference e↵ects inside the cavity lead
to a variation in the finesse as a function of z

m

. F is maximum at the slope z
m

=
��/8, and minimum at the opposing slope z

m

= �/8. The finesse of a MIM-cavity can
increase beyond its the empty-cavity value, which is depicted by the horizontal lines for
the corresponding reflectivity. b) The phase shift of the reflected beam �✓ due to a
displacement of the membrane by one picometer. The |�✓| has maximum at the same
point as F, as expected.

its coupling to the cavity field Gopt (zm) is maximized. We use a single-sided
cavity, where the back-mirror is chosen to have as high reflectivity as available
r2 ! 1 in order to maximize the reflection. The front mirror reflectivity r1 is
adjusted to match the desired F. The F (zm) depends on the membrane position
and has a minimum and a maximum at the opposing slopes of the cavity field
which must be taken into account when choosing the desirable r1. In general, we
use simulations to determine the desired cavity finesse as discussed in Sec. 3.2,
and from this determine the required r1.

Figure. 6.10b shows the absolute phase change for the reflected field �✓ if
the membrane is displaced by xm = 1pm at zm, when the cavity is operated
on resonance. The �✓ results in translation of the standing wave outside the
cavity, and consequently couples to the atoms trapped in this standing wave. For
small displacements of the membrane (xm ⌧ �) placed on the slope of the cavity
field, the membrane-atom coupling scales with linearly with F · xm according to
Eqs. 6.12 and 6.25.
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6.3 Cavity Construction and Vacuum System

6.3 Cavity Construction and Vacuum System

6.3.1 Design Considerations

The MIM-cavity construction is required to be passively stable and vacuum com-
patible. Furthermore, one should be able to align the membrane plane with
respect to the cavity axis and position the membrane inside the cavity with an
axial precision ⌧ �. To gain some experience with a MIM-cavity, we experi-
mented with an existing symmetric InVar cavity of F ⇠ 800. The cavity length
was 5 cm and the mirror radius R = 30 mm resulting in a waist size of 50µm
on the membrane. The membrane was glued on top of a long lever arm which
reached inside the cavity. The lever was on top of a vertical piezo stack relatively
far from the cavity. We found the criteria for the mechanical stability of the
membrane holder and the mirror holders to be stringent. The long cavity body
su↵ered also from mechanical instabilities and its alignment was elaborate. Based
on this experience, the most important design considerations of the MIM-cavity
discussed in this Chapter are the following:

• A relatively short cavity: easy to align, rigid, not so sensitive to thermal
drifts as a longer cavity. However, the cavity length should be long enough
to allow us to scan the laser over a few FSR of the cavity. The mode-hop-
free tuning range of the laser is ⇠ 30 GHz.

• Membrane positioning system should be rigidly attached to the cavity
mount. The membrane should be easy to place at the center of the cavity
and to align perpendicular to the cavity mode with high precision. Fur-
thermore, the positioning system should allow to translate the membrane
along the cavity axis.

• Cavity mount, or the membrane positioning system, should not support any
low frequency modes or have resonances close to the membrane frequency.

• The complete MIM system (i.e., cavity holder, mirrorholders, membrane
holder and positioning system) should be passively stable against thermal
drifts.

• The cavity mirrors should be rigidly mounted on axis.

• The cavity mirrors and the membrane should be easily exchangeable if
desired.

• The mirror radius and cavity length should be chosen such that the waist
size of the cavity mode on the membrane is smaller than the lateral dimen-
sions of the membrane, w0 ⌧ lm to avoid clipping of the cavity beam on
the membrane frame.

• The cavity length should be tunable for more flexibility; for example to
allow for the option of locking the cavity length to the laser frequency

• The complete MIM system should be placed inside a vacuum chamber at a
pressure of < 10�6 mbar such that the mechanical quality of the membrane
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is not limited by air damping, and that possible air currents do not influence
the stability of the cavity.

• The cavity-system should be supplied with vibration isolation.

In ref. [109] another type of a MIM-cavity design is described. This is helpful
reference for understanding the MIM-system.

6.3.2 Cavity and Nanopositioning System

High passive stability of the MIM-system against thermal drifts is achieved by
making all the required components out of material with low thermal expansion.
Thermal expansion coe�cients for possible options are shown in Tab. 6.1. A com-
pound material InVar (Fe-Ni) is generally the choice for high-finesse

�
F > 104

�

cavities where ultimate stability is required. InVar is however challenging to ma-
chine. We chose to machine the cavity holder from Titanium. The main reason
for this is that the desired piezo-positioning system for the membrane alignment
was available in Titanium (see later in text). The cavity body and the membrane
alignment system should be machined out of the same material such that ther-
mal drifts of the cavity length and the membrane position take place in common
mode. This enhances the passive stability of the MIM-system.

Metal Coe�cient
⇥
10�6K�1

⇤

Al 23.6
Fe 11.7
Pb 28.8
Steel 10-20
Titanium 8.6
InVar (Fe-Ni Alloy) 1.7 - 2.0

Table 6.1: Thermal expansion coe�cients of selected metals [48].

Cavity Body

Figure 6.11a shows a sketch of our cavity design. The cavity mount accommodates
two cylindrical holes for mirror-mounting that are vertically opposing each other.
The mirrors (colored blue) are slided into the holes as shown in Fig. 6.11a, and
sandwiched between thin plastic spacers for surface protection. A geometrically
stable, vertical orientation is achieved by rigidly pressing the top mirror against
the plastic spacer by a screw from the top (colored brown in the figure). The
lower mirror is glued with a vacuum compatible ultra-violet curable glue (EPO-
TEK OG116-31, single component, ultralow outgassing) on top of a high-load and
vacuum compatible tubular piezo (P-010.00H from PI GmbH) and this system is
sandwiched rigidly on its place by two screws and spacers, as shown in Fig. 6.11a.
Note, that neither of the mirrors is screwed into the mount in order to avoid any
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Figure 6.11: a) The optical cavity mount is machined of Titanium. Only the outlines
of the mount are shown for clarity. The cavity mirrors are placed vertically and on-axis
into cylindrical holes within the mount. The top mirror, M

C1

, is fixed by pressing it
against the mount by a screw. The lower mirror, M

C2

, is glued on top of a high-voltage
piezo and pressed against the mount from the top with a screw. The mirror-piezo system
is fixed with an additional screw from below. The spacing between the mirrors is 27
mm. A plastic spacer is always used between mirror and metal interfaces to protect the
mirror coating at the very edges of the mirrors, where the contact is formed. b) The
membrane frame (5mm x 5mm) is glued or free standing on a Titanium holder groove
of 6mm x 6mm in size. The membrane holder is fixed with a screw on top of a larger
membrane mount. The membrane mounting system is fixed with screws on top of an
attocube piezostack (see Fig. 6.12).

possible tilt of the mirrors with respect to each other1. The e↵ective spacing
between the mirrors is calibrated to be Lcav = 26.8 mm (see Section. 6.7). The
piezo has a displacement range of 5µm, allowing us to easily scan the cavity
length over several FSR, and a specified resonant frequency of 144 kHz. This
resonant frequency is furthermore suppressed by the mass of the mirror on top,
and is thus far enough from the membrane eigenfrequency. The tubular geometry
of the piezo allows the transmittance of the laser beam out of the cavity. We use
a high-voltage piezo controller from PI (E-508.00).

1O↵-axis tilt of threaded mirrors in the first test cavity was problematic.
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Membrane Mount

The membrane mounting system consists of two parts made of Titanium, as
sketched in Fig. 6.11b. The membrane frame is placed or glued on a smaller holder
(the top part of the complete membrane mount in the figure), which can be at-
tached to a larger “membrane mount”. Such a mounting design is advantageous,
as the optomechanical properties of the membranes can be pre-characterized in
another test chamber that also accommodates the small membrane holder (see
Sec. 4.1). When a high quality membrane is found, it can be readily exchanged
from the test setup to the science setup without the need to remove it from its
holder, which would be detrimental for the mechanical quality factor. In the
membrane characterization setup, the membrane holder is mounted vertically
(see Fig. 4.2) and the membrane frame needs to be glued to the holder. On the
other hand, in the science setup, the membrane mount is fixed horizontally by
screws on top of a vertical piezo positioning stage as shown in Fig. 6.12. Thus,
the membrane can also be placed onto the holder simply free-laying, supported
by friction and gravity. Such a horizontal mounting seems to be advantageous
for pertaining the high Q of the membrane as discussed in Sec. 4.1.

Membrane Positioning

The membrane is aligned perpendicular to the cavity axis with an Attocube
systems’ FLEX positioner system which allows fine and coarse positioning of the
membrane around the center of the cavity. The attocube positioners are made
of Titanium. We chose the Attocube positioning system having also the long
term goals in mind: it can operate under high vacuum, but also in cryogenic
temperatures; an important criteria for future experiments. Important for the
stability of the MIM-system is that the piezo positioners are an integral part of
the cavity mounting body. Figure 6.12 shows the MIM-system with the cavity
mounting body and the integrated attocube stack.

Our positioning system is assembled of three separate stages for ⇥ (ANGp101),
� (ANGt101), and Z (ANPz101 attoFLEX) alignment. The ⇥ (�) goniometer has
a coarse positioning range of 6.6�(5.4�) with a minimum step size of 0.1 m�.
The vertical Z-stepper has a coarse positioning mode with a range of 5 mm,
and a typical minimum step size of 50 nm. The vertical stepper has also a fine-
positioning mode with a range of 5µm and sub-nm resolution, allowing us to scan
the membrane position along the slope of the cavity field.

Vacuum

The whole setup is enclosed in a high vacuum of 10�7 mbar as shown in Fig. 6.13.
The vacuum system is assembled of standard CF components. The cavity cham-
ber has two parallel AR-coated windows (Vacom, 780 nm) above and below the
cavity for good optical access. The chamber is attached via a 4-way cross to the
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Figure 6.12: Cavity design. The membrane positioning system is integrated into the
cavity mount. The membrane holder is placed on top of a 3-stage piezo stack (green),
which allows to center and align the membrane with respect to the cavity axis. When
exchanging the membrane, only the membrane mount is unscrewed from the piezo stack
and slided out of the cavity, without the need to disassemble the setup further. The
proportions of the sketch match the realization.

pumping system. A turbo-pumping stage consisting of a turbo and a roughing
pump (Agilent TPS compact) is used for the initial pumping and an ion pump
(StartCell VacIon 40) sustains the final pressure. The current in the ion pump
is used to monitor the pressure in the chamber. The ion pump current values
were calibrated with a separate gauge and found to be linear in pressure. The
membrane can be exchanged relatively quickly by unmounting the top window-
flange of the chamber. The turbo-pumping system reaches the final pressure over
a night.
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Figure 6.13: Vacuum assembly. The cavity is enclosed in a vacuum chamber that has
two AR coated window flanges on the top (shown) and bottom for optical access. A
vacuum of 10�7 mbar is sustained in the chamber by an ion pump.

Cavity Parameters

The condition for a stable cavity as a function of the mirror radius R and cavity
length Lcav is given by Eq. 6.13. Furthermore, we match the cavity length to the
mirror radius R in such a way that the resulting spotsize of the TEM00-mode on
the membrane

w0 =

✓
2R

Lcav
� 1

◆1/4✓�Lcav

2⇡

◆1/2

(6.26)

is smaller than the lateral dimensions of the membrane for � = 780 nm. In
general, a shorter cavity is easier to align and more stable, but on the other
hand the FSR (Eq. 6.3) of the cavity scales as L�1

cav. With these considerations
in mind together with the restriction on the availability of high-quality-mirror
substrates, we chose Lcav = 27 mm and R = 30 mm. The resulting cavity waist
on the membrane is 60µm. Since our membrane is a 1.5 mm2 square, clipping of
the beam should not limit the finesse in any way, unless the beam is positioned
significantly o↵-center of the membrane. The FSR of the cavity is 5.6 GHz. Our
laser can be tuned mode-hop-free over more than 4 FSR.

The cavity mirrors are fabricated by Layertec Gmbh. The reflectivity of the
output-coupling mirror M

C2 is required to be as high as possible and at the
same time have ultra low losses such that we can still monitor the signal trans-
mitted through the cavity. According to specifications the back mirror M

C2

has intensity reflectivity of R(0�, 780nm)> 99.99% and transmission of T(0�,
780nm)⇠ 0.001%. The input-coupling (top) mirror M

C1 is chosen to have re-
flectivity of R=96.0±0.25%. Extreme care is taken when handling the mirrors,
especially the high-reflectivity mirror M

C2, as minute scattering or absorption
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6.4 MIM-Module

Figure 6.14: The MIM-chamber is placed between two optical breadboards. The optics
on the higher breadboard are used to couple the laser beams into the cavity, and on the
lower one to detect cavity transmission. One sees some pyramid foam in the picture that
is used to prevent vibrations within the membrane chamber body. The whole setup is
enclosed inside large sound isolation walls visible in the background (see Sec. 6.6).

loss can dominate over the mirror transmission. The mirror specifications result
in an empty cavity finesse of & 150. The finite penetration depth into the coatings
adds roughly a micrometer into the e↵ective cavity length, which is insignificant
in our case.

6.4 MIM-Module

The MIM-vacuum chamber is placed between two optical breadboards, as shown
in Fig. 6.14. The laser beams for the lattice and for locking and interrogating the
cavity are guided in optical fibers from another optical table. The optics required
to couple the laser beams into the vertical cavity reside on the optical breadboard
above the chamber. The lower breadboard contains optics for imaging the cavity
field modes and monitoring the transmission signal. The two-layer breadboard
system is placed on vibration-isolating feet as discussed in Sec. 6.6. One can see
some of the cone-shaped, foamy, sound isolation material next to the ion pump
in Fig. 6.14 that in the end is used to surround the whole vacuum chamber.
Furthermore, on the background one sees two of the sound isolation walls that
enclose the whole MIM-setup during its operation.
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Figure 6.15: Laser system for cavity experiment. Both the laser beam for the PDH-
Lock (see Sec. 6.5) and the lattice laser are provided by a diode-laser (DLPro) + TA
system. The output of the TA is split by a polarizing beam splitter (PBS). The lattice
beam path is fiber-coupled and guided to the atomic chamber as discussed in Sec. 5.1.2.
It is intensity stabilized via the acousto-optic modulator (AOM1) and a PI feedback
circuitry, as discussed in Sec. 5.1.2). The PDH beam is frequency shifted with AOM2
that is driven from the same source as the AOM1, coupled to a fiber and guided to the
membrane module.

6.4.1 Laser System

The laser system that provides the lattice beam and another beam for the cavity
interrogation via a Pound-Drever-Hall lock is shown schematically in Fig. 6.15.
We use an integrated DLPro and a tapered amplifier system (Toptica TA System)
operating around 780 nm (LD-0780-0100-AR-1). The output power of the TA is
1 W. The TA output beam is shaped with an elliptical lens pair and split with a
�/2-plate and a polarizing beam splitter (PBS) into the PDH locking path (cavity
interrogation path) and the lattice laser path. A small part of the DLPro output
is picked up for monitoring the wavelength (�-METER) and for assuring that the
laser is operating in a single mode (ref. cavity). The laser has a DC modulation
input to modulate the grating of the DLPro (DC mod), which is used for locking
the laser to the cavity (see Sec. 6.5). Additionally the laser has an AC mod input
for fast modulation of the laser current. The AC mod can be configured (via the
Bias tee) to respond up to 100 MHz and it has a measured modulation depth of
maximally � = 0.2 corresponding to 1 % of power in the sidebands. The AC mod
is useful for generating a sideband onto the laser at the membrane frequency,
which allows us to calibrate the membrane amplitude.

The lattice beam path is built similar to the free-space setup using the existing
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6.4 MIM-Module

module, as described in Sec. 5.1. The acousto-optic modulator AOM1 is used for
the intensity stabilization of the lattice laser (Sec. 5.1.2). In order to avoid a
beat note between the lattice beam and the PDH beam in the cavity, we add a
second AOM into the PDH path, AOM2. The two AOMs are driven at the same
frequency with a common rf-source. Both of the beam paths are fiber coupled and
guided to a separate optical table, where the MOT and cavity vacuum chambers
are built close to each other. The pick-up photodiode (PD) in Fig. 6.15 is used to
monitor the backreflection of the lattice beam into the fiber during the alignment
process. The lattice beam waist is chosen to be w0 = 350µm at the center of the
MOT (same as before) and the lattice alignment follows the procedure described
in Sec. 5.1.

6.4.2 Mode Matching of the MIM-Cavity

A successful procedure for aligning the MIM cavity starts by first mode matching
the PDH (or alternatively the lattice) beam to the empty cavity. Thereafter,
the membrane is carefully placed onto its holder and aligned with respect to the
cavity mode. A perfectly aligned membrane should not distort the spatial mode.
Next, the mode matching of the PDH beam to the empty cavity is described,
and subsequently the alignment procedure of the membrane with respect to the
cavity mode.

Mode Matching of the Empty Cavity

The goal is to mode match the laser beam to the fundamental TEM00 mode of
the cavity. The cavity mirror substrates are plano-concave and act like diverging
lenses, which means the input beam needs some e↵ective beam waist we↵ at ze↵
such that after going through the diverging lens its beam waist and focus coincide
with the ones of the Gaussian mode of the cavity. If we take into account the
refraction of the beam path due to the refractive index of the mirrors, nmirror,
the incoming Gaussian beam should have beam waist [136]

w0,e↵ =

s
�

⇡

R
p

Lcav (2R� Lcav)

2R + Lcav
�
n2
mirror � 1

� , (6.27)

at the location

z0,e↵ =
Lcav

2
� nmirrorLR

2R� Lcav
�
n2
mirror � 1

� , (6.28)

with respect to the cavity center. For our cavity with a length Lcav = 26 mm,
R = 30 mm, index of refraction for the fused silica substrate nmirror = 1.46,
and wavelength � = 780 nm, we obtain w0,e↵ = 50µm and z0,e↵ = �0.4 mm.
The cavity mode waist is w0 = 60µm. For perfect mode matching, the beam
incident on the cavity must be in a single spatial mode. All other contributions
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Figure 6.16: Upper part of the figure: The optics on the upper breadboard for mode
matching both the PDH and the lattice beams into the cavity. The orthogonally polarized
lattice beam and PDH beam are overlapped at the PBS, where they are adjusted to have
the same, optimized beam waist, and focused to the cavity with a mode matching lens
f
4

. The mirrors M1 and M2 are used to couple the beams into the cavity. Lower part of
the figure: Optics for monitoring the cavity transmission.

of the input beam will be reflected and lead to an imperfect mode matching and
distortion of the lattice.

Both the lattice and the PDH beam are fiber coupled (Fig. 6.15) and therefore
have a clean spatial mode before they are coupled into the cavity. Figure 6.16
shows a schematic of the mode matching optics that is clamped on the upper
optical breadboard above the MIM-chamber. For mode matching both of the
beams are collimated, adjusted in size (beam expander, BE) and finally focused by
a properly chosen mode-matching lens such that the beams satisfy the Eqs. 6.27
and 6.28. For example, for the PDH path we collimate the fiber output (Thorlabs
PM780) with f1 = 11mm lens (C220TME-B, 0.25NA) resulting in a beam diameter
of D = 2.1 mm. This beam is expanded by a factor of two with a BE consisting
of f2 = �100 mm and f3 = 200mm lenses, and finally focused down to the
cavity with a f4 = 400 mm lens. The lenses used for the lattice beam path are
chosen similarly and adjusted to match the lattice beam waist. An image of the
laser setup on the top plate above the membrane vacuum chamber is shown in
Fig. 6.17.
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Figure 6.17: A photograph of the upper, optical breadboard, showing the Pound-
Drever-Hall beam path (red and reflection dashed red) and the lattice beam path (green)
that is overlapped at the PBS with the PDH. The mode-matching lenses are mounted on
a rail-system to keep them on-axis while they are translated for optimal mode matching.

Finally, the wave vector of the incoming laser beam is made parallel to the
cavity axis by adjusting the angular alignment of the planar mirrors M1 and
M2. While adjusting M1 and M2, we simultaneously scan the cavity length
with the high voltage piezo (Fig. 6.11) and monitor the cavity transmission at
the lower optical breadboard below the MIM chamber (Fig. 6.16, bottom part).
In the initial stage of the alignment, the cavity transmission is low, and the
transmitted beam is likely o↵-axis with respect to the cavity. It is useful to
monitor the transmitted light on a large fluorescent screen with an IR viewer
(flipmirror M5). As some clear cavity modes appear on the fluorescent screen, we
measure the cavity transmission on a photodiode (PD, Thorlabs, DET10A/M) and
image the mode functions on a CCD camera (AlliedVision, GUPPY). The imaging
is necessary during the alignment, especially when the membrane is placed inside
the cavity, to assure that the cavity mode is the desired TEM00 one. To optimize
the mode matching one seeks to eliminate all undesired higher-order modes by
“beam walking” with M1 and M2. Simultaneously it is helpful to monitor the
reflection from the cavity which should overlap with the incoming beam, and
have the same size. The reflected beam is adjusted in an iterative manner by
translating f4.
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6. Setup for Cavity-Enhanced Coupling

Coarse Alignment of the MIM

After the mode matching to the empty cavity is optimized, the membrane is
placed onto its holder. For this, the top breadboard is unmounted and the top
flange of the vacuum chamber is opened (Fig. 6.13). During the unmounting and
subsequent re-mounting of the top breadboard, the robust optical beam path
does not experience significant misalignment. However, the membrane will be
tilted with respect to the cavity mode which will distort the transmittance of
the laser beam through the cavity. The first goal is to align the membrane with
respect to the cavity mode.

A coarse alignment is done by tilting the membrane with the ⇥ and � piezo-
stages (Fig. 6.12) until a transmission signal is detected. Thereafter one can
carefully tweak the mirrors M1 and M2 to compensate for any spatial translation
of the beam path with respect to the cavity axis. The membrane angle is simulta-
neously altered, until the transmittance of the fundamental mode is maximized.
Figure 6.18 shows the theoretical intensity distributions for the spatial modes of
a cavity (upper row) and the corresponding imaged MIM-cavity modes (lower
row). A well aligned membrane does not distort the cavity modes compared to
the experiments with empty cavity.
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Figure 6.18: Spatial modes of the cavity. Top row shows the theoretical intensity
profiles for Hermite-Gaussian modes a) (l=0, m=0), b) (l=1, m=0) c) (l=3, m=0).
An example of a Laguerre-Gaussian mode is shown in d) for (p=2, m=0). The lower
row shows the experimentally imaged cavity transmission for the corresponding modes
when the membrane is properly aligned with respect to the cavity. In order to obtain the
images, the cavity length is scanned and the axial in-coupling of the laser beam is slightly
tilted. This measurement was done with a MIM-cavity that had r

1

= r
2

(F = 80). The
behavior with an asymmetric set of mirrors (r

1

< r
2

) is observed to be the same.
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6.4 MIM-Module

Fine Alignment of the MIM

The fine adjustment of the membrane tilt is done by monitoring the resonance
frequency of the cavity as a function of the membrane position. For a perfectly
aligned cavity, we would expect the cavity modes to shift according to Eq. 6.24.
The cavity modes are measured by translating the membrane through a distance
of > �/2 along the cavity axis in small steps ⌧ �, while monitoring the cavity
resonance. In practice, after a single membrane step, we scan the laser over
several FSR of the cavity and monitor the transmission signal of the cavity on a
photodiode (PD in the bottom part of Fig. 6.16).

The alignment goal is to suppress any sort of mode anti-crossings that occur
when the membrane is tilted with respect to the cavity axis [102]. Figure 6.19a
shows an example of the recorded cavity spectra when the membrane has some
angular tilt. By aligning the membrane with the angular ⇥ and � positioners,
one can completely suppress the mode crossings. In this case the plane of the
membrane is parallel to the wave fronts. Furthermore, the axial positioning
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Figure 6.19: a) An example of a cavity spectrum as a function of the membrane position
translation along the cavity axis, when the membrane has some angular tilt with respect
to the cavity axis and is not positioned in the middle of the cavity. The angular tilt
of the membrane leads to mode anti-crossings visible in the zoom of the white box in
b). An o↵set in the cavity resonances separated by 2FSR with respect to membrane
position, �z

m

, indicates that the membrane is not in the middle of the cavity. Note that
the cavity used for this measurement was symmetric (i.e., r

1

= r
2

), thus the variation in
the finesse is absent (see Sec. 6.7.2).
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6. Setup for Cavity-Enhanced Coupling

of the membrane with respect to the cavity center can be done by comparing
the cavity resonances separated by two FSRs. For a perfectly aligned cavity,
the optomechanical coupling of these subsequent modes should be identical with
respect to the membrane position. An o↵set �zmbetween the maximas of the
two modes in Fig. 6.19a implies that the membrane is not in the middle of the
cavity axis. An example of a well aligned cavity is shown in Fig. 6.26.

Mode Matching Further Beams into the Cavity

After one beam is mode-matched to the MIM cavity, any other beam can sim-
ply be adjusted in size and overlapped at the polarizing beam splitter (PBS)
(Fig. 6.16) with the mode-matched PDH beam. The lattice beam is aligned with
mirrors M3 and M4 by simultaneously overlapping it with the PDH beam on
the alignment screen and in front of mirror M1. We have measured the mode-
matching for a symmetric MIM-cavity (F = 78) as the fraction of the power
incident on the cavity versus the transmitted power when the cavity is operated
on-resonance. From this we estimate the mode-matching to be about 80% for
both the lattice and the PDH beam. For our asymmetric science cavity the mode
matching is di�cult to determine in transmission, as the backmirror has very
low transmittance. We expect to obtain similar mode matching e�ciency for the
asymmetric cavity than for the symmetric one, as only the back-mirror of the
cavity is changed to another one which has the same radius of curvature. The
optical beam path is kept the same. One quantitative way to estimate the mode
matching, is to measure the optomechanical cavity cooling performance of the
MIM-system for a given input power and compare this to theory. An example of
such a cooling measurement and corresponding mode-matching determination is
presented later in Sec. 6.7.3 and Fig. 6.33.

6.5 Pound-Drever-Hall Lock and the Membrane Read-
Out

The stability of the MIM-cavity and the laser is required to be a lot better than
the cavity resonance width �! ⇠ 2⇡ · 40 MHz. If the cavity becomes detuned
with respect to the lattice laser frequency, i.e., �c 6= 0, the intensity inside the
cavity will drop and the atom-membrane coupling is reduced. In addition, for
�c 6= 0 the optomechanical radiation pressure e↵ects will start to take place.
Blue-detuning (�c > 0) will lead to amplification, and possible instability of
the membrane motion, and red-detuning (�c < 0) will result in cooling [137].
In Section 6.7.3 and in Fig. 6.31 we estimate the cooling performance for our
cavity, and find that the cooling is largest, when �c/�! ⇡ 0.2. A detuning of
�c/�! = 0.2 corresponds to cavity length change of 5 nm. A thermal drift of a
26 mm long cavity by 0.6 nm would require a temperature change of �T = 3mK
when the cavity is made of Titanium. The temperature in the laboratory is
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6.5 Pound-Drever-Hall Lock and the Membrane Read-Out

stabilized via a PI feedback system to 20 ± 0.1 Celsius. Consequently, a lock is
needed to counteract long-term thermal drifts.

We lock the laser to the cavity using the Pound-Drever-Hall (PDH) tech-
nique [138]. This technique is simultaneously also used to detect the membrane
motion, which acts to detune the cavity and is hence visible in the error signal of
the PDH. The PDH technique relies on the interference of frequency sidebands
with the main carrier laser to generate an error-signal for cavity stabilization. We
use an electro-optic phase modulator (EOM) to create frequency sidebands at ⌦
with a modulation depth of �. The phase-modulated laser field can be written
as:

Einc = E0e
i!t+i� sin⌦t. (6.29)

This expression is more obvious when it is expanded in terms of the Bessel func-
tions. For the relevant case of small � we get

Einc = E0e
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where the Bessel functions are defined as
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The relative power in the carrier Pc, and in the sidebands Ps, is defined by the
modulation depth �. If P0 = |E0|2, then Pc = J0

2(�)P0, and the power in each
first order sideband is Ps = J1

2(�)P0. When the modulation depth is small, the
carrier and the first order sidebands carry almost all of the power; Pc +2Ps ⇡ P0.

The light reflected from the cavity can be expressed in terms of the reflection
coe�cient rcav given by Eq. 6.7 as

Eref = E0

h
rcav (!) J0 (!) ei!t + rcav (! + ⌦) J1e

i(!+⌦) � rcav (! � ⌦) J1 (�) ei(!�⌦)t
i
.

(6.32)
The power of the reflected light field is measured on a photodiode, Pref = |Eref |2

Pref = Pc |rcav (!)|2 + Ps{|rcav (! + ⌦)|2 + |rcav(! � ⌦)|2}+
+ 2
p
PcPs{Re [rcav (!) r⇤cav (! + ⌦) � r⇤cav (!) rcav (! � ⌦)] cos⌦t+

+ Im [rcav (!) r⇤cav (! + ⌦) � r⇤cav (!) rcav (! � ⌦)] sin⌦t}+
+ O (2!) .

(6.33)

The first term is a DC o↵set on the photodiode, but the second and third terms
oscillating at ⌦ carry direct information about the phase of the reflected cavity
field. In our experiment, we tune ⌦ to be a lot larger than �!, such that the
sidebands do not enter the cavity and interact with the membrane. In this regime
only the carrier acquires a phase inside the cavity, and the expression

rcav (!) r⇤cav (! + ⌦) � r⇤cav (!) rcav (! � ⌦) ⇡ �i2 Im{rcav (!)}, (6.34)
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6. Setup for Cavity-Enhanced Coupling

is purely imaginary. Consequently the cos-term in Eq. 6.33 becomes negligible.
These terms can be isolated from the PD signal with a mixer, and we arrive at
an expression for the error signal

✏PDH = �2
p
PcPs Im{rcav (!) r⇤cav (! + ⌦) � r⇤cav (!) rcav (! � ⌦)}. (6.35)

Figure 6.20 shows the PDH error signal of the single-sided MIM-cavity for
the TEM00 mode. When the laser is resonant with the cavity, the error signal
is zero, but has a maximal slope. From Eq. 6.35 we see that the error signal
scales / p

PcPs. In our lock, we want to minimize Pc to avoid optomechanical
interaction between the membrane and the read-out beam, and at the same time
maximize Ps to get higher signal-to-noise ratio as ✏PDH is used also for extracting
the membrane motion. We choose the power level to be less than 1mW, out of
which 50% is carried in the sidebands.
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Figure 6.20: The PDH error signal of the MIM-cavity when the membrane is aligned
to the fundamental mode (blue). The fundamental mode and the PDH-sidebands are
visible in the cavity transmission (green). Information about the sideband frequency is
used to calibrate the frequency axis. The limited bandwidth of the photodiode broadens
the transmission response in this measurement.

A schematic of our PDH lock is shown in Fig. 6.21, and the corresponding com-
ponent details are listed in Tab. 6.2. We use a fiber EOM to generate sidebands
onto the laser. A voltage controlled oscillator (VCO) creates a rf-modulation sig-
nal at ⌦ = 350MHz. The rf-signal is split: one part of it drives the EOM and the
other part goes to the mixer. An isolator is placed between the rf source and the
EOM. The EOM has a half-wave voltage of only 2.3 V (at 1 GHz) and we set half
of the power in the laser beam into the sidebands for optimal operation. Initially,
we used a frequency generator to drive the EOM (SRS, 8GHz) but it turned
out that the generator has a higher background noise level than the VCO by

142



6.5 Pound-Drever-Hall Lock and the Membrane Read-Out
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Figure 6.21: The Pound-Drever-Hall setup for locking the laser to the cavity. A voltage
controlled oscillator (VCO) is used to generate sidebands onto the laser via an EOM.
The VCO signal is split and part of it goes via an isolator to the EOM. A photodetector
(PD) is used to detect the cavity reflection, which is mixed down with the split part of
the VCO signal. The low-passed part of the signal is used for feedback via the piezo of
the laser and the high-passed part is used for membrane read-out.

EOM EOSPACE, PM-0K5-10-PFA-780-UL

VCO MiniCircuits, ZOS-400+, 7dBm
rf splitter MiniCircuits, ZFSC-2-2+

isolator WENTEQ MICROWAVE, 250-500MHz
rf- photodiode MenloSystems FPD310-FV, 1 dB at 1GHz
mixer MiniCircuits, ZFM-3+

Table 6.2: The PDH electronics.

20 dB at ⌦ ⇠ 350 MHz. The cavity reflection is measured with a high-sensitivity
rf-photodiode (PD). The PD-signal is mixed down, and a low pass filter at the
output of the mixer is used to isolate the low-frequency signal which serves as an
input to a PI-servo-amplifier. We compensate for possible phase delays between
the VCO signal and the PD signal by adjusting the ⌦ at the VCO. Alternatively
one could add a phase-shifter into the PDH-circuitry. Finally, the correction sig-
nal acts on the piezo grating of the laser (via the “DC mod”-input in Fig. 6.15)
locking the laser to the cavity frequency. The bandwidth of the PDH-feedback is
limited by the piezo-response to 1 kHz.

Instead of modulating the laser light with an EOM, one can alternatively use
the AC-modulation input of the TA, shown in Fig. 6.15, to produce the sidebands
onto the laser via current modulation. The AC mod has a measured modulation
depth of maximally � = 0.2 corresponding to 1 % of power in the sidebands.
The PDH-locking via the AC mod resulted in a clean and stable lock-signal.
However, we chose to use the EOM in the end as it provides more power in the
sidebands and flexibility to tune the rf modulation frequency over one cavity
FSR for additional purposes. We also experimented in locking the cavity to the
laser, but observed the lock to be less stable that way as continuous correction
displacements of the end mirror seemed to excite vibrations in the cavity body.
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6. Setup for Cavity-Enhanced Coupling

Read-Out of Membrane Motion

The membrane motion is extracted from the high-passed part (> 150 kHz) of the
mixer signal, as shown in Fig. 6.21, and measured on a spectrum analyzer (Rohde
and Schwarz, FSVR30). An example of the Brownian motion of a membrane in
room temperature is shown in Fig. 6.22. In this measurement, the cavity is locked
on resonance �c = 0. The power spectral density is calibrated by assuming the
area under the noise peak to be proportional to hx2ith, according to Eq. 2.19. The
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Figure 6.22: Membrane signal at the spectrum analyzer as derived from the PDH-
lock signal. The power in the read-out beam was 1 mW of out which 50% was in the
sidebands. The sensitivity is 10�14 m/

p
Hz. The resolution bandwidth of the spectrum

analyzer is 1 Hz and the width of the noise peak is not resolved. This measurement was
recorded with a symmetric cavity of F = 78.

calibration results in sensitivity on the order of 10�14 m/
p

Hz. The resolution
bandwidth of the spectrum analyzer is 1 Hz in this measurement. The width of
the membrane noise peak is less than 1Hz, implying Q = !m/�m > 3 · 105. In an
auxiliary ringdown measurement we have indeed measured Q = 3 · 106 for this
membrane.

Positioning the Membrane to the Slope of the Cavity Field

In order to position the membrane on the slope, half between the cavity field
maxima and minima, we lock the laser to the cavity, and while changing the
membrane position in small steps we monitor the signal to noise ratio (SNR) at
the spectrum analyzer. The SNR is maximized when the membrane is on the
middle of the cavity field slope, where the finesse is maximum (see Fig. 6.30).
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6.6 Vibration Isolation

6.6 Vibration Isolation

The MIM-module shown in Fig. 6.14 is built on top of a floating optical table
(NewPort, ST-UT2). Without any vibration shield around the MIM-system, the
seismic and acoustic noise (< 1 kHz) in the lab is strong enough to detune the
MIM-cavity from on-resonance to o↵-resonance. The vibrations are larger in
amplitude than the PDH locking capture range. This makes the on-resonance
operation of the MIM-cavity di�cult. On the other hand, the locking of an
empty cavity is straightforward. Consequently, the vibrations couple to the MIM-
cavity via the membrane holder and the piezo-positioning stack (see Fig. 6.12).
The optomechanical coupling of the membrane to the cavity is measured to be
Gmax

opt = 2⇡ · 11.9 MHz/nm, when the membrane is placed on the slope of the
cavity field (Sec. 6.7). If the cavity linewidth is �! ⇡ 2⇡ · 30 MHz, a shift of the
membrane position by more than a few nanometers is su�cient to detune the
cavity out of resonance.

The vibrations in the MIM-setup are characterized with an accelerometer. By
analyzing the accelerometer data together with the optical cavity transmission
and reflection signal, one can distinguish electric noise in the setup from mechan-
ical noise. Figure 6.23a shows a measurement of the acoustic vibrations on the
lab floor and on the optical table. The optical table isolates the vibrations in
the ground by more than 10 dB at frequencies above 10 Hz. The optical table
has a characteristic resonance at 350Hz. The distinct peaks in the spectra of
the optical table are due to acoustic vibrations in the air, which excite the table.
Even though the optical table is isolated from the ground, the airborne vibra-
tions are transferred via the table to the MIM-setup, when it is placed directly
on top of the optical table. Figure 6.23b shows the vibrations on the optical table
(purple), and on the lower (green) and upper (black) breadboards of the MIM-
module. In addition to being in direct contact with the lower bread-board, the
acoustic waves in the air excite the MIM-chamber directly from all the sides. One
can often identify and suppress most of the airborne noise sources. For example,
the peak at 80 Hz in Fig. 6.23b is due to a fan of an oscilloscope close by and
the peak around 180 Hz is due to a flow box located 6m away from the setup.
The strongest noise sources in the laboratory are shielded with sound absorbing
materials when possible (described below).

For a proper vibration isolation we decouple the MIM-system from the optical
table, suppress resonances within the vacuum chamber body, and shield the setup
from sound-waves in the air. The MIM-setup is isolated from the vibrations on
the optical table by placing the complete two-layer MIM-system on vibration
damps. We use elastometric cone-shaped elements from NewPort (M-ND50-A). It
is important to match the optimum load on each elastomer for optimal vibration
isolation. The mass of the complete MIM-module (as in shown in the photograph
in Fig. 6.14) is measured to be 69 kg, and the module is balanced on top of 6
damping feets.
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Figure 6.23: Compilation of the accelerometer data for a non-isolated MIM-setup
showing the airborne vibrations in the optical table and the MIM-system. a) Black and
purple traces correspond to the acceleration atop the laboratory floor and optical table.
Above 500 Hz no significant peaks were visible on this particular measurement. The
broad resonance around 350 Hz is characteristic to the table. b) Comparison of the low-
frequency (< 200 Hz) vibrations in the MIM-system with respect to the optical table.
The vibrations in the air excite the optical table (purple) and the MIM-chamber which
via direct contact couple to the lower optical breadboard (green). The vibrations are less
on the upper optical breadboard (back) than on the lower breadboard.

Heavy, elastic rubber is in general the optimal choice for damping resonances
in bodies. We use Sorbothane sheets from Thorlabs (SB12B, 6.35 mm thick) to
damp the resonances in the vacuum chamber body. These sheets absorbs up
to 95.5% of impact energy and then reform to their original shape. The sheets
are cut into shape and clamped with cable binders tightly around the vacuum
chamber body. Furthermore all the aluminum posts (standard 1 inch optical
posts) that support the vacuum chamber from below as well as the ion pump
on the lower breadboard have the Sorbothane sheets in-between any metallic
contact-surfaces.

The free space between the two optical breadboards is filled with profiled
plastic foam (AixFOAM, Convoluted Foam, SH0021-Polyether anthracite). Part
of this foam is seen in Fig. 6.14. The foam is used to hinder reflections of any
sound waves that may leak into the system. Next, the Sorbothane sheets are
used to close all the vertical sides between the two optical breadboards of the
MIM-module. They are clamped at the edge of the higher optical breadboard
(the clamps are shown at the edges of the top breadboard in Figure 6.14) and
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6.6 Vibration Isolation

hang vertically around the setup. These are also advantageous to reduce the
background level due to room light on the photodiode that monitors the cavity
transmission. In the end, the whole MIM-module is enclosed inside a sound-
isolation box consisting of 4 side walls and one top wall. The walls are made
of a 40mm heavy foam layer (AixFOAM, SH 0071) which is laminated with a
2.5 mm layer of heavy foil, as shown in Fig. 6.24. In addition to its sound isolation
properties, the heavy foam is also an excellent temperature insulator having a
heat conductivity of 0.033 W/mK. Two of the sound isolating walls are visible in
the background of Fig.6.14.

Acoustic heavy foam
Acoustic heavy foil
self-adhesive glue layer

40 mm

2,5 mm

Figure 6.24: The vibration isolation walls built around the setup consist of a layer of
heavy foam that is laminated with a heavy foil for optimal absorbance and damping of
low frequencies. The heavy foam also acts as a passive thermal insulator.

Figure 6.25 shows a measured accelerometer spectra on the lab floor (black),
on the optical table (purple), and inside the vibration isolation box (green). In
this measurement, the setup is on another optical table as during the measure-
ment in Fig. 6.23. During this measurement the large vibration isolation box is
also open from the top. Yet, the vibrations inside the vacuum chamber body
are considerably less from what is measured on the table. The most sensitive
measure for the vibrations inside the cavity is the locking signal itself. When the
vibration isolation was installed, the locking of the cavity to a desired point even
in the presence of heavy noise sources in the background (e.g., turbo vacuum
pump 1 m away) was a simple task.

Importantly, the MIM-cavity system is attached directly to the vacuum cham-
ber wall by screws, as shown in Fig. 6.13. This direct contact couples vibrations in
the cavity body to the membrane holder. In future designs, it would be advanta-
geous to apply vibration isolation inside the vacuum and isolate the MIM-system
from the vacuum chamber. This would most likely simplify the isolation require-
ments outside the vacuum chamber.
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Figure 6.25: The noise characteristics on the lab floor (black), on the optical table
(purple), and inside the vibration isolation box (green). The vibration isolation box was
open from the top during this measurement.
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6.7 MIM Characterization Measurements

In this Section I discuss optomechanical characteristic of the asymmetric MIM-
setup. The calibration of the cavity parameters and optomechanical coupling are
presented as well as the determination of the membrane reflectivity and thickness.
In addition, preliminary optomechanical cavity cooling measurements are shown
which give qualitative understanding of the role of the cavity cooling in our
system. Such measurements are also useful for estimates of the mode-matching
of the lattice laser into the cavity.

6.7.1 Optomechanical Coupling

An example of the optical cavity spectra as a function of the membrane position
for a well-aligned, single-sided MIM-cavity is shown in Fig. 6.26. The measure-
ment is done by recording the transmitted intensity as a function of membrane
position and laser frequency. The membrane is translated along the cavity axis
with the atto-cube piezo positioners and the wavelength scanning is done using
the piezo-grating of the laser. The transmitted intensity for the single-sided cav-
ity is only fraction of that for a symmetric cavity, thus the signal to noise is
lower than that in the measurement in Fig. 6.19. Furthermore, in this figure the
transmission is plotted on a logarithmic color scale to emphasize the higher order
modes present in the system.

The analyzed measurement result in Figure 6.26 contains a number of impor-
tant features that are required to calibrate the cavity finesse and the optome-
chanical coupling. These are explained below.

Calibration of the FSR and the Membrane Position

The frequency axis of the cavity transmission data can be calibrated to units
of FSR since the TEM00 modes associated with either one of the subcavities
are separated by 2FSR (see Fig. 6.6). For absolute calibration of the FSR, we
use the PDH sidebands that are visible symmetrically around each transmission
resonance at ⌦ = ±364 MHz. In this way, we calibrate the FSR of the cavity to
be 5.6 GHz, corresponding to an e↵ective cavity length of Lcav = 26.8 mm. As
an example, a zoom of a measured vertical cavity transmittance slice is shown in
Fig. 6.27. The finesse can be calculated by fitting a Lorentzian distribution to
the transmission lines.

Importantly, we observe that the laser piezo-response is non-linear and the
non-linearity is more pronounced towards the edges of the scanning range. If high
precision calibration of the frequency axis is required, information on the higher
order modes and their relative separation can be used in addition. When the input
power of the laser is not too low, these higher order transverse TEM

mn

modes
(with still small m and n), which are close in frequency to the driven TEM00

mode, are also populated and can be detected. The fine-precision calibration

149



6. Setup for Cavity-Enhanced Coupling

Figure 6.26: Cavity resonance spectra as a function of the membrane position z
m

shown
on a logarithmic color scale. The wavelength of the laser is expressed in terms of the
cavity FSR, which is calibrated from the PDH sidebands that are visible symmetrically at
⌦ = ±364 MHz around each resonance. The green and blues dashed lines are theoretical
curves for the TEM

00

and TEM
01

. The theory curves assume a membrane of thickness
42 nm, n=1.98, and reflectivity of r

m

= 0.4163.

using the higher order modes is discussed further below with a specific example,
where the variation in the finesse is extracted over the whole scanning range as
a function of membrane position.

We also observe the membrane positioners to have small non-linearities de-
pending on the drive settings. The horizontal axis can be calibrated using
Eq. 6.24.

Coupling Strength Gopt and Membrane Reflectivity

The optomechanical coupling strength depends on the membrane reflectivity rm
according to Eq. 6.24. We can estimate rm, and consequently also the thickness
of the membrane (Eq. 6.16), by fitting Eq. 6.24 to the experimental data. Using
the mass density of the stoichiometric SiN membrane, we can then also compute
the mass (see. 4.1). The green curve in Fig. 6.26 is a theoretical calculation for
the TEM00 mode according to Eq. 6.24 that assumes nm = 1.98 and dm = 42nm,
resulting in |rm| = 0.4163. When the membrane is placed on the slope of the
cavity field, the optomechanical coupling is maximum Gmax

opt /2⇡ = 11.9 MHz/nm.
The blue curve in Fig. 6.26 is the theoretically calculated TEM01 mode, which is
separated by 2⇡ · 2.6 GHz from the TEM00.
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Figure 6.27: Cavity transmission signal measured by sweeping the laser frequency,
while the laser has a carrier and two phase modulation sidebands. The sidebands are
used as a ruler to calibrate the FSR. The cavity finesse is determined from the width of
the transmission peak. For this measurement F (z

m

) ⇠ 180.

6.7.2 Cavity Finesse

The cavity finesse is a function of the membrane position, as discussed in Sec. 6.2.2
and in Fig. 6.10. To quantitatively analyze this, we perform a fine-resolution mea-
surement of the cavity spectra. The measurement result is shown in Figure 6.28.
The figure shows 4 TEM00 modes marked by dashed lines, corresponding to con-
secutive values of q in Eq. 6.15. Note that modes with even and odd q experience
an opposite shift as function of membrane position (see also Fig. 6.6). In addi-
tion, higher order TEM

lm

modes are visible, where each higher value of l + m is
shifted by an additional �⇠

⇡

FSR, as expected from equation 6.15.
Figure 6.29 shows a vertical slice through Fig. 6.28 and Lorentzian fits to each

mode. Modes with the same q are grouped by color, and the modes are labeled by
(l+m). To correct for the non-linearity of the laser frequency sweep, we use these
fitted peak positions to calibrate the frequency axis to units of FSR with a third-
order polynomial. We fit the coe�cients of the polynomial, while in addition
having �⇠, a global frequency o↵set, and an unknown shift between modes with
even and odd q as free parameters. From the fit we obtain �⇠/⇡ = 0.456 FSR.

After the vertical frequency axis is calibrated, the finesse is calculated by
extracting the width �! of the transmission peaks as function of zm and using
Eq. 6.10. The results for the TEM00 modes are shown in Fig. 6.30. The green
data points have slightly lower values compared to the turquoise ones around
zm = �/2. This is probably due the fact that the frequency calibration is least
accurate at this edge of the piezo scanning range. The theory developed in
Sec. 6.2.2, accurately describes the measured variation in the finesse, as shown
by the red curve in Fig. 6.30.
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Figure 6.28: The cavity spectral data used to determine the variation in the finesse
as a function of z

m

. The colored dashed lines show the peak position of the cavity
transmission along which the finesse is extracted in Fig. 6.30. A vertical slice averaged
over the region between black dotted lines is shown in figure 6.29.
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Figure 6.29: Average of 8 vertical slices of the transmission spectra in Fig. 6.28. Modes
with the same mode number q are shown with the same color. For each value of q, di↵erent
TEM

lm

modes can be seen, labeled by (l+m). For identical l+m, the spacing between
mode q, l,m and q + 2, l,m is constrained to 2 FSR.
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Figure 6.30: Cavity finesse as a function of membrane position for the TEM
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6.7.3 Optomechanical Cavity Cooling

In the atom-membrane experiment we operate the cavity at the moment slightly
red-detuned (�c ⇠ �2⇡ · 2 MHz). We have observed that if we set the locking
point to �c = 0, it tends to drift slightly to the blue �c > 0. In this case and
for high lattice laser power incident on the cavity, we observe amplification and
mechanical instability of the membrane motion. The operation of the lattice and
PDH laser at �c < 0 leads to optomechanical cavity cooling of the membrane.

It is important to be able to distinguish between the optomechanical cavity
cooling of the membrane and the sympathetic cooling induced by the atoms. The
optomechanical damping rate is given by [139]

�opt = G2
opt [Snn (!m) � Snn (�!m)]x2zp, (6.36)

where the noise power spectrum is defined as

Snn (!) = n̄cav
�!

(! +�c)
2 + (�!/2)2

. (6.37)

The mean photon number in the cavity, n̄cav, is proportional to the intracavity
power, and thus to the power incident on the first cavity mirror Pinc as

n̄cav =
4Pinc⌘

~!L�!

1

1 +
�
2�

c

�!

�2 , (6.38)

where ⌘ is the mode-matching e�ciency of the Pinc to the TEM00 cavity mode.
In the unresolved sideband regime (�! � !m) the damping rate can be written
as

�opt = G2
optx

2
zpn̄cav!m

�4�c�!
⇣
�!

2

4 +�2
c

⌘2 . (6.39)

In the absence of additional noise-sources the optomechanical cooling results
in a mean steady-state phonon number

n̄ss =
�optn̄0 + �

m

n̄th

�opt + �m
, (6.40)

where the minimum occupancy without mechanical damping is

n̄0 = �(!m +�c)
2 + (�!/2)2

4!m�c
. (6.41)

The optomechanical cooling is associated with a frequency shift of the me-
chanical mode. In the unresolved sideband regime this is given by [11]

�!m (�c) = G2
optn̄cav

2�c

�!2/4 +�2
c
x2zp. (6.42)

154



6.7 MIM Characterization Measurements

Figure 6.31a shows the optomechanical cavity-cooling in a MIM-setup as a
function of Pinc for our parameter regime, when the membrane is placed on the
middle of the slope of the cavity field and Gopt is given by Eq. 6.25. The optome-
chanical damping rate scales linearly with the intracavity power of the driving
laser Pinc and is largest, when �c/�! ⇡ �0.2. The final phonon occupation
will depend on the Q of the membrane as shown in Fig. 6.31b. The SiN mem-
branes have demonstrated to have Q > 107 even in room temperature [104], and
the Q has been observed to increase by an order of magnitude, when the bath
temperature of the membrane is decreased from room temperature to 300mK
(Q(300 mK) > 107) [100].
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Figure 6.31: Optomechanical cavity cooling in the MIM-system. The parameters as-
sumed in the calculation are�! = 2⇡·60 MHz, !

m

= 2⇡·274 kHz, r
m

= 0.416, M = 70ng,
and T

bath

= 293 K. The plots show the cooling factor n̄
th

/n̄
ss

, when a) Q = 3 · 106 and
P
inc

⌘ = (1, 10, 40) mW; and when b) P
inc

⌘ = 40mW and Q = 1 · 106, 3 · 106, 1 · 107.

Preliminary Cavity Cooling Characteristics

We have performed a set of initial characterization measurements on the optome-
chanical cooling of the membrane inside the cavity. In particular, we observe
optomechanical cooling and associated frequency shift of the membrane mode as
a function of �c and Pinc.

In order to measure cavity-optomechanical e↵ects, we position the membrane
on the slope of the cavity field. For this membrane position, we measure Gopt =
2⇡ · 9.2 MHz/nm, �! ⇡ 2⇡ · 40 MHz (corresponding to F (xm) = 140). For
cooling we use the lattice laser beam without the atoms being loaded into the
lattice. We measure the membrane spectrum for two di↵erent cavity detunings
�c = �2⇡ · 4 MHz and �c = �2⇡ · 6 MHz and for di↵erent power levels of the
lattice beam, P . The power in the PDH beam is 0.2 mW out of which 0.14 mW
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6. Setup for Cavity-Enhanced Coupling

is in the carrier. Thus, the total input power incident on the cavity is Pinc =
P + 0.14 mW. Figure 6.32 shows an example of the amplitude spectral density of
the membrane for a few di↵erent power levels Pinc, when �c = �2⇡ ·6 MHz. Both
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Figure 6.32: The amplitude spectrum of the membrane for red-detuned laser drive of
�

c

⇠ �2⇡·6 MHz, and for input power P
inc

of 230µW, 2 mW, and 18 mW. The resolution
bandwidth is 1Hz. The amplitude spectral density is calibrated by assuming the noise
peak at P

inc

= 230µW to correspond to the thermal motion of the membrane. The
calibration obtained in Fig. 6.33 would anticipate a higher sensitivity level by a factor of
⇠ 2.

an increase in the optomechanical damping and an optomechanical frequency shift
are observable as Pinc increases.

In order to extract the steady-state temperature Tm of the membrane mode
for each power level, we determine the area under the noise peak, which is directly
proportional to Tm, and compare this with the theory. The relative standard error
for each data point is < 1 %. Figure 6.33 shows the resulting temperatures which
are averaged over 20 experimental realizations, and the corresponding theory
curves. We observe optomechanical cooling in our system by a factor of 30.
The cooling is observed to be limited to ⇠ 10 K around Pinc of a few mW. We
contribute this e↵ect to laser noise. The e↵ect of laser noise on the steady-state
phonon occupation number has been theoretically discussed in Ref. [140]. We are
currently working on quantitative analysis of the laser noise in our system.

In addition to optical damping, we also measure the associated optomechan-
ical shift in the membrane frequency, as shown in Fig. 6.34. We observe a deter-
ministic decrease in the membrane eigenfrequency with laser power. The thermal
frequency shift of the membrane is negligible compared to the optomechanical
shift according to the measurements in Sec. 4.2. The small discrepancy between
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Figure 6.33: Preliminary measurement on optomechanical cavity cooling of the mem-
brane for two di↵erent detunings �

c

= �2⇡ · 4 MHz and �
c

= �2⇡ · 6 MHz. The
theoretical curves are calculated using of Eq. 6.41. The theory assumes the measured
values of Q = 3.4 · 106, !

m

= 2⇡ · 274 kHz, M = 70ng, and T
bath

= 293K; and we obtain
mode-matching of ⌘ = 0.41 .

the measured and theoretical frequency suggests an o↵set in the calibration of
�c. In addition, the value of !m (Pinc = 0) is an estimate.

In conclusion, we observe optomechanical cavity cooling in our system, as well
as an associated frequency shift. Such measurements can be used to determine
the mode-matching ⌘ into the cavity. This is an essential factor as the atom-
membrane coupling is reduced by ⌘. Furthermore, this analysis shows that in
the atom-membrane experiment, the optomechanical damping due to the lattice
beam should be taken into account.
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Figure 6.34: The shift of the membrane eigenfrequency with incident power for two
di↵erent �

c

. The theoretical curves are calculated using Eq. 6.42 and they assume the
same parameters as in Fig. 6.33.

6.8 Outlook: Preliminary Measurement on Atom -
Membrane Coupling

As an outlook to on-going work, we present preliminary measurements that
demonstrate sympathetic cooling of the membrane via the atoms using the new
MIM-setup. To measure the e↵ect of the atoms onto the membrane, we excite
the membrane motion from room temperature by 20 dB and perform a ringdown
measurement. The excitation is done by modulating the intensity of the PDH
beam at !m. During the ringdown we monitor the power spectral density of the
membrane motion as a function of time and relate the area under the membrane
noise peak to the e↵ective mode temperature of the membrane. In order to distin-
guish the e↵ect of the atoms onto the membrane from the optomechanical cavity
cooling described in the previous Section, we perform a reference measurement
with the lattice beam, but do not load the atoms into the lattice.

The preliminary sympathetic cooling result is shown in Fig. 6.35. After 100ms
of membrane ringdown the lattice laser power P is increased from 5.7 mW to the
resonant power of 20 mW. The green curve shows sympathetic damping of the
membrane when the atoms are continuously MOT-cooled in the lattice. The
blue curve shows a similar measurement, where after an initial MOT cooling
phase, the stronger molasses cooling is switched on, as indicated in the figure.
During the molasses phase the atoms are colder, but over time they drift out
of the lattice region. In both measurements, laser cooling is switched o↵ after
0.6 s. The orange curve shows a reference measurement performed with the same
lattice power (20 mW) in the absence of the atoms. By comparing the reference
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Figure 6.35: A preliminary result on sympathetic cooling of the membrane mode via
the laser-cooled atoms. The plot shows the noise spectral density S

x

of an initially
excited membrane as a function of time for 4 di↵erent measurements. The green curve
shows the membrane ringdown, while the atoms are MOT cooled in the resonant lattice
(the lattice power is P = 20mW). The blue, dashed curve shows a similar measurement,
where molasses cooling is switched on during the membrane ringdown as indicated by
the arrow. The orange and red curves are reference measurements for lattice laser powers
of 20 mW and 5.7 mW, demonstrating the e↵ects of cavity cooling only. The resolution
bandwidth in this measurement is 200Hz.

measurement with the two other decays using atoms, the e↵ect of atoms is visible
as a considerably faster decay of the membrane mode.

We measure the largest damping rate of the membrane in the presence of
the resonant, molasses cooled atoms. By comparing the intrinsic damping rate
of the membrane, �m = 0.5 s�1 to the observed damping rate with molasses
cooling �c = 72 s�1, we observe an increase in the damping of the membrane
by a factor of �c/�m = 140. The damping results in a minimum temperature
of Tmin = 9K corresponding to a cooling factor of Tbath/Tmin = 32 with respect
to the room temperature bath. In the absence of the atoms, we observe cavity
cooling of the membrane mode to a steady-state temperature of Tmin = 29 K,
when P = 20mW. The final occupation number in the membrane is most likely
limited by the frequency noise in the lattice laser beam.

The faster decay of the membrane mode in the presence of molasses cooled
atoms as compared to the MOT ones is most likely explained by the smaller
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Figure 6.36: A change in the damping rate of the membrane due to the presence of the
molasses-cooled atoms in the lattice as a function of !

at

. The measurement is done for
three di↵erent detunings of the lattice beam: �

L

= �2⇡ ·7 GHz, �
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= �2⇡ ·10 GHz and
�
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inhomogeneous broadening of the atomic resonance. A thorough quantitative
understanding of the results requires further measurements and analysis. For
example, we are currently characterizing the atomic module regarding e.g., the
temperature and number of atoms in the lattice. As a rough parameter estimate,
the total number of atoms in the lattice is around ⇠ 7 · 107. The temperature of
the MOT is around 100µK and the molasses temperature has been measured to
be around 20µK.

In another measurement, we measure the change in the ringdown rate of
the membrane with and without the presence of the atoms in the lattice. We
do the measurement for three di↵erent lattice detunings of �L = �2⇡ · 7 GHz,
�L = �2⇡ · 10 GHz and �L = �2⇡ · 18 GHhz, and change the trap frequency
of the atoms by changing the power of the lattice beam. The trap frequency

of the atoms scales as !at /
q

P

�
L

. Figure 6.36 shows the resulting increase

in the damping rate of the membrane due to the atoms, ��, as a function of
!at. When the atoms are tuned on-resonance with the membrane, we observe an
increase in the damping by a factor of 102. Note, that the onset of the mechanical
damping starts at a di↵erent lattice power levels as �L is changed, but at the
same !at ⇠ !m.

We observe enhanced damping of the membrane in Fig. 6.36 over a broad
range of !at. This maybe influenced by the strong membrane excitation together
with the trap anharmonicity, the spatial spread in the trap frequencies, and the
finite temperature of the atoms in the lattice, as discussed in Section. 5.5. A
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6.8 Outlook: Atom-Membrane Coupling

more quantitative analysis requires further trap characterization measurements
that are underway. Nevertheless, these measurements demonstrate sympathetic
cooling of the membrane motion via the atoms using the MIM-module. The mea-
sured increase in the damping of the membrane due to the atoms is remarkably
104 times larger than that observed in the first free-space experiments (Sec. 5.5).
These measurements entail a promising start for exploring the atom-membrane
coupling further using the cavity-enhanced setup, and are a successful continua-
tion of the free-space experiments started in Munich.
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7

Conclusions

In this thesis I have described a novel hybrid-optomechanical experiment, where a
microscopic membrane oscillator is coupled via an optical lattice interface to the
center of mass motion of a distant atomic ensemble. In the experimental realiza-
tion, we trap 106 atoms in the optical lattice and observe bi-directional coupling
between the atoms and the SiN membrane when the two systems are tuned to
resonance at 2⇡ · 250 kHz. This is striking, as the atoms and the membrane have
an enormous mass di↵erence of a factor of 108. This experiment is also the first
demonstration of backaction of ultra-cold atoms onto a mechanical oscillator.

We observe a resonant increase in the damping of the membrane motion on
the order of a few percent in a ringdown measurement. The high Q-factor ⇠ 106

of the silicon nitride membrane allows us to precisely measure minute changes in
its damping. Due to the high temperature of the atoms and the spatially inhomo-
geneous trapping potential, the coupling resonance is broadened. By including
these e↵ects into our theoretical model, we can accurately describe the shape and
amplitude of the measured atom-membrane resonance. This suggests that the
theory can be used for extrapolation to optimized parameters.

One route to considerably enhance the coupling is to enclose the membrane
inside a cavity, which increases the radiation pressure on the membrane. As a
part of this thesis, a successful extension of the membrane module was designed
and implemented. In the new setup, the membrane is placed in the middle
of an optical cavity and the atoms are trapped in an optical lattice formed by
retroreflection from the cavity. When the membrane is positioned at the slope
of a resonant cavity field the atom-membrane coupling is enhanced compared to
the free-space coupling in proportion to the cavity finesse. At the same time, the
modularity of the setup is preserved.

In preliminary measurements with the new cavity-enhanced setup we have
observed an increase in the damping of the membrane due to the atoms that
is a factor 104 stronger than with the previous setup. In addition, we have
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7. Conclusions

sympathetically cooled a 274 kHz membrane mode from room temperature to
9 K via continuous laser-cooling of the atoms. Furthermore, such an integrated
membrane-cavity system provides a range of interesting physics on its own. We
have theoretically analyzed the system, and found that the finesse of an asym-
metric cavity can be increased beyond its free-space value by optimizing the
membrane position inside the cavity with respect to the cavity field. This can
be described by classical interference e↵ects inside the cavity. The theory is in
accurate agreement with our measurements.

Theoretical estimates show that both the free-space and cavity-enhanced se-
tups should enable the ground-state cooling of a cryogenically pre-cooled mem-
brane by making use of the tunable atomic dissipation [33, 41]. An interesting
feature of the cavity setup is that unlike in cavity-optomechanical cooling [139],
the sideband-resolved regime is not required to achieve ground state cooling of the
membrane. This is advantageous since this regime is experimentally challenging
to reach for low-frequency oscillators such as the membranes. The corresponding
condition in our setup is that the atoms can be ground-state cooled, which is
routinely achieved in experiments [77]. The proposed setup could also prove use-
ful in the context of cooling other dielectric objects in a cavity such as levitated
dielectric particles or molecules, which also have frequencies in the hundreds of
kHz regime [83, 84]. Finally, coupling to the internal atomic degrees of free-
dom [30, 32] instead of the motional ones could open additional possibilities for
manipulation and cooling, and might also enable even higher couplings.

Ultra cold atoms coupled to mechanical oscillators represents a novel type of
hybrid mechanical system, where a long term prospect is to harness the atoms for
read-out, cooling, and coherent manipulation of the mechanical oscillators [34].
The optical lattice demonstrated in this thesis provides a coherent, long-distance
coupling between the the atoms and the membrane. Such a long-distance inter-
face is beneficial, as it can link systems residing in very di↵erent environments.
Furthermore, by functionalizing the membrane with magnetic moment or electric
charge, it could serve as a transducer between otherwise incompatible quantum
systems, thus providing an asset for versatile hybrid quantum networks.
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Route Towards Coherent Coupling

The experiments presented in this thesis demonstrate the back-action of an en-
semble of ultra cold atoms onto a membrane, which is a prerequisite for cooling
and manipulating the membrane with the atoms. The next goal is to observe the
normal-mode splitting in the current setup and thereafter explore sympathetic
ground-state cooling of the membrane. In the following, some potential steps
towards these goals are suggested.

Atomic Module

We expect the normal-mode splitting to be observable with current setup by in-
creasing the number of atoms in the lattice and by ground-state cooling them.
Ground-state cooling minimizes the e↵ects of spatial inhomogeneities in the trap-
ping potential and the finite temperature of the atoms on the coupling. Raman
sideband cooling could be used to prepare up to 3 ⇥ 108 atoms in the ground
state of a large volume 3D lattice [77]. In addition, a blue-detuned lattice could
be used to couple the atoms to the membrane. This would suppress e↵ects due to
spontaneous emission of the atoms and thus allow for smaller laser detuning and
power. In the transverse direction the atoms could be confined by a far-detuned
2D lattice.

Membrane Module

To access the quantum coherent coupling regime with currently available mem-
brane and atom parameters requires a cryogenic membrane module to reduce
the thermal decoherence rate of the membrane. In our experiment, we use a
commercially available SiN membrane. At the moment, considerable e↵ort is un-
dertaken by various research groups to fabricate and develop membranes that are
tailored for optomechanics experiments [108, 101, 36, 110, 111, 112]. By struc-
turing the membranes and their clamping points to the environment, one can sig-
nificantly reduce their damping [108]. Furthermore, sub-wavelength di↵raction
gratings patterned on the membrane surface have shown reflectivity of 99.8 %
while simultaneously the membrane Q had an ultra-high value of 106 at room
temperature [110, 111].

Noise Considerations

As the coherent coupling regime is approached, the setup becomes more vulner-
able to various noise sources. In particular, the current detection sensitivity is
10�14 m/

p
Hz, whereas the ground state amplitude of the membrane is ⇠ 10�15 m.

Careful analysis of the current sensitivity limits is therefore required. Further-
more, laser noise at the membrane frequency heats up the membrane, which is
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7. Conclusions

possibly limiting the current experiment. In the long term, we expect to re-
quire some aggressive filtering of the laser in order to reach the ground-state
regime [141, 11, 140]. Finally, the vibrational noise in the system can be reduced
further using a monolithic, rigid and small cavity design. [142].
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Appendix A

Fundamental Constants and
87Rubidium data

Fundamental Constants

Planck’s constant h 6.62606876(52) · 10�34 Js
~ = h

2⇡ 1.054571596(82) · 10�34 Js
Boltzmann’s constant kB 1.3806503(24) · 10�34 J/K
Speed of light c 2.99792458 · 108 m/s

87Rb data

Atomic mass m 1.44316060(11) · 10�25 kg

D2 transition (52S1/2 ! 52P3/2)
Natural linewidth �se 2⇡ · 6.065(9) MHz
Saturation intensity Is 1.669(2) mW/cm2

for |F = 2,mF = ±2i $ |F 0
= 3,m

0
F = ±3i (�

±
pol.)

Recoil energy Er = 2⇡2~2/�2m h · 3.7710 kHz

52S1/2 Groundstate
Hyperfine splitting Ehfs h · 6.835 GHz

The data is taken from Ref. [75].
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Appendix B

Intensity Stabilization: Circuit
Diagram
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B. Intensity Stabilization: Circuit Diagram

Figure B.1: Circuit diagram of the intensity stabilization for the lattice laser beam.
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Appendix C

Impressions from Lab-Move

Some pictures taken in lab of Prof. T. W. Hänsch at LMU in Munich before and
after the move from Munich to Basel are shown in Figs. C.1 and C.2.

The empty optical tables in Basel shown in Fig. C.3 were quickly taken over
by the new atom-membrane experiment shown in Fig. C.4.
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C. Impressions from Lab-Move

Figure C.1: One of the two experimental tables used for the atom-membrane laser
setup. The experiments described in Chapter 5 were performed with this setup. Picture
taken by T. W. Hänsch. August 2010.

Figure C.2: Atom-membrane-lab in Munich taking o↵ to Basel. November 2010.
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Figure C.3: The new atom-membrane lab in Basel in October, 2010.

Figure C.4: The atom-membrane lab in Basel in August, 2013. The build-up of this
experiment is described in Chapter. 6
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Acronyms

AOM Acousto-optical modulator
CCD Charge coupled device
c.o.m Center of mass mode
EOM Electro-optic modulator
FSR Cavity free spectral range
MI Michelson Interferometer
MIM Membrane in the middle
MOT Magneto-optical trap
PBC Polarizing beam cube
PD Photodiode
PDH Pound Drever Hall
Q Mechanical quality factor
SiN Silicon nitride
SNR Signal-to-noise ratio
TA Tapered amplifier
TOF Time of flight
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Symbols

Optical Field and Cavity

� Laser wavelength
k = 2⇡

�

Wave vector
P Power in the laser beam
w0 Beam waist
A (r) Complex field amplitude
!L Laser frequency
!cav Cavity resonance frequency
�c = !L � !cav Detuning between cavity resonance and laser drive
 Cavity amplitude decay rate (HWHM of transmis-

sion resonance)
�! = 2 Cavity decay rate (FWHM of transmission reso-

nance)
n̄cav Mean photon number in the cavity
Lcav Empty cavity length
FSR= c/2Lcav Free spectral range
r
i

Amplitude reflectivity of mirror i
F Cavity finesse
Gopt Optomechanical coupling strength
�!m (�c) Optical spring
�opt Optomechanical damping rate
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Symbols

Mechanical Oscillator

M E↵ective oscillator mass
lm Membrane side length
dm Membrane thickness
!m Membrane frequency (angular units)
Q = !m/�m Mechanical quality factor
�m Mechanical energy damping rate
xm Membrane displacement
xth r.m.s thermal amplitude of the oscillator
Tbath Bath temperature
xzp =

p
~/(2M!m) Zero-point amplitude

n̄th Mean thermal phonon number
�th = �mn̄th Thermal decoherence rate
n̄ss Steady-state occupation number
nm Refractive index of the membrane
rm Amplitude reflectivity of the membrane
r = |rm|2 Intensity reflectivity of the membrane
S
x

(!) Single-sided power spectral density
�c Membrane damping rate in the presence of the

atoms
�� = �c � �m Increase in the damping of the membrane due to the

atoms
Kth Thermal link
g Atom-membrane coupling constant
� = !m � !at Membrane-atom detuning

Optical Lattice

m Atomic mass
�L Lattice detuning
xat Atomic displacement from equilibrium
V0 Total depth of the dipole potential
Vm Modulation of the dipole potential
t Transmission losses
!ax Atomic axial trap frequency (angular units)
!rad Atomic radial trap frequency (angular units)
N Number of atoms in the lattice
Tax,rad Axial / radial temperature of the atoms
�ax,rad Axial / radial width of the atom cloud
�!at Spread in the atomic trap frequencies
�c Cooling rate of the atoms
�
�

Atomic dephasing rate
�at = �c + �

�

Total damping rate of the atoms
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[13] S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan,
K. C. Schwab, and M. Aspelmeyer, Demonstration of an Ultracold Micro-
Optomechanical Oscillator in a Cryogenic Cavity, Nat. Phys. 5, 485 (2009).

[14] E. Verhagen, S. Deleglise, S. Weis, A. Schliesser, and T. J. Kippenberg,
Quantum-Coherent Coupling of a Mechanical Oscillator to an Optical Cav-
ity Mode, Nature 482, 63 (2012).

[15] A. D. O´Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander,
E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M.
Martinis, and A. N. Cleland, Quantum Ground State and Single-Phonon
Control of a Mechanical Resonator, Nature 464, 697 (2010).

[16] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J.
Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband
Cooling of Micromechanical Motion to the Quantum Ground State, Nature
475, 359 (2011).

[17] J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whit-
taker, and R. W. Simmonds, Circuit Cavity Electromechanics in the Strong-
Coupling Regime, Nature 471, 204 (2011).

[18] M. Aspelmeyer, P. Meystre, and K. Schwab, Quantum Optomechanics,
Phys. Today 65, 29 (2012).

[19] W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, Towards Quan-
tum Superpositions of a Mirror, Phys. Rev. Lett. 91, 130401 (2003).

[20] I. Pikovski, M. R. Vanner, M. Aspelmeyer, M. S. Kim, and Brukner, Časlav,
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[119] J. Reichel and V. Vuletić, Atom Chips (Wiley-VCH, Weinheim, Germany)
(2011).

[120] P. Treutlein, Coherent Manipulation of Ultracold Atoms on Atom Chips,
Ph.D. thesis, LMU München (2008).
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