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摘 要

摘 要

原子干涉仪在精密物理量测量中具有广泛的应用。内态原子干涉仪的测量精

度受到其演化时长的限制，而后者取决于原子的相干时间，因此探究原子系综中的

退相干机制十分重要。同时，内态干涉仪的相位灵敏度还会受到系统中粒子数的限

制，例如对于使用 𝑁 个不关联粒子的干涉仪，其相位灵敏度极限为 Δ𝜙 = 1/√𝑁，
即标准量子极限（SQL），实验上可以利用自旋压缩等资源来超越标准量子极限。
本文的工作基于在原子芯片上制备的铷 87原子的玻色爱因斯坦凝聚体（Bose­

Einstein condensate），并使用两个超精细基态能级 |𝐹 = 1, 𝑚𝐹 = −1⟩和 |𝐹 = 2, 𝑚𝐹 =
+1⟩ 作为干涉仪的两个模式。这样一个双分量的玻色爱因斯坦凝聚体系统非常适
合研究原子系综内的退相干问题，以及多体系统中的量子纠缠。

我们在实验上利用拉姆齐干涉仪测量了这一系统中的相位相干性随着时间的

衰减，发现相干性主要受限于碰撞相互作用引起的相移和原子随机损耗。我们建

立了一个基于主方程的理论模型，并用蒙特卡罗波函数法求解，定量地证实了这

一退相干机制。该理论模型考虑了系统中的碰撞相互作用、原子数的涨落和原子

损耗的随机性，得到的理论结果与实验结果吻合良好。我们的结果阐明了双分量

玻色爱因斯坦凝聚体中的退相干机制，也为进一步抑制系统中的原子退相干提供

了一种思路。

本论文的另一个研究重点是制备可用于量子精密测量的纠缠态。我们在实验

上研究了超冷原子系综中的自旋压缩。自旋压缩为量子干涉仪提供了资源，能够

使其获得超出标准量子极限的相位灵敏度，同时也可以应用在量子信息和量子隐

形传态等其他领域。在本文中，我们利用单轴扭曲机制来制备自旋压缩，获得了

𝜉2 = −9.8(5) dB的自旋压缩态，表明系统中有超过 128个原子的纠缠深度。这个结
果与我们系统以前的结果相比有了显著的改进，并且稳定可重复。通过提高压缩

比，我们演示了超出标准量子限 7 dB的拉姆齐干涉仪。此外，这一结果显示了我
们的系统在进一步研究 Einstein­ Podolsky ­ Rosen悖论方面的潜力。我们的实验结
果对于量子计量学实验、芯片原子钟的发展和多体纠缠的研究等均具有启发意义。

关键词：旋量玻色­爱因斯坦凝聚体；原子内态干涉仪；相位相干性；量子计量；自
旋压缩

I



ABSTRACT

ABSTRACT

Atom interferometers find a broad range of applications in precision measurements
of physical quantities. Their precision is limited by the finite coherence time of the atoms,
which fundamentally restricts the interrogation time. Therefore, it is important to under­
stand the limitations to the temporal coherence in the atomic ensembles. On the other
hand, the measurement precision is bounded by the particle number in the interferometer,
for example, for 𝑁 uncorrelated atoms, the phase resolution is limited by the atomic pro­
jection noise to Δ𝜙 = 1/√𝑁 , known as the standard quantum limit (SQL). This limit can
be overcome by employing quantum resources such as spin squeezing.

In this work, we perform internal­state interferometry with Bose­Einstein conden­
sates (BEC) of Rubidium 87 atoms prepared on an atom chip. We use two hyperfine
ground states |𝐹 = 1, 𝑚𝐹 = −1⟩ and |𝐹 = 2, 𝑚𝐹 = +1⟩ as the two modes of interferome­
ter. Our experimental system (a two­component BEC) is ideally suited to experimentally
addressing the questions about the decoherence mechanisms in the BEC, and provides a
versatile and powerful platform for generating entanglement between atoms.

Using Ramsey interferometry we measure the temporal decay of coherence in this
system and observe that the coherence is limited by the interplay of the collisional phase
shift and the stochastic nature of atom loss. We verify the mechanism quantitatively by
building a theoretical model based on a master equation and performing numerical sim­
ulation with the Monte Carlo wave­function method. Our model takes into account col­
lisional interactions, atom number fluctuations and losses in the system, and it leads to
theoretical results in good agreement with experimental results. Our results reveal the
fundamental limit of phase coherence in this system and provide a starting point for fu­
ture studies towards suppressing the decoherence in BECs.

Another focus of this thesis is the generation ofmetrologically useful entangled states.
We experimentally study a special type of entanglement, the spin squeezing, in atomic
BECs, and use the one­axis twisting mechanism to prepare spin­squeezed states. Spin
squeezing provides a resource for the quantum interferometer to achieve a phase uncer­
tainty beyond the SQL, and is also useful resource for application in quantum informa­
tion. We present spin squeezed states with a Wineland spin­squeezing parameter of up
to 𝜉2 = −9.8(5) dB, indicating an entanglement depth of more than 128 atoms in the

II



ABSTRACT

system. This result is improved significantly compared to previous results in our sys­
tem. The improved spin squeezing in the system allows us to demonstrate a Ramsey
interferometer operating 7 dB beyond the SQL. Furthermore, the reproducibly high level
of spin squeezing shows the promising potential of our system to further investigate the
Einstein–Podolsky–Rosen paradox with BECs. Our experimental results are relevant for
experiments in quantum metrology, the development of chip­based atomic clocks, and
further studies of many­body entanglements.

Keywords: two­component Bose­Einstein condensate; Ramsey interferometer; phase co­
herence; quantum metrology; spin squeezing
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CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION

Quantum interference, one of the most fundamental and challenging principles in
quantum mechanics, forms the basis of high­precision measurement and quantum infor­
mation processing. Interferometry is widely used in different fields, especially when mea­
suring precisely physical quantities, such as the strength of a field or time, which is impor­
tant for both fundamental science and engineering. In a typical interferometer, particles
from a single source are split into two paths that travel in different paths (or modes) and the
physical quantity of interest is mapped onto a phase difference accumulated between the
two paths (modes). This phase difference is later determined by the interference fringes
produced after the two paths are recombined. This conceptual working scheme applies
for different types of interferometers: from the Laser Interferometer Gravitational­wave
Observatory (LIGO) [1] where laser (photons) are used, to atomic clocks [2] where atoms
interfere.

Atom interferometers based on ultracold atoms, particularly Bose­Einstein conden­
sates (hereafter abbreviated as BEC), are of special interest thanks to the well­developed
techniques for trapping and controlling neutral atoms. In this thesis, I present works
mainly related to internal­state atomic interferometer using a BEC trapped in a magnetic
potential on an atom chip [3] . The atom chip provides a good platform for the atomic in­
terferometer since it offers the possibility of precise manipulation of neutral atoms close
to the chip surface [4] . Two internal (spin) states of 87Rb atoms are used as interferometric
modes, and they are split and recombined using two­photon microwave and radio fre­
quency Rabi pulses [5­6] . Such a two­component BEC has a lot of interesting properties
and provides a promising platform for quantum metrology [7] as well as other quantum
technologies, with all internal and motional degrees of freedom of the atoms under exper­
imental control at the quantum level.

Understanding the limit of the measurement precision of the internal interferometer
and improving it is always the most interesting and challenging topic in this discipline.
Phase coherence is of primary importance to perform interferometers since its finite dura­
tion poses fundamental limitations on the possible interrogation time for interferometers.
In addition, understanding these phase property is essential for experiments that make
use of a BEC as a source of coherent matter waves, for example the “atom laser” ex­
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periments [8­9] and the atomic clocks with BEC [6] . For these reasons, investigating the
fundamental limits of phase coherence in a two­component BEC is of crucial importance
for the internal state interferometer. Moreover, in the experiments exploring the many
body entanglement using BEC, phase noise during the state preparation affects the fi­
delity of the prepared non­classical states. Due to these reasons, phase coherence in a
BEC has attracted a lot of research interest. A considerable attention has been given to
this topic and theoretical studies point out different decoherence mechanisms, while some
long standing predicted decoherence is not reported experimentally.

Our experimental system is well suited for investigating the decoherence mechanism
because the relative phase between different components becomes easily observable from
interference measurements. In addition BEC as a nearly isolated system, allows us to in­
vestigate the decoherence intrinsic to the system, rather than arising from the interactions
with the environment. We take the advantage of such a two­component BEC and inves­
tigate the phase uncertainty as a function of time. We find the dominant decoherence is
due to the interplay between the elastic atomic collisions and the random nature of the
atom losses. The mechanism is confirmed quantitatively by building a theoretical model
based on amaster equation and numerically solving it with theMonte­Carlo wave function
method. The results of the associated studies are published in Ref. [10].

Besides phase coherence, the phase uncertainty of a two­mode interferometer is also
limited by the quantum projection noise due to the fundamental randomness of the mea­
surement outcomes on superposition state. Performing with 𝑁 uncorrelated or classically
correlated atoms, the measurement precision can only reach the standard quantum limit
(SQL), equal to 1/√𝑁 [11] . This is a classical limit and can be overcome using resources
of quantum correlations such as spin squeezing. With finite resources such as a given par­
ticle numbers 𝑁 , one important goal is to go beyond the SQL, which is the main task of
quantummetrology. Quantummetrology “studies how to exploit quantum resources, such
as squeezing and entanglement to overcome this classical bound (SQL)” [7] . Extensive re­
searches have been carried out on quantum enhanced interferometer based upon different
systems, such as photon polarization entanglement [12­13] , the trapped­ion internal entan­
glement [14­15] , and neutral atoms [16­19] . Non­classical states of atomic ensembles, have
been proposed in 1993 [20] , immediately found applications in quantum technologies as an
essential resource for quantummetrology such as atomic clocks [21­26] and interferometers
to measure the magnetic field beyond the classical limit [19] . Apart from the potential ap­

2



CHAPTER 1 INTRODUCTION

plications on metrology, entanglement, as a fundamental concept of quantum physics [27] ,
still presents many fundamental challenges, in particular when applied to many­body sys­
tems of indistinguishable particles.

In our system, we explore spin­squeezed states [20] , a special kind of entanglement
states known as useful resources for quantum metrology. We create spin squeezing
through one axis twisting (OAT) dynamics [20] . This non­linear interaction naturally arises
in our system due to elastic collisions between the atoms [28] . A key feature of our exper­
iment is that we can make use of a state­dependent potential to effectively turn on the
nonlinear interaction by spatially separating the two states and turn it off when they are
recombined [29] . However, it is always complicated to engineer the entanglement in a
many­body system, and optimization of the experiment is desired. Part of the achieve­
ments of this thesis is that a more reliable and better level of spin squeezing is realized due
to the improvements of the experiment on several aspects. Apart from several technical
improvements and the optimization of the routine for the preparation of spin squeezing, we
have also gained a better understanding of the squeezing mechanisms in the system. With
these improvements, we create spin­squeezed states with a Wineland spin squeezing pa­
rameter [11] of up to −9.8(5) dB compared to a classical state and realize an entanglement­
enhanced interferometer with a sensitivity of 7 dB in variance below to SQL. The sub­SQL
sensitivity is maintained for an interrogation time up to 20 ms. Afterwards the previously
mentioned limit of phase coherence emerges and finally destroys the entanglement.

In this thesis, we present experimental research on two component BECs from two
aspects. We investigate the temporal phase coherence in this system and clarify the funda­
mental limit of it, the experiments presented help to deepen the understanding of the phase
coherence in a many­body system. We also prepare a spin­squeezed state, and demon­
strate non­classical Ramsey interferometry using the spin squeezed state as input. The
experiments were carried out at the university of Basel in Switzerland with the support
from Chinese Scholarship Council.

The thesis is structured in the following way. In chapter 2, we will introduce some
fundamental concepts in the field of two­component BEC, discuss the collective spin de­
scription of a many­body system and give a general introduction to quantum metrology.
In chapter 3, we present the experimental apparatus in detail and discuss the experimental
techniques for manipulating the internal and external states of the atoms. In chapter 4, we
present the experimental and theoretical study of the phase coherence in the system, ana­
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lyze the phase noise and point out the main decoherence mechanism. chapter 5 presents
the strategies of preparing and improving the spin squeezing in our system, and demon­
strate a non­classical interferometer with a phase sensitivity beyond the SQL by 7 dB.
Finally chapter 6 concludes the thesis and gives an outlook of on­going and potential
future works in our experiment.
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CHAPTER 2 TWO COMPONENT BOSE­EINSTEIN
CONDENSATE

In atomic physics, Bose­Einstein condensate (BEC) is an interesting state of matter
which is formed when a gas of bosons at low density is cooled to a temperature very
close to absolute zero. Under such condition, a large fraction of bosonic atoms condense
into the same single­particle state. The phase transition to BEC is of great significance
since it provides a powerful technique to amplify and to observe the microscopic quantum
mechanical phenomena, particularly wave function interference.

BEC phase transition was first predicted in 1925 by Albert Einstein and Satyendra
Nath Bose [30] . In 1995, BEC was realized in dilute gases of alkali atoms, first reported in
a single internal state of rubidium [31] , later in single state of sodium [32] and lithium [33] .
Since then BEC has been the subject of intense research developing rapidly under the com­
bined support of laser cooling [34­35] , magnetic trapping and evaporative cooling [36] of
atoms. The first BEC experiments involving multiple hyperfine species were performed
with atoms in the |𝐹 = 1, 𝑚𝐹 = −1⟩ and |𝐹 = 2, 𝑚𝐹 = 2⟩ internal states of 87Rb [37] .
Their experiments demonstrated the possibility of producing long­lived condensate sys­
tems in superposition of different internal states, and that the low temperature behaviors
of the ground state atoms in the two spin states are different. Later, experiments using
magnetically trapped two­component BECs with atoms in states |𝐹 = 1, 𝑚𝐹 = −1⟩ and
|𝐹 = 2, 𝑚𝐹 = 1⟩ were demonstrated [5,38] . At about the same year, BEC trapped in mag­
netic traps on atom chips was realized [39] and soon attracted great attention and triggered
a rapid growth of the field of chip based experiments [3,5­6,29,40] .

In this thesis, the phenomenon of BEC is not itself studied in detail, but rather used
as a tool for exploring the physics in many­body systems. Specially, in our experiment,
the internal (spin) degree of freedom is introduced to the BEC, atoms are allowed to oc­
cupy two hyperfine energy levels. Such a two­component BEC has a lot of interesting
properties and provides promising testing ground for quantum metrology and other quan­
tum technologies, with all internal and motional degrees of freedom of the atoms under
unprecedented control at the quantum level.

This chapter starts by introducing some general concepts that are fundamental to our
understanding of the BEC in the dilute atomic alkali gases, including the definition and

5



CHAPTER 2 TWO COMPONENT BOSE­EINSTEIN CONDENSATE

critical temperature of a BEC, the effective interatomic potential in an interacting system,
the time­independent and time­dependent Gross­Pitaevskii equations and the Thomas­
Fermi limit. Then from section 2.2, a two­component BEC containing two coexisting
hyperfine species, which is used in our experiments, will be discussed in detail. The
coupled Gross­Pitaevskii equation and its application in our system is discussed; the col­
lective spin description of the system is introduced in section 2.3; and previous studies
about phase coherence are summarized in section 2.4. In the end, the basic concepts of
quantum metrology are introduced in section 2.5.

2.1 Fundamentals of BECs

The phenomena of BEC have been extensively studied over the past two decades
both theoretically and experimentally [41­42] . In this section, we shall only present some
basic results that are of use for later chapters in this thesis in order to give an intuitive
description of BEC.

2.1.1 The occurrence of BEC

An intuitive and simple picture of the BEC phase transition can be obtained from
the quantum wave nature of particles. Ideal bosons undergo BEC phase transition when
the spatial extent of the wave packet of individual boson, described by the thermal de
Broglie wavelength, starts to overlap with each other. For a uniform three­dimensional
gas consisting of non­interacting particles in the thermodynamic limit, the de Broglie
wavelength 𝜆th at a temperature 𝑇 is defined as:

𝜆th = ℏ
√2𝜋𝑚𝑘𝐵𝑇

, (2.1)

where ℏ is the Planck constant, 𝑘𝐵 is the Boltzmann constant, and 𝑚 is the mass of each
boson. This wavelength depends on the temperature, and increases when the system is
cooled down. The BEC occurs when the temperature is low enough so that 𝜆th is on the
order of the interparticle distance 𝑛−1/3, where 𝑛 is the particle density. In more accurate
words, BEC phase transition occurs when quantity 𝑛𝜆3

th ( referred to as the phase­space

density) satisfies

𝑛𝜆3
th = 𝜁(3

2) ≈ 2.6124, (2.2)

where 𝜁(.) being the Riemann zeta function. At this point, the quantum degeneracy sets
in and the quantum effects become significant. The corresponding transition temperature
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𝑇𝑐 is referred to as critical temperature and is given by

𝑇𝑐 = (
𝑛

𝜁(3/2))
2/3 2𝜋ℎ2

𝑚𝑘𝐵
≈ 3.3125ℏ2𝑛2/3

𝑚𝑘𝐵
, (2.3)

The BEC phase transition can also be understood from the quantum statistics point
of view. In a system, 𝑁 bosons are distributed over 𝑝 accessible momentum states, and
obey the Bose­Einstein rule that the occupation number of any single­particle state is not
restricted. The phase transition to BEC in a system of bosons occurs when at least one of
these single­particle states is macroscopically occupied, i.e., its occupation number 𝑁0 is
of order𝑁 . At this point the degeneracy condition 𝑝 ≪ 𝑁 is satisfied. As the temperature
of the ensemble determines the accessible number of states, by cooling down the particles
in the system to 𝑇 < 𝑇𝑐 , bosons can condense to a single particle wave function. In
the ideal case, the temperature is 𝑇 = 0, the complete gas of bosonic particles is then
fully condensed 𝑁0 = 𝑁 with all particles occupying an identical single­particle wave
function. However, given that the absolute zero of temperature cannot be reached, the
fraction of atoms that are condensed in the ensemble is given by

𝑁0
𝑁 = 1 − (

𝑇
𝑇𝑐 )

3
. (2.4)

As suggested by Eq. (2.3), the critical temperature depends strongly on the density
of particles, which is in turn determined by the trapping potential. In our experiment,
rubidium­87 (87Rb) atoms are confined in a magnetic trap which can be regarded as har­
monic with the quadratic form 𝑉 = 𝑚(𝜔2

𝑥𝑥2 + 𝜔2
𝑦𝑦2 + 𝜔2

𝑧𝑧2)/2. In this case, the critical
temperature 𝑇𝑐 from Eq. (2.3) becomes

𝑇 0
𝑐 = ℏ𝜔ho

𝑘𝐵 (
𝑁

𝜁(3))
1/3

≈ 4.5 (
𝜔ho/2𝜋
100 Hz) 𝑁1/3 nK, (2.5)

where 𝜔ho = (𝜔𝑥𝜔𝑦𝜔𝑧)1/3 is the geometric mean of the trap frequencies.
It is noteworthy that Eq. (2.5) only holds in the case of the thermodynamic limit,

i.e., the atom number𝑁 is macroscopic and the size of the volume of the system is infinite.
However, in a realistic case, the thermodynamic limit cannot be really reached since the
number of atoms in the harmonic trap is not truly macroscopic (so far BEC experiments
have been carried out with a maximum number of about 107 atoms). In addition, there
are interatomic interactions, which is also expected to reduce the condensate fraction and
thus lower the transition temperature as compared to Eq. (2.5). A more accurate transition
temperature for our experimental situation is given by introducing correction terms taking
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into account these effects, which results in the expression [43]

𝑇𝑐 ≃ (1 − 0.73 𝜔𝑎
𝜔ho

𝑁−1/3 − 1.33 𝑎𝑠
𝑎ho

𝑁1/6
) 𝑇 0

𝑐 , (2.6)

where 𝜔𝑎 = (𝜔𝑥 + 𝜔𝑦 + 𝜔𝑧)/3 is the arithmetic mean of the trapping frequencies,
𝑎𝑠 is the scattering length characterizing the 𝑠­wave interaction strength, and 𝑎ho =
(ℏ/𝑚𝜔ho)1/2 is the harmonic oscillator length scale. In Eq. (2.6) the term proportional
to 𝑁−1/3 accounts for finite number of atoms, while the term proportional to 𝑁1/6 cor­
rects for the effect of interactions. As an example for our typical experimental pa­
rameters, 𝑁 = 1000 atoms in a trap of frequencies 2𝜋 × (114, 714, 714) Hz, we find
𝑇𝑐 ≃ (1 − 0.0982 − 0.0162) 174.31 nK ≈ 154.4 nK. From this we note that the finite­size
correction contributes approximately six times larger than the interaction corrections, and
together they result in a reduction of the transition temperature by 11%.

2.1.2 The Gross­Pitaevskii equation

Throughout this work, we model our BEC as “zero temperature”, since the number
of non­condensed particles is much smaller that the number of condensed particles, and
any thermal excitation can be ignored. This implies that the temperature must be low
enough with respect to the critical temperature, which is confirmed experimentally. For
our typical experimental parameters, there is no thermal fraction observed. To clarify, the
imaging system is capable of observing such thermal fractions if one creates a BEC with
a higher temperature on purpose.

For discussion convenience, in this section we only consider cases in which the hyper­
fine degree of freedom can be ignored. We thus consider a system of 𝑁 identical spinless
bosons characterized by spatial coordinates 𝒓𝑖 (𝑖 = 1, 2, ..., 𝑁) with some arbitrary inter­
particle interactions and subject to some external potential confining the particles in some
finite region of space. The many­body wave functions is written as Ψ𝑁 (𝒓1𝒓2...𝒓𝑁 ), sym­
metric under the exchange of any two particle coordinates. In interacting gases a rigorous
description for the BEC is then given by the many­body ground­state wave function Ψ𝑁

solving the Scrödinger equation of the system, with the many­body Hamiltonian given in
second quantization form [41]

𝐻̂ = ∫ d𝐫Ψ̂†(𝐫) (− ℏ2

2𝑚∇2 + 𝑉 (𝐫)) Ψ̂(𝐫)+ 1
2 ∫ d𝐫d𝐫′Ψ̂†(𝐫)Ψ̂†(𝐫′)𝑈(𝐫−𝐫′)Ψ̂(𝐫′)Ψ̂(𝐫) ,

(2.7)
where Ψ̂(𝐫) and Ψ̂†(𝐫) are the boson field operators that annihilate and create a particle
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at the position 𝐫, respectively, − ℏ2

2𝑚∇2 describes the kinetic energy of the atoms, 𝑉 (𝒓)
describes the confinement potential and𝑈(𝐫′ −𝐫) is the two­body interatomic interaction.
The ground state of the system, as well as its thermodynamic properties, can be directly
calculated starting from the Hamiltonian Eq. (2.7).

However, finding such solution is in general extremely complicated. An important
simplification of the problem results from simplifying the atom­atom interactions by ne­
glecting all 𝑙 ≠ 0 partial waves and only considering spherically symmetric 𝑠­wave col­
lisions characterized by the 𝑠­wave scattering length 𝑎𝑠. This simplification can be taken
under the condition that the gas is cold and dilute, i.e., low temperature and low densities,
as in our experiments where we use BEC of 87Rb at a few hundreds of nano kelvin). In
this regime, this approximation is valid since the thermal de Broglie wavelength is much
larger than the effective range of the interatomic (van derWaals) potentials. Therefore, the
true interaction potential of two atoms may be replaced by an effective contact interaction
in the form of a delta function,

𝑈(𝐫′ − 𝐫) = 4𝜋ℏ2𝑎𝑠
𝑚 𝛿(𝐫′ − 𝐫) = 𝑔𝛿(𝐫′ − 𝐫), (2.8)

where 𝑎𝑠 is the s­wave scattering length, 𝑚 is the mass of the atoms, and 𝑔 is referred to
as the coupling strength. For 87Rb, the interactions are repulsive with 𝑎𝑠 ≈ 5 nm.

Another important approximation that greatly simplifies the complex problem of pair­
wise interactions is obtained by the Hartree­Fock ansatz (referred as the mean field ap­
proximation in case of BEC at zero temperature). It assumes that the many­body wave
function is a product of the same single­particle wave functions and neglects any excita­
tions (T=0).

Ψ𝑁 (𝒓1, … , 𝒓𝑁 ) =
𝑁

∏
𝑖=1

𝜙(𝒓𝑖) (2.9)

where 𝜙(𝒓𝑖) are the normalized single­particle wave functions of the confining potential.
Thus the atomic density is 𝑛(𝒓) = |Ψ(𝒓)|2, satisfying the normalization ∫ |Ψ(𝒓)|2d𝒓 = 𝑁 .
This ansatz together with the consideration of the effective interaction potential, result in
the Gross­Pitaevskii equation (GPE):

[ − ℏ2

2𝑚∇2 + 𝑉 (𝒓) + 𝑔(𝑁 − 1)|𝜙(𝒓)|2
]𝜙(𝒓) = 𝜇𝜙(𝒓) , (2.10)

where 𝑔(𝑁 − 1)|𝜙(𝒓)|2 describes the interaction between atoms. For any particle, the
effect of the interaction with all other 𝑁 − 1 particles takes the form of an extra potential
energy that scales with the atomic density |𝜙(𝒓)|2, and is independent of the details of the
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pairwise interaction but only characterized by the effective interaction strength 𝑔. On the
right hand side of the equation, there is 𝜇 which is equal to 𝛿⟨𝐻⟩𝑁 /𝛿𝑁 . It is noteworthy
that 𝜇 is not the energy per particle ⟨𝐻⟩𝑁 /𝑁 , rather the energy needed to remove a single
particle from the BEC, i.e., the chemical potential.

In the literature, it is common to rewrite the single particle equation Eq. (2.10) in
terms of the order parameter defined by Ψ(𝒓) = √𝑁𝜙(𝒓). And since a BEC usually
contains more than 103 atoms in our experiment, the difference between 𝑁 − 1 and 𝑁
can be neglected, it then yields

− ℏ2

2𝑚∇2Ψ + 𝑉 Ψ + 𝑔|Ψ|2Ψ = 𝜇Ψ , (2.11)

where the order parameter is normalized so that ∫ |Ψ(𝒓)|d𝒓 = 𝑁 . Eq. (2.11) is strictly
equivalent to the single particle GPE Eq. (2.10). The order parameter, apart from its nor­
malization, is actually the single­particle wave function which the Bosons are condensed
into. Although the order parameter itself possesses a well defined phase, this overall
phase of the wave function has no physical significance in the stationary case, unless the
internal state degree of freedom is introduced in which case the relative phase between its
hyperfine components becomes a quantity of physical significance.

To describe dynamical behaviours, we need to consider the time­dependent version of
the many­body wave function Ψ𝑁 (𝒓1, … , 𝒓𝑁 , 𝑡) = ∏𝑁

𝑖=1 𝜙(𝒓𝑖, 𝑡), or the time­dependent
order parameter Ψ(𝒓, 𝑡) = √𝑁(𝑡)𝜙(𝒓, 𝑡), where 𝜙(𝒓, 𝑡) is the single particle wave func­
tion. The time­dependent GPE can be derived by substituting this ansatz into the time­
dependent many­body Schrödinger equation. We then have the time­dependent version
of the Eqs. (2.10) and (2.11), in form of the single­particle wave funciton or the order
parameter

𝑖ℏ 𝜕
𝜕𝑡𝜙(𝒓, 𝑡) = [ − ℏ2

2𝑚∇2 + 𝑉 (𝒓) + 𝑔(𝑁 − 1)|𝜙(𝒓, 𝑡)|2
]𝜙(𝒓, 𝑡) . (2.12)

𝑖ℏ𝜕Ψ(𝑡)
𝜕𝑡 = − ℏ2

2𝑚∇2Ψ(𝑡) + 𝑉 Ψ(𝑡) + 𝑔|Ψ(𝑡)|2Ψ(𝑡). (2.13)

Unlike the time­independent GPEs, the two versions of the time­dependent GPE
Eqs. (2.12) and (2.13) are not strictly equivalent unless the atom number 𝑁 is conserved
over time. Therefore Eq. (2.13) implies Eq. (2.12), but not vice versa. In this chapter we
only consider the dynamics on short time, so that atom losses from the BEC can be ne­
glected. However if we care for the long time dynamics, atom losses cannot be neglected
and have to be accounted for. The corresponding GPE which includes atom losses will
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be introduced later in chapter 4.
From the fact that the time evolution of the stationary wave function is 𝜙(𝒓, 𝑡) =

𝜙(𝒓)𝑒𝑖𝜃(𝑡), we can see from the Eqs. (2.10) and (2.12) that the time evolution of the wave
function is actually governed by the chemical potential

𝜙(𝒓, 𝑡) = 𝜙(𝒓)𝑒−𝑖𝜇𝑡/ℏ . (2.14)

This reflects the fact that interactions, which are included in 𝜇 by the GPE mean­field
description, influence the time evolution of the phase.

GPEs provide a very convenient way for numerical calculations of the stationary so­
lution and the dynamical behaviours. It has been applied extensively in solving problems
in a large variety of systems, with good quantitative agreements with experiment, partic­
ularly in BECs of the alkali atoms.

2.1.3 Thomas­Fermi Limit

For large condensates, the kinetic energy can usually be neglected compared to the
interaction energy, leading to a density profile that takes a form of an inverted parabola.
This is the so­called Thomas­Fermi limit. In a harmonic trap, the Thomas­Fermi density
profile is given by

|𝜙(𝒓)|2 = 15
8𝜋 𝑁

(
𝑚𝜔𝑔
2𝜇 )

3/2

max
[

1 −
(

𝑥2

𝑅2
TF,𝑥

+ 𝑦2

𝑅2
TF,𝑦

+ 𝑧2

𝑅2
TF,𝑧 )

, 0
]

, (2.15)

where 𝑅TF,𝑖 = √2𝜇/(𝑚𝜔2
𝑖 ) is the Thomas­Fermi radius along direction 𝑖 ∈ {𝑥, 𝑦, 𝑧} [41] ,

and 𝜔𝑖 is the corresponding trap frequency. The chemical potential found in this regime
is

𝜇 =
ℏ𝜔𝑔

2 (15(𝑁 − 1)𝑎𝑠
𝑎ho )

2/5
. (2.16)

In our experiment the BEC is not exactly under the Thomas­Fermi regime, however, it
helps to provide an intuitive picture when mainly considering the interactions.

2.2 Two­component BEC

In our experiment, a BEC of 1000±40 87Rb atoms is prepared and trapped in a cigar­
shaped magnetic potential. For the interferometric experiments presented in this thesis,
we use two hyperfine states |1⟩ ≡ |𝐹 = 1, 𝑚𝐹 = −1⟩ and |2⟩ ≡ |𝐹 = 2, 𝑚𝐹 = 1⟩ as
two modes, and we always prepare the atoms in a superposition of two states as a starting
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point. These two hyperfine states are of special interest for several reasons. A key feature
is that they are both magnetically trappable and have nearly identical magnetic moment.
Therefore atoms experience nearly identical magnetic trapping potentials. Moreover, their
first order differential Zeeman shift vanishes at a magnetic field of ≈ 3.23 G, making
superpositions of the two states largely insensitive to magnetic field fluctuations [38] . In
our experiment, the two states can be coupled via a two­photon Rabi processes with a
microwave and radio frequency field. A more detailed discussion of these two states can
be found in section 3.3.

This system is used in recent experiments on many­particle entanglement and quan­
tum metrology [7] as well as compact atomic clocks [6,26] . In this system, the particles are
allowed to occupy two internal states. This introduced hyperfine (spin) degree of freedom
immediately leads to complications of the physical pictures presented in the last section.
The 𝑠­wave interaction strength for inter­species and intra­species collisions 𝑎11, 𝑎22 and
𝑎12 are different from each other, leading to different interactions for the atoms in the
two states. The condensate wave functions is dramatically affected by the presence of
interspecies interactions.

For convenience, we define the order parameters for each internal state Ψ𝑖(𝒓) =
√𝑁𝑖𝜙𝑖(𝒓), with the internal state (spin) index 𝑖 ∈ {1, 2} representing states |1⟩ or
|2⟩. Then Eqs. (2.11) and (2.13) are extended to a set of two coupled equations. The
time­dependent two­component GP equations (2CGPE) in terms of the order parameters
read [28,42]

𝑖ℏ𝜕Ψ1(𝑡)
𝜕𝑡 = − ℏ2

2𝑚∇2Ψ1(𝑡) + 𝑉1Ψ1(𝑡) + 𝑔11|Ψ1(𝑡)|2Ψ1(𝑡) + 𝑔12|Ψ2(𝑡)|2Ψ1(𝑡), (2.17)

𝑖ℏ𝜕Ψ2(𝑡)
𝜕𝑡 = − ℏ2

2𝑚∇2Ψ2(𝑡) + 𝑉2Ψ2(𝑡) + 𝑔22|Ψ2(𝑡)|2Ψ2(𝑡) + 𝑔12|Ψ1(𝑡)|2Ψ2(𝑡), (2.18)

where 𝑔𝑖𝑗 = 4𝜋ℏ2𝑎𝑖𝑗 /𝑚 characterizes the s­wave scattering interactions between compo­
nents 𝑖 and 𝑗 (𝑖, 𝑗 ∈ {1, 2}). For the two hyperfine states used in our experiments [44] ,

𝑎11 = 100.40𝑎0 , 𝑎22 = 95.44𝑎0 , 𝑎12 = 98.01𝑎0 .

The three involved scattering lengths are nearly identical and differ from each other by
no more than 5%. This causes a lot of interesting properties of our two­component BEC’s
behavior.

Typically, in our experiment, the magnetic trapping potential has approximately iden­
tical and tighter trapping frequencies along two directions (radial directions) and a shal­
lower confinement along the third direction (axial direction). The condensate is thus with

12
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an elongated shape. For convenience of numerical simulation, we take a cylindrical co­
ordinate system (𝑟, 𝑧, 𝜃) when calculating the GPEs. The GPE simulation codes involved
in this thesis are based on a cylindrical GPE package, which was developed in our group
based on Wolfram MATHEMATICA by Roman Schmied.

2.2.1 Ground states

As a simplest example of the application of GPE in our system, the ground­state den­
sity profile for the two components can be found by solving the time independent version
of 2CGPE Eq. (2.17) and (2.18). The density profile is calculated as ∫ 2𝜋|Ψ𝑖(𝑟, 𝑧)|2𝑟d𝑟
along axial (𝑧)­direction and ∫ 2𝜋|Ψ𝑖(𝑟, 𝑧)|2𝑟d𝑧 along radial (𝑟)­direction, both with a
unit of atom/𝜇m. In Figure 2.1, the ground state densities of the two components are
plotted, assuming 500 atoms populated in each state. The two wave functions differ from
each other due to the fact that the self­interaction related scattering lengths are not exactly
identical, 𝑎11 ≠ 𝑎22.
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Figure 2.1 Comparison between density profiles of both components. Wave functions are
simulated assuming the system in the ground state, with 500 atoms in each state, and for a trap
with trapping frequency 𝜔𝑟/2𝜋 = 714 Hz and 𝜔𝑧/2𝜋 = 114 Hz. The density profiles are plotted
as a cross section along the axial (𝑧) and along the radial (𝑟) direction, with normalization to total
atom numbers.

2.2.2 Breathing dynamics

As mentioned before, in our interferometric measurements, a superposition of two
spin states is always prepared as a starting point of the experiment. In the end of the evap­
orative cooling sequence, what we obtain is a BEC with all the atoms in the ground state
|1, −1⟩. Therefore a sudden 𝜋/2 Rabi pulse is always needed to transfer abruptly atoms of
one internal state into a coherent superposition of two internal states. In other words, half
the atoms will be driven to state |2, 1⟩ while remaining the wave function as the ground
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state wave function in state |1, −1⟩. From this instant on, the system is not in the ground
state any more, the equilibrium is broken immediately and the dynamics of the spatial
mode of the two components is triggered. Since these two states have slightly different
values of scattering lengths, the sudden change in self­interaction leads to periodic spatial
dynamics of the condensate wave function, which is called “breathing dynamics”. The
same demixing­remixing process of the two components is also observed in other exper­
iments and this type of dynamical behavior makes possible a variety of two species BEC
studies, for example to extract the values of scattering length [45] .

This dynamics can be very well described based on the time­dependent coupled GPEs
Eqs. (2.17) and (2.18). To simulate the experiment, the initial state is calculated with half
of the atoms in each internal state, and all with the ground state wave function of |1⟩.
The two internal states evolve according to the GPE. This leads to an oscillation of the
wavefuntions, as shown in Figure 2.2. The two condensates are created with complete
spatial overlap initially, and in subsequent evolution they undergo relative motions that
tend to preserve the total density profile. As a consequence of the spatial dynamics, the
overlap between the two components is modulated and reduced to a value smaller than 1,
and will decrease the contrast of interferometric fringe.

2.3 Collective spin description

2.3.1 Pseudo­spin description

In our system, the degrees of freedom of atoms are restricted to only two hyperfine
states, here denoted as |1⟩ and |2⟩. The external potentials (in our case the magnetic
trap potential) for the two states are identical due to the same magnetic moment of the
two states. Moreover, the self­interaction strength 𝑔11 and 𝑔22 are very similar due to
the nearly identical intra­species scattering length. These reasons lead to very similar
single particle wave functions for the two states, as already shown in section 2.2.1. The
previously mentioned effect of breathing dynamics is weak in our system because of low
atom density and can be ignored, as confirmed by the 2CGPE simulation and independent
experiments [29] . Therefore we assume the atoms condense in a single spatial mode, and
the spatial shape of the wave functions does not alter the spin dynamics.

Under these assumptions, each atom can be described as a pseudo­spin­1/2 particle
by identifying state |1⟩ with spin up and state |2⟩ with spin down [7] . We will see that,
with this pseudo­spin description in this section, a quantum state can be visualized geo­
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Figure 2.2 The breathing dynamics simulated by 2CGPE. The color represents the atomic
density along the 𝑧 direction, shown as a function of time after the 𝜋/2 Rabi pulse. The atom
losses are taken into consideration in this simulation.

metrically on a so called Bloch­sphere, and the quantum behavior of an𝑁­atom ensemble
can then be regarded as collective. For convenience, all spins will be expressed in units
of ℏ in this section, such that we can write ℏ = 1 in the pseudo­spin space.

2.3.1.1 Single spin

For a single particle, we define the spin operators of the particle as ̂𝒔, satisfying ̂𝒔 =
1
2 𝝈̂, where 𝝈̂ = {𝜎̂𝑥; 𝜎̂𝑦; 𝜎̂𝑧} is the Pauli vector. In this way, we map the two­level atom
onto a spin­1/2 system. The spin components ̂𝑠𝑥 and ̂𝑠𝑦 describe the coupling between
the two states and ̂𝑠𝑧 describes difference between the probabilities that the atom is in the
two states.

A pure state can be written as a superposition of the two states |1⟩ and |2⟩ with only
two parameters,

|𝜃, 𝜙⟩ = cos(𝜃/2)|1⟩ + 𝑒𝑖𝜙 sin(𝜃/2)|2⟩. (2.19)

In this way, a pure state of a single spin can then be represented geometrically as a point

15



CHAPTER 2 TWO COMPONENT BOSE­EINSTEIN CONDENSATE

on the surface of a Bloch sphere, as shown in Figure 2.3, with coordinates 0 ≤ 𝜃 ≤ 𝜋
and 0 ≤ 𝜙 < 2𝜋 representing the polar and azimuthal angle, respectively. The parameter
𝜃 determines the relative population between the two levels and 𝜙 describes the relative
phase. The Cartesian coordinates of the point 𝒔 = 1

2{sin 𝜃 cos𝜙; sin 𝜃 sin𝜙; cos 𝜃} is the
spin direction with a spin length of | ̂𝒔| = 1

2 .

Figure 2.3 Bloch sphere. The state of a two­level system can be described by a single spin­1/2
(red arrow) and can be shown as a point on the surface of a Bloch sphere.

A mixed state of a single spin 1
2 can be written by a density matrix,

̂𝜌 = ∑
𝑖

𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖| = (1 + ̂𝒔 × 𝝈̂)/2 (2.20)

where 0 ≤ 𝑝𝑖 ≤ 1 is the statistical weight of the 𝑖th pure state |𝜓𝑖⟩, and ∑𝑖 𝑝𝑖 = 1. One
can tell if a system is in a pure state or a mixed state by the trace of ̂𝜌2. For a mixed state
Tr( ̂𝜌2) = 1

2 + 2|⟨𝒔⟩|2 < 1, where ⟨𝒔⟩ = (⟨ ̂𝑠𝑥⟩, ⟨ ̂𝑠𝑦⟩, ⟨ ̂𝑠𝑧⟩) is the expectation of the spin
vector, while for a pure state Tr( ̂𝜌2) = 1. Therefore, if the system in a pure state, the
spin length |⟨ ̂𝒔⟩| = 1

2 ; if system in a mixed state, the spin length |⟨ ̂𝒔⟩| < 1
2 . Therefore all

the pure states are on the surface of Bloch sphere, while the mixed states are inside the
Bloch sphere, with an additional degree of freedom given by the length of the spin vector
0 ≤ 𝑟 ≤ 1.

2.3.1.2 Multiple spins

For an ensemble of 𝑁 particles, we can introduce a similar concept of pseudo­spin
space. We define the collective spin vector ̂𝑺 = { ̂𝑆𝑥, ̂𝑆𝑦, ̂𝑆𝑧}, which is defined as a sum
of the individual spins,

̂𝑆(𝑥,𝑦,𝑧) = 1
2

𝑁

∑
𝑙=1

𝜎̂(𝑙)
(𝑥,𝑦,𝑧) =

𝑁

∑
𝑙=1

̂𝑠(𝑙)
(𝑥,𝑦,𝑧) , (2.21)
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where 𝝈̂(𝑙) ( ̂𝒔(𝑙)) is the Pauli vector (spin operator) of the 𝑙th particle. The collective spin
operators have a linear degenerate spectrum spanning the 2𝑁 dimensional Hilbert space.
In this thesis, we restrict our discussion to indistinguishable bosons satisfying the particle
exchange symmetry, allowing a formidable simplification of the Hilbert space from 2𝑁 to
𝑁 +1 dimensions. Following the Schwinger’s oscillator model of angular momentum [46] ,
we introduce the bosonic creation ̂𝑎† ( ̂𝑏†) and annihilation ̂𝑎 ( ̂𝑏) operator for the modes
|1⟩ (|2⟩). The number operator is then defined as

𝑁̂1 ≡ ̂𝑎† ̂𝑎, 𝑁̂2 ≡ ̂𝑏†𝑏̂. (2.22)

We denote the total atom number operator as 𝑁̂ = ̂𝑎† ̂𝑎 + ̂𝑏† ̂𝑏. In this case,

̂𝑆𝑥 = ̂𝑎† ̂𝑏 + ̂𝑏† ̂𝑎
2 , ̂𝑆𝑦 = ̂𝑎† ̂𝑏 − ̂𝑏† ̂𝑎

2𝑖 , ̂𝑆𝑧 = ̂𝑎† ̂𝑎 − ̂𝑏† ̂𝑏
2 . (2.23)

We see that ̂𝑆𝑧 is half the difference in the populations of the two modes, which can be
measured experimentally, therefore is the most important observable in an interferometric
measurement. The operators satisfy the angular momentum commutation relations:

[ ̂𝑆𝑥, ̂𝑆𝑦] = 𝑖 ̂𝑆𝑧, [ ̂𝑆𝑧, ̂𝑆𝑥] = 𝑖 ̂𝑆𝑦, [ ̂𝑆𝑦, ̂𝑆𝑧] = 𝑖 ̂𝑆𝑥, (2.24)

Therefore, an arbitary pair of orthogonal spin operators obeys the Heisenberg uncertainty
relation, for example,

(Δ ̂𝑆𝑦)2(Δ ̂𝑆𝑧)2 ≥ 1
4⟨ ̂𝑆𝑥⟩2. (2.25)

Similar to a single spin, the state of themultiple spins introduced in Eq. (2.21) assumes
a convenient graphical representation on the surface of a generalized Bloch sphere with
radius 𝑁/2. The components of the collective spin operator have expectation values

⟨ ̂𝑆𝑥⟩ = 𝑁
2 cos(𝜙) sin(𝜃) (2.26a)

⟨ ̂𝑆𝑦⟩ = 𝑁
2 sin(𝜙) sin(𝜃) (2.26b)

⟨ ̂𝑆𝑧⟩ = 𝑁
2 cos(𝜃) . (2.26c)

Any unitary transformation of a single spin 1
2 can be considered as a rotation 𝑒−𝑖(𝜃/2)𝜎̂𝒏

on the Bloch sphere, where 𝒏 and 𝜃 are the rotation axis and rotation angle, respectively.
With multiple spins, each locally rotated about the same axis 𝒏 and angle 𝜃, the transfor­
mation is ⊗𝑁

𝑙=1𝑒−𝑖(𝜃/2)𝜎̂𝒏 = 𝑒−𝑖𝜃 ̂𝑆𝒏 . Most of the interferometric transformations discussed
in this thesis can be modelled by this collective rotation. Take the Ramsey interferom­
eter as an example, the three rotations (first 𝜋/2 Rabi pulse, then the phase accumula­
tion, and finally another 𝜋/2 Rabi pulse) involved correspond to an unitary transforma­
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tion 𝑒𝑖(𝜋/2) ̂𝑆𝑥𝑒−𝑖(𝜃) ̂𝑆𝑧𝑒−𝑖(𝜋/2) ̂𝑆𝑥 = 𝑒−𝑖(𝜃) ̂𝑆𝑦 , therefore the whole interferometer sequence is
equivalent to a collective rotation around the 𝑦 axis on the generalized Bloch sphere [47] .

2.3.2 Coherent spin dynamics

In section 2.2, a mean­field description of the two­mode BEC has been given by
two­component GPE. However, there are interactions between atoms induced by elastic
collisions, which result in correlations that are beyond the mean­field description and
cannot be captured by the GPE. In order to describe the collisional interactions in the
two­component BEC, we use the collective spin description introduced before, and the
Hamiltonian of the system can be written as [28,48­50]

𝐻̂ = 𝜈 ̂𝑆𝑧 + ℏ𝜒 ̂𝑆2
𝑧 + 𝑐𝑜𝑛𝑠𝑡 . (2.27)

The collective Hamiltonian contains a constant term, a nonlinear term with rate 𝜒 and a
linear term with rate 𝜈 = ℏ ((𝜇1 − 𝜇2) − 2𝜒⟨ ̂𝑆𝑧⟩ + ̃𝜒(𝑁̂ − ⟨𝑁⟩), where 𝜇𝑖 ( 𝑖 = 1, 2) are
the chemical potentials of the atom in mode |𝑖⟩, given by

𝜇𝑖 = 𝜕𝐻
𝜕𝑁𝑖

= ⟨𝜙𝑖|(−
ℏ2

2𝑚∇2 + 𝑉 )|𝜙𝑖⟩ + ∑
𝑗=1,2

𝑔𝑖𝑗𝑁𝑗 ∫ |𝜙𝑖|2|𝜙𝑗|2d𝒓3, (2.28)

where 𝜙𝑖 is the mode function normalized to 1, and 𝑁̂ is the total particle number op­
erator. The first part on the right hand side describes the kinetic and potential energy of
the component, and the second part describes the interaction energies including the self­
interaction and the interaction with the other spin mode. The coefficients 𝜒 and ̃𝜒 are
given by [49]

̃𝜒 = 1
2ℏ (

𝜕𝜇1
𝜕𝑁1

− 𝜕𝜇2
𝜕𝑁2 ) , (2.29)

𝜒 = 1
2ℏ (

𝜕𝜇1
𝜕𝑁1

+ 𝜕𝜇2
𝜕𝑁2

− 𝜕𝜇1
𝜕𝑁2

− 𝜕𝜇2
𝜕𝑁1 ) . (2.30)

The derivatives in Eqs (2.29) and (2.30) are to be evaluated at the mean values of atom
numbers ⟨𝑁1⟩ and ⟨𝑁2⟩. Furthermore, if the mode functions are independent of 𝑁 , the
above equations simplify to

̃𝜒 = 1
2ℏ(𝑢11 − 𝑢22), (2.31)

𝜒 = 1
2ℏ(𝑢11 + 𝑢22 − 2𝑢12), (2.32)

where 𝑢𝑖𝑗 = 𝑔𝑖𝑗 ∫ |𝜙𝑖|2|𝜙𝑗|2d𝒓, is the density overlap between mode 𝑖 and 𝑗.
In this thesis, both the linear and the nonlinear terms in the Hamiltonian Eq. (2.27)
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will be discussed in detail. The linear term contains an 𝑁­dependent phase rotation with
rate ̃𝜒𝑁̂ , and constitutes a dominant factor of decoherence in the system in the presence
of random atom losses, see chapter 4. The nonlinear interaction 𝜒 ̂𝑆2

𝑧 is known as the
one­axis twisting Hamiltonian, which is crucial for preparing a spin­squeezed state, see
chapter 5. As one can see from the definitions of the coefficients, both ̃𝜒 and 𝜒 depend on
the second derivatives of the total energy 𝜕2𝐻

𝜕𝑁𝑖𝜕𝑁𝑗
. The linear term ̃𝜒𝑁̂ ̂𝑆𝑧 arises naturally

from difference of the interaction energies between the two spin states, therefore depends
on total atom number and the intraspecies scattering lengths 𝑎11 and 𝑎22 through the inter­
action strengths 𝑔11 and 𝑔22. The nonlinear term 𝜒 ̂𝑆2

𝑧 accounts for the interaction of each
atom with all the other atoms, with the strength 𝜒 of this nonlinear interaction depends
on all the scattering lengths 𝑎𝑖𝑗 and on the wave­function overlaps ∫ |𝜙𝑖|2|𝜙𝑗|2d𝑟3. For
our interferometer states |1⟩ and |2⟩, the scattering lengths are similar: 𝑎11 = 100.40𝑎0,
𝑎12 = 98.01𝑎0 and 𝑎22 = 95.44𝑎0

[44] , leading to a small 𝜒 for overlapping clouds. In our
experiment, 𝜒 can be modified by changing the wave­function overlap, as done in this
work.

2.3.3 Quasi­probability distribution

The wave function that appears in Schrödinger’s equation for the two­mode system is
usually written in the form of a linear combination of the Dicke states (discussed later in
section 2.3.4.1), with the coefficients describing the probability distribution in the Dicke
basis. However, an intuitive and graphical description of the collective spin given in
the phase space is more convenient and is needed when studying the dynamics of a spin
system. In order to link the wave function to a probability distribution in phase space,
two quasi­probability­distribution functions for harmonic modes are introduced, known
as Wigner function [51] and Husimi Q­function [52] .

Wigner function is a complete description of the quantum state, equivalent to the
density matrix. Conventionally Wigner function is defined on the planar phase space,
whereas in order to visualize a quantum state of a two­mode system on the Bloch sphere
(as in our case), a spherical Wigner function was derived [53]

𝑊 (𝜗, 𝜙) =
2𝑆

∑
𝑘=0

𝑘

∑
𝑞=−𝑘

𝜌𝑘𝑞𝑌𝑘𝑞(𝜗, 𝜙), (2.33)

where 𝜗 and 𝜙 are the polar and azimuthal angles on the Bloch sphere, respectively, and
the weights 𝜌𝑘𝑞 are related to the density matrix elements 𝜌𝑚𝑚′ = ⟨𝑆, 𝑚| ̂𝜌|𝑆, 𝑚′⟩ in the
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|𝑆, 𝑚⟩­basis, where ̂𝜌 is the density matrix, by the transformation coefficients 𝑡𝑘𝑞

𝜌𝑘𝑞 =
𝑆

∑
𝑚=−𝑆

𝑆

∑
𝑚′=−𝑆

𝑡𝑆𝑚𝑚′
𝑘𝑞 𝜌𝑚𝑚′ . (2.34)

Unlike the real probability distributions, Wigner function can be negative, and the nega­
tivity of Wigner function is a definite indicator that a state is distinctly non­classical. In
Figure 2.4, the sphericalWigner functions of four different quantum states are plotted. The
spherical Wigner function 𝑊 (𝜗, 𝜙) is similar to the traditional Wigner function defined
on the planar phase space of a harmonic oscillator. It can be seen as a quasi­probability
distribution, and the “center of mass” of 𝑊 corresponds to the expectation value of 𝑺.

Figure 2.4 Bloch sphere representations of different quantum states. (a) Wigner function of
a coherent spin state |CSS ∶ 𝜋/2, 0⟩, calculated for 𝑁 = 20 atoms. The projection on the 𝑧­axis
describes the population difference (𝑁2 − 𝑁1)/2 and the angle 𝜙 in the 𝑥𝑦­plane corresponds to
the phase of the system. The mean spin direction is along 𝑥­direction and the spin uncertainty in
the direction perpendicular to mean spin is isotropic, (Δ ̂𝑆𝑦)2 = (Δ ̂𝑆𝑧)2 = 𝑁

4 . (b) Wigner function
of a spin­squeezed state, prepared with one­axis twisting at 𝜒𝑡 = 0.03. (c) Wigner function of a
spin­squeezed state, prepared with 𝜒𝑡 = 0.1. (d) Wigner function of a Schrödinger cat state.

Another well known quasiprobability in phase space is the Husimi Q distribution,
first introduced by Kôdi Husimi in 1940 [52] .It can be constructed by

𝑄(𝜌) = 1
𝜋 ⟨𝑆, 𝑚| ̂𝜌|𝑆, 𝑚′⟩

where |𝑆, 𝑚⟩ is the Dicke state basis. It is the simplest quasiprobability distribution to
calculate compared to others.

2.3.4 Examples of collective spin states

There are various relevant quantum states of a collective spin ensemble. Some col­
lective spin states are of particular importance when it comes to the interferometric mea­
surements. In this section we discuss Dicke states, coherent spin states, spin­squeezed
states and Schrödinger cat states, which are the states of significance and that will be
encountered in the later chapters.
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2.3.4.1 Dicke state

A simultaneous eigenstate of ̂𝑆2 and ̂𝑆𝑧 is called a Dicke state, or an angular momen­
tum eigenstate. It is defined by

̂𝑆2|𝑆, 𝑚⟩ = 𝑠(𝑠 + 1)|𝑆, 𝑚⟩,
̂𝑆𝑧|𝑆, 𝑚⟩ = 𝑚|𝑆, 𝑚⟩,

where the Dicke states are denoted with the symbol |𝑆, 𝑚⟩. Under the particle exchange
symmetry, 𝑆 takes the largest value 𝑆 = 𝑁/2 and Dicke states are thus |𝑁/2, 𝑚⟩, with
𝑚 = −𝑁/2, −𝑁/2 + 1, ..., 𝑁/2 − 1, 𝑁/2. These states form a complete basis for the 𝑁 + 1
dimensional subspace. It is easy to prove that

⟨𝑆𝑥⟩ = ⟨𝑆𝑦⟩ = 0, ⟨𝑆𝑧⟩ = 𝑚.

Therefore its mean spin is along the 𝑧 direction. A Dicke state |𝑁/2, 𝑚⟩ can be character­
ized by 𝑚, the specific relative atom number between the two spins 𝑚 = ⟨ ̂𝑆𝑧⟩, i.e., there
are 𝑁/2 + 𝑚 atoms in state |1⟩ and 𝑁/2 − 𝑚 atoms in state |2⟩.

A special type of Dicke states is with 𝑚 = 0, meaning that there are half of the atoms
in each internal state, and such Dicke states are known as a twin­Fock state [54] . Twin­
Fock states are of significant importance in the field of quantummetrology, and have been
demonstrated in experiments using techniques such as non­destructive measurement or
controlling collision dynamics [55­57] .

2.3.4.2 Coherent spin state

Coherent spin states can be written as a tensor product of𝑁 identical and independent
spin­1/2 states:

|𝜃0, 𝜙0⟩ = ⊗𝑁
𝑘=1 (cos(𝜃0/2)|1⟩ + 𝑒𝑖𝜙0 sin(𝜃0/2)|2⟩) .

It is easy to prove that the mean spin is

⟨𝑆⟩ = 𝑁⟨𝑠⟩ = 𝑆(sin 𝜃0 cos𝜙0, sin 𝜃0 sin𝜙0, cos 𝜃0),

whichmeans all the individual spins point on average along a specific direction (𝜃0, 𝜙0). It
is clear that the coherent spin state is a direct product state, that is, there is no entanglement
between atoms. For an arbitrary state, the fluctuation of any collective spin component
perpendicular to the mean spin can be calculated:

(Δ𝑆⟂)2 = ⟨𝑆2
⟂⟩ − ⟨𝑆⟂⟩2 = ∑

𝑙
(Δ𝑠𝑙

⟂)2 + ∑
𝑘≠𝑙

[⟨𝑠𝑙
⟂𝑠𝑘

⟂⟩ − ⟨𝑠𝑙
⟂⟩⟨𝑠𝑘

⟂⟩] (2.35)
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where the first term is the sum of all the individual spin fluctuations, and the second term
actually considers the correlation. For the coherent spin state, the atoms are independent
of each other, the second term thus yields 0 and the fluctuation of any collective spin
component perpendicular to the mean spin is simply the sum of the individual spin fluc­
tuations. In other words, along any quadrature perpendicular to the mean spin direction,
the noise is always isotropic and equal to 𝑁/4. This is the so­called projection noise.

The coherent spin state can also be understood from a statistical point of view. A
coherent spin state can be expressed as the binomial distribution, under the basis of Dicke
states:

|CSS: 𝜃, 𝜙⟩ =
𝑆

∑
𝑚=−𝑆 [(

𝑁
𝑥 )𝑝𝑥(1 − 𝑝)𝑁−𝑥

]

1
2

𝑒−𝑖𝑚𝜙|𝑆, 𝑚⟩, (2.36)

with 𝑁 = 2𝑆, 𝑥 = 𝑆 + 𝑚 and 𝑝 = (cos 𝜃
2 )2. Figure 2.4(a) shows the spherical Wigner

function of a coherent spin state, with 𝑁 = 20 and 𝜃 = 𝜋/2.

2.3.4.3 Spin­squeezed state

As mentioned above, the fluctuation distribution of a coherent spin states is isotropic
along different quadratures. One can “squeeze” such a state so that the spin fluctuation
in a particular direction perpendicular to the mean spin is decreased, at the price of in­
creasing the fluctuation in another direction. This is the spin­squeezed state (SSS). It
was first proposed by M. Kitagawa and M. Ueda [20] and has been extensively studied in
different systems due to its significant importance in the applications of precision mea­
surement [7] . The SSS still obey the Heisenberg uncertainty relationship with such an
anisotropy fluctuation profile, while the metrological advantage of spin­suqeezed state is
evident since it allows a quantity of interest such as relative phase accumulated between
two modes to be resolved with a precision beyond the classical limit, i.e., the standard
quantum limit (SQL). Compared to other highly non­classical states, spin­squeezed states
are relatively robust against particle losses, making them especially suited for practical
applications. Experimentally, such states can be prepared using different schemes. For
our experiment, by evolving a coherent spin state on the equator, |CSS: 𝜋/2, 𝜙⟩, with the
one­axis twisting Hamiltonian 𝜒 ̂𝑆2

𝑧 for a time [20] , we can achieve a spin­squeezed state.
As the spin­squeezing is one of the main focuses of this thesis, the concept of SQL and
the mechanisms applied to prepare SSS will be discussed in details later.
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2.3.4.4 Schrödinger cat state

Schrödinger cat states, which are the coherent superposition of two (or more) coher­
ent states. They highlight a counterintuitive feature of quantum mechanics which is the
possibility of a superposition of macroscopically distinct states. One typical cat state,
known as a Greenberger–Horne–Zeilinger state (GHZ state), refers to the possibility that
multiple atoms are in a superposition of all spin up and all spin down and can be written as

1
√2

(|𝑆, −𝑆⟩ + |𝑆, +𝑆⟩). Schrödinger cat states are optimal for quantum metrology since
they allow to reach the Heisenberg limit for phase estimation, i.e., 𝜎𝜙 = 1/𝑁 which is
the best allowed by quantum mechanics. Experimentally, such states can be prepared by
evolving a coherent spin state on the equator, |CSS: 𝜋/2, 𝜙⟩, with the one­axis twisting
Hamiltonian 𝜒 ̂𝑆2

𝑧 at 𝑡 = 𝜋/(2𝜒). A characteristic feature of strong entanglement in an
𝑁­atom cat state is a band of 𝑁 fringes in the Wigner function. Unfortunately, cat states
are extremely fragile, as it can be easily destroyed by noise and a single loss of particle.

2.4 Phase coherence in a Bose­Einstein Condensate

Phase coherence, as the essential factor underlying BEC, is studied both experimen­
tally and theoretically from two aspects: the spatial coherence and the temporal coherence.

2.4.1 Spatial coherence

The first interference between two independent BECs was reported in a double­well
potential, where atoms are released to spread and overlap [58] . This experiment, to some
extent equivalent to a Young’s double­slit experiment, for the first time showed that the
two independent BECs interfere. Then the atom interferometry has been demonstrated
with BECs in double­well potentials [40,59­60] and classical Josephson arrays of tunnelling
coupled condensates [61­62] . Ever since then, the phase coherence over a long range across
BEC (phase coherence in spatial domain) has become a particular interest because it
fundamentally determines the formation of the interference pattern between two BECs.
Moreover, the phase property of BEC is also related to some quantum phenomena such as
superconductivity and superfluidity, and can be exploited in different applications such
as quantum information.

There have been many efforts to explore the spatial coherence across a condensate
for a variety of systems. The first experimental measurement of the spatial coherence of
a BEC was demonstrated in 1999 [63] by creating and interfering two spatially displaced
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fractions of the original BEC. Followed was a series of experimental investigations of the
coherence of BEC focused on the spatial domain: the uniformity of the spatial phase has
been demonstrated which implies the coherence length of the condensate is equal to its
size [63­64] , the spatial correlation function has been determined [65] , and the decoherence
was studied in different systems: from three­dimensional BEC [66] to condensates in two­
dimensional optical lattice [67] , and the one­dimensional Boson gases [68­69] .

To briefly summarize, for a trapped pure three­dimensional BEC, one expects the
phase to be spatially uniform because the condensate is in a stationary state of the system
with no angular momentum. However, due to some technical noise (for example the
spatial gradients of the external fields) and the mean field interactions, one might expect
differences in the phase between different regions of the condensate. In these reports,
the mean­field atom­atom interactions play an important role and are responsible for the
decoherence in the spatial domain. Besides, the occurrence of phase fluctuations due to
thermal excitations is studied in elongated BEC [66] .

2.4.2 Temporal coherence

Given the well­developed techniques in preparing and manipulating atomic Bose­
Einstein condensates, the interferometric schemes based upon ultracold atoms stimulate
great interests. For any type of these precision measurements with BECs, a first funda­
mental problem is how long its coherent time is since it poses limit on the duration of
the interferometric sequences. Considerable theoretical attention has been devoted to the
matter of the relative phase between two independent condensates: how the relative phase
is established by measurement [70­71] , and how it evolves in presence of atomic interac­
tions [72­73] and in presence of particle losses [74] . The phase property of a uniform single­
component BEC has also been extensively studied. Theoretical studies make different
predictions for the phase spreading over time [75­76] . Depending on how the system is ini­
tially prepared, the phase spreading can be ballistic (i.e., phase variance grows with ∼ 𝑡2)
or diffusive (i.e., phase variance grows with ∼ 𝑡). Phase diffusion at finite temperature [77]

and fluctuations in the atom number [9] are also expected to limit the coherence time of a
BEC. Theoretical studies of BEC temporal coherence have predicted different decoher­
ence mechanisms resulting from both homogeneous and inhomogeneous effects [76,78] .
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2.4.2.1 Inhomogeneous effects

In trapped ensembles, atoms explore inhomogeneous shift of the energy difference
between two spin modes, due to the magnetic trapping potentials, the atomic interac­
tions, and other technical noises such as the inhomogeneity of the external magnetic field.
Atoms therefore evolve at different rates on the generalized Bloch sphere, leading to the
decoherence of the BEC. Previous experiments have mostly investigated inhomogeneous
effect in magnetically trapped BECs [79­81] . For the two internal states we are interested
in, temporal coherence caused by the inhomogeneous effects has been studied in similar
systems including thermal [6,25,80­82] and degenerate ensembles [5,38,79,83] . A main deco­
herence mechanism in these experiments can be described by the spatial dynamics of the
condensate wave functions within the mean­field theory. For example, experiments in
Ref [81] have shown that, in absence of atom losses, the phase of a BEC undergoes col­
lapses and revivals in time caused by elastic interactions due to the atom­atom collisions.
There are other earlier experiments investigating the “atomic laser” which is formed by
continuously extracting atoms from a BEC. These atoms, with positive scattering lengths,
will develop phase variations over time since it expands due to the atom­atom (mean­field)
interaction [84] .

Various mechanisms have been exploited to reduce the inhomogeneous dephasing.
A mutual compensation scheme [85] has been demonstrated to extend the coherence time
by adjusting the trap­induced inhomogeneity to compensate the mean­field inhomogene­
ity. The spin echo techniques have been successfully employed in experiments to re­
verse the mean­field inhomogeneous dephasing and spatial demixing [81,86] . The spin
self­rephasing mechanism induced by the identical spin rotation effect has been used to
extend the cohertence time [86­87] .

2.4.2.2 Homogeneous effects

Theory predicts decoherence also from homogeneous effects [76] , which arises from
elastic and inelastic collisions. The elastic collisions cause energy shifts, and experiments
necessarily involve inelastic collisions that cause phase jumps. Both effects are density­
dependent, therefore are more severe in chip trap than in systems such as atomic vapor
cells and atomic fountains. Theoretical models were built to describe the phase dynamics
of BEC in presence of collisional losses [76,78] .

Despite the long­standing theoretical interest on the homogeneous effects, it was not
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easy to observe them because the technical noise usually dominates in previous exper­
iments. As an intrinsic effect arises from within the many­body system itself, the ho­
mogeneous effects can only be revealed with the almost perfect isolation of the system
from the environment, in combination with a very high preparation and detection fidelity.
Therefore a detailed experimental study of the predicted homogeneous phase decoherence
mechanism [76,78] , which fundamentally limits the BEC coherence, has not yet been re­
ported. In chapter 4, we will for the first time study the homogeneous decoherence caused
by the interplay between elastic atom­atom interaction and the stochastic collisional losses
in detail.

2.5 Quantum metrology

This section illustrates how the standard quantum limit arises in interferometry and
how it can be overcome using resources such as spin­squeezing or entanglement.

2.5.1 Standard quantum limit

Consider a Ramsey interferometer performed with𝑁 uncorrelated (or classically cor­
related) atoms, with two modes labeled as |1⟩ and |2⟩. The atoms are initially in state
|1⟩ and prepared in an equal superposition (|1⟩ + |2⟩)/√2 by a resonant Rabi 𝜋/2 pulse
corresponding to the first beam splitter of the interferometer. During the subsequent in­
terrogation time, |1⟩ and |2⟩ acquire a relative phase 𝜃, such that the state evolves to
(𝑒−𝑖𝜃/2|1⟩ + 𝑒𝑖𝜃/2|2⟩)/√2. The phase 𝜃 encodes the quantity to be measured. Finally, a
second 𝜋/2 pulse (the second beam splitter) is applied so that the information of the phase
𝜃 is projected onto the 𝑧­component of the spin. The output state of the Ramsey interfer­
ometer is then |𝜓⟩ = cos(𝜃/2)|1⟩ + sin(𝜃/2)|2⟩ and the phase 𝜃 is usually estimated, for
instance, by measuring the normalized population difference ̂𝑛 = ̂𝑎† ̂𝑎− ̂𝑏† ̂𝑏

𝑁 in our case.
The standard quantum limit can be understood from the binomial statistics of the 𝑁

uncorrelated particles. Consider there are 𝑁 uncorrelated atoms and we measure the spin
of them one by one. Eachmeasurement has only one outcomewith the probability of being
either spin up 𝑝 = cos(𝜃/2)2 or spin down 1−𝑝. Each measurement is independent of each
other, thusmeasured number of spin up satisfying a binomial statistics𝑁1 ∼ 𝐵(𝑁, 𝑝). The
expect value of the outcome is ⟨𝑁1⟩ = 𝑁 cos(𝜃/2)2, with variance 𝜎2

𝑁1
= 𝑁𝑝(1 − 𝑝) =

𝑁(sin 𝜃)2

4 . Therefore the interferometer signal is the expectation value ⟨ ̂𝑛⟩ = cos 𝜃, with a
maximum slope of 1 at 𝜃 = 𝜋/2. The noise at the output will be determined by the variance
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𝜎2
𝑛 = 4

𝑁2 𝜎2
𝑁1

= (sin 𝜃)2

𝑁 , correspondingly the phase uncertainty of themeasurement in terms
of standard deviation can be calculated with the error propagation:

𝜎𝜃 = 𝜎 ̂𝑛
d⟨ ̂𝑛⟩/d𝜃 ≥ 1

√𝑁
. (2.37)

This is precisely the standard quantum limit 𝜎𝜃,SQL.
In some other cases, the observable can also be atom number imbalance 𝑀̂ = 𝑁̂1 −

𝑁̂2 = ̂𝑎† ̂𝑎 − ̂𝑏† ̂𝑏 between the two states, but the precision limit of measurement is the
same.

2.5.2 Entanglement enhanced interferometer

The SQL, as a classical limit, can be overcome with resources of non­classical
correlations between the constituent particles of a many­body system. Non­classical
correlations [27,88] are identified with different families, namely entanglement (or non­
separability), Einstein­Podolsky­Rosen (EPR) correlations, and Bell (or nonlocal) cor­
relations. These states provide resources allowing a system to perform better than with
classical correlations, not only in quantum metrology [16­19,22­23] , but also in tasks such as
quantum teleportation [89] .

Particularly, the spin­squeezed state [20] mentioned before is a typical type of entan­
gled state. Compared to a classical state, it is squeezed so that the variance in some spin
quadrature is reduced, enabling to achieve better precision in interferometric measure­
ment of 𝜎𝜃 < 1/√𝑁 . Therefore spin squeezed state of ultra­cold atomic ensembles find
applications in quantum­enhanced metrology.

In order to achieve phase uncertainty beyond SQL, not only the spin variance must
be reduced, the interferometric slope (or contrast) 𝐶 = d⟨𝒏̂⟩/d𝜃 also should remain high.
The maximum value the contrast could reach is actually determined by the length of the

mean spin 𝐶max = |⟨𝑆⟩|
𝑁/2 , where |⟨𝑆⟩| = √⟨ ̂𝑆𝑥⟩2 + ⟨ ̂𝑆𝑦⟩2 + ⟨ ̂𝑆𝑧⟩2. Usually, we choose

the frame of the Bloch sphere so that 𝑥 is the direction of the mean spin, then 𝐶 = ⟨ ̂𝑆𝑥⟩
𝑁/2 .

The contrast can be, for example, affected by the anti­squeezing. One can intuitively
understand it by imagining an elongated state wrapping around the pole on the Bloch
sphere, see Fig 2.4 (b)(c), the length of the mean spin is largely reduced due to spin noise
along the anti­squeezed quadrature, |⟨𝑆⟩| < 𝑁/2, leading to a much smaller contrast.
The overall phase uncertainty is finally decided by the spin variance and the spin length
together. In order to characterize metrologically useful spin squeezing, the parameter 𝜉 is
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defined by Wineland in Reference [11] as

𝜉2 = 𝑁 Var( ̂𝑆𝜃)
⟨ ̂𝑆𝑥⟩2

, (2.38)

where 𝜃 is a rotation angle around 𝑥(the direction of the mean spin length). This angle can
be freely chosen and optimized in order to measure spin component along the squeezed
direction. Again using linear error propagation, the phase uncertainty of a spin­squeezed
state is

𝜎𝜑 = 𝜉/√𝑁. (2.39)

Thus, the SQL corresponds to 𝜉 = 1 and a state with 𝜉 < 1 is useful for sub­SQL interfer­
ometry. Thus, the squeezing parameter 𝜉 is a measure formetrologically useful squeezing.

2.5.3 Strategies of preparing non­classical correlations

In experiments with cold and ultracold atomic ensembles, a variety of spin­squeezed
and other non­classical states have been prepared using different schemes. For a de­
tailed overview of such states and techniques, we refer to Ref. [7]. The main tech­
niques adopted to create non­classical states rely on either elastic collisional interactions
between atoms [17,29,90] , or the quantum spin­mixing dynamics [55,91­96] , the light me­
diated coherent interaction between atoms [23­24,97­99] , and the quantum non­demolition
measurements [21­22,100] . These allow the preparation of spin squeezed/over­squeezed
states, Dicke states, twin­Fock states and in principle Schrödinger cat states. Using the
above mentioned techniques, demonstrations of entanglement­enhanced interferometry
have been reported, and found applications to sense magnetic fields [19,98,101] .

One­axis twisting (OAT) can be used to prepare spin­squeezing in the ultracold sys­
tems, as used in this thesis and previous work in our group. The one­axis twisting Hamil­
tonian was first introduced in [20] and written as 𝐻̂OAT = ℏ𝜒 ̂𝑆2

𝑧 . The spin dynamics of a
quantum state under OAT is thus described by 𝑒−𝑖𝜒 ̂𝑆2

𝑧 𝑡, which introduces a rotation around
𝑧­axis with a ̂𝑆𝑧­dependent rate and leads to a “twisting” of the quantum state. For 87Rb
states, the twisting strength 𝜒 for a system using internal states |𝐹 = 1, 𝑚𝐹 = −1⟩ and
|𝐹 = 2, 𝑚𝐹 = +1⟩ of 87Rb (as in our case) is typically very small because of the nearly
identical scattering lengths. Different techniques have been developed to tackle this prob­
lem. One way is to tune 𝜒 by modifying the relative scattering length 𝑎𝑖𝑗 via Feshbach

resonance [17] , but no such resonance is available for our state pair.
An alternative way, which is used in this thesis, is to modify 𝜒 by controlling the
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wave­function overlap via a spin­dependent trap potential [102] . In previously works of
our group [29,103] , 𝜒 can be increased by three orders of magnitude by separating the wave
functions of the two states. In our group, spin­squeezed states have been previously gener­
ated with 𝜉2 = −5.5 dB in an ensemble of 𝑁 = 480 87Rb atoms on an atom chip [104­105] ,
and an interferometer to detect magnetic field was operated 4.0 dB below the SQL [19] ,
using the same techniques as described in this thesis. In this work we have improved the
spin squeezing to a level of 𝜉2 = −9.8(5) dB and the interferometer to ­7 dB below SQL.

Non­demolition measurements (QND) are also used to demonstrate spin squeezing.
QND measurement is a special type of measurement on quantum systems, in which the
measured observables are conserved after the measurement. QND measurements have
also been used to prepare spin­squeezed states, in a considerable amount of experiments,
from optical dipole trap [21­22] , to the atom vapor cell [100] , and the cavity­based measure­
ments [23­24,97­99] . The light mediated coherent interaction between atoms is one of the im­
portant ways of realizing the QND [97] , where a typical model Hamiltonian is 𝐻̂ = ̂𝑆𝑧 ̂𝐽𝑧,
with ̂𝑆𝑧 the light Stokes operator and ̂𝐽𝑧 the atomic spin operator.

Some other experiments explored the creation of the Twin­Fock state in spin­1 sys­
tem with |𝑚𝐹 = ±1⟩ internal states. So­called twin­Fock states, which contain an equal
number of particles in each of two modes, can be accessed via quantum spin­mixing dy­
namics [55,91­96] , or via adiabatic passage through the quantum phase transition [56­57,106] .
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CHAPTER 3 EXPERIMENTAL SYSTEM

The experiments described in this thesis were all performed in the BEC lab in the
group of Prof. Dr. Philipp Treutlein at the University of Basel, Switzerland, during my
visit under the support of the Chinese scholarship council. In our experiments, we use a
compact experimental apparatus based on an atom chip to generate a mesoscopic conden­
sate of about 1000 87Rb atoms as a starting point of the phase measurement and quantum
enhanced interferometric sequence. This apparatus has been developed a decade ago [3]

and has been used to explore different fields of physics since then, for example, to image
microwave fields [107] , to measure the magnetic fields [19] and to generate quantum corre­
lated states [104] . All the details about the former versions of the apparatus can be found
in the earlier doctoral dissertations [3,50,103,105,108] .

In this chapter, I will first present our experimental apparatus, focussing mainly on
the parts that have been upgraded, characterized or recalibrated during my Ph.D. project.
Then I will discuss the generation, manipulation and detection of a BEC on our apparatus
in more detail, including the typical sequence used to prepare a BEC, the techniques used
to manipulate the internal and external degrees of freedom of atoms in our experiment,
and the precise detection of atoms in different internal states.

3.1 Overview of the apparatus

The apparatus is composed of the vacuum chamber, the atom chip, the laser system,
the microwave and radio frequency system, several current sources, the detection system,
and the control system.

3.1.1 Vacuum chamber

Figure 3.1 shows the central part of our experimental apparatus. Our experiments
occur in the vacuum chamber (science chamber), whose top wall is formed by an atom
chip (see in Figure 3.1(b)) which is glued to the glass cell. To the backside of the atom chip
a U­shaped wire (BigU) is attached, which produces the strong quadrupolar magnetic field
needed in the magneto­optical trapping (MOT) stage of the experimental sequence. The
U­shaped wire and the atom chip are water cooled by the attached water cooling copper
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block, which is connected in series to a chiller ① and stabilizes the water temperature at
about 19 ∘C.

The bottom of the glass cell is connected via a glass­to­metal adapter to a six­way
cross, which then connects to an ion pump, a Ti­sublimation pump, an ion pressure gauge,
and electrical feed­throughs for the Rb dispensers. The vacuum pressure is continuously
maintained at a few times 10−10 mbar by the ion pump, whereas the Ti­sublimation pump
is activated once several months when the pressure approaches 10−9 mbar.

Outside the vacuum chamber, there is a coil cage with three sets of coils configured in
Helmholtz pairs, which generate approximately homogeneous magnetic fields𝐵𝑥, 𝐵𝑦, 𝐵𝑧

needed in experiments. Surrounding the coil cage, several fiber output couplers provide
all the laser beams needed for experiments, more details can be found in section 3.1.3. A
microwave horn and a radio frequency antenna are put near the chamber to provide the
oscillating signal used for the evaporative cooling and the manipulation of the internal
state of the atoms, see section 3.3. All the aforementioned elements are enclosed inside a
𝜇­metal magnetic shielding in order to minimize the effects of the magnetic noise in the
surrounding environment, see Figure 3.1(a).

a bµ-metal shield

coil cage

ion pump atom
chip

water-cooled
copper block

science
chamber

U-wire

primary
camera

secondary
camera

pressure
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Ti pump

feed-throughs
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x
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Figure 3.1 Overview of the central part of the experimental apparatus. (a) Schematic view
inside the magnetic shielding, showing the vacuum chamber, the coil cage, the fiber couplers and
imaging system. Themicrowave antenna and radio frequency horn are not shown. (b) The science
chamber with the atom chip as top wall. Figure taken from Ref. [50].

3.1.2 Atom chip

The core of the apparatus is an atom chip. The atom chip used in our experiments
was first designed and fabricated in Ref. [3] and since then it has been successfully used

① ThermoCube 10­400LS
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to explore new physics in experiments with trapped BECs [19,29,102,104,109] . It is a multi­
layer chip including a base chip and a science chip, both with patterned gold layers. The
base chip is an ALN substrate providing mechanical support for the science chip. The
mini­SMP connectors and standard 2.54 mm­pitched pin headers soldered on it serve as
electric (DC and MW) connections. The science chip consists of micro­wires arranged in
a two­layer structure, see Figure 3.2, through which we can send both DC currents and
microwave currents in order to realize both DC and MW inhomogeneous magnetic fields.
The top layer contains two parallel sets of wire structures (a five­wire and a six­wire struc­
ture). In the experiments present in this thesis we mainly use the three central wires of the
five­wire structure, which constitute a MW co­planar wave guide. These wires can carry
DC currents simultaneously fed via external bias tees.

For convenience, hereafter we define the coordinate system as shown in Figure 3.1,
and we set the origin at the central wire of the five­wire structure so that the chip lies in
the 𝑥 − 𝑦 plane.

a) b)

Base chip

Bond wires

DC
conn.

MW connector

Science chip

U
6

D
3

U
7

U
8

U
9

U
10

D
4

U
6

D
3

U
7

U
8

U
9

U
10

D
4

M
12

M
W

4
M

13
M

11
M

10

M
16

M
W

3
M

17
M

18

M
15

M
14

U
1

U
1

D
1

U
2

U
3

U
4

U
5

U
4

U
5

D
2

D
1

U
2

U
3

D
2

M
1

M
3

M
4

M
2

M
W

1

M
6

M
W

2
M

9
M

8

M
7

M
5

b)

a)

c)
x

y

z

Figure 3.2 a) Photograph of the atom chip. The chip wires have rectangular cross­section. b)
Drawing of the six­ and five­wire structures, left and right respectively, at the chip center. A
detailed illustration of the five­wire structure is given in Ref. [3,50].

Depending on the current configurations, we can generate different types of magnetic
traps based on the atom chip [3] , details can be found in Appendix A. Two typical cate­
gories mainly used in our experiment are the Ioffe­Pritchard trap and the Dimple trap.
Ioffe­Pritchard trap, as a two­dimensional quadratic trap, can be created by combining an
on­chip wire structure that carries DC current and homogeneous bias fields perpendicu­
lar to the wire. For example, a wire along 𝑥­direction carrying current 𝐼𝑥 that creates a
magnetic field with concentric circular field lines whose centres lie on the wire, together
with a bias fields that cancel the field at some distance from the wire, will form a two­
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dimensional quadratic confinement. Dimple trap can then be created by adding another
current­carrying wire along 𝑦 direction, crossing the existing straight wire perpendicu­
larly to modulate the field on axis 𝑧 = 𝑧0, therefore generate a three­dimensional trapping
potential. Such Dimple traps can be describe as a harmonic potential. In our experiment,
it is formed by three central wires of the five­wire structure on the science chip and a
crossing wire (named ‘Long­Ioffe’) in the lower gold layer.

The atom chip helps to result in a very compact single­chamber apparatus. Conven­
tional BEC apparatuses usually contain two or more vacuum chambers used for different
cooling stages such as MOT and evaporative cooling, thus atoms need to be transferred in
between chambers. However in our case, the proximity to the atom chip makes it possible
to generate tight deep magnetic traps, allowing different stages of cooling to happen in
the same chamber. Moreover, the BEC is finally trapped in chip­based magnetic poten­
tials instead of optical dipole trap (as in conventional apparatuses), which is flexible to
engineer with the chip.

3.1.3 Laser system

In our experiment, different laser frequencies are required for cooling, optical pump­
ing and detection of the atoms, as shown in Figure 3.3. They are prepared on an optical
table with a master (seed) laser, a tapered amplifier (TA) module, a slave laser and com­
mercial optical elements. Figure 3.4 shows an up­to­date schematic of the optics in our
experiment. All the lasers are operating at a wavelength of approximately 780 nm which
corresponds to the Rubidium­87 𝐷2 line, see Figure 3.3.

The master laser is a home­built interference­filter stabilized diode laser, whose fre­
quency is locked on the crossover transition𝐹 = 2 → 𝐹 ′ = (1, 3) of a saturated absorption
spectroscopy. The output light is injected into a tapered amplifier. After being amplified,
the light is frequency­shifted by an acousto­optic modulator (AOM), through which we
can adjust the laser frequency by controlling an anolog voltage. The AOM is configured
in double­pass way, so that the light approaches a frequency that is 15 MHz red detuned
with respect to the 𝐹 = 2 → 𝐹 ′ = 3 cycling transition (see Figure 3.3), which provides
the cooling light. Apart from controlling the frequency of the cooling light, we also stabi­
lize the power of the AOM driving RF with an analog PID Controller ① to make sure the
intensity of the cooling light stays constant. The output power of the TA is mostly used
as cooling light during the MOT stage. The remainder is frequency­shifted to generate

① Stanford Research Systems (SRS) SIM960
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Figure 3.3 Level scheme of the D2 line of 87Rb. The transitions used in our experiment are
indicated. All frequencies are produced starting from a master laser (red) and a slave (green)
laser, and shifted via acousto­optic modulators (AOMs).

Pump2­2 light (resonant to the transition 𝐹 = 2 → 𝐹 ′ = 2) for optical pumping and
Imaging light (resonant to the transition 𝐹 = 2 → 𝐹 ′ = 3) for absorption imaging.

In practice, while driving the cyclic transition, there is also a possibility for the atoms
to be excited to the 𝐹 ′ = 2 state, then decay to the 𝐹 = 1 state and thus escape from
the trap. Therefore, we apply an optical repumping light (see Figure 3.3) resonant to
the transition 𝐹 = 1 → 𝐹 ′ = 2 to pump these atoms back into the cycling transition.
The frequency of this transition is about 6.8 GHz away from the master laser, out of the
modulation range of AOMs. To generate the light at this frequency, we use a second
laser, which is frequency stabilized via an optical phase loop lock (OPLL) at a frequency
difference of 6.705 GHz with the master laser. The light coming from this laser needs to
be further frequency­shifted by AOMs to generate Repump light for the MOT stage, and
also the Pump1­1 light resonant to the 𝐹 = 1 → 𝐹 ′ = 1 transition for optical pumping
stage.

After being frequency­adjusted, all the laser beams will pass through mechanical
shutters that provide switching with high extinction ratio on the millisecond scale and
are coupled into single­mode polarization­maintaining optical fibers. The MOT fiber and
repump fiber are connected to a Schäfter & Kirchhoff fiber beam splitter with two input
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Figure 3.4 Schematic of the laser system. The typical seed laser output is around 30 mW. A
part of it is picked up for the Rb saturated absorption spectroscopy and the rest is injected to a
Tapered Amplifier (TA). The slave laser frequency is locked to the output from the master laser
via a optical phase lock loop (OPLL) at 6705 MHz, which is designed and built by Simon Josephy.
All output beams are coupled to polarization maintaining single­mode optical fibers. The cooling
light and Repump light are sent to a Schäfter & Kirchhoff fiber splitter and split to 4 beams for
the horizontal and vertical MOT beams. Frequency shifts by AOMs are indicated in the diagram.

ports and four output ports, result in four output beams which contain both cooling light
and the repump light. They are brought inside the 𝜇­metal shield to the vacuum chamber
by fibers. After being out coupled and passing polarizing beam splitters and wave plates,
they form two pairs of counter­propagating circularly polarized laser beams (diagonal and
horizontal), which intersect at the center of the glass cell, as shown in Figure 3.5. On the
base chip surrounding the micro­structures, a gold surface with high reflectance serves
as a mirror. The two diagonal beams, pointing along 𝑧 ± 𝑦 directions, are reflected off
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the chip surface and broad enough, providing cooling in both the 𝑦 and 𝑧 direction. Two
horizontal beams provide cooling in the 𝑥 direction. Together with the magnetic field
generated by Helmholtz coils and the U­shaped wire, they form a mirror MOT as shown
in Figure 3.5.
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Figure 3.5 Optics surrounding the science chamber. Indicated are polarizing beam splitters
(PBS), quarter­wave plates (𝜆/4), and right­hand and left­hand circular polarization of the MOT
cooling beams (RHP and LHP, respectively). Figure adapted from [3] .

As a benchmark for laser powers, the typical output power of the master laser is
around 30 mW. The tapered amplifier module is able to produce up to 3.5 W of output
power at a current of 4.3 A. We use the amplifier at a lower working current of 2.5 A to
amplify the laser power to around 1.7 W, which is sufficient for our use.

3.1.4 Current sources and their noise characterization

Current sources play an important role in our experiment apparatus. In our exper­
iment, we need current sources that meet different requirements. The current sources
used in the experiment are described in earlier theses [50,103,108,110]. Here we briefly
summarized their up­to­date properties in Table. 3.1.

During the MOT stage, quadrupole fields are needed. The wires involved are two U­
shaped wires (both are no more than a single turn), therefore large currents are required. A
current of 52A is sent through the external U­shapedwire (Big U), driven by a commercial
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current source ① which is unipolar and can provide current up to 70 A. For the U­shaped
wire on the base chip (base­U) wire which is used to create a smaller MOT, a current of a
few amperes is provided by another commercial current source ②.

In the rest part of the sequence, currents are needed for the bias field coils to cre­
ate (𝐵𝑥, 𝐵𝑦, 𝐵𝑧), and for the other on­chip wires (including an Ioffe wire, a Long­Ioffe
wire, a Dimple wire and three small co­planar wave guide wires) to generate all the static
magnetic trapping potentials for the atoms. These wires and coils require currents from a
few milliamperes to a few amperes. These currents are crucial since they determine the
magnetic traps where the BEC is formed, and any current fluctuations will directly cause
fluctuations in the atom number and decoherence of the BEC. Therefore current supplies
with ultra­low noise and high stability are required.

For the bias fields we have three home­built bipolar current sources, which can output
up to±5 A [110] . Besides, during some parts of the sequence we need to produce a stronger
bias field in the 𝑦 direction, so there is an additional set of coils driven by a commercial
unipolar 15 A source ③, which is disconnected after the BEC is created. For the chip
wires Long­Ioffe, Ioffe, and Dimple, home­built current sources were developed with
good noise performance, details can be found in Ref. [110]. The DC currents sent to the
three small co­planar waveguide wires are used to create the final static traps where the
main experiment is performed, therefore very critical (relative stability below 1 × 10−5

is required). They are generated by three battery­powered current sources ④, which are
designed to deliver up to ±10 mA current, and have a short response time and a ultra
low noise. Being powered by the battery provides a lower noise compared to the power
supply based on switching or even linear converters. We recharge the battery whenever
the current source is not used.

Some of the current sources have been operating for over a decade, and probably
their performance has changed over time. Therefore, we characterize the noise and sta­
bility performance of all the aforementioned current sources ⑤. For both measurements,
a sampling resistor with small temperature coefficient ⑥ is connected in series with the
load as a current sensor (depending on the current sources we choose different resistance).

① Delta Electronic SM45­75D
② High Finesse BCS106
③ FUG NLN 350M­20
④ High Finesse BCS 002/10, later replaced by a home­built one developed in May, 2020
⑤ The measurement are performed in July, 2020
⑥ Vishay VCS332
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Table 3.1 Characterization of current sources

coil(wire) manufacturer output range high frequency noise long­term stability drift

Bias field (x) home­built ±5 A 10−5 2 × 10−5

Bias field (y) home­built ±5 A 5 × 10−5 10−5

Bias field (z) home­built ±5 A 10−4 10−5

Bias field (y) Fug 15 A 10−3 10−3

Long­Ioffe home­built ±1 A 10−4 10−3

Ioffe home­built ±3 A 4 × 10−4 5 × 10−3

Dimple home­built +0.5 A 10−3 2 × 10−4

Base U High Finesse ±10 A 2 × 10−5 3 × 10−4

three small wires High Finesse ±10 mA 10−3 10−2

The voltage drop across the sensing resistor is amplified by an ultra­low noise and high
gain pre­amplifier①. The high input impedance of the pre­amplifier ensures the accuracy
of the current measurement, while its high­gain (up to 104) keeps the overall noise fac­
tor of the measurement system determined by the ultra­low input noise (4 nV/√ Hz) of
the pre­amplifier. Since the current signal is composed of a large DC component (mean
value) and small fluctuations, we have to take the large DC part out in order to apply high
amplification gain and thus to have better sensitivity for the measurements.

We use two different configurations for the measurements of fast current noise and
long term current drift. For the fast noise measurement, we use the AC coupling mode
of the pre­amplifier module to filter out the DC component and amplify only the higher
frequency noise. We configure the input filters as a 6 dB/oct rolloff band­pass filter,
with cut­off frequencies set at 3 Hz and 30 kHz, and set the output impedance to 50 Ω.
The output is then connected to an oscilloscope for a convenient check of AC current
noise. For the long­term drift measurement, we switch the pre­amplifier to differential
mode, apply an additional reference voltage signal ② to the second input port of the pre­
amplifier module, and adjust the sign of second input ports to shift the mean value (DC
part) of the signal to around zero. The output is then connected to a data logger ③ to be
recorded. We typically record the current drifts for at least 12 hours. An example plot
of the recorded long­term stability is shown in Figure 3.6, where the relative stability is

① Stanford Research Systems(SRS) low­noise voltage pre­amplifier SR560
② The reference voltage has been characterized by the membrane lab in our group and we trust its long­term stability

to be better than the current sources.
③ Agilent DAQ970A
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defined as 𝑥rel. stab.
𝑖 = (𝐼𝑖 − 𝐼)/𝐼 . The complete results of the noise characterization are

shown in Table 3.1. Since the small­wire current sources showed an inadequate perfor­
mance, we decided to develop a new generation of current sources on May, 2020. The
new current sources have been implemented in the experiment, whereas for most of the
experiments presented in this thesis we were still using the old ones.

Figure 3.6 An example for the result of the long term stability measurement over 24 hours.
Top panel shows the current drift of home­built current source for Dimple wire, the middle panel
shows the long­stability of the analog signal from I/O card that is used as control voltage of the
current source, and the bottom panel shows the record of the ground voltage of the data logger.

3.1.5 Microwave and radio­frequency electronics

In our experiment, we have a radio frequency system, an on­chip microwave system
and an off­chip microwave system, for several purposes.

The off­chip microwave system is designed for the requirement of the homogeneous
microwave field. To minimize the spatial inhomogeneity, a microwave horn ① is placed
inside the 𝜇­metal shield, providing a homogeneous (with respect to the size of the cloud)

① in fact, a mutilated coupler of the A­Info LB­OH­159­15­C­SF microwave horn
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MWmagnetic field near the chip. The MW signal of ≈ 6.8 GHz is provided by a Rohde
& Schwarz SGS100A signal generator, and it is amplified and power stabilized (details
see in Ref. [50]). The homogeneous MW field is mainly used to manipulate the internal
state of the atoms. It allows to drive Rabi transitions between states |1, 𝑚F⟩ and |2, 𝑚F⟩, or
“dress” the internal state with an off­resonant frequency. The manipulation of the atoms
will be discussed in detail in section 3.3.

The on­chip microwave is mainly used for generating a large gradient of MW field
near chip which we use to obtain the state­dependent potential (see in section 3.3.3). To do
this, a ≈ 6.8 GHz signal generated by an Agilent E8257D is power amplified, stabilized
and sent to the co­planar wave guide on the science chip though a bias tee, details see in
Ref. [50]. The maximum field gradient depends on the size of the transmission­line con­
ductors and the distance between the atomic cloud and the waveguide. Already milliwatts
of microwave power result in sufficiently strong gradients needed for the experiment, with
which trapping potential minima for the two states can be split on the micrometer scale.

The evaporative cooling requires a homogeneous RF field near the chip, emitted from
a home­built RF coil. The coil is of square shape (3 cm side length) with 9 windings,
connected in series with a 10Ω resistor. The RF signal is generated from a commercial
function generator called VFG150① using direct digital synthesis (DDS) at a sample rate
of 200 MHz. The signal is sent to a RF switch ②, which is driven by the transistor–
transistor logic signal (TTL) output from VFG in sync with the RF signal with a time
resolution of 5 ns. After the switch, the RF signal is power amplified by a commercial
amplifier ③ and fed to the RF coil. A 6 dB attenuator is inserted ④ in between the RF
amplifier and the RF coil to weaken the back reflections resulting from the impedance
mismatching. The back­reflections are unavoidable, given the fact that the antenna is a
coil and that we use a very broad frequency range (2 to 14 MHz) over the sequence.

Coherent manipulation of atoms is crucial for our experiments. In order to obtain an
adequate level of phase coherence in the manipulation of the atoms, we reference both
MW and RF signals to a 10 MHz GPS­disciplined quartz clock as our local oscillator ⑤.
The quartz oscillator provides very good short­term stability (Allan deviation better than
1 × 10−9 in 1 s), and it is synchronized with time signals obtained from GPS satellites to

① versatile function generator (VFG) 150
② MiniCircuits ZASWA­2­50DR
③ MiniCircuits LZY­22+, 100 kHz – 200 MHz, 43 dB gain, 30 W output power
④ MiniCircuits BW­S6W20+
⑤ SRS FS752
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improve long­term stability (Allan deviation better than1 × 10−12 in 1000 s).
To summarize this section, we present several parts of the experimental apparatus:

the vacuum, the atom chip, the laser system which provides all the required lights, the
low noise current sources providing current for the chip and coils, microwave (MW) and
radio­frequency (RF) electronics. Besides, there are other electronics driving the acousto­
optic modulators and shutters. And the whole apparatus is controlled, with the help of
National Instrument (NI) I/O cards, which provide digital and analog outputs and can be
programmed. The experiment can be run with a computer sequence, which programs the
I/O card and also other devices such as the VFG.

3.2 Preparation of a 87RbBose­Einstein Condensate on an atom
chip

In our experiment, in order to create a BEC, the atoms experience several stages,
namely the magneto­optical trap (MOT), optical molasses, optical pumping, a series of
magnetic traps, and finally evaporative cooling by RF field.

The experiment starts by capturing Rb atoms from the background vapor with the
MOT. In a MOT, the cooling results from the radiation pressure exerted by red­detuned
laser beams, and the spatial confinement is due to the interplay between the space­
dependent Zeeman shift and the frequency­dependent radiation pressure. In the first
stage, “MOT­1”, the magnetic quadrupole field is created by sending a current of 52 A
through the external U­shaped wire (named Big­U) behind the chip. To provide the radi­
ation pressure forces, the cooling laser is ≈ 2.9Γ red­detuned from the resonance, where
Γ = 2𝜋 × 6 MHz is the natural linewidth of the cooling transition. The parameters in
MOT­1 are optimized to collect asmany atoms from the background gas as possible. In the
subsequent stage called “MOT­2”, we turn off the current on the Big­U to release atoms,
then re­capture them in a smaller MOT created by a current of 3.3 A in another U­shaped
wire on the base chip (named Base­U), and with a laser detuning of −6Γ. The purpose
of this stage is to compress the atomic cloud to achieve a higher density and to locate the
MOT at a place closer to where we can produce the later magnetic traps. After theMOT­2,
the magnetic field gradients are switched off and the cooling lasers are ramped to far red
detuned (−15.5Γ) for an optical molasses stage. In our experiment, with a MOT loading
time of approximately 14 s, around 3 × 105Rb atoms are captured from the background
gas and cooled to 4 μK at the end of Molasses.
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After the molasses stage, atoms need to be pumped to a low­field seeking state to
be ready for the subsequent magnetic trapping stages. By applying 𝜎− polarized pump
1­1 and pump 2­2 light, the atoms end up in the |𝐹 = 1, 𝑚𝐹 = −1⟩ state after scattering
a few photons. Note that, alternatively, one can prepare the atoms in |𝐹 = 2, 𝑚𝑓 = 2⟩
by using the pump 2­2 light and the repump light both with 𝜎+ polarization. However,
this has the disadvantage that in the 𝐹 = 2 manifold there are two magnetically trappable
states. It is impossible to blow away atoms in unwanted state selectively since linewidth of
the imaging transition being larger than the frequency difference between the two states,
leading to a mixture of the two states. For this reason we choose |𝐹 = 1, 𝑚𝐹 = −1⟩ as the
starting point of the BEC. Actually, some atoms might remain in 𝐹 = 2 manifold after the
optical pumping, so what follows is a “blow away” pulse, i.e., a 70 μs pulse of resonant
imaging light to push away atoms in the 𝐹 = 2 by radiation pressure.

After the optical pumping, we re­capture the atoms with magnetic traps. The mag­
netic traps based on current­carrying wires are a common technique used in the next
stages. In Appendix A, a detailed discussion of the typical magnetic traps involved in
our experiment and their parameters can be found.

The first magnetic trap in the sequence is “Ioffe1”, which is relatively far away from
the chip surface, approximately 140 μm. What follows is a transfer of the atoms through
a series of other “Ioffe” traps. During the transfer, each next trap is tighter and closer to
the chip surface, so that the atoms are compressed further as well as transferred towards
the chip. In the last Ioffe trap, around ≈ 2 × 105 atoms are trapped at a temperature of
1.6 μK①.

The atoms are then loaded into Dimple traps. To further decrease the temperature,
we perform evaporative cooling via RF ramps. RF fields are used to selectively remove
hot atoms from the trap by inducing transitions between trappable and non­trappable spin
states. The confined atoms in thermodynamic equilibrium obey a Maxwell­Boltzmann
distribution of the velocities. These atoms inside the highest velocity tail of the distribu­
tion, tend to reach larger distances from the trap center and thus have on average larger
Zeeman shift. Therefore they are closer to resonance with the RF field, easier to be trans­
ferred to untrappable state and thus removed from the trap. While these most energetic
atoms escape, the equilibrium of the system is broken and a rethermalization of the re­
maining population takes place. When the frequency of the RF field is ramped down, the

① The atom number and temperature in Ioffe trap is measured after a hold time of 500 ms.
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mean kinetic energy of the atom cloud gradually decreases with rethermalization, cooling
the entire ensemble. A quick enough rethermalization is crucial for the evaporative cool­
ing. Since it happens mainly through the atomic collisions, a high atomic density in the
magnetic trap is required. For this reason, the traps in which RF cooling is performed are
designed to be very tight and steep.

The first ramp takes place in “Dimple­5” (trap depth 4.8 MHz) with an exponential
RF ramp (RF1) from 14 → 2.2 MHz during 2 s. We then transfer atoms to the next
trap “Dimple­6” (trap depth 1.2 MHz) to perform the second RF ramp (RF2) from 2.2 →
1.84 MHz during 1 s. At the end of this RF ramp the atoms find themselves at a BEC of
≈ 1700 atoms. Finally, we transfer the BEC to the final trap “Dimple­7”. To set the final
atom number in the BEC, we apply another RF pulse (RF3) of 20 ms at a low power. The
frequency of this RF pulse can be chosen to obtain the desired atom number in the BEC.
The key parameters of the traps mentioned above are described in Appendix A.

During the whole process of the BEC preparation, there are a lot of parameters which
could be optimized experimentally, but it is practically impossible to find a global opti­
mum in such a complex process. For a straightforward comparison of the transfer effi­
ciency (or cooling efficiency) from one stage to another, we usually measure and compare
the atom numbers in three stages: molasses, the first Ioffe trap, and the BEC(after the
second RF ramp), as a function of the MOT­1 loading time, see Figure. 3.7. The loading
efficiency from Molasses to Ioffe trap is usually approximately 70%, independent of the
MOT­1 loading time. The cooling efficiency from Ioffe trap to the BEC depends on the
atomic density, therefore on the MOT­1 loading time. We take such loading measurement
from time to time to ensure a high efficiency of BEC preparation.

After the BEC has been produced, we perform the main experiments in Dimple­7,
with a trap frequency of (714, 714, 114) Hz. The chip trap usually provides a strong con­
finement for the BEC, therefore the interactions between atoms are so strong that the
external degree of freedom in our experiment does not play an important role, which is
contrary to other experiments such as in atomic fountains or beams.

The operations involved in the main experiments usually consist entirely of RF and
MWpulses, which are used to manipulate the internal state of the BEC. After this, we take
absorption images of atoms in the time of flight (TOF). From the images we can detect
atom numbers precisely, which is the most important observable giving access to the spin
state. The precise detection of atom numbers are described in section 3.4. After the main
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Figure 3.7 Loading curves and loading efficiency curves. The Left column is the measured
atom number as a function of the MOT loading time in different stages (at the end of Molasses,
first Ioffe trap and RF3 ramp); the middle column is the loading efficiency from one stage to
another as a function of the MOT loading time; the right column shows the loading efficiency as
a function of the atom number in the prior stage. The loading efficiency from stage ‘Ioffe1’ to
stage ‘RF3’ actually shows the efficiency of our evaporative cooling, which increases with the
atom number in the Ioffe trap. The evaporative cooling rely on the atomic density, leading to a
higher efficiency for larger atom numbers.

experiment and before we take the absorption images, a kick­out procedure is applied to
accelerate the atoms away from the chip surface. This allows absorption imaging with a
shorter TOF, such that the cloud size in the absorption image is small, reducing detection
noise. The kick­out procedure is described in detail in Ref. [50]. The BEC is destroyed
during the absorption imaging since atoms scatter photons and are heated. Therefore, for
each shot of the experiment, the whole sequence has to be repeated.

3.3 Manipulation of atoms

The main experimental sequence relies on manipulating neutral 87Rb atoms using
both static and microwave electromagnetic fields. In this section, the basic theory about
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the atom­field interaction is briefly introduced, then the techniques frequently used in the
experiments are discussed, including the Rabi coupling, the two­photon Rabi transition
used to couple our state pair, and the state­dependent trapping potential.

3.3.1 Theory of atom­field interaction

The atom­field interaction has been studied intensively in the textbooks, and it suf­
fices here to briefly mention a few results that are needed for the understanding of our
experiment. Our physical system is an ensemble of ultra­cold 87Rb atoms placed in an
external magnetic field 𝐵 and irradiated by MW and RF field with frequency 𝜔mw and
𝜔rf. We consider the energy of one single atom in presence of external fields, thus neglect
the inter­atomic interactions for the moment. To describe the energy levels of an atom in
such a system, one needs to consider the hyperfine energies, the static Zeeman effect and
the dressing due to interaction between atoms and the MW/RF field.

3.3.1.1 Hyperfine splitting and static Zeeman effect

Atoms in a static magnetic field 𝐵⃗ are described by the well­knownBreit­Rabi Hamil­
tonian

𝐻BR = 𝐴hfs ̂𝐼 ⋅ ̂𝐽 + 𝜇𝐵(𝑔𝐽 ̂𝐽 + 𝑔𝐼 ̂𝐼 ) ⋅ 𝐵⃗, (3.1)

The first term describes the hyperfine coupling between the nuclear and electron spin, and
the second term describes the coupling of atoms and static magnetic field. Here 𝐴hfs is
the magnetic dipole constant of the manifold, 𝜇𝐵 is the Bohr magneton, ̂𝐼 and ̂𝐽 are the
nuclear and electron angular momentum and 𝑔𝐼 and 𝑔𝐽 are the corresponding Land ́𝑒 𝑔­
factors. For 87Rb, 2𝐴hfs = 𝐸hfs = ℎ×6.834682611GHz, 𝑔𝐽 ≈ 2, and 𝑔𝐼 ≈ −1×10−3 [111] .

For the ground states of a 87Rb atom, 𝐼 = 3/2 and 𝐽 = 1/2. The diagonalization of
the above Hamiltonian results in the eigenenergies [111­112]

𝐸(𝐹 = 3
2 ± 1

2, 𝑚𝐹 ) = −𝐴hfs
4 + 𝑔𝐼𝜇𝐵𝑚𝐹 𝐵 ± 𝐴hfs√1 + 𝑚𝐹 𝑥 + 𝑥2. (3.2)

where 𝑥 = 2(𝑔𝐽 − 𝑔𝐼 )𝜇𝐵𝐵/𝐴hfs, the magnetic quantum number 𝑚𝐹 describes the projec­
tion of 𝐹 onto the direction of 𝐵. This Hamiltonian yields 8 eigenstates for the 52𝑆1/2

ground states, grouped in two manifolds |𝐹 = 1⟩ and |𝐹 = 2⟩. The two manifolds are
separated in energy by𝐸hfs. The hyperfine energy levels of the ground states in this regime
is shown in Figure 3.8, with magnetically trappable states indicated.

Under a weak static magnetic field 𝐵⃗ satisfying 𝜇𝐵𝐵⃗ ≪ 𝐸hfs, we can simplify the
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Figure 3.8 Energy levels of hyperfine ground state manifold under a 𝐵 = 3.229 G. The
trappable, untrappable and anti­trapped states are indicated with red, black and blue, respectively.
We normally use two clock states ⟨1| and ⟨2| for interferometry. The microwave transitions with
different polarization are indicated with dashed lines, with orange for 𝜎−, green for 𝜋 and purple
for 𝜎+ polarization. The labels show the matrix elements of the corresponding transitions.

above Zeeman splitting to the second order within each 𝐹 ­manifold,

𝐸(𝐹 = 1) ≈ −5
8𝐸hfs + 𝑎1𝑚𝐹 𝐵 − 𝑏𝑚𝐹 𝐵2, (3.3)

𝐸(𝐹 = 2) ≈ 3
8𝐸hfs + 𝑎2𝑚𝐹 𝐵 − 𝑏𝑚𝐹 𝐵2 (3.4)

where the first order coefficients are

𝑎1 = 𝑔𝐼𝜇𝐵 − 𝐴hfs𝑥
8 ≈ −0.702 MHz/G, (3.5)

𝑎2 = 𝑔𝐼𝜇𝐵 + 𝐴hfs𝑥
8 ≈ 0.700 MHz/G, (3.6)

which gives the linear Zeeman shifts of 0.702 MHz/G and 0.700 MHz/G, in 𝐹 = 1 and
𝐹 = 2 manifolds, respectively. The second terms scale quadratically with the magnetic
field with a coefficient of

𝑏𝑚𝐹 = 𝐴hfs𝑥2

8 (1 −
𝑚2

𝐹
4 ) ≈ (72𝑚2

𝐹 − 288) Hz/G (3.7)

In the 8 states, |1⟩ ≡ |𝐹 = 1, 𝑚𝐹 = −1⟩ and |2⟩ ≡ |𝐹 = 2, 𝑚𝐹 = 1⟩ are of special
interest for two reasons. First, these two states are weak­field­seeking states, which can be
trapped in the magnetic field (it is impossible to trap strong­field­seeking states since the
maximum of magnetic field does not exist). Second, these two states experience nearly
identical magnetic trapping potentials due to their nearly equal magnetic moments. Their
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relative linear Zeeman shift is zero in a specific magnetic field 𝐵0 ≈ 3.228917 G, which
is called the magic field. In the experiments described in next chapters, we prepare the
atoms at the magic field so that the superposition of the two internal states|1⟩ and |2⟩ is
robust against magnetic field fluctuations. These two states are well suited as so­called
“clock states” and extensively used in other 87Rb experiments aiming at the construction
of atomic clocks. Coherence times of the superposition of the two states up to seconds [5]

and even one minute [82] have been reported.
However, the clock states are not completely insensitive to the magnetic field. Near

the magic field 𝐵0, the quadratic Zeeman effect also contributes to the differential energy
shift of the states and the transition frequency between |1, −1⟩ and |2, 1⟩ (in the rotating
frame) can be written as a function of the magnetic field

Δ𝐸/ℎ = 1
ℎ (𝐸|2,1⟩ − 𝐸|1,−1⟩ − 𝐸hfs) ≈ 𝑐 + 𝑘(𝐵 − 𝐵0)2,

with 𝑐 = −4.497 kHz, and a curvature 𝑘 = 𝑏𝑚𝐹 =−1 − 𝑏𝑚𝐹 =2 = 2𝜋 × 431.35957 Hz/G2.
For our experiment it is very important to tune the static field in the 𝑥­direction to

ensure that the magnetic field at the trap center is near the magic field of 3.23 G. Taking
the advantage of the magnetic field dependence of the energy shift, we calibrate the exter­
nal magnetic field by performing a spectroscopy of the transition |1, −1⟩ ↔ |2, 0⟩. In the
experiment, we prepare all the atom in state |1, −1⟩ and use a weak MW pulse of 10 ms
to probe the atoms. By varying the frequency of the MW pulse and counting the atoms
remaining, we obtain the spectroscopy as shown in Figure 3.9, right panel. The resonant
microwave frequency should match the theoretical value expected from the differential
Zeeman shift when 𝐵𝑥 is well calibrated. We can then adjust 𝐵𝑥 by tuning the current
being snet to the corresponding coil according to the resonant frequency.

3.3.1.2 Interaction with the microwave field

Let us take the interaction between the atom and microwave field into consideration.
Under the exposure to a microwave field oscillating at a frequency of 𝜔 ≈ 6.8 GHz, the
atom will interact with both the magnetic field and the electric field of the microwave.
The magnetic field can drive magnetic dipole transitions between |1, 𝑚𝐹 ⟩ and |2, 𝑚′

𝐹 ⟩
states, causing the AC Zeeman effect. The interaction with the microwave electric field
causes the so­called AC Stark shift, which is identical for all the bare states |𝐹 , 𝑚𝐹 ⟩ and
is also much smaller than the AC Zeeman shift. In the remainder of this thesis we ignore
the AC Stark shift and mainly consider the interaction between atoms and the microwave
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Figure 3.9 Zeeman splitting and Rabi spectroscopy. Left panel shows the magnetic field
dependence of the energy difference due to Zeeman splitting between |1, −1⟩ and |2, 1⟩. The inset
shows a blow up of the rectangular region, indicating the small slope near the magic field. Right
panel shows the experimental result of the Rabi spectroscopy, with 𝑥­axis showing the difference
between the applied microwave frequency and the expected transition frequency between two
states under the magic field. If the external field is well calibrated, the remaining atom numbers
will be minimum when 𝑓MW = 𝑓0 ≈ 6834678.1 kHz.

magnetic fields 𝐵mw.
A complete description of the dressing picture requires to treat the microwave field

̂𝐵mw as a quantized field, and to consider the Hamiltonian of the whole atom­field system,
which is [3]

𝐻 = 𝐻BR + 𝐻F + 𝐻AF (3.8)

= 𝐻BR + ℏ𝜔( ̂𝑎† ̂𝑎 + 1
2) + 𝜇𝐵(𝑔𝐽 ̂𝐽 + 𝑔𝐼 ̂𝐼 ) ⋅ ̂𝐵mw. (3.9)

The first term is the Breit­Rabi Hamiltonian. The second term 𝐻F represents the energy
of the microwave field, with photon number ̂𝑛 = ̂𝑎† ̂𝑎, where ̂𝑎† and ̂𝑎 are the creation
and annihilation operators, respectively. The third term 𝐻AF is the atom­field interaction,
where ̂𝐵mw = √ℏ𝜔𝜇0/2𝑉 (𝜖 ̂𝑎 + 𝜖∗ ̂𝑎†) is the field operator with unit polarization vector 𝜖.

A complete solution of this Hamiltonian yields a “ladder” of energy levels [3] . Details
about the quantized description can be seen in Ref. [3]. Here we simplify the problem by
considering a classical field. For a mean photon number 𝑛 ≫ 1, which is well satisfied
for our experimental parameters, the MW field can be described as a classical field

𝐵⃗mw(𝑡) = 𝐵mw
1
2 (𝜖𝑒−𝑖𝜔𝑡 + 𝜖∗𝑒𝑖𝜔𝑡) . (3.10)

In addition, we can make the rotating wave approximation, given that our system param­
eters satisfy the following weak coupling conditions: a monochromatic field mode at 𝜔
with a small detuning Δ0 = 𝜔 − 𝜔0 ≪ 𝜔0 , and a small static magnetic field 𝜇B𝐵 ≪ 𝐸hfs,
and a small microwave magnetic field amplitude 𝜇𝐵𝐵mw ≪ 𝐸hfs. The resulting Hamil­
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tonian in the |𝐹 , 𝑚𝐹 ⟩ basis is

𝐻 = ∑𝑚2
(−1

2ℏΔ2,𝑚2
1,𝑚1

+ 𝑔2𝜇𝐵𝑚2𝐵) |2, 𝑚2⟩⟨2, 𝑚2| (3.11)

+ ∑𝑚1
(+1

2ℏΔ2,𝑚2
1,𝑚1

+ 𝑔1𝜇𝐵𝑚1𝐵) |1, 𝑚1⟩⟨1, 𝑚1|

+ ∑𝑚1,𝑚2
(

1
2ℏΩ2,𝑚2

1,𝑚1
|2, 𝑚2⟩⟨1, 𝑚2| + ℎ.𝑐.) .

The diagonal elements represent the energies of the bare states in the rotating frame. The
off­diagonal elements denote the coupling between the two states, where the coupling
strength is characterized by the Rabi frequency

Ω2,𝑚2
1,𝑚1

= 𝜇𝐵𝐵mw⟨2, 𝑚2|𝜖 ⋅ 𝐽 |1, 𝑚1⟩. (3.12)

These couplings can be separated into linearly polarized 𝜋 transitions sensitive to 𝜖 ⋅ 𝑒𝑧,
corresponding to Δ𝑚𝐹 = 0, and circular polarized 𝜎± transitions sensitive to 𝜖 ⋅ (𝑒𝑥 ±
𝑖𝑒𝑦)/√2, corresponding to Δ𝑚𝐹 = ±1.

Taking the interaction into consideration, the eigenstates of the atoms are no longer
the bare states |𝐹 , 𝑚𝐹 ⟩, but a superposition of them. The eigenenergies are shifted com­
pared to the energies given by the Breit­Rabi Hamiltonian (Equation 3.2). When the field
frequency 𝜔 is resonant to a transition, Δ2,𝑚2

1,𝑚1
= 0, in the rotating frame, the energy shift

caused by dressing is Δ𝐸 = 𝐸|1,𝑚1⟩ −𝐸|2,𝑚2⟩ = ℎΩ2,𝑚2
1,𝑚1

. The splitting between two energy
levels is equal to the Rabi frequency. The effect is known as avoided crossing.

If the MW field is far detuned from any possible transition, that is when |Ω2,𝑚2
1,𝑚1

| ≪
|Δ2,𝑚2

1,𝑚1
| for all combinations of 𝑚1, 𝑚2, the eigenstates (dressed state) are very close to

the bare |𝐹 , 𝑚𝐹 ⟩ states and their energies are well described by summing the AC Zeeman
shift contributions from each off­resonant transitions

𝐸|𝐹 ,𝑚𝐹 ⟩ ≈ 𝐸𝑍 ∓ ℏ
2 (∑

|Ω2,𝑚2
1,𝑚1

|2

2Δ2,𝑚2
1,𝑚1

− Δ2,𝑚2
1,𝑚1

), (3.13)

where the sum runs over all levels coupled to |𝐹 , 𝑚𝐹 ⟩ and the minus (plus) sign corre­
sponds to 𝐹 = 1 (𝐹 = 2).

Note that themagnetic dipole transition between adjacent𝑚𝐹 levels can also be driven
by a RF field at typically a few MHz and also cause the AC Zeeman shift, similarly as in
the microwave case. Moreover, for linear radio frequency polarization (as in our case),
the shifts are almost identical for |1⟩ and |2⟩ and thus do not lead to a shift of the transition
frequency and will not be discussed further.
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3.3.2 Rabi Oscillations

Following the discussion of atom­field interaction in the last section, let us now dis­
cuss the Rabi oscillation, which is important for our experiment, since we use Rabi pro­
cesses to manipulate the internal state of the atoms (with both single­photon and two­
photon transitions). It is worth mentioning that, for the experiments described in this
section, the MW field is generated by a rectangular waveguide placed relatively far away
from the chip. The MW field gradients are very weak in the far field of such a waveguide
and the field can be regarded as spatially homogeneous near the chip with respect to the
size of atomic cloud, therefore we can neglect the spatial dependence of the AC Zeeman
shift.

3.3.2.1 Single photon Rabi coupling

For simplicity we consider only two levels labelled as |1⟩ and |2⟩ with an energy
difference ofℏ𝜔0. The radiation field frequency is𝜔, detuned from the resonant frequency
by Δ0 = 𝜔 − 𝜔0. In practice, the oscillating field can be a microwave field (MW) at
6.8 GHz or a radio frequency (RF) field at a few MHz, corresponding to the transition
between states in different |𝐹 ⟩ manifolds or the adjacent states in the same manifold.

Following the Equation 3.11, we canwrite the Hamiltonian of such a two­level system
in the rotating frame,

𝐻 = ℏ
2 (

Δ0 Ω∗

Ω −Δ0 )
. (3.14)

Similar to Equation 3.12, the diagonal elements represent the energies of the bare
states in the rotating frame while the off­diagonal elements denote the coupling between
the two states. Note that the Hamiltonian is written in the basis of {|1⟩, |2⟩}, however,
under the illumination of the coupling field, the two bare states are mixed and are thus
not the eigenstates of the system anymore. Therefore if the atoms are initially prepared in
the bare state |1⟩, the population will oscillate with frequency Ωeff and the probability of
finding atoms in |2⟩ are

𝑃2 = Ω2

Ω2
eff

sin2
(

Ωeff𝑡
2 ) . (3.15)

This is theRabi oscillation between the two levels, andΩeff = √|Ω|2 + Δ2
0 is the effective

Rabi frequency. In our experiment, we usually measure the relative atom number 𝑛rel =
𝑁1−𝑁2
𝑁1+𝑁2

as readout, where 𝑁1 and 𝑁2 are the atom numbers in the two states. The Rabi

50



CHAPTER 3 EXPERIMENTAL SYSTEM

oscillation gives

𝑛rel = 1 − Ω2

Ω2
eff

+ Ω2

Ω2
eff

cos (Ωeff𝑡) . (3.16)

On resonance, the oscillation frequency is minimal and the populations oscillate fully
between |1⟩ and |2⟩. For Δ0 ≠ 0, Ωeff increases and the oscillation amplitude is reduced,
such that state |2⟩ is never fully reached. In our experiment, we use the hyperbolic form
of Ωeff as a function of Δ0 to find the resonance condition Δ0 = 0.

3.3.2.2 Two­photon Rabi coupling with MW and RF fields

A direct transition between states |1, −1⟩ and |2, 1⟩ is not possible due to the selection
rules. Therefore we couple the two states via a two­photon process with aMWphoton and
a RF photon, through an intermediate state |0⟩ ≡ |2, 0⟩. We denote the energy difference
between |𝑖⟩ and |𝑗⟩ by ℏ𝜔𝑖𝑗 . The light frequencies of the MW and RF field are denoted by
𝜔MW and 𝜔RF respectively, the corresponding single photon Rabi frequencies are given
by ΩMW(RF) = 1

ℏ√
1
8𝜇𝐵𝐵MW(RF). We assume there is no direct coupling between |1⟩

and |2⟩. The intermediate detuning Δ and the two­photon detuning 𝛿 are defined as (see
Figure 3.10)

Δ = 𝜔MW − 𝜔10,

𝛿 = 𝜔MW + 𝜔RF − 𝜔12.

On the experiment, we usually work at a large intermidiate detuning Δ/2𝜋 = 500 kHz so
that both coupling fields are off­resonant (|Δ|2 ≫ Ω2

MW, Ω2
RF) and |0⟩ is not significantly

populated. In addition, we choose the two­photon detuning to ensure two­photon reso­
nance |𝛿| ≪ |Δ|. Under this circumstance, only the two photon transition is resonant and
any other transitions in the 8­level system are far off resonance, the system can thus be
treated as a two­level system which is coupled by an effective two­photon Rabi frequency
and effective detuning [113]

Ωeff = ΩMWΩRF
2Δ , (3.17)

𝛿eff = 𝛿 + |ΩMW|2 − |ΩRF|2

4Δ . (3.18)

The effective detuning accounts for the AC Zeeman shift due to the MW and RF fields.
Figure 3.11 shows the experimental results of the two­photon Rabi oscillation in case of
𝛿eff = 0 and 𝛿eff ≠ 0. The effective Rabi frequency is much slower than the intermediate­
detuning |Ωeff| ≪ |Δ|.
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Figure 3.10 Two photon Rabi transition. The figure shows the MW and RF couplings with
Rabi frequenciesΩMW andΩRF, respectively, and the definitions of the intermediate­state detuning
Δ and the two­photon detuning 𝛿.
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Figure 3.11 Experimental result of two­photon Rabi oscillations, with different two­photon
detuning 𝛿eff. Solid lines show the fit to the data.
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3.3.3 State­dependent potential

In our experiment, a state­dependent potential is created by sending microwave cur­
rent to the on­chip co­planar waveguide wires, as illustrated in Reference [3]. The gener­
ated microwavemagnetic near­field has a strong spatial gradient, which leads to a position
dependence of the AC Zeeman shift 𝑉MW(𝒓), with opposite signs for the states in mani­
fold |𝐹 = 1⟩ and |𝐹 = 2⟩ according to Eq. 3.13, resulting in state­selective microwave
potentials. In the near field, the effective microwave potential has an equivalent position
dependence as the static potential since they are created by the same on­chip wires. The
combination of the static andmicrowave potentials forms the state­dependent trapping po­
tential, which is used to control the spatial mode of the two­component BEC. The overall
potential for an atom in this case can be written as

𝑈(𝒓) = 𝑉𝑍(𝒓) + 𝑉mw(𝒓), (3.19)

where 𝑉𝑍(𝒓) is the common potential generated by the static Zeeman shift, 𝑉mw(𝒓) is the
differential potential which arises from the AC Zeeman shift, given by

𝑉 |1,−1⟩
mw (𝒓) = +ℏ

4

0

∑
𝑚2=−2

|Ω2,𝑚2
1,−1(𝒓)|2

Δ2,𝑚2
1,−1(𝒓)

, (3.20)

𝑉 |2,1⟩
mw (𝒓) = −ℏ

4

1

∑
𝑚1=0

|Ω2,1
1,𝑚1

(𝒓)|2

Δ2,1
1,𝑚1

(𝒓)
. (3.21)

Here Δ2,𝑚2
1,𝑚1

(𝒓) denotes the detuning with respect to the transition |1, 𝑚1⟩ ↔ |2, 𝑚2⟩. Fig­
ure 3.12 illustrates the transitions that contribute to the AC Zeeman shift, in case of a
general microwave field with all polarization components present. Note that there are
three transitions contributing to the shift of state |1⟩ but only two contributing to the state
|2⟩. In addition to the difference in sign, the AC Zeeman shifts for two states are also
different in the gradient modulus. The latter difference depends on many factors, for ex­
ample, the detuning of microwave, the strength of three polarization components of the
field, the amplitude of the microwave field, etc, all of which can be experimentally con­
trolled to some extent. This provides the flexibility for engineering of the state­dependent
potential.

Figure 3.13 shows the distribution of the MW field amplitude with an applied current
𝐼mw ≈ 5 mA and with blue­detuning Δ0 = 12 MHz with respect to the |1, 0⟩ ↔ |2, 0⟩
transition [19] . In the experiments described in chapter 5 aiming for spin squeezing, we
explore different parameter configurations. For typically used parameters, and for mi­
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Figure 3.12 Energy­level diagram of the hyperfine ground state in presence of external
static and microwave fields. This diagram shows the working principle of the state­dependent
potentials, where 𝑉 |𝐹 ,𝑚𝐹 ⟩

𝑍 represents Zeeman effects due to the static magnetic field and 𝑉 |𝐹 ,𝑚𝐹 ⟩
mw

represents the AC Zeeman shifts due to the magnetic field of a blue­detuned microwave field. The
AC Zeeman shifts are only shown for the states |1⟩ and |2⟩ used in our experiment, with opposite
signs for |1⟩ and |2⟩. There are three microwave transitions contributing to the shift of |1⟩ and
two contributing to |2⟩.
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Figure 3.13 Schematics of the chip wires around the trap position. (A) A magnified top
view of the central region of the five­wire structure. The arrows indicate the flows of the DC and
MW currents used to create the static and state­dependent trapping potentials. (B)Angled view of
the chip region shown in panel A. The microwave near­field potential 𝑉mw for 𝐼mw ≈ 5 mA and
Δmw = 2𝜋 12 MHz (blue detuning) is drawn for illustration. In both panels the position and shape
(Thomas­Fermi radii) of the BEC is shown to scale in blue. The displacement in the trap bottom
for the two internal states is too small to be visible at this scale. Figures adapted from Ref. [50].
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crowaves blue­detuned by Δ0 = 10 MHz, a current of 30 mAwill result in a separation of
the trap minima for the two states of ≈ 400 nm, which is used to prepare a spin squeezed
state, see section 5.3.

3.4 Precise detection of atom numbers

For the collective measurement of the multiple­spin system, a precise detection of
atoms in both internal states is required. In our experiment, we take absorption images
in order to extract the atom numbers. In this section I will present the imaging system,
describe how it works, with emphasis on the calibration of the parameters of the absorption
imaging.

3.4.1 Imaging systems

Two imaging systems are implemented in the apparatus. In the primary imaging sys­
tem, a back­illuminated deep­depletion charge coupled device (CCD) camera① is aligned
along −𝑦 direction. The quantum efficiency of CCD camera at 𝜆 = 780 nm is 𝑄𝑒 = 0.9.
This primary imaging system, with a magnification of 9.89, is mainly used in the end of
the main experiment sequence to detect the atom numbers in the states |𝐹 = 1, 𝑚𝐹 = −1⟩
and |𝐹 = 2, 𝑚𝐹 = 1⟩, therefore need to be calibrated precisely (discussion see in the next
subsections). In addition to the primary imaging system, there is a secondary imaging
system with a CCD camera ② aligned along the −𝑥­axis with a smaller magnification
of 2.23. This system is not as well calibrated as the primary system, and is only used
to observe the atoms in the stages of MOT, optical molasses and at the beginning of the
magnetic trapping potentials. Detailed illustration of the imaging systems can be found
in Ref. [50].

3.4.2 Absorption Imaging

We measure the atom numbers by measuring the atomic density in the time of flight
(TOF) with absorption imaging. Absorption imaging requires at least two pictures, taken
with and without atoms, respectively. In the first picture, a probe laser beam resonant
with the imaging transition is shone onto the atoms, and the atoms absorb photons and
cast a shadow onto the CCD camera. The other picture is taken with the same probe light
in absence of the atomic cloud, as a reference picture. By comparing the two pictures, the

① Andor Ikon­M
② AVT Guppy F­044B NIR CCD
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amount of light absorbed by the cloud can be extracted, known as optical depth OD. In
our experiment, we take a third picture with probe light off and without atoms as a dark
image, in order to eliminate the contribution of the background light illumination. The
corresponding light intensities on the CCD camera in the three acquired images are de­
noted by 𝐼a, 𝐼ref, 𝐼dark, respectively. Using those images, we calculate the light intensities
with and without the absorption effect for each pixel (𝑥, 𝑦),

𝐼f(𝑥, 𝑦) = 𝐼a(𝑥, 𝑦) − 𝐼dark(𝑥, 𝑦),

𝐼i(𝑥, 𝑦) = 𝐼ref(𝑥, 𝑦) − 𝐼dark(𝑥, 𝑦).

The spatial atomic density 𝑛(𝑥, 𝑦) of the cloud can be reconstructed pixel­by­pixel,
based on the Beer­Lambert law [114] :

𝑛2D = − 1
𝜎 ln(

𝐼𝑓
𝐼𝑖 ) + 1

𝜎
1

𝐼effsat
(𝐼𝑖 − 𝐼𝑓 ) , (3.22)

where 𝜎 is the effective absorption cross­section, quantifying the probability of a photon
being absorbed by an atom. It is defined as 𝜎 = 𝛽𝜎0, where the resonant absorption
cross­section is given by 𝜎0 = 3𝜆2/2𝜋 for wavelength 𝜆 = 2𝜋𝑐/𝜔0. The factor 𝛽 is
introduced to correct the effect caused by the presence of additional energy levels and
errors in the probe polarization. It is an unknown parameter and needs to be calibrated
experimentally. The second term on the right side contains effective saturation intensity

𝐼effsat = 𝛼𝐼sat which accounts for the saturation of the imaging transition. In a two­level
system, the saturation intensity of the transition is 𝐼sat = ℏΓ𝜔3

0/12𝜋𝑐2 (for 87𝑅𝑏 cycling
transition, 𝐼sat = 1.67 mW/cm2). In practice, the quantum efficiency of the CCD camera
needs to be taken into account since the intensity of the light beam is derived from the
electron number counted on the CCDpixels. Therefore the factor 𝛼 is introduced to correct
𝐼sat, which is is unknown and needs to be determined by the experimental calibration.

3.4.3 Image acquisition and fringe removal

In our experiment, we care for the atom numbers in both internal states |1⟩ ≡ |𝐹 =
1, 𝑚𝐹 = −1⟩ and |2⟩ ≡ |𝐹 = 2, 𝑚𝐹 = 1⟩. Therefore, we take absorption images in the
following steps. First, we illuminate the atomic cloud with a probe laser resonant to the
cycling transition 𝐹 = 2 → 𝐹 ′ = 3 transition, which will probe the atoms in |2⟩ so that an
image with the absorption effect of atoms in |2⟩ is taken onto the CCD. After this process,
atoms in state |2⟩ are blown away by photon recoil force, leaving only atoms in state |1⟩.
We then optically pump all the remaining atoms to 𝐹 = 2 so that an absorption image
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of state |1⟩ can be taken in the same manner as before. A reference image is then taken
immediately after the two absorption images, in each run of the experiment. The acquired
images are shown in Figure 3.14.
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Figure 3.14 Absorption images for the two internal states. From top to bottom: the absorption
images, the optimal reference images and the intensity difference between the absorption and
optimal reference image.

On the absorption images, there exist unavoidable fringes caused by the interference
of these optical components in the path of the imaging light, such as the glass windows, the
wave plates, the surface of the PBS, etc. To minimize this effect, a straight­forward idea
is to subtract the fringes using the reference image. However, the mechanical vibrations
of these components (for example the vibration caused by the mechanical shutter in front
of the CCD) result in a fluctuation of the fringes over time. It means that the fringes on
the reference image are not identical to those on the absorption image and thus cannot be
eliminated completely by simple subtraction. Moreover, photon shot noise results in shot­
to­shot fluctuations even for identical probe light intensity. To reduce the imaging noise
caused by these effects, we apply a so­called fringe removal algorithm, details can be
found in Ref. [115­116]. Briefly summarize, the algorithm groups the acquired reference
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images in blocks of 100 consecutive experimental runs. For each absorption image inside
one block, an optimal reference image is generated by constructing a linear combinations
of all reference images available in the whole block. In this way, the algorithm corrects
for intensity fluctuations between the absorption image and the reference image, and in
addition, reduces the photon shot noise by averaging images.

Figure 3.14 shows a typical absorption image and optimal reference image for each
state, which are processed to reconstruct the two­dimensional density distributions of
atoms in state |1⟩ and |2⟩. The integration of these densities within a chosen region gives
the total atom number in each state, 𝑁1 and 𝑁2. In most of the measurements presented
in this thesis, we manually choose a rectangular region that contains all atoms to integrate
the two­dimensional density and count the atom numbers. The regions used for state |1⟩
is usually larger than that of state |2⟩ because the atomic cloud have expanded further
between detecting 𝐹 = 2 and 𝐹 = 1, and leads to a larger atom number noise in state |1⟩.

For some of the experiments described in chapter 5, elliptical integration masks of the
region are applied when counting the atom numbers to minimize the detection noise. We
extract the position and size of the atomic cloud for each image from a 2D Gaussian fit,
and use the mean position and mean size over the entire data set to define the integration
region. We choose the radius of the integration region so that the region inside the mask
contains more than 90% of the atomic distribution. In the measurement of section 5.3,
the mask is particularly important, when the spin noise is extremely low due to the spin
squeezing and the imaging noise contributes a considerable part of the total noise.

3.4.4 Calibration of the imaging system

For a specific imaging system, the parameters 𝛼 (𝛽) describing correction of the satu­
ration intensity (absorption cross­section) are unknown and need to be calibrated in order
to extract the correct atom number. From Eq. (3.22) we can calculate the corresponding
density distributions for each internal state,

𝑛1 = 1
𝛽1 (

1
𝜎0
ln(

𝐼𝑓
𝐼𝑖 ) + 1

𝜎0𝛼1𝐼sat (𝐼𝑖 − 𝐼𝑓 )) , (3.23)

𝑛2 = 1
𝛽2 (

1
𝜎0
ln(

𝐼𝑓
𝐼𝑖 ) + 1

𝜎0𝛼2𝐼sat (𝐼𝑖 − 𝐼𝑓 )) . (3.24)

For each internal state |𝑖⟩, we have two independent parameters 𝛽𝑖 and 𝛼𝑖, therefore there
are in total 4 parameters 𝛽1,2 and 𝛼1,2 to be determined. In order to calibrate these param­
eters, we adopt a series of measurements inspired by Ref. [114,117], as described in the

58



CHAPTER 3 EXPERIMENTAL SYSTEM

following.
First, we need to calibrate 𝛼𝑖 to insure the detected atom numbers are independent of

the light beam intensity [114] . We scan the probe beam intensity (within a range of the rel­
ative saturation 𝑠 = 𝐼𝑖/𝐼effsat from 1 to 3). For each state |𝑖⟩, with a specific 𝛼𝑖 and assumed
parameter 𝛽𝑖 (since these other unknown parameters do not affect the calibration of 𝛼𝑖, we
set them at assumed values to make sure the atom number is reasonable), the measured
atom number 𝑁𝑖 is a function of the relative saturation 𝑠, as shown in Figure 3.15. We
calculate the deviation of this set of atom number Δ𝑁𝑖(𝑠) and find the 𝛼𝑖 that minimizes
Δ𝑁𝑖(𝑠). We find 𝛼1 = 1.32 and 𝛼2 = 1.49, as shown in Figure 3.15.
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Figure 3.15 Calibration of 𝛼 to insure the measured atom number is independent of the
beam intensity. For each state, the atom number is calculated with several values of the unknown
parameter 𝛼, while keeping the other unknown parameters at assumed values tomake sure the atom
number is reasonable. The plot represents atom numbers as a function of the incoming intensity.
The standard deviation of each data set of Δ𝑁 has a minimum at the optimal 𝛼. The minimum of
Δ𝑁 gives 𝛼1 = 1.32 and 𝛼2 = 1.49, as shown by the red data.

The second experiment aims to determine the ratio 𝛽1/𝛽2. This ratio is not necessarily
1 since it depends on the differential detectivity of the two states, which originates from
the different atomic densities caused by the longer TOF of atoms in |1⟩. The strategy for
this calibration is to make sure that the detected atom number is independent of the relative
population 𝑛rel = 𝑁1−𝑁2

𝑁 . We prepare a BEC with all atoms in state |1⟩ and perform a
Rabi pulse with varying duration (usually from 0 to 2𝜋 pulse) to couple different fractions
of atoms to state |2⟩. We find the minimum of covariance Cov(𝑁, 𝑛rel) with the ratio
𝛽2/𝛽1 = 1.043.

In the end, we determine the absolute values of 𝛽𝑖 by measuring the scaling of the
projection noise with the total atom number. We prepare BECs with different total atom

59



CHAPTER 3 EXPERIMENTAL SYSTEM

numbers 𝑁 = 𝑁1 + 𝑁2 from 200 to 1200 by scanning the stop frequency of RF pulse
during the evaporative cooling. The atoms are prepared in an equal superposition of two
internal states |1⟩ and |2⟩. For this coherent state, the projection noise is given by

𝑁2Var(𝑛rel) = 𝑁2Var(
𝑁1 − 𝑁2

𝑁 ) = 𝑁2 4
𝑁2Var(𝑁2) = 𝑁.

Therefore, the projection noise scales linearly with the total atom number𝑁 . In actual ex­
periments the preparation of the coherent state is not perfect, therefore we make a correc­
tion 𝑁2Var(𝑛rel)/√1 − ⟨𝑛rel⟩2 in order to account for the small miscalibration that makes
⟨𝑛rel⟩ ≠ 0. The linear scaling of the projection noise allows us to finally determine the
absolute value of 𝛽𝑖. We fit a linear curve to the data and correct the slope to 1 by fixing
𝛽1 (and therefore 𝛽2, since the ratio between the two has already been fixed by the second
measurement), as shown in Figure 3.16. We obtain 𝛽1 = 1.1189 and 𝛽2 = 1.0727.
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Figure 3.16 Projection noise of a coherent state scales to the total atom number 𝑁 .

3.4.5 Detection Noise

The imaging system cannot detect atom numbers to any arbitrary precision due to the
detection noises, which includes the effect of photon shot noise and other technical noise
such as the electrical noise of the CCD camera, the noise caused by the optical fringes,
etc. These noise are uncorrelated, thus add up quadratically

𝜎2
𝑁𝑖,det

= 𝜎2
𝑁𝑖,SN + 𝜎2

𝑁1,tech,
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where 𝑖 represent the internal state |𝑖⟩, 𝜎𝑁𝑖,SN is the atom number noise caused by the
photon shot noise, and 𝜎𝑁𝑖,tech represents the contribution of other technical noise. The
detection noise contributed by photon shot noise can be directly calculated from the imag­
ing light intensities inside the integration region. We extrapolate for each pixel the pho­
ton number and count the total photon number inside the integration region 𝑁photon. The
expected photon shot noise is calculated as 1

√𝑁photon
since the photons are uncorrelated,

which is then converted into fluctuations of the number of atoms 𝜎𝑁,SN. To charac­
terize the total detection noise which also includes other technical noises, we choose
a background integration region in the absorption images where no atoms are present,
and calculate the shot­to­shot variance of atom number for that region. We observe that
𝜎𝑁𝑖,det ≈ 𝜎𝑁𝑖,SN, which means that the effects of other technical noise are small and can
be neglected, and the detection noise in our images is dominated by photon shot noise.

For our standard experimental trap results in noise levels of 𝜎𝑁1,det = 4.1 and
𝜎𝑁2,det = 3.6 atoms (standard deviations) in detecting atoms in 𝐹 = 1 and 𝐹 = 2, re­
spectively. The detection noise in 𝐹 = 1 is larger because the cloud has a longer TOF to
expand, requiring a larger integration region. The detection noise corresponds to a noise
level of 𝜎𝑛rel,det = (5.5±0.4)×10−3 in the relative atom number difference 𝑛rel for typically
used atom number 𝑁 ≈ 1000.
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CHAPTER 4 LIMIT OF PHASE COHERENCE IN A
TWO­COMPONENT BEC

Phase coherence is of primary importance to perform experiments in the quantum
regime, because its finite duration poses stringent limitations on the possible practical
applications, for example, the interrogation time of atom interferometer is fundamentally
limited by the coherence time of the atomic ensemble. A better understanding of the
intrinsic limits to the phase coherence in a BEC is not only relevant for quantummetrology
with BECs, but also of fundamental interest [7] . For these reasons, investigating the phase
coherence property is of crucial interest.

In our experiment, we explore the phase coherence of the hyperfine ground states
|1⟩ ≡ |𝐹 = 1, 𝑚𝐹 = −1⟩ and |2⟩ ≡ |𝐹 = 2, 𝑚𝐹 = +1⟩ in atomic BECs trapped in
a magnetic trapping potential on an atom chip [19,29,102] . With the state­of­the­art tech­
niques in trapping and manipulating atoms, the BEC in magnetic traps is under excellent
controllability, from the internal degree of freedom to the external ones. This system pro­
vides great opportunities to investigate the decoherence mechanism. Being a well isolated
system, it provides a chance to concentrate on the decoherence mechanism intrinsic to a
quantum many­body system, rather than on the interactions with the environment [76,78] .
In addition, a BEC has a life time of several seconds, which is a friendly time scale for
non­equilibrium dynamics, for example the squeezing dynamics and the collisional ef­
fects.

In this chapter, we approach the question of coherence from two directions. Ex­
perimentally, the phase noise is monitored, and a ballistic spread of the relative phase
is shown, i.e., phase variance grows quadratically with time. Theoretically, we test our
model by calculating numerically the phase spread during evolution by solving a master
equation using the Monte Carlo wave­function method. The good agreement between the
experiment and theoretical simulation confirms the validity of our model, showing deco­
herence is closely related to the interplay between the elastic collision interactions and the
stochastic nature of the inelastic atom losses, which arises intrinsically in a many­body
system.

This chapter starts by discussing the atom loss processes in a two­component sys­
tem in section 4.1, which is important for understanding the decoherence mechanism, as
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readers can see in later sections. Then we describe how to measure the phase fluctuations
using Ramsey interferometry and to extract the phase noise by data processing. To un­
derstand the decoherence, the sources of phase noise are analyzed, from technical noise
to the intrinsic noise. We build a theoretical model for relative phase dynamics of inter­
acting and dynamically evolving BECs at zero temperature. The experiments and results
presented in this chapter have been published, see Ref. [10].

4.1 Atom losses in a two­component BEC

The atomic losses play an important role in the evolution of the system. The dom­
inant types of losses come from collisions between atoms of the BEC and the residual
background gas (one­body losses) and the intrinsic two­body losses originate from in­
elastic two­body collisions inside BECs. As readers can see in the later sections, a basic
understanding of the atom losses and the precise knowledge of loss rates are necessary
for the understanding of the physics of intrinsic decoherence in a BEC. In this section
I will introduce the atom losses, and how we characterize the loss constants with GPE
simulations.

4.1.1 Atomic collisions

Depending on whether the atoms are lost after collision, there are two types of colli­
sions, the elastic and inelastic collisions. The elastic collisions lead to unitary dynamics,
such as the one­axis twisting Hamiltonian that allows for example to obtain spin squeez­
ing, discussed in detail in chapter 5. The inelastic collisions introduce atom losses, lead­
ing to a limit of the BEC lifetime. Moreover, the collisions occur randomly, causing atom
losses to be a stochastic process, which makes any phase fluctuation resulting from it im­
possible to correct for. This imposes a fundamental limit of the phase coherence in the
system, as discussed in more detail in section 4.3.

There are several types of inelastic collisions in the ensemble, leading to one­, two­
or three­body losses. One­body losses occur when atoms collide with the background gas
atoms and get lost from the trap. Due to the finite vacuum, this loss channel is always
present. Two­body losses result from inelastic collisions between two particles of the
ensemble, which can happen by two different mechanisms: the spin­exchange collision
and the spin­dipole collision. For 87Rb atoms, the extremely weak spin­dipole collision
contributes negligibly, and spin­exchange collisions dominate in the losses. During a spin­
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exchange collision, atoms of the colliding pair exchange their orientation of individual
spin, while preserving total angular momentum. For example, in a BEC of 87Rb, if two
atoms of 𝑚𝐹 = 1 collide with each other, a spin­exchange collision conserves the 𝑚𝐹 :

|2, 1⟩ + |2, 1⟩ → |2, 2⟩ + |2, 0⟩.

This process can occur between atoms in the same internal state and is called intra­species
collision. After collision, the new pair contains an atom in the state |𝐹 = 2, 𝑚𝐹 = 0⟩,
which is untrappable in our magnetic trapping potential and get lost from the BEC. For a
pair of atoms both in state |𝐹 = 1, 𝑚𝐹 = −1⟩, the conservation of the angular momentum
prohibits them from the spin­exchange collisions. In a two­component BEC, collisions
can also occur between atoms in different internal states, i.e., the inter­species collision

|1, −1⟩ + |2, 1⟩ → |1, 0⟩ + |2, 0⟩,

with both involved atoms ending up in untrappable states and being lost from the ensem­
ble.

Inelastic collisions among three atoms result in three­body losses. Unlike the two­
body inelastic collisions, in three­body collisions the presence of a third particle allows for
the formation of molecules. The energy released when two particles form a bound state is
converted into kinetic energy of both the molecule and the third particle, and both escape
from the trapping potential. For 87Rb atoms, this process occurs in both state 𝐹 = 1 and
𝐹 = 2, resulting in particle losses.

4.1.2 Density­dependent losses

All the collision processes described above depend on the atomic density of the BEC.
In particular, losses caused by the inter­species collisions depend on the atomic densities of
both states, thus couple atom numbers in two states together. By considering the one, two,
and three­body losses, the atom number in each state can be described by the following
coupled rate equations

d𝑁1
d𝑡 = −𝑘(1)𝑁1 − 𝑘(2)

11 𝑁2
1 − 𝑘(2)

12 𝑁1𝑁2 − 𝑘(3)
111𝑁3

1 , (4.1a)

d𝑁2
d𝑡 = −𝑘(1)𝑁2 − 𝑘(2)

11 𝑁2
2 − 𝑘(2)

12 𝑁1𝑁2 − 𝑘(3)
222𝑁3

2 , (4.1b)

where 𝑁1 and 𝑁2 represent the atom numbers in state |1⟩and |2⟩, respectively, and 𝑘(𝑚)

represents the 𝑚­body loss rate. The one­body loss depends strongly on the vacuum pres­
sure, thus 𝑘(1) differs from experiment to experiment. Two­body and three­body losses
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depend on the density of the ensemble. They together lead to a decay of atom number
over time.

Taking the atom losses into consideration, the spatial dynamics of the BEC is different
compared to the scenario discussed in section 2.2. In the 2CGPE introduced there, the
atom number is conserved, i.e., 𝑁(𝑡) = 𝑁 , which is no longer true for long times when
atom losses cannot be neglected. To take the losses into account, complex terms must be
included on the right hand side of Eqs. (2.17) and (2.18), in order to obtain a decay of
𝑁(𝑡). The 2CGPE including losses are thus given by

𝑖ℏ𝜕𝜙1
𝜕𝑡 = [𝑇 + 𝑉 + 𝑔11𝑁1|𝜙1|2 + 𝑔12𝑁2|𝜙2|2 − 𝑖Γ1]𝜙1, (4.2a)

𝑖ℏ𝜕𝜙2
𝜕𝑡 = [𝑇 + 𝑉 + 𝑔22𝑁2|𝜙2|2 + 𝑔12𝑁1|𝜙1|2 − 𝑖Γ2]𝜙2, (4.2b)

where 𝑇 = −ℏ2∇2

2𝑚 is the kinetic energy, 𝑉 is the trapping potential and 𝑔12, 𝑔11 and 𝑔22

are the interaction coupling constants. The imaginary part describes the atom loss due to
collisions,

Γ1 = ℏ/2(𝐾 (1) + 𝐾 (2)
12 |𝜙2|2 + 𝐾 (3)

111|𝜙1|3),

Γ2 = ℏ/2(𝐾 (1) + 𝐾 (2)
12 |𝜙1|2 + 𝐾 (2)

22 |𝜙2|2 + 𝐾 (3)
222|𝜙2|3),

where 𝐾 (1) is the one­body loss coefficient, 𝐾 (2)
12 , 𝐾 (2)

22 are interspecies two­body loss
coefficient and intraspecies two­body loss coefficient respectively, and 𝐾 (3)

111, 𝐾 (3)
222 are

three­body loss coefficients for atoms in state |1⟩ and |2⟩ respectively.
Comparing the Eq. 4.1 and Eq. 4.2, one can easily find that for two/three­body losses,

the loss rate 𝑘(2)(𝑘(3)) depends on both the atom density in the ensemble and loss coeffi­
cients 𝐾 (𝑚).

𝑘(𝑚) = 𝐾 (𝑚)
∫ 𝜂(𝒓)𝑚d𝒓,

where 𝐾 (𝑚) is the loss constant for 𝑚­body losses, 𝜂(𝒓) is the normalized atomic density
of the ensemble with ∫ 𝜂(𝒓)d𝒓 = 1. Note that the loss rate and loss constant should
be distinguished. The loss rate 𝑘(𝑚) is a product of the loss coefficient and the atomic
density, while each loss coefficient 𝐾 (𝑚) is a constant, dependent on the atomic species
and the internal states. Only for one­body loss, the loss rate equals to the loss constant,
𝑘(1) = 𝐾 (1).

For the three­body losses, the loss coefficients are very small, with 𝐾 (3)
111 = 5.8 ×

10−42 𝑚6/𝑠 [118] and 𝐾 (3)
222 = 18(6) × 10−42 𝑚6/𝑠 [119] . For experiments with very large

densities 𝑁 > 105, three­body losses still dominate. However in our case the atomic
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density is small (with only approximately 1000 atoms), the three­body losses can be ne­
glected. We confirm with GPE simulations that three­body losses have no significant
effect on the atom number decay. In the remainder of this thesis we will only consider the
one­ and two­body losses.

Note that, in our experiment, the thermal fraction in the system can be neglected and
the BEC can be well described by a zero­temperature condensate.

4.1.3 Atom loss coefficient measurement

The precise knowledge of the values of these loss coefficients is required to simulate
the accurate phase evolution (the relative phase between two states jumps every timewhen
an atom is lost from the condensate, detailed discussion in section 4.4). In the literature,
there are already measurements of these coefficients [44,80] , but given the good precision
of our experiments we repeat these measurements. In order to decouple the equations and
measure the loss coefficients independently, we perform the following series of experi­
ments.

In the first experiment, in order to measure the one­body loss constant we prepare all
the atoms in state |1⟩. In this case the loss of atoms happen solely due to one­body losses,
happening with the rate 𝑘(1) = 𝐾 (1). We can extract 𝐾 (1) by fitting the experimentally
measured atom number with a simple exponential decay 𝑁1(𝑡) = 𝑁1(0)𝑒−𝑘(1)𝑡, shown in
Figure 4.1.

The remaining two­body loss constants 𝐾 (2)
22 and 𝐾 (2)

12 will be determined by compar­
ing the experimental data with GPE simulations in two scenarios. In the second measure­
ment, we prepare a BEC with atoms purely in state |2⟩ (Figure 4.1(b)). In this case, there
are two loss channels present: the one­body losses and intra­species two­body losses.
Since 𝐾 (1) has already been determined, there is only one free coefficient to find, the rate
of two­body losses 𝐾 (2)

22 . We simulate the number of atoms 𝑁2 versus time using the
GPE for component |2⟩ Eq. (4.1) including losses represented by 𝐾 (2)

22 to the best fit to
the experimental values in order to extract 𝐾 (2)

22 . The idea is to use the loss constant as an
input of the GPE simulation and compare the simulated decay of atom number with the
experimental data. If there is any discrepancy between the simulation and experimental
data, one should manually change the input constant by a small step and repeat the simu­
lation again, until the simulated result matches the measured data. For a properly chosen
starting point of the input parameter, it only takes a few iterations to find the best match.

In the third experiment, we prepare the BEC in an equal superposition of |1⟩ and |2⟩,
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and measure the atom decay in both spin states (Figure 4.1(c)). Now all loss channels
are present, but only one unknown loss constant 𝐾 (2)

12 remains, which we determine by
comparing the 2CGPE simulation (4.2) with the data in a similar way.
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Figure 4.1 Time evolution of the mean atom number for three different initial states: all
atoms initially in state |1⟩ (top), in state |2⟩ (middle) and in the superposition (|1⟩ + |2⟩) /√2
(bottom). Orange (Black) points show themeasured atom number in spin state |1⟩ (|2⟩). Error bars
represent one standard error of themean. Solid lines are from correspondingGPE simulations with
loss rate constants 𝐾 (1) = 0.17 s−1, 𝐾 (2)

22 = 10.3 × 10−14 cm3s−1 and 𝐾 (2)
12 = 2.0 × 10−14 cm3s−1.

The measurements shown in this figure are performed in a trap with trapping frequencies𝜔(𝑥,𝑦,𝑧) =
2𝜋 × (714, 714, 114) Hz.

Since the extraction of 𝐾 (2)
22 and 𝐾 (2)

12 needs a few iterations of the above procedures,
and solving time­dependent GPE including losses up until 𝑡 = 2 s is rather time expensive,
it is important to start with a reasonable guess of the loss coefficients. In order to have
a rough estimate of the range of values for 𝐾 (2)

22 and 𝐾 (2)
12 , we first fit the measured atom

number decay initially in the superposition (|1⟩ + |2⟩) /√2 with the coupled rate equation
Eq. (4.1). The fitted results are shown in Figure 4.2. With the fitted parameters 𝑘(2)

12 and
𝑘(2)

22 , and an atomic density ∫ 𝜂(𝒓)𝑚d𝒓 estimated from a ground state solution of the GPE,

67



CHAPTER 4 LIMIT OF PHASE COHERENCE IN A TWO­COMPONENT BEC

we obtain a set of 𝐾 (2)
22 and 𝐾 (2)

12 as the starting point of the GPE iterations.
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κ1 0. 0. ComplexInfinity 0.× 10-324
κ2 0.0111786 0.000170761 65.4633 0.
κ12 0.00219754 0.0000715348 30.7199 4.60136× 10-157

τ1 0.192484 0.00785219 24.5134 8.36834× 10-110

Figure 4.2 Time evolution of the mean atom numbers (Red: ⟨𝑁1⟩; Green: ⟨𝑁2⟩) for atoms
initially in the superposition (|1⟩ + |2⟩) /√2. Each data point is a mean of 10 measurement repe­
titions and the errorbar shows the standard deviation. The solid curve shows a fit with the coupled
rate equation Eq. (4.1). The result can be used to estimate the starting point of the 2CGPE simu­
lation iteration.

To further confirm the result, the above series of measurements and procedures
are performed in both a tight and a relaxed trapping potential, with trapping frequen­
cies 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (114, 714, 714) Hz and 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (113, 301, 301) Hz, respec­
tively. The measured loss constants show consistency with each other. To compare with
the previous knowledge of the loss constants, we summarize the previously measured
loss constants, see Table 4.1. The loss rate constants determined in our experiment are
𝐾 (2)

22 = 10.3(3)×10−14 cm3s−1 and 𝐾 (2)
12 = 2.0(1)×10−14 cm3s−1. Our values differ from

previously reported values in Ref. [44] but agree with the ones from Ref. [120­121].

Table 4.1 Loss constants

reference 𝐾 (2)
12 ( m3/s) 𝐾 (2)

22 ( m3/s)

Kempen [120] 1.9 × 10−20

Mertes [45] 7.80(19) × 10−20 11.94(19) × 10−20

Egorov2013 [44] 1.51(18) × 10−20 8.1(3) × 10−20

Tojo [121] 10.4(10) × 10−20

Our work 2.0(1) × 10−20 10.3(3) × 10−20
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4.2 Measurement of the phase noise

In our experiment, the phase coherence can be characterized by the spreading of the
relative phase between the two components. The relative phase can be easily observed
from interference measurements with the following Ramsey sequence. The initial atomic
ensemble is a pure BEC of 1000 atoms in state |1⟩. We use a standard magnetic trap, with
trap frequencies 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (114, 714, 714) Hz. To initialize the Ramsey experiment,
we apply a two­photon Rabi pulse with a duration corresponding to 𝜋/2 rotation. This
creates a two­component BEC in which all atoms are in a coherent superposition of state
|1⟩ and |2⟩. Without splitting the two components, we let the system evolve for a given
Ramsey time 𝑇R. Afterwards, a second Rabi pulse of area 𝜋/2 is applied to convert the
accumulated phase to atom number difference, and we measure the relative atom number
as 𝑛rel = 𝑁1−𝑁2

𝑁1+𝑁2
. By scanning the relative phase 𝜙R between the two Rabi pulses, the

recorded 𝑛rel result in the Ramsey fringe (in phase domain).
By repeating this experimental sequence substantially, one has access to the distribu­

tion of the relative phase after an evolution time 𝑇𝑅. By varying the interrogation time,
we investigate the phase spread as a function of 𝑇R, see Figure 4.3. One should keep in
mind that the phase under investigation is the relative phase between the two components
(or the two internal states). For the interferometers in practical application, this relative
phase usually carries the information of the physical quantity of interest and any phase
spreading will reduce the precision of themeasurement. Therefore, the phase decoherence
investigated in this chapter sets a limit to the precision of interferometric measurements.

4.2.1 Visibility and contrast

Wedefine two quantities associated to the recorded interference fringes: visibility and
contrast. We call visibility, 𝒱 , one half of the width of the vertical band containing the
interference measurements. We call contrast, 𝒞, the amplitude of the curve𝒪+𝒞 sin(𝜙𝑅 −
𝜙0) fitting the interference measurements.

4.2.1.1 Visibility

The outcome of a single shot of a Ramsey experiment can be described by the fol­
lowing heuristic model

𝑛rel(𝜙𝑅) = 𝒱 sin(𝜙𝑅 + 𝜙), (4.3)

69



CHAPTER 4 LIMIT OF PHASE COHERENCE IN A TWO­COMPONENT BEC

0 π

2
π 3 π

2

-1

-0.5

0

0.5

1

ϕR

n
nr
el

TR=0.001ms

C= 97.77% , ϕ0= 1.5439

0 π

2
π 3 π

2

-1

-0.5

0

0.5

1

ϕR

n
nr
el

TR=10.ms

C= 97.04% , ϕ0= 0.7505

0 π

2
π 3 π

2

-1

-0.5

0

0.5

1

ϕR

n
nr
el

TR=20.ms

C= 97.78% , ϕ0= 6.2721

0 π

2
π 3 π

2

-1

-0.5

0

0.5

1

ϕR

n
nr
el

TR=100.ms

C= 92.82% , ϕ0= 0.7743

0 π

2
π 3 π

2

-1

-0.5

0

0.5

1

ϕR

n
nr
el

TR=500.ms

C= 47.76% , ϕ0= 1.3773

0 π

2
π 3 π

2

-1

-0.5

0

0.5

1

ϕR

n
nr
el

TR=700.ms

C= 13.81% , ϕ0= 1.7742

Figure 4.3 Ramsey interferometer fringes at different 𝑇𝑅, where each black dot corresponds
to one experimental run and the red curve shows a sinusoidal fit of the experimental data to extract
the contrast 𝐶 and the zero­crossing phase 𝜙0 (see text). The fringe at 10 ms shows almost no
sign of phase noise while after 100 ms the fringe is smeared out by phase noise and the contrast
is reduced.
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where 𝒱 is the fringe visibility, and 𝜙 is a classical random variable describing the phase
accumulated by the state during the interrogation time 𝑇𝑅, which fluctuates shot to shot
due to noise. The phase noise quantified by the standard deviation Δ𝜙 is evaluated in the
section 4.2.2. The visibility describes the length of the projection of the mean spin on
the 𝑥𝑦­plane on the generalized Bloch sphere, normalized to the expectation value of the
mean spin length

𝒱 =
√⟨ ̂𝑆𝑥⟩2 + ⟨ ̂𝑆𝑦⟩2

⟨𝑆⟩ .

Note that here ̂𝑆𝑥 and ̂𝑆𝑦 refer to the collective spin component related to the state after
the evolution of a duration 𝑇𝑅, but before the second Rabi pulse.

R

n

(b)

2C 2V

(a)

Figure 4.4 Ramsey Fringe at 𝑇R = 500 ms. (a) Ramsey fringe, where each black dot corre­
sponds to one experimental run. The red curve is a fitted sine function used to extract the contrast
𝒞. (b) Histogram of the normalized atom number imbalance. The fit to extract the visibility is
performed with a method described in Ref. [122].

The visibility is extracted for each 𝑇R, by fitting the distribution of 𝑛relwith a so­called
“BAT” method [122] , see Figure 4.4. The visibility can be understood as the normalized
spin length, which is the maximum value the Ramsey contrast can achieve in an ideal case
in absence of the phase noise. As one can see in Figure 4.4, the visibility determined by
the BAT method is actually smaller than the largest 𝑛rel the data can reach due to the spin
variance. The small wings at the edge of the BAT distribution reflect the projection noise.

The natural ‘breathing’ dynamics between the two components (discussed before in
section 2.2.2) is expected to modulate the maximum value that 𝑛rel can reach, i.e., the
visibility. Meanwhile, the atom losses in the two states are asymmetric, more precisely,
the atoms in state |2⟩ are lost much faster than those in |1⟩, which also reduces the visibility
to less than 1. The latter effect can be understood by thinking of an optical interferometer,
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where the largest contrast is always achieved when the two beam intensities are balanced.
Similarly in our system, the asymmetric atom number in the two modes will limit the
largest |𝑛rel|. Although the visibility of the fringe (peak­to­peak amplitude) is expected to
be reduced by the two effects mentioned above, the reduction of visibility does not imply
that the phase coherence in the BEC is lost. Both processes are coherent and in principle
do not change the phase distribution. In fact, in presence of decoherence, the quantity
which is changed is the ‘contrast’.

4.2.1.2 Contrast

We fit the phase­domain Ramsey fringes to extract contrast with a model

𝑛rel(𝜙R) = 𝒪 + 𝒞 sin(𝜙R − 𝜙0) ,

with three free parameters: Ramsey contrast 𝒞, the fitted phase at zero­crossing slope 𝜙0

and the the offset 𝒪.
One should keep in mind that, while a reduction in the visibility directly causes a

reduction in the amplitude of the fitted contrast, a reduction of the contrast can occur
in presence of phase noise, even if the visibility is 1. The physical meaning behind the
difference between contrast and visibility can be understood from a collective spin point
of view. Here we denote the projection of the collective spin vector in the equatorial
plane as 𝑆𝛼, and denote the quadrature which is along the equator and perpendicular
to 𝛼 as 𝑆⟂. Again, here ̂𝑆 refers to the collective spin vector before the second Rabi
rotation. When describing a single shot of the interferometric measurement, one typi­

cally considers the expectation value ⟨𝑆𝛼⟩, which can be described by 𝒱 = ⟨𝑆𝛼⟩
⟨𝑆⟩ , where

⟨𝑆𝛼⟩ = √⟨𝑆𝑥⟩2 + ⟨𝑆𝑦⟩2. However, the important information about phase noise is con­
tained in the shot­to­shot fluctuations of 𝑆⟂. We denote the fluctuation of the spin along
this quadrature as Δ𝑆⟂. The phase noise is defined as:

Δ𝜙 = Δ𝑆⟂
⟨𝑆𝛼⟩ = Δ𝑆⟂

𝒱⟨𝑆⟩ . (4.4)

where 𝜙 is the relative phase under investigation and Δ𝜙 is the standard deviation of the
phase distribution. In the ideal case of a coherent spin state on the equator, the phase
uncertainty is only due to the projection noise, and the contrast of a Ramsey fringe is the
same as the visibility. In the realistic case, the phase fluctuations due to other sources
of noises will smear out the contrast. By assuming a Gaussian distribution of the phase
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fluctuations, the interference contrast is in fact [76]

𝒞 = 𝒱𝑒− 1
2 Δ𝜙2

. (4.5)

It is interesting to compare the evolutions of the visibility and the contrast. In Fig­
ure 4.5, the decay of both quantities is shown. The black dashed line shows the expected
maximum value of the visibility, 𝒱max = 2√𝑁1𝑁2

𝑁1+𝑁2
, which is lower than 1 due to the asym­

metric atom losses in the two internal states. The small gap between the extracted visibility
and the dashed line can be attributed to the spatial demixing between the wave functions of
the two components. The contrasts are extracted from the raw data and the post­processed
data after the clock­shift correction, see section 4.3.1.2. The gap between the extracted
visibility and contrast helps one to visualize the decoherence process.
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Figure 4.5 The extracted visibility and contrast. Each point corresponds to a Ramsey fringe
with a particular interrogation time 𝑇R containing more than 200 shots. The dashed line shows
𝒱 = √𝑁1𝑁2

𝑁1+𝑁2
, corresponding to the visibility reduction solely due to the atom losses.

4.2.2 Calculation of phase noise

It is not a trivial task to evaluate the phase noise, especially for long Ramsey time
when the noise is so large that the contrast is nearly smeared out and the state starts wrap­
ping around the Bloch sphere. I will describe how we evaluate the phase fluctuations
quantitatively for Ramsey time up to 1 s.

4.2.2.1 For 𝑇𝑅 < 0.2 s

For short Ramsey times 𝑇𝑅 < 0.2 s, when the phase noise is so small that the contrast
𝐶(𝑡) ≈ 𝒱(𝑡) ≈ 1, it is better to measureΔ𝜙 directly on the slope of a Ramsey fringe. To do
this, we always have two sequences: one is a full Ramsey phase scan and the other is the
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noise measurement at the zero­crossing slope. We first record the full fringe in order to
determine a zero­crossing phase𝜙0, i.e., the point at which the mean of number imbalance
𝑛rel is zero (⟨𝑛rel⟩ = 0) and the slope of the fringe reaches its maximum 𝜕𝑛rel/𝜕𝜙 = 𝒱 . We
then can experimentally set the Ramsey phase to the value𝜙𝑅 = 𝜙0 and repeat the Ramsey
sequence hundreds of times to gather statistics at the zero­crossing point. The measured
phase is evaluated as𝜙 = arcsin(𝑛rel/𝒱) for each shot andwe collect the phase distribution.
From the experimental results, it is shown that the phase has a Gaussian distribution,
allowing one to evaluate the phase noise in terms of the standard deviation Δ𝜙. The
alternative way is to first calculate the standard deviation of 𝑛rel and then compute Δ𝜙
with error propagation Δ𝜙 = 𝜕𝜙

𝜕𝑛rel
Δ𝑛rel = Δ𝑛rel

𝒱 , which is consistent with the previously

defined phase noise Δ𝜙 = Δ𝑆⟂
⟨𝑆𝛼⟩ . Both methods are based on gathered statistics at the

middle of the fringe slope and are equivalent to each other.
In practice, due to the imperfect calibration of the phase 𝜙0, the measured data

sometimes show a mean of the 𝑛rel deviated from 0, and this shift should be taken care
of when calculating. We correct for this effect by making a modification to the slope
𝜕𝑛rel/𝜕𝜙 = 𝒱√1 − ⟨𝑛rel⟩2.

4.2.2.2 For 𝑇𝑅 > 0.2 s

For long Ramsey times 𝑇𝑅 > 0.2 s, the phase spread can be larger than 2𝜋, which will
render the conversion from 𝑛rel to phase 𝜙 meaningless, since it can cause ambiguities of
the phase. For example, a phase 𝜙 = 𝜙0 and 𝜙 = 𝜙0 + 𝜋 will both lead to 𝑛rel = 0 and
the two phases cannot be distinguished by 𝑛rel.

For a more appropriate evaluation, we collect statistics over the whole Ramsey fringe,
with a varying 𝜙R from 0 to 2𝜋. From these data, the contrast 𝒞 and visibility 𝒱 can
be extracted. As mentioned before, a reduction of the contrast can be either due to the
reduction of the visibility, or due to the phase decoherence happening in the system. To
disentangle the effects due to decoherence and from the others, we consider the contrast
normalized with respect to the visibility, 𝒞/𝒱 , which depends only on phase noise. From
the definition Eq. (4.5) we can then extract the phase noise from the normalized contrast
by

Δ𝜙 = √−2 ln  (𝒞/𝒱).

The phase noise, as the quantity of our interest, results from the sum of different
contributions (e.g., atom number fluctuations, atom losses, finite temperature, technical
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noise). There have been works in the literature, based on quantum­optics inspired ap­
proaches, predicting that the phase of a condensate in thermal equilibrium will undergo
diffusion causing the phase variance to grow linearly in time. A different conclusion is
reached in our work. We observe that phase uncertainty Δ𝜙 grows linearly with time, as
shown in Figure 4.12), which hints at a ballistic spread of phase. We tackle this problem
by investigating the origins of different types of noise.

4.3 Noise analysis

Theoretical studies make different predictions for the decoherence mechanisms, and
there are many different types of noise sources, whose contribution to the phase fluctu­
ations depends on the system. These noise sources, in general, fall into two categories:
the technical noise, coming from the imperfect control of the experiment or perturbations
in the environment, and the intrinsic noise arising from the interactions in the many­body
system. Intrinsic as well as technical noises are expected to reduce the contrast of the
Ramsey fringes. In this section we will analyze the sources of phase noise present in our
system one by one.

4.3.1 Intrinsic noise

One advantage of the two­component BEC is that being a well isolated system, pro­
viding an opportunity to study the intrinsic noise. In a BEC, the atoms interact with each
other through collisions and cause interaction­induced noise, which is intrinsic to the sys­
tem itself. The spin dynamics of the collective spin due to elastic collisions between atoms
can be described by the collective spin Hamiltonian Eq. (2.27). By dropping the offset
terms the full Hamiltonian can be simplified to

𝐻̂ = ℏ ̃𝜒𝑁̂ ̂𝑆𝑧 + ℏ𝜒 ̂𝑆𝑧
2, (4.6)

where ̂𝑆𝑧 = (𝑁̂1 − 𝑁̂2)/2 is the 𝑧 component of the collective spin operator, and 𝑁̂ =
̂𝑁1 + ̂𝑁2 is the total atom number. The parameters

̃𝜒 = 1
2ℏ (

𝜕2𝐸
𝜕𝑁2

1
− 𝜕2𝐸

𝜕𝑁2
2 )

, (4.7)

𝜒 = 1
2ℏ (

𝜕2𝐸
𝜕𝑁2

1
+ 𝜕2𝐸

𝜕𝑁2
2

− 2 𝜕2𝐸
𝜕𝑁2𝜕𝑁1 )

. (4.8)
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depend on the energy 𝐸 of the two interacting components with mean atom number ⟨𝑁⟩1

and ⟨𝑁⟩2 in state |1⟩ and |2⟩, respectively [49] . Both terms in the Hamiltonian will lead
to a spread of the phase.

4.3.1.1 Phase diffusion

Phase diffusion is a typical intrinsic source of noise in a two­component BEC. In
our experiment, the phase evolution of a two component BEC is described by Eq. (2.27),
which contains a nonlinear term𝜒 ̂𝑆𝑧

2. The effect of this term is to produce spin­squeezing
in one direction at a cost of anti­squeezing in the perpendicular direction by introducing
one­axis twisting dynamics. The anti­squeezing can be understood as phase diffusion
as following. A state with well­defined phase has a spin uncertainty along 𝑧­axis Δ𝑆𝑧,
since the relative number of atoms 𝑀̂ = ̂𝑁1 − ̂𝑁2 and the relative phase between the two
components of a BEC are conjugate non­commuting variables. The nonlinear term, which
can be regarded as 𝜒 ̂𝑆𝑧 × ̂𝑆𝑧, leads to a phase evolution around 𝑧 axis with an coefficient
𝜒𝑆𝑧 and translates the spin uncertainty along 𝑧­axis Δ ̂𝑆𝑧 to the phase uncertainty. For a
coherent spin state with an equal superposition of the two states, where Var [ ̂𝑆𝑧] = ⟨𝑁⟩/4,
the phase noise after a time 𝑡 is [123] .

Δ𝜙(𝑡) = √⟨𝑁⟩
2 𝜒𝑡 , (4.9)

where 𝜒 is given in Eq. (2.30).
The phase diffusion is important for the phase dynamics and in most cases it cannot be

ignored. However, in our case, overlapping components and nearly identical scattering
lengths render its contribution very small. For an estimate, considering the parameters
of our experiments with ⟨𝑁⟩ = 1000 atoms in a trap of frequencies (114, 714, 714) Hz,
when the two components occupy the same spatial mode, we have 𝜒/2𝜋 ≈ 4.8×10−4 Hz.
Therefore, even for a very long interrogation time, for example 𝑇𝑅 = 1 s, the phase
diffusion is approximately Δ𝜙 = 0.047 rad.

4.3.1.2 Collisional clock­shift

Nowwe turn to the linear term ℏ ̃𝜒𝑁̂ ̂𝑆𝑧, which arises from the difference between the
collisional interaction energies in the two components. The interaction energy scales with
the particle number. This term gives an additional rotation around the 𝑧­axis of the Bloch
sphere and the angle of such rotation is proportional to the parameter ̃𝜒 and the total atom
number 𝑁̂ of the system. For repeated preparations of BECs, atom number fluctuates
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because of the imperfect control during the preparation of the BEC, for example, the shot­
to­shot fluctuation of the current that are used for generating the trapping potential, or the
shot­to­shot fluctuation of the frequency of the RF field used for evaporative cooling. The
atom number fluctuation constitutes an unavoidable source of phase noise.

In the following, we will denote with 𝑁̂ the total atom number operator, with 𝑁 the
measured atom number in a single shot of the experiment, with ⟨𝑁⟩ the mean of different
shots, and with Δ𝑁 its standard deviation. In our experiment the fluctuations in atom
number are typically much smaller than the atom number, Δ𝑁 ≪ ⟨𝑁⟩.

Let us consider an experimental shot with 𝑁 different from ⟨𝑁⟩. The term ̃𝜒(⟨𝑁⟩ −
𝑁̂) ̂𝑆𝑧 in Eq. (2.27) gives an additional deterministic rotation around the 𝑧­axis by an
angle ̃𝜒(⟨𝑁⟩ − 𝑁)𝑡. This effect is called clock shift. In the experiments aiming for
atomic clocks, it constitutes the most important source of frequency shifts and has been
studied extensively before as a source of technical noise, both in BECs [38,79] and thermal
clouds [25,83,124] . Although in some of the mentioned references this effect is regarded as a
technical source of noise, the physics behind it is actually very profound, especially when
the atom losses, which happen stochastically, are considered. Now let us first ignore the
stochastic nature of the atom losses and assume a deterministic change in atom number.
In this simplified case, one can estimate the collisional clock­shift phase noise

Δ𝜙(𝑡) = Δ𝑁 ̃𝜒𝑡 , (4.10)

where ̃𝜒 is given in Eq. (2.29). In our experiment, the initial fluctuations in atom number
are small enough Δ𝑁 ≈ 40, therefore ̃𝜒 can be assumed as a constant for each fixed 𝑇R.
This term actually dominates in the Hamiltonian, with ̃𝜒 /2𝜋 ≈ 8.6 × 10−3 Hz for typical
parameters (the two components are spatially overlapped). For a first estimate, it implies
Δ𝜙(𝑡) ≈ 2.2 rad for 1 s.

In this regime, measurements of the phase 𝜙 will show a linear dependence on the
total atom number 𝑁 because of the 𝑁­dependent rotation, see in Figure 4.6(a), which
can be extracted by fitting the phase as a function of atom number

𝑓(𝑁) = 𝛾(𝑇𝑅)𝑁 + 𝛽 , (4.11)

where 𝛾(𝑇𝑅) and 𝛽 are free parameters. If we assume that the one­axis twisting strength
𝜒 is 0 and the atom losses are deterministic, the slope of this function is proportional to
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∫𝑇𝑅
0 ̃𝜒(𝑡)𝑁(𝑡)d𝑡

𝑁(𝑇R) . We can define another parameter to quantify the time­averaged clock shift

𝛼(𝑇𝑅) = 𝛾(𝑇𝑅)/𝑇𝑅 =
∫𝑇𝑅

0 ̃𝜒(𝑡)𝑁(𝑡)d𝑡
𝑁(𝑇R)𝑇R

. (4.12)

The value we obtain for 𝛼(𝑇𝑅) can be used to quantify the strength of the collisional phase
shifts. This parameter is extracted for each interrogation time 𝑇R.
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Figure 4.6 Clock­shift effect and correction. Interferometer data (a,c) and histogram (b,d) at
fixed time 𝑇𝑅 = 100 ms and fixed 𝜙𝑅, with the raw data (red) and data after the correction of col­
lisional phase shift (blue). Black curves are a linear fit of the data. The raw 𝜙 shows a dependence
on 𝑁 , while after correction the slope is zero. (d) shows a reduced phase uncertainty compared
to (b) due to the correction.

By subtracting this linear dependencewe can post­process the data to reduce the phase
fluctuations caused by atom number fluctuations, similar to what is commonly done also
in atomic clocks [25,83,124] . Again, we take different strategies for short and long interro­
gation times to subtract the clock­shift effect. For 𝑇R < 0.2 s, as mentioned before, we
collect statistics of 𝑛rel on the zero­crossing slope. We can correct each 𝑛rel by a simple
subtraction, i.e.,

𝜙corr = 𝜙R − (𝜑0 + 𝛾(𝑇R)𝑁). (4.13)

The corrected phase 𝜙corr = 𝜙 − 𝛼(𝑇𝑅)𝑇𝑅𝑁 , as plotted in Figure 4.6(c), shows no de­
pendence on 𝑁 . For 𝑇R > 0.2 s, we measure points over the whole Ramsey fringe
(𝑁, 𝜙R, 𝑛rel) for each 𝑇R. We fit all of these data points using a model that takes all the
three parameters

𝑓(𝑁) = 𝛾𝑁 + 𝜙𝑅 + 𝛽, (4.14)

so that each of the new data points after correction is associated to a corrected relative
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atom number

𝑛corrrel = sin (𝜙 − (𝜑0 + 𝜙𝑅 + 𝛾(𝑇R)𝑁tot)) . (4.15)

The corrected dataset is used to construct a new Ramsey fringe. In Figure 4.7, the cor­
rected data and the raw data of a Ramsey measurement are both plotted, and the new
fringe shows less phase spreading and higher contrast.
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Figure 4.7 Ramsey fringe before and after clock­shift correction. The data points (𝜙R, 𝑛rel)
for Ramsey time at 200 ms are plotted with the raw data (red) and data after the clock shift cor­
rection (blue), respectively. The dashed curves show a sinusoidal fit of the data. The fringe after
the clock­shift correction shows less noise and higher contrast.

As we have shown in Figure 4.6(c, d), the clock­shift correction allows to reduce the
phase shift and leads to a significant reduction of the observed phase noise. However,
this correction only accounts for the coherent part of the effect. Even after the correction,
there is still significant residual phase noise, which can be attributed to the random nature
of atom loss.

4.3.1.3 Stochastic nature of the atom loss

Now let us consider the stochastic nature of the atom losses, which complicates the
phase evolution significantly. Removing one particle from the condensate results in a
change of the interaction energy, which is translated into a jump of the phase evolution.
As losses are stochastic, these phase jumps occur randomly over time, giving rise to phase
noise. This problem has been considered in Ref. [49], where expressions for the interfer­
ence contrast in several scenarios are given.

An intuitive picture of the stochastic effect can be given as the follows. If there were
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no atom losses in the system, or if the atom losses were deterministic, then the clock­shift
could be completely corrected by post­processing the data, as it would depend determin­
istically on the initial atom number (thus it would also depend deterministically on the
final atom number). However, neither of the two assumptions is true, because the atom
losses are always happening stochastically, randomizing the time evolution of the atom
number. Imagine the atom number as a function of time, there could be several different
decay “routes” or “trajectories” leading to a same final atom number due to the random
nature of the atom losses. Each of the trajectories corresponds to a different accumulation
of phase because they experience different jumps of the phase evolution. Each trajectory
dephases compared with the others. Moreover, in a realistic scenario there is no way to
keep track of the atom number as a function of time because the quantum state will be
destroyed once observed, therefore the clock­shift corrections are always based on the
information of the final atom number, which is the only experimentally accessible atom
number. Therefore, in practice the clock­shift correction can only subtract the “determin­
istic” part of the clock­shift, using the information of the final atom numbers. In Figure 4.6
and Figure 4.7, the phase fluctuations after the clock­shift correction are indeed decreased
significantly compared to the raw data, however there is a considerable amount of residual
noise. The residual noise can be attributed to the interplay between elastic collisions and
the stochastic nature of the inelastic atom losses.

If we now look back to the Hamiltonian (Eq. (4.6)), we can see that both the linear
term and the nonlinear term introduce phase noise, through the collisional phase shift
and the phase diffusion. It is important to emphasize that both of these effects would
be coherent if the atom losses were deterministic (in this sense they should be called
dephasing instead of decoherence). However, if the stochastic atomic loss is taken into
account, both terms lead additionally to an incoherent and irreversible phase evolution,
since both depend on the atom numbers and their stochastic evolution, as described later
by the master equation in section 4.4. This incoherent evolution is responsible for the
dominant part of the residual phase fluctuations, finally leading to a fundamental limit of
the phase decoherence.

4.3.1.4 Spin­dependent dynamics

Due to the difference in scattering lengths, some spatial dynamics caused by the spin­
dependent interactions will set in after the first Rabi pulse. The so­called “breathing”
dynamics, as already described in section 2.2.2, is also expected to modulate the contrast
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of an interferometric measurement, as indicated by the overlap of the two wave functions.
By solving the time­dependent 2CGPE, the spatial orbitals can be obtained. Figure 4.8
shows the simulated overlap between the two orbitals∫ |𝜙∗

1(𝒓)𝜙2(𝒓)|2d𝒓. From this figure
we can conclude that the spin­dependent dynamics is not very important in our system, as
this dynamics will cause the visibility to be reduced at most from 1 to 0.975. The reason
is that the atomic density in our system is low and the values of the scattering lengths
𝑎12, 𝑎11 and 𝑎22 are very similar to each other, differing by at most 5%. This effect can
thus be neglected compared to the phase noise we are concerned about. Therefore, our
approximation of each atom as an effective spin 1/2 with identical spatial mode functions
for the two states and the whole ensemble as a collective spin is still well justified.
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Figure 4.8 The oscillation of the wave function overlap caused by breathing dynamics. The
wave function is simulated by 2CGPE until 1 s.

4.3.2 Technical noise

In experiments, a significant source of phase noise is the technical noise. This orig­
inates mainly from the unavoidable imaging noise existing in the detection system, the
shot­to­shot fluctuations of the trapping potential due to the magnetic field fluctuations,
and from the phase noise present in the local oscillator, etc. All these effects directly re­
sult in additional phase noise for the BEC, typically added up quadratically because the
relevant technical noise processes are uncorrelated,

Δ𝜙2
tech = Δ𝜙2

LO + Δ𝜙2
𝐵 + Δ𝜙2

det + ⋯ . (4.16)

4.3.2.1 Local oscillator noise

In our experiment, all the MW and RF signals are referenced to the local oscillator
and any of the frequency noise of these signals will be converted to phase noise of the
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second 𝜋/2 pulse in the Ramsey sequence, leading to dephasing. This is the main source
of technical noise from which the Ramsey experiments are suffering. The contribution of
local oscillator noise can be written as

Δ𝜙2
LO = 1

2 ∫
+∞

0
|𝐻(𝜔)|2𝑆𝜙(𝜔)d𝜔 ,

where 𝐻(𝜔) is the interferometer transfer function and 𝑆𝜙(𝜔) is the phase noise density
spectrum of the local oscillator. From the specified noise spectrum of the local oscillator
sources we obtain Δ𝜙LO ≈ 10 mrad at 𝑇R =1s.

4.3.2.2 Fluctuation of magnetic field

As known from the experience gathered by atomic clock experiments [6,25,124­125] ,
the fluctuations of the magnetic field directly cause shifts of the hyperfine transition due
to the second order Zeeman effect. Consider a fluctuation of the magnetic field 𝛿𝐵 =
𝐵0 − 𝐵magic, where 𝐵0 is the actual offset field at the center of the trapping potential, and
𝐵magic is the magic field which we desire the magnetic center to be. This shift of magnetic
field causes the fluctuation of the static trapping potential, thus changes the frequency of
the hyperfine transition between the two states. In this scenario, the distribution of the
transition frequency throughout the trap can be characterized by a standard deviation [125]

Δ𝜈𝐵(𝒓) = 𝑏𝑚2

𝜇2
𝐵

(𝜔2
𝑥𝑥2 + 𝜔2

𝑦𝑦2 + 𝜔2
𝑧𝑧2 − 2𝑔𝑧 + 𝛿𝐵 𝜇𝐵

𝑚 )2,

where 𝑏 = 431 Hz/G2 is the coefficient of the quadratic Zeeman shift, the term −2𝑔𝑧
accounts for the displacement of the BEC from the trap center caused by gravity. The
magnetic field noise leads to an additional noise of the transition frequency that can be
converted to phase noise between the two states. One can calculate the phase noise by
error propagation formula and obtain

Δ𝜙2
𝐵 = (

𝜕Δ𝜈𝐵
𝜕𝐵 )

2
𝜎2

𝐵.

4.3.2.3 Detection noise

As described in section 3.4, our imaging system provides an extremely precise mea­
surement of the atom numbers. However, this does not imply that we should neglect the
detection noise. In our experiment, the precision of the photon number collected in each
CCD pixel is limited by the photon shot noise. This photon shot noise is later converted
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to atom number noise, resulting in a noise of 𝑛rel.

Δ𝜙2
det ≈ Δ𝑛2

rel, det ≈
(𝜎2

det,1 + 𝜎2
det,2)

⟨𝑁⟩2 .

We will denote with 𝑁𝑖 the atom number of state |𝑖⟩ in a single shot of the experiment,
and with 𝜎𝑖,det its standard deviation. In the experiments presented here, the atom number
detection noise has a standard deviation of 𝜎det,1 ≈ 3.6 and 𝜎det,2 ≈ 4.1 atoms for the two
states, resulting in an equivalent phase noise of Δ𝜙det ≈ 5.3 × 10−3 rad for 𝑇𝑅 = 0 and
Δ𝜙det ≈ 1.9 × 10−2 rad for 𝑇𝑅 = 1 s, which is negligible compared to all other sources of
noise. Even though the detection noise is negligible, it’s fully accounted for and added to
the simulation results together with the other technical sources of noise.

4.3.2.4 Overall estimation of the technical noise

In order to have an overall estimate of technical noise, we perform the Ramsey mea­
surement with non­condensed atoms. The thermal atomic cloud is much more dilute,
therefore atom interactions, which is density dependent, is much weaker. With the effects
of interactions described by the spin Hamiltonian (Eq. (4.6)) being largely suppressed, the
remaining sources of phase noise are mainly the technical ones. Of course, one cannot
exclude the interaction­induced noise, but the results can be regarded as an upper bound
to the technical noise. To decrease the atomic density as much as possible we perform
the experiment not only with a thermal ensemble, but also in the relaxed trap with trap­
ping frequency 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (113, 301, 301) Hz. The results of this experiment can be
well fitted with a linear model Δ𝜙tech(𝑡) = 0.1 (rad/s) × 𝑡 for 𝑇𝑅 < 12 s. The fit is used
as an upper bound on the technical noise in our experiment, shown in Figure 4.12 with
a black dashed line. We want to emphasize that this technical noise bound is presented
in standard deviation, thus shows a linear scale, while the different types of noises only
add quadratically as Δ𝜙2 = Δ𝜙2

intrinsic + Δ𝜙2
tech since they are uncorrelated phase noises.

Therefore, actually the technical noise contributes little to the observed phase noise in our
experiment.

4.4 Simulation via Monte Carlo wave­function method

Now we know that in our system the most significant noise contribution comes from
the atomic interaction and its interplay with the atom losses. We can build a theoretical
model to quantitatively describe the phase spread taking these effects into consideration.
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The major challenge is how to deal with the stochastic behaviour of the atom losses.
This effect can be reproduced in a Monte Carlo wave­function simulation (or quantum
trajectory simulation), which is well suited for studying the evolution of the system.

4.4.1 Master equation in a stochastic formulation

The phase dynamics in our system can be described with a master equation, which
models the dynamics of the collective spin under the elastic collisions, the stochastic
atom losses and the interplay between them [74] . To adopt the Monte Carlo wave­function
method, we define four jump operators to represent the phase jump caused by the four
types of significant losses in our system:

( ̂𝐶1, ̂𝐶2) = (√𝐾 (1) ̂𝑎1, √𝐾 (1) ̂𝑎2) , (4.17)

( ̂𝐶3, ̂𝐶4) = (√𝛾12 ̂𝑎1 ̂𝑎2, √𝛾22 ̂𝑎2
2) , (4.18)

where the jump operators ̂𝐶1 and ̂𝐶2 describe the one­body losses in component |1⟩
and |2⟩, respectively, and ̂𝐶3 and ̂𝐶4 describe the two­body losses in state |1⟩ or |2⟩
(atom losses described in section 4.1). ̂𝑎𝑖 is the bosonic operator annihilating atoms
in the |𝑖⟩ state. The parameters 𝛾𝑖𝑗 are the integrated two­body loss rates, i.e. 𝛾𝑖𝑗 =
𝐾 (2)

𝑖𝑗
2 ∫ d𝒓 |𝜙𝑖|2|𝜙𝑗|2, where |𝜙𝑗| is the wave function of state |𝑗⟩, with 𝑖, 𝑗 ∈ 1, 2. With

these operators, the master equation can be written in a stochastic formulation:

d ̂𝜌
d𝑡 = − 𝑖

ℏ [𝐻̂, ̂𝜌] +
4

∑
𝑘=1

̂𝐶𝑘 ̂𝜌 ̂𝐶†
𝑘 − 1

2 ̂𝜌 ̂𝐶†
𝑘

̂𝐶𝑘 − 1
2

̂𝐶†
𝑘

̂𝐶𝑘 ̂𝜌, (4.19)

where the Hamiltonian 𝐻̂ is defined in Eq. (2.27). This master equation considers the
effects introduced by the clock­shift and the one­axis twisting, as well as the random
phase jump due to the atom losses. The dynamics of the system described by this master
equation is usually solved by carrying out numerical calculation [126­127] . The procedure
of a Monte Carlo wave­function simulation is usually done as followings.

To make sure that the simulation models our experiment accurately, the starting con­
ditions of the simulation must be set carefully. The simulation starts at 𝑡 = 0 with wave
functions satisfying an equal superposition of the two spin states. The initial total num­
ber of atoms 𝑁(𝑡 = 0) is drawn from a Gaussian distribution with mean atom number
⟨𝑁(𝑡 = 0)⟩ and standard deviation 𝜎𝑁(𝑡=0) as observed in the experiment and then parti­
tioned into the two components according to a binomial distribution.

Starting with a state with a chosen total number of particles 𝑁(𝑡 = 0), the initial
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wave function is written as |𝜓(0)⟩ (normalized to unity). This wave function undergoes
an evolution ruled by a non­Hermitian Hamiltonian, with the random quantum jump ̂𝐶𝑖

occurring at a rate ⟨𝜓(0)| ̂𝐶†
𝑖 ̂𝐶𝑖|𝜓(0)⟩. The Monte Carlo wave function 𝜓(𝑡) at the time

instant 𝑡 can be written as state vector in the Fock basis

|𝜓(𝑡)⟩ =
𝑁(𝑡)

∑
𝑁1=0

𝑐𝑁1|𝑁1, 𝑁 − 𝑁1⟩

where 𝑁(𝑡) is the total atom numbers at time 𝑡, |𝑁1, 𝑁 − 𝑁1⟩ are the Fock states with
𝑁1 and 𝑁2 = 𝑁 − 𝑁1 atoms occupying the stationary spatial orbitals of state |1⟩ and
|2⟩, respectively. In a numerical calculation, we take a time step 𝜖, during which the
probability of a quantum jump is equal to

d𝑝𝜖 = 𝜖⟨𝜓(𝑡)| ̂𝐶†
𝑖 ̂𝐶𝑖|𝜓(𝑡)⟩.

The randomness of atom losses is mimicked by choosing a random number d𝑝 from a
uniform distribution between 0 and 1. Depending on whether d𝑝 ≤ d𝑝𝜖 or d𝑝 > d𝑝𝜖,
atom losses happen or not. In the former case, the quantum jump ̂𝐶𝑖 occurs, causing two
effects: it replaces |𝜓(𝑡)⟩ by ̂𝐶𝑖|𝜓(𝑡)⟩ and changes the Hamiltonian 𝐻̂ correspondingly.

Physically one can understand the above procedure as the followings. The initial
wave function |𝜓(0)⟩ evolves according to the Hamiltonian Eq. (2.27), with the parame­
ters in 𝐻̂ corresponding to a total atom number 𝑁(0). This evolution is interrupted after
a random time 𝜏1, when the first 𝑚­body collisional process occurs and causes the loss of
𝑚 particles from the condensate. From this time on, the spin Hamiltonian changes, and
wave function evolves in a system with 𝑁 −𝑚 atoms until time 𝜏2, when a second particle
loss process happens. This process continues until the chosen total evolution time 𝑇𝑅.

Since the losses are stochastic, at each numerical realization, this procedure will
yield a particular atom number decay trajectory, thus a particular stochastic realization
|𝜓(𝑡)⟩. In our simulation we simulate 2000 trajectories for each 𝑇𝑅. Each trajectory
gives a possible result of the final states {|𝜓̃(𝑇𝑅)⟩}. With an adequate amount of tra­
jectories, the whole set of final states constitutes the solution of the master equation, i.e.
∑ |𝜓̃(𝑇𝑅)⟩⟨𝜓̃(𝑇𝑅)| ≈ ̂𝜌(𝑇𝑅). In the frame of our model, the phase evolution can then be
determined numerically from the wave functions obtained by the above procedure.

4.4.2 Semi­stationary solution

In our simulation we model the spin dynamics by assuming a zero­temperature BEC,
that is, we assume that at any time the spatial mode of each internal state can be described
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by the single­particle ground state wave function given by the corresponding GPE, and
we neglect any thermal excitations out of the mode due to finite temperature or due to the
loss processes. These assumptions allows us to compute the spatial orbitals and the key
parameters 𝜒 , ̃𝜒 and 𝛾𝑖𝑗 in the Hamiltonian by solving the 2CGPE.

For the time scale of interest (up to 1 s), the atomic densities decrease significantly
due to atom losses. As a consequence, the parameters 𝜒 , ̃𝜒 and 𝛾𝑖𝑗 also change signifi­
cantly with time. We have learned the loss rates change in time due to two effects: (a)
Breathing dynamics. The initial 𝜋/2 Rabi pulse breaks the equilibrium of the system and
the clouds start to “breathe”. The overlap and local densities oscillate in time, which
makes the two­body loss rates also time dependent. (b) Decrease of the average atom
numbers ⟨𝑁1⟩ and ⟨𝑁2⟩. Even if there were no breathing dynamics of the clouds, with
only simple adiabatic dynamics, the orbitals 𝜙1(𝑟, 𝑡) and 𝜙2(𝑟, 𝑡) would still change in
time. It happens simply because the mean numbers of atoms, which are the inputs of the
GPE, decrease.

The time­dependence of the atom numbers, as well as the parameters 𝜒(𝑡), ̃𝜒(𝑡) and
𝛾𝑖𝑗(𝑡), must be taken into account in the master equation. Ideally one should solve the
GPE at every time­step when a quantum jump happens, however this is extremely time­
consuming and expensive numerically. Therefore, we use semi­stationary model to cap­
ture the main physics. That is, we assume that the breathing dynamics can be neglected
and the atomic densities follow adiabatically the 2CGPE ground states, which applies
well in our case given the experimental parameters (nearly identical scattering length).
Thus one can solve the stationary GPEs at some chosen instants of time for the mean
numbers of atoms in the system and then interpolate the resulting parameters. For each
chosen time instant, the time­dependent average numbers of atoms in two states ⟨𝑁1(𝑡)⟩
and ⟨𝑁2(𝑡)⟩ are already known from the experiment, and they agree with the simulations
of the 2CGPE, see Figure 4.1, and the Hamiltonian parameters 𝜒(𝑡) and ̃𝜒(𝑡) can be com­
puted using the following stationary 2CGPE with the time dependent average number of
atoms ⟨𝑁1(𝑡)⟩ and ⟨𝑁2(𝑡)⟩ as input.

𝜇1𝜙1 = (−ℎ2∇2

𝑚 + 𝑈1 + 𝑔1𝑁1(𝑡)|𝜙1|2 + 𝑔12𝑁2(𝑡)|𝜙2|2
) 𝜙1, (4.20)

𝜇2𝜙2 = (−ℎ2∇2

𝑚 + 𝑈2 + 𝑔2𝑁2(𝑡)|𝜙2|2 + 𝑔12𝑁1(𝑡)|𝜙1|2
) 𝜙2. (4.21)

The time­dependence of the orbitals comes into this model from the time­dependence of
the average numbers of atoms. Subsequently, one can use the definitions to find the time­
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dependent parameters 𝜒(𝑡), ̃𝜒(𝑡), 𝑣(𝑡), and loss rate 𝛾12 and 𝛾22. The unitary part of the
dynamics is generated by

𝐻adiab = 𝜒(𝑡)𝑆2
𝑧 + (𝑣(𝑡) + ̃𝜒(𝑡))𝑆𝑧.

The losses are included in the master equation with time­dependent loss­rates:

𝛾22(𝑡) = 𝐾22 ∫ d𝒓|𝜙2(𝒓, 𝑡)|4/2, (4.22)

𝛾12(𝑡) = 𝐾12 ∫ d𝒓|𝜙2(𝒓, 𝑡)|2|𝜙1(𝒓, 𝑡)|2/2 (4.23)

The orbitals 𝜙1(𝒓, 𝑡) and 𝜙2(𝒓, 𝑡) are solutions of time­dependent GPE equations, with
⟨𝑁1⟩ atoms in state |1⟩ and ⟨𝑁2⟩ atoms in state |2⟩.

In Figure 4.9, the loss rates 𝛾12 and 𝛾22 found from the direct time­dependent GPE sim­
ulation are compared with the results of the semi­stationary model. In the semi­stationary
model we neglect the breathing dynamics, therefore no fast oscillations is present, but
the main physics is captured. For scattering lengths which are close to each other, or for
shallow traps, the spatial dynamics has a very small impact. Typically, one needs very
tight steep traps (on the order of 2 kHz) and Feshbach resonances to see the effects of the
spatial dynamics.

Figure 4.9 Time­dependent two­body loss rates 𝛾12(𝑡) and 𝛾22(𝑡) evaluated for trap with fre­
quencies 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (114, 714, 714) Hz: results based on solving 2CGPE (solid lines), and
semi­stationary model (dashed lines).

Note that such an approach implies that the quantum states with different atom num­
ber decay trajectories evolvewith the same parameters𝜒(𝑡), ̃𝜒(𝑡), and 𝛾𝑖𝑗(𝑡), all determined
by the mean atom number trajectory ⟨𝑁1(𝑡)⟩ and ⟨𝑁2(𝑡)⟩. In other words, the deviations
of the parameters Δ𝜒(𝑡), Δ ̃𝜒(𝑡), and Δ𝛾𝑖𝑗(𝑡) are ignored. However, these are only higher
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order effects, and within the accuracy of our model it is sufficient to consider the mean
value of these parameters.

4.4.3 Scattering length

The phase noise evaluated from Eq. (4.19) is very sensitive to the initial conditions
and to the fundamental constants that enter the master equation as inputs. Besides the loss
rates which have been measured again in our experiment, the precise values of the 𝑠­wave
scattering lengths is of significant importance, especially the difference between 𝑎11 and
𝑎22, which affects the parameter ̃𝜒 crucially. Values of the scattering length can be found
in different Refs. [38,44­45,120,128], as summarized in Table 4.2.

Table 4.2 Previously measured scattering lengths from the literature

reference 𝑎12/𝑎0 𝑎22/𝑎0 (𝑎11 − 𝑎22)/𝑎0

Mattews [128] 95.54 5.86

Harber [38] 98.09 95.47 4.93

Mertes [45] 97.66 95.0 5.40

Egorov [44] 98.01 95.4 4.96

van Kempen [120] 98.175

To decide which group of values for the scattering lengths should be used as input of
the theoretical model, we run the Ramsey sequence with 𝑇𝑅 = 10 ms with varying initial
atom numbers and extract ̃𝜒 . For this short interrogation time, atom losses are negligible,
thus 𝛼 ≈ ̃𝜒 . The 2CGPE simulation with values of scattering lengths taken from Ref. [44]
shows a good agreement with the experiment, see Figure 4.10.

4.5 Comparison of experiment and theory

What we obtained from the Monte Carlo wave­function simulation is a “database”
of stochastic wave functions which have evolved until the final time 𝑇𝑅, but before the
second Rabi pulse. To compare the phase noise obtained from our theoretical model with
that of the experiment, we mimic Ramsey measurements numerically using these wave­
functions. In each “measurement” shot, one wave function is randomly chosen from the
whole database and rotated by a “Rabi” pulse to measure 𝑛rel, and the measurement is re­
peated for the same amount of times as the experiment. The resulted data are treated as ex­
perimental realizations: they are post­processed to extract contrast, visibility, clock­shift
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Figure 4.10 Comparison of the extracted initial ̃𝜒 between experiment (black dots) and
2CGPE simulation (red line). For BECs with varying initial atom numbers we extract ̃𝜒 with a
Ramsey sequence of 𝑇𝑅 = 10 ms.

correction and phase noise, in exactly the samemanner as we do in the real measurements.
To verify the validity of the simulation, there are several cross­checks that can be

done. An important one is 𝛼 (defined in the fitting model of the clock­shift, see Eq. (4.12)
as a function of time. It can be both computed by the simulation and from the experimental
data. Figure 4.11 shows the comparison and we find a reasonable agreement between
theoretical and experimental data.
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Figure 4.11 Comparison of the extracted collisional phase shift coefficient 𝛼(𝑡) between
experiment (dots) and Monte Carlo simulation (solid lines). The red dots and curves are for
the tight trap 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (114, 714, 714) Hz (red) and the purple ones are for the relaxed trap
𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (113, 301, 301) Hz.

Furthermore, in order to ensure an appropriate comparison with the experiment, we
also add the technical noise on top of the simulation results (although we know it is very
small). Note that the technical noise in standard deviation is added up quadratically since
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the noise sources are uncorrelated. In Figure 4.12, the results of the quantum trajectory
simulations are compared with the experimental results. The simulation accurately repro­
duces the observed increase of phase noise, both before and after the clock­shift correc­
tion. We also show in Figure 4.6(e) the simulated and measured collisional phase shift as
a function of time.
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Figure 4.12 Phase noise as a function of 𝑇𝑅 is shown for a tight trap with 𝜔(𝑥,𝑦,𝑧) = 2𝜋 ×
(114, 714, 714) Hz (a) and a shallow trap with 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (113, 301, 301) Hz (b). Experi­
mental results are shown before (red and purple) and after collisional phase shift correction (blue
and green). Dots and square symbols represent data at 𝑇𝑅 < 0.2 s and 𝑇𝑅 > 0.2 s respectively,
evaluated with different methods (see text). Results of quantum Monte­Carlo wave function sim­
ulations are given by the solid line with corresponding color. Black dashed lines show the upper
bound on technical noise (see text). The insets show the phase noise at 𝑇𝑅 < 0.2 s in a log­log
scale. The minimal phase uncertainty is close to the projection noise of a coherent spin state
Δ𝜙 = 1/√𝑁 ≈ 0.033 rad.

Our zero­temperature model already accounts for the vast majority of the observed
fluctuations. Only for very long 𝑇𝑅 it slightly underestimates the phase noise. This
shows that the phase coherence is limited mainly by the interplay between atomic col­
lisional interactions (elastic and inelastic). The discrepancy at long 𝑇𝑅 can be explained
by finite temperature effects. When constructing the theoretical model, we assume a zero­
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temperature BEC because we do not observe thermal component in the absorption images
for any of the investigated interrogation times. For clarification, the imaging system is ca­
pable of detecting thermal fractions in our trapping geometry, as confirmed in independent
experiments where we on purpose increase the temperature of the condensates to be closer
to the critical temperature. However, in real experimental realizations, the BECs are in­
evitably at finite temperature with a fraction of non­condensed particles always present.
This remaining thermal fraction of atoms represents a fluctuating environment that per­
turbs the condensate phase through interactions. This might explain why at long 𝑇𝑅 the
phase noise increases faster than predicted by our theoretical model. Interestingly, the
effect of phase spreading due to finite temperature has never been measured in three­
dimensional BECs. The investigation of such effects would however be of significance
to understand the coherence of BECs and needs to be explored in the future.

To extend the coherence time, one can decrease the gas density, and thereby reduce
the collisional rates. We confirmed this by performing the phase noise measurement in a
relaxed trap with trap frequencies𝜔(r,z) = 2𝜋×(301, 113) Hz. As shown in Figure 4.12(d),
the phase noise is indeed strongly reduced. In order to reach the fundamental bound of
precision limits in quantum metrology as theoretically described in Refs. [129­130], the
unwanted effects of decoherence should be further mitigated. Experimentally, a state­
dependent potential could be applied to engineer interactions [49] . Using this technique,
one can minimize ̃𝜒 , thus the collisional phase shift, or tune the interactions so that the
quantum states are protected from the decoherence induced by two­body losses, as pro­
posed in Ref. [131].

In conclusion, we measure precisely the growth of the phase noise in a trapped two­
component BEC and identify the main decoherence sources. We observe that the coher­
ence is limited by random collisional phase shifts due to the stochastic nature of atom loss.
Our experimental findings provide a good understanding of the temporal coherence of a
two­component BEC. In contrast to most other systems, where decoherence is dominated
by interactions with the environment, in our experiment the atoms are well­isolated, and
the observed decoherence effect is intrinsic to such a two­component BEC.
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CHAPTER 5 NON­CLASSICAL RAMSEY
INTERFEROMETER

For any two­mode interferometer performing with 𝑁 uncorrelated or classically cor­
related atoms, the phase uncertainty is limited by the standard quantum limit (SQL) [11] ,
equal to 1/√𝑁 . Entanglement between the particles, as a type of quantum resource, can
be employed in non­classical interferometer to enhance the measurement precision be­
yond the SQL. Non­classical interferometers have been demonstrated in different systems,
with different mechanisms to prepare non­classical states. In our experiment, we mainly
use a particular type of entangled states: spin­squeezed states, which we prepare by in­
ducing one­axis twisting (OAT) dynamics [20] . In the past decade, the OAT mechanisms
and related experimental tools have been extensively studied [17,90,132] . In our group, the
experimental generation of spin­squeezing was first demonstrated in Ref. [29]. Later the
technique of reconstructing a state tomography to characterize the spin­squeezed state was
developed [133] . An atom interferometer using spin­squeezed state was used to measure
the magnetic field and achieved a precision beyond the standard quantum limit [19] . Re­
cently, we have prepared andmeasured the entanglement between two parts of a BEC [104] .

Despite these state­of­art techniques to prepare and characterize the spin­squeezing,
we are motivated by a need of improving the spin squeezing. A more reliable and higher
spin squeezing not only helps to improve the precision of interferometric measurements,
but also reflects deeper entanglement in the many­body system. In this chapter, we will
present the most recent results of our spin­squeezing experiment, with the best spin­
squeezed state achieving aWineland spin­squeezing parameter of 𝜉2 = −9.8(5) dB, which
is a significant improvement compared to previous experiments on our apparatus. The
strategies for improving the spin­squeezing will be discussed. Moreover, we perform a
non­classical Ramsey interferometer with a spin­squeezed state, with interrogation time
as long as 𝑇R = 1𝑠. The measurement precision has been investigated as a function of
interrogation time, and showed a precision better than classical bound by 7 dB.

5.1 Preparation of spin­squeezed state

In this section, we will give a brief review of the spin squeezing mechanism and of
the involved techniques in our experiment.
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5.1.1 One­axis twisting Hamiltonian

In our system, the one­axis twisting originates from the collisional interactions be­
tween atoms, described by the non­linear term 𝐻int = 𝜒 ̂𝑆2

𝑧 in the Hamiltonian Eq. (2.27).
Starting with a coherent spin state, atoms are initially uncorrelated and the quantum noise
is isotropically distributed among the spin quadratures orthogonal to the mean spin, sat­
isfying the Heisenberg uncertainty relation Var( ̂𝑆𝑦)Var( ̂𝑆𝑧) = |⟨ ̂𝑆𝑥⟩|2/4. Under the one­
axis twisting Hamiltonian, the state will dynamically evolve into a spin­squeezed state in
which atoms in the condensate are entangled [49] . The quantum noise along a particular
quadrature will then be suppressed, at the cost of increasing the noise along the orthog­
onal quadrature, resulting in a spin­squeezed state with anisotropically distributed spin
variance.

An essential feature of our experiment is the ability to control the strength of the non­
linearity by tuning the collisional interactions. As it can be seen from the definition of 𝜒 ,
this term originates from the difference between the total intra­species interaction energy
and the total inter­species interaction energy. As Eq. (2.32) suggests, the strength 𝜒 of
the non­linear Hamiltonian depends on the wave­function overlap of the two states. It is
nearly zero for identical and overlapping components due to the nearly identical scattering
lengths 𝑎22 ∼ 𝑎11 ∼ 𝑎12, while it increases by several orders of magnitude for completely
separated components [29] . Experimentally, we can use the microwave state­dependent
potential (discussed in section 3.3.3) to split the two components, as shown in Figure 5.1.

The ability to spatially separate the two BEC components allows us to control the col­
lisional interactions between them, effectively controlling the coefficient 𝜒 of the nonlin­
ear dynamics. We denote the displacement of the two trap minima as Δ𝑥0. It is important
to notice that the displacement between the trap minima Δ𝑥0 is not equal to the in situ dis­
placement between the centers of mass of each spin component 𝑑, as shown in Figure 5.1.
Typically, a splitting of Δ𝑥0 ≈ 400 nm for the the trap potential minima for the two states
(much less than the extension of the BEC size of 𝑅 ≈ 5 μm) will increase the non­linear
term coefficient 𝜒 by a factor of more than 2000.

5.1.2 Sequence to prepare the spin­squeezed state

To prepare the spin­squeezing in the system, we use the sequence visualized in Fig­
ure 5.2. To give an intuitive picture of the quantum state on the Bloch sphere, the expected
Wigner distribution of the corresponding states on the Bloch sphere at different stages are
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Figure 5.1 Splitting of the two components. The schematic for the state­dependent trapping
potentials is shown with red (for |1⟩) and blue (for |2⟩), and the corresponding wave functions
in the stationary scenario are shown in the same color. The black dashed line shows the original
static magnetic trap and the black dotted line shows the wave function of atoms in it. The split­
ting between two trap minima is denoted as Δ𝑥0, the in situ displacement between the two wave
functions is denoted as 𝑑. Δ𝑥0 and 𝑑 are not necessarily the same. The splitting is exaggerated
for visualization, while in real case Δ𝑥0 is approximately a few hundreds of nanometers, which is
much smaller compared with the radius of the cloud ≈ 5 μm.

also given. The Wigner function is calculated for 𝑁 = 200 atoms (see section 2.3.3).
Starting with a BEC of 𝑁 ≈ 1000 atoms in state |1⟩ (the state at the north pole of the

Bloch sphere), a 𝜋/2 Rabi pulse is first applied to generate an equal superposition of |1⟩
and |2⟩. For convenience, we set the phase­reference frame such that the first rotation is
around +𝑦­axis on the Bloch sphere. Therefore, the first rotation, which can be described
by the unitary transformation 𝑒−𝑖𝜋/2 ̂𝑆𝑦 , prepares the state on the equator aligned with the 𝑥­
axis of the generalized Bloch sphere. Immediately after the first pulse we turn on the state­
dependent potential by applying an on­chip MW current, in order to initiate the one­axis
twisting dynamics [29] . We turn on and off the coplanar MW with a smooth ramp taking
350 μs, which is slow enough to allow for adiabatic microwave dressing of the potential,
but not adiabatic with respect to the spatial dynamics. The state­dependent potential will
trigger a spatial dynamics of the two components (discussed later in section 5.1.3), causing
them to split and recombine periodically. We apply the state­selective potential for a
duration 𝑇𝑠, chosen so that the wave functions of the two components are overlapped
again when the one­axis twisting Hamiltonian is turned off. During 𝑇𝑠, the non­linear
interaction Hamiltonian 𝐻int = 𝜒 ̂𝑆2

𝑧 leads to spin­squeezing, and the evolution of the
states can be described by 𝑒−𝑖𝐻̂𝑡. The resulting squeezed state is tilted by the one­axis
twisting, thus the squeezed quadrature has an angle with respect to the equator, denoted
as 𝜃0.

Experimentally, the only observable of the system is the 𝑧 component of the spin ̂𝑆𝑧,
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which can be measured by detecting the atomic population in the two states. Therefore,
a second Rabi pulse is needed to rotate the spin state in order to measure spin compo­
nent along specific quadratures. Such a Rabi pulse always has two parameters that can
be experimentally controlled: duration and phase. We denote the duration with the cor­
responding angle of rotation 𝜃, and denote its relative phase with the first pulses as 𝜙.
These two parameters together determine along which quadrature the collective spin is
measured. One can understand the second Rabi pulse as two steps: first rotate the state
around the +𝑧­axis with an additional angle 𝜙, and then rotate the state around +𝑦­axis by
an angle 𝜃. In this way the unitary transformation is written 𝑒−𝑖𝜃 ̂𝑆𝑦𝑒−𝑖𝜙 ̂𝑆𝑧 . An alternative
(maybe easier) way to understand the second Rabi pulse is that it rotates the state by 𝜃
angle, around an axis 𝑆𝑦+𝜙 which is in the 𝑥𝑦­plane of the Bloch sphere and has an angle
𝜙 to the +𝑦­axis. In this way the rotation is described by 𝑒−𝑖𝜃 ̂𝑆𝑦+𝜙 . Depending on the
specific purpose of the experiment, the two parameters are chosen accordingly in order to
measure the collective spin along a particular direction. A special case is, for the interfer­
ometric measurement, we rotate the spin­squeezed state such that the squeezed quadrature
is along the equator, thus minimize the phase uncertainty of the measurement.

π/2

Hint = χ Sz
2

θ
Time

TS

State-selective potential

θ

1 2 3

Sz

SySx

Figure 5.2 Sequence to prepare and characterize a spin­squeezed state. The red pulses rep­
resent the Rabi pulses and blue pulse shows the microwave state­dependent potential. Sphere
1 shows the initial coherent state, aligned with the 𝑥­axis. Sphere 2 shows the simulated
Wigner function of a spin­squeezed state, simulated for 𝑁 = 200 atoms under an evolution of
𝜒𝑇𝑠 = 0.003. To construct the squeezing tomography, different angles of rotation 𝜃 around the
center of the state are performed with the second Rabi pulse. Figure adopted from [50] .

5.1.3 Spin demixing­remixing dynamics

When the state­dependent trapping potential is turned on to separate atoms in the two
spin states, a mirror­symmetrical oscillation of the two atomic clouds along the separation
direction will be induced, and the spatial mode of the two components will split and over­
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lap periodically. We call this phenomena demixing­remixing dynamics (in some context
also referred to as spin dipole oscillation [134] ).

In order to show the splitting and recombination of the two spatial modes, we usually
perform a Ramsey sequence in the time domain [29] . We prepare the BEC in an equal
superposition of |1⟩ and |2⟩, and then turn on the state­dependent MW potential with
a 350 μs ramp. The microwave is on for the entire duration of the Ramsey time, until
we turn it off before the final 𝜋/2 Rabi pulse that projects the phase onto atom number
populations. By varying the Ramsey interrogation time, we can study the relative atom
number 𝑛rel = (𝑁1 − 𝑁2)/(𝑁1 + 𝑁2) as a function of 𝑇𝑅, as shown in Figure 5.3(c). We
observe fast oscillations, which are the typical interference fringes of a Ramsey sequence,
modulated in amplitude by a slow periodic collapse and revival. This collapse and revival
indicates that the demixing­remixing dynamics of the two components is coherent. To
characterize the optimal times 𝑇𝑅 where the contrast has a revival, we fit the experimental
data with a modulated oscillation

𝑓(𝑇𝑅) = 𝑂 + (𝐴 (1 + 𝐵 cos(𝜔slow𝑇𝑅 + 𝜙0))) cos(𝜔fast𝑇𝑅) exp(−𝛾𝑇𝑅), (5.1)

where 𝑂, 𝐴, 𝐵, 𝜔fast, 𝜔slow and 𝛾 are fitting parameters, the exponential factor exp(−𝛾𝑇𝑅)
accounts for the damping of the dynamics. The red curve in Figure 5.3(c) shows a fit
according to this model. From the fit, the oscillation frequency 𝜔slow can be extracted to
estimate the revival times. At these revival times we can obtain a better estimate of the
contrast by performing a Ramsey sequence in the phase domain. The fact that the contrast
gets reduced from one revival to the next is also associated with phase spreading (anti­
squeezing) of the condensate, as it is also visible from the increasing noise on the fringes.
For the first two revivals we typically find a contrast in the range of 95% − 99%. For
even longer times, atom losses during this process results in a reduction of the mean­field
interactions, which make this dynamics faster and makes the fitting model not as reliable
as before.

From the experimental data, it can be observed that the demixing­remixing fre­
quency does not match any of the trap frequencies of the magnetic trap ((𝜔𝑥, 𝜔𝑦, 𝜔𝑧) =
2𝜋 × (113, 301, 301) Hz), but is much slower because of mean­field interactions. This
oscillation originates from the combination of the repulsive contact interaction between
atomic clouds and the harmonic trapping potential of the state­dependent magnetic traps.
For the convenience of understanding, the elastic interaction between the two atom clouds
can be regarded as an effective potential. If we approximate the wave function as a
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Figure 5.3 Dynamic splitting and recombination. Simulated atomic densities along the split­
ting direction for the two states Ψ1 (a) and Ψ2 (b) during the demixing­remixing dynamics, ob­
tained from a 2CGPE simulation. The trap frequencies are (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋 ×(113, 301, 301) Hz
and the displacement is 400 nm (c) Black dots are measured Ramsey fringes as a function of the
interrogation time 𝑇𝑅, for a BEC with 𝑁 ≈ 920 atoms. During 𝑇𝑅 the microwave near­field
is applied to generate a state­dependent potential, which causes the two components to split and
recombine spatially. As a result, the recorded fringe contrast shows a collapse and revival in ad­
dition to the fast oscillation. The red line is a fit of the data with the model given in Eq. (5.1). The
time of recombination obtained by fitting are: 𝑇1st = 16.8 ms, 𝑇2nd = 33.6 ms and 𝑇3rd = 50.4 ms,
respectively. Data taken on 26.02.2020.
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Thomas­Fermi distribution, i.e.,with an inverted quadratic function, the effective interac­
tion potential 𝑔(𝑁−1)|𝜙(𝑥, 𝑑)|2 then takes a quadratic form as a function of the coordinate
𝑥 and the distance between the centers of the two atomic wave functions 𝑑. This effec­
tive potential term can be regarded as a harmonic oscillator with negative mass, and is
proportional to the overlap of the two wave functions. Under the lowest­order approxi­
mation, considering that the two atomic clouds are bounded by separated magnetic traps
at the same time, the total potential for each one of the two clouds is the combination
of a magnetic trap and the effective potential due to the intra­cloud repulsive interac­
tion. Therefore, the oscillation frequency of the atomic clouds is the difference between
the eigenfrequency of the magnetic trap and the aforementioned effective negative­mass
harmonic oscillator. Under the experimental conditions (500 atoms in each spin state),
the eigenfrequency of the effective negative­mass harmonic oscillator is ≈ 61 Hz along
the direction where the two clouds are separated. This leads to a theoretical value of
113–61 = 52 Hz for the demixing­remixing dynamics, which shows a reasonable quan­
titative agreement with the measured oscillation frequency. However, with increasing
displacement between the two traps, some high­order effects can modify the frequency
and is not covered in this model.

A more precise prediction of the demixing­remixing dynamics can be obtained with
the 2CGPE. The simulation parameters are chosen to be consistent with the experiment,
with a splitting along 𝑥 direction of Δ𝑥 = 400 nm. The atom losses and the ramp of
the microwave are taken into account in the simulation. The results of the simulation
show that the microwave field causes the wave functions 𝜙1and 𝜙2 to oscillate in oppos­
ing directions. In Figure 5.3 we plot the simulated densities along the splitting direction
(longitudinal direction) for the two modes ∫ |𝜙1(2)|2d𝑦d𝑧, the density overlap of the com­
ponent densities∫ |𝜙1|2|𝜙2|2d𝒓/√∫ |𝜙1|4d𝒓 ∫ |𝜙2|4d𝒓 (normalized to 1) calculated from
the 2CGPE simulation, and the normalized wave funciton overlap ∫ |𝜙∗

1𝜙2|d𝒓, which de­
termines the visibility. The comparison with the experimental data shows that the GPE
simulation can capture the main oscillation.

5.2 Characterization of spin­squeezing

5.2.1 Spin­squeezing parameters

There are two important parameters used to characterize the spin noise: the number
squeezing parameter and the Wineland spin­squeezing parameter. The number squeezing
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parameter 𝜁2 corresponds to the measured spin variance normalized so that for an ideal
coherent state on the equator (a binomial distribution) it holds that 𝜁2

CSS = 1 [20] .

𝜁2 =
Var [𝑆𝜽]
⟨𝑁⟩/4 = ⟨𝑁⟩𝜎2

𝑛rel , (5.2)

where 𝜃 is the quadrature along which the spin variance Var [𝑆𝜃] is measured and 𝜎2
𝑛rel is

the measured variance in 𝑛rel. Usually, we subtract the detection noise when calculating
the number squeezing, with the formula:

𝜁2 = ⟨𝑁⟩(𝜎2
𝑛rel − 𝜎2

𝑛rel,det
), (5.3)

where 𝜎2
𝑛rel,det

=
𝜎2

𝑁1,det+𝜎2
𝑁2,det

𝑁2 is the variance contributed by the imaging noise, which is
determined independently for each dataset. In fact, very precise measurements of the atom
numbers 𝑁1 and 𝑁2 are very important for experiments that study spin­squeezing, since
it requires the resolution of the relative atom number beyond the atomic shot noise limit.
Our experimental setup is highly optimized for this. Relatively long absorption imaging
pulses (50 𝜇s) in the saturated regime allow us to lower the primary source of detection
noise in our system, the photon shot noise, to very low levels, so that 𝜎2

𝑛rel ≫ 𝜎2
𝑛rel,det

for
coherent spin states. Typically, the contribution of the detection noise is around 𝜎𝑛rel,det =
(5.5 ± 0.4) × 10−3, corresponding to 𝜁2

det = 𝑁𝜎2
𝑛rel,det

≈ 0.025. Subtracting the imaging
noise contribution is not meaningful in the context of interferometry, but it can be useful
for the characterization of a quantum state.

Number squeezing does not measure metrologically useful squeezing, but only mea­
sures noise reduction compared to the projection noise of a coherent state. The precision
of an interferometric measurement also depends on the contrast, which determines the
error transmission between the interferometric readout (in our case 𝑛rel) and the phase.
This contrast is not taken into account by the number squeezing parameter. To quantify
the metrological usefulness of a quantum state, we use the Wineland squeezing parame­
ter [135] (as mentioned in section 2.5.2)

𝜉2 =
⟨𝑁⟩Var [𝑆𝜃]

⟨𝑆𝑥⟩2 , (5.4)

where we explicitly choose the frame so that 𝑥 is the direction of the mean spin, and 𝜃
is a rotation angle around 𝑥 which may be freely chosen in order to measure the spin
variance along the squeezed direction. In an experiment, a measurement of Var [𝑆𝜃] can
be performed by first rotating by an angle 𝜃 around the −𝑥 axis on the Bloch sphere, and
then measuring the variance of the atom number imbalance 𝜎2

𝑛rel . The spin length ⟨ ̂𝑆𝑥⟩
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is determined from the contrast of an independent Ramsey measurement by performing
rotations of the state around the 𝑦­axis. The squeezing parameter is then calculated as

𝜉2 ≈
⟨𝑁⟩𝜎2

𝑛rel
𝐶2 , (5.5)

The above approximation actually assumes that the interferometric contrast reflects the
spin length 𝐶 ≈ ⟨ ̂𝑆𝑥⟩

𝑆 . It is interesting to notice that the contrast also describes the phase
noise due to decoherence, as we have discussed in chapter 4. In addition, we do not
subtract detection noise when calculating 𝜉2, also because this parameter aims for the
description of the interferometric precision. Therefore, in Equation 5.5, technical noise
sources such as imaging noise increasing Var [𝑆𝜃] and the contrast reduction due to the
phase noise are all taken into account. Therefore 𝜉2 compares the sensitivity of an inter­
ferometric experiment to that of a classical interferometer with the same particle number
and describes the enhancement. A state with 𝜉2 < 1 allows one to improve the phase
sensitivity of an interferometer 𝜎2

𝜙 by a factor 𝜉2 with respect to the standard quantum
limit.

5.2.2 Squeezing Tomography

In order to characterize the prepared spin squeezed states, the technique of performing
state tomography was developed in Ref. [133]. The idea behind the tomography is to
measure the spin variance Var [𝑆𝜽] for spin components along different quadratures that
are orthogonal to the mean spin. Therefore, after the preparation of a spin­squeezed state
as previously described, the second Rabi pulse will rotate the state by a varying angle 𝜃
around its center. To ensure a rotation around a correct axis, the phase 𝜙 of the second
pulse is scanned and calibrated by independent Ramseymeasurements. Ideally, if the state
is on the equator and the rotation axis is properly calibrated, the mean will be ⟨𝑆𝜽⟩ ≈ 0.
However, due to the asymmetric losses in the two states during 𝑇𝑠, the “center of mass”
of the spin­squeezed state is not on the equator of the Bloch sphere, but slightly above
the equator towards the |1⟩ pole. The Rabi pulse with the calibrated phase 𝜙 actually
makes a rotation, not exactly around the center of the spin­squeezed state, but around the
projection of ⟨𝑆⟩ on the 𝑥𝑦­plane. To get a good estimation of the variance, we repeat
the measurement for more than 100 times for each rotation angle 𝜃 to collect statistics.
The measured variance Var [𝑆𝜃] varies with 𝜃, reflecting the squeezed and anti­squeezed
quadratures [29] .

Figure 5.4 shows such a tomography of a spin­squeezed state, with 𝑁 = 920 ± 40
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Figure 5.4 Characterization of a spin­squeezed BEC. a): Distribution of experimental mea­
sured 𝑛rel for different rotation angles. Each black point corresponds to an individual spin pro­
jection measurement. b): The spin variance (calculated in terms of the number squeezing) as a
function of rotating angle 𝜃. The blue points are calculated with raw data, showing best squeezing
to be at 𝜃 = 6∘. Red points show data after the data processing, including the subtraction of contri­
bution of the imaging noise (see text), and the clock­shift correction (see text in section 4.3.1.2).
Error bars indicate statistical uncertainty based on the number of shots used for each data point.
The processed data show a best squeezing 𝜁2 = −8.8 ± 0.4 dB at 𝜃 = 8∘. The Wineland spin­
squeezing parameter for this dataset is of 𝜉2 = −7.9(4) dB. Data taken on 03.01.2019.
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atoms. For different directions in the 𝑦𝑧­plane, parametrized by the angle 𝜃, Figure 5.4(a)
shows the distribution of the experimental readout 𝑛rel for different rotation angles. For
each angle, the variance of the data distribution gives the number squeezing reported in
Figure 5.4(b). For a turning angle of 𝜃 = 0∘, the measured collective spin variance along
the equator is consistent with projection noise of an ideal coherent spin state, with 𝜁2 ≈ 1,
which confirms that our imaging system is properly calibrated. The red data points show
the post­processed data, where the effect of detection noise and the clock­shift noise have
been subtracted. The noise subtraction corresponds to a −2.3 dB improvement compared
to the raw data at the optimal squeezing angle. For 𝜃 from 0∘ to 14∘ , noise is observed to
be lower than the SQL. The best number squeezing is reached at a turning angle of 𝜃0 = 6∘

with the raw data, and at 𝜃0 = 8∘ after the noise­subtraction. This observation indicates
that the phase spreading along the equator effectively turns the state by a small angle. The
anti­squeezed direction is at 90∘ from the optimal squeezed direction, and the measured
noise is far above that of a coherent state, with 𝜁2

anti ≈ 15.6 dB. In the ideal case, the
amount of noise reduction in the squeezed direction should exactly compensate the noise
increase in the anti­squeezed direction. The observation of an imbalance, as in our case,
indicates the presence of additional phase noise (for example, from sources discussed
in chapter 4). The contrast, required to calculate the Wineland squeezing parameter, is
obtained from an independent Ramsey measurement, where the state is rotated around the
𝑦 axis. For this dataset we have 𝐶 = ⟨𝑆𝑥⟩/(𝑁/2) = 0.978 ± 0.006. The detection noise is
calculated as 𝑁𝜎2

𝑛rel = 0.0245, corresponding to 𝜁2
det = −16 dB, which is not subtracted

when calculating the Wineland squeezing parameter. Therefore the metrologically useful
squeezing is reduced from the 𝜁2 = −8.8(4) dB to the Wineland squeezing parameter of
𝜉2 = −7.9(4) dB.

5.2.3 Entanglement in spin­squeezed states

It has been shown that there is a connection between spin­squeezing and entangle­
ment [136] ; usually spin squeezing in the atomic ensemble reflects the entanglement be­
tween atoms. Therefore, apart from quantifying the metrological usefulness of a state, the
Wineland squeezing parameter Eq. (5.4) can also be used to witness entanglement. Ob­
serving a Wineland parameter 𝜉2 < 1 indicates the presence of non­classical correlations
in a many­body system. Moreover, the entanglement depth can be inferred based on 𝜉2,
following the approach Sørensen and Mølmer developed in Ref. [137]. The idea is based
on the conclusion that, for entangled system constituting of 𝑘 spins, there is a minimum
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value that 𝜉2 can approach. Therefore, reversing this argument, the observation of a given
𝜉2 allows one to derive a lower bound on the depth of entanglement required to observe
the given values of spin contrast and variance.

Here we need to clarify the definition of entanglement depth. Let us first consider a
separable state. In a system of N spins (labelled as 𝑙 = 1, 2, ..., 𝑁), a pure quantum state
is separable if it can be written as a product

|Ψsep⟩ = |Ψ(1)⟩ ⊗ |Ψ(2)⟩ ⊗ ... ⊗ |Ψ(𝑁)⟩, (5.6)

where |Ψ(𝑖)⟩ is the state of the 𝑖th spin. A mixed state is separable if it can be written as a
mixture of separable states [138]

̂𝜌sep = Σ𝑞𝑝𝑞|Ψsep,q⟩⟨Ψsep,q| (5.7)

where 𝑞 is the label of the pure state and the probabilities 𝑝𝑞 satisfy the normalization
Σ𝑞𝑝𝑞 = 1. In the case of 𝑁 = 2 particles, any quantum state is either separable or
entangled. For 𝑁 > 2, we need further classifications. Multi­particle entanglement is
quantified by the number of particles in the largest non­separable subset. In analogy with
Eqs. (5.6) and (5.7) a 𝑘­separable state can be written as

|Ψk sep⟩ = |Ψ𝑁1⟩ ⊗ |Ψ𝑁2⟩ ⊗ ... ⊗ |Ψ𝑁𝑀 ⟩, (5.8)

̂𝜌k sep = Σ𝑞𝑝𝑞|Ψk sep,q⟩⟨Ψk sep,q| (5.9)

where the Eqs. (5.8) and (5.9) describe the pure state and mixed state, respectively. Here
|Ψ𝑁𝑙⟩ is a state of 𝑁𝑙 ≤ 𝑘 particles where Σ𝑀

𝑙=1𝑁𝑙 = 𝑁 . A state that is 𝑘 separable but not
𝑘 − 1 separable is called 𝑘­particle entangled: it contains at least one state of 𝑘 particles
that cannot be factorized. Such a state has an entanglement depth larger than 𝑘 − 1 [136] .
Also, 𝑘­separable states form a convex set containing the set of 𝑘′­separable states with
𝑘′ < 𝑘 [139] .

Figure 5.5 shows the quantified depth of entanglement for the data presented in the
previous tomography Figure 5.4. The red lines illustrate the smallest variance attainable
in a 𝑘­partite entangled state for a given Ramsey contrast, and they have been generated
from a numerical minimisation of 𝜇⟨ ̂𝑆𝑥⟩ + ⟨ ̂𝑆2

𝑧 ⟩ [137] , detailed discussion can be found in
Appendix B. The black data point represent our spin­squeezed state, which falls below
the curve of spin variance calculated for 𝑘 = 128, indicating an entanglement depth of at
least 128.
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Figure 5.5 Depth of entanglement in a spin­squeezed BEC. Depth of entanglement cal­
culated according to Ref. [137]. The red lines correspond to 𝑘­particle entanglement for 𝑘 =
2, 4, 8, ..., 256. The black data point corresponds to the squeezed states with 𝑁 = 920 ± 40 atoms
of Figure 5.4, and it falls on the line for 𝑘 ≈ 128.

5.3 Exploration towards better spin squeezing

It is critical for future work of multi­partite entanglement experiment to improve the
spin­squeezing. Several experimental improvements were made, as explained one by one
in this section.

5.3.1 Microwave potential configurations

There are several experimental parameters that determine the microwave potential.
From Eq. (3.20), the differential microwave potential is given by

𝑉 |1,−1⟩
mw (𝒓) − 𝑉 |2,1⟩

mw (𝒓) = ℏ
4

0

∑
𝑚2=−2

|Ω2,𝑚2
1,−1(𝒓)|2

Δ2,𝑚2
1,−1(𝒓)

+ ℏ
4

1

∑
𝑚1=0

|Ω2,1
1,𝑚1

(𝒓)|2

Δ2,1
1,𝑚1

(𝒓)
, (5.10)

where the Rabi frequencies |Ω2,𝑚2
1,−1(𝒓)| and |Ω2,1

1,𝑚1
(𝒓)| depend on the amplitude of the mi­

crowave field. It is shown that the differential microwave potential scales linearly with
the power of the field and reversely with the microwave detuning, both of which can be
easily controlled experimentally.

The amplitude of the microwave current determines the near­field microwave gradi­
ents which displaces the trap minima for the two spin components. By applying a larger
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microwave current to the on­chip coplanar waveguide, one can increase the separation of
the spatial modes of the two spin states to gain a larger 𝜒 . However, the capability of the
chip wire to carry microwave current is limited (as one does not want to burn the wire).
Another knob to turn is the detuning of the microwave field, Δ0, with reference to the
|1, 0⟩ → |2, 0⟩ transition. In our experiment we usually use a blue­detuned field.

The splitting distance between two trap minima can be predicted with a simulation
based on the ‘atom­chip toolbox’, which contains a numerical model of the wire patterns
on the chip. This code, based on MATLAB, was originally developed in [3] , and allows us
to simulate accurately the static and state­dependent magnetic potentials resulting from
the DC and MW currents. In Figure 5.6, we plot the simulated Δ𝑥0 for different settings
of microwave parameters with a two­dimensional image, where the color indicates the
splitting distance. Based on the predicted splitting distance, further simulation with a
stationary 2CGPE can be used to predict the overlap between the atomic densities of the
two states, which determines the strength of the one­axis twisting. The overlap between
two wave functions does not depend on Δ𝑥0 linearly due to the miscibility of Rb atoms,
as one can see in Figure 5.7(b). In our experiment, we used to apply a microwaves current
of 𝐼mw = 21 mA, with frequency blue detuned by Δ0 = 12 MHz, which allowed us to
split the two trap minima by 140 nm. Reducing the detuning to 10 MHz and increasing
the current to 30 mA can lead to a twice smaller overlap between the atomic densities,
and result in a stronger one­axis twisting with a gain in the non­linearity 𝜒 by a factor of
up to 2000.

Figure 5.6 Splitting distance for different Microwave configurations. The simulated dis­
placement between two trap minima Δ𝑥0 is plotted as a function of the microwave current and
the detuning. The old parameters and new parameters are indicated with a black arrow. The red
dashed arrow indicates the parameters tested experimentally, as shown in Figure 5.8.
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Figure 5.7 Different splitting cases. (a) The simulated in situ distance between wave functions
of two states 𝑑 as a function of Δ𝑥0. (b) The simulated density overlap between wave functions
of two states ∫ |𝜙1|2|𝜙2|2d𝒓/√∫ |𝜙1|4d𝒓 ∫ |𝜙2|4d𝒓 (normalized to 1), as a function of Δ𝑥0. The
wave functions are simulated by solving stationary 2CGPE, assuming 500 atoms in each state.
The bottom panels show the density profiles along the splitting direction, in three different cases
(assuming Δ0 = 12 MHz) : (c)𝐼mw = 15 mA, Δ𝑥0 = 66 nm; (d)𝐼mw = 21 mA, Δ𝑥0 = 140 nm;
(e)𝐼mw = 30 mA, Δ𝑥0 = 400 nm.

In order to confirm the prediction of the simulation, we experimentally measure the
spin demixing­remixing dynamics with a Ramsey sequence, as described before, for vary­
ing microwave current 𝐼mw. As verified in Figure 5.8, where the slow oscillation reflects
the state wave function splitting and combination, the contrast at the demixing instant be­
comes smaller for larger current, indicating a smaller overlap between the wave functions
for the two states. In addition to a larger splitting, stronger field also has the advantage of
a faster demixing­remixing dynamics. As discussed in section 5.1.3, the effective colli­
sional interaction potential is proportional to the density overlap between the two states,
and contributes negatively to the oscillation frequency of the demixing­remixing dynam­
ics. Therefore, a larger spatial splitting of the two states also causes a faster demixing­
remixing dynamics, which is clearly indicated in Figure 5.8 by the period of the modula­
tion. Increasing the current from 𝐼mw = 17 mA to 𝐼mw = 24 mA causes the first revival
time 𝑇1st to be earlier by ≈ 13.5 ms. The fact that the microwave potential is needed for
a shorter time would also benefit the preparation of the spin­squeezed states, since the
potential technical noise caused by the amplitude and the frequency fluctuations of the
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microwave field would be reduced.
As a conclusion, in the previous experiments we used microwave blue detuned by

Δ0 = 12 MHz, and applied a a microwave current amplitude of 𝐼mw = 21 mA, which
allowed us to split the two trap minima by 140 nm, and thereby to increase 𝜒 by a factor
of 103. Recently, we have further optimized the configuration of the microwave field: we
decreased the detuning to Δ0 = 10 MHz and increased the microwave current amplitude
to 30 mA, which allows us to split the potential minima for the two states by 400 nm.
This allows a gain in the non­linearity 𝜒 by a factor of up to 2000. In addition, the new
configuration of the state­dependent potential yields faster splitting and recombination,
leading to a shorter squeezing time with 𝑇𝑠 = 𝑇2𝑛𝑑 = 33.6 ms. The new parameters
allow us to obtain a gain in spin­squeezing by ≈ −2 dB compared to the old settings. The
best squeezing with the old parameters was 𝜉2 = −6.8(4) dB [105] , whereas with the new
microwave parameters we have achieved spin squeezing below −8 dB reproducibly, as
can be seen in Table 5.2.

5.3.2 Relaxed trapping potential

With the new parameters, the preparation of a spin­squeezed state still takes a time
duration of 𝑡2nd ≈ 33.6 ms, during which the phase fluctuations described in chapter 4
will emerge and harm the spin­squeezing, not only in terms of quadrature­specific spin
noise along the optimal angle, but also of the overall fidelity for the state. In chapter 4, we
have learned that the phase noise originates from the random collision between atoms and
can be largely reduced by decreasing the collisional rates in a relaxed trap. However, a
relaxed trap has a major drawback that the reduced atomic density results in weaker one­
axis twisting dynamics due to the density dependence of the strength of the non­linearity
𝜒 . This can be confirmed by numerically computing 𝜒 with a time­dependent 2CGPE
simulation: as plotted in Figure 5.9, 𝜒(𝑡) for a relaxed trap is smaller than for a standard
trap. Note that due to the spin demixing­remixing dynamics, 𝜒 is time­dependent and
shows a periodic oscillation.

Therefore, relaxing the trap is beneficial when considering the phase noise, but
can have drawbacks. Different effects compete with each other, which makes it com­
plicated to evaluate the gain and loss theoretically. To find out whether the relaxed
trap helps, in the recent experiments we implemented a trap with trapping frequency of
(𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋 × (113, 301, 301) Hz and compared the results with the previously used
trap with (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋 ×(114, 714, 714) Hz. The results of spin squeezing in the two
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Figure 5.8 Demixing­remixing dynamics for different Microwave current. The measured
Ramsey fringes as a function of the interrogation time 𝑇𝑅, for different microwave current.
The microwave detuning is fixed at Δ0 = 12 MHz. The atom number is 1000 ± 100 for
all measurements in this figure. Measurements are performed in a trap with (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) =
2𝜋 × (114, 714, 714). Data taken on 25.12.2018.
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traps are given in Table 5.1. Although the measured spin noise along the squeezed direc­
tion is similar in both traps, the spin noise along the anti­squeezed quadrature reflects the
advantage of the shallow trap: 𝜁2

anti = 14.2 dB in the shallow trap, which is 2.2 dB better
than the tight trap, indicates a reduced overall noise of the quantum state. This advantage
is not that much evident when we only consider the application of the spin­squeezed state
in interferometric measurements, but it is very important when it comes to the observation
of entanglement between atoms (for example, when measuring the witness of an Einstein­
Podolsky­Rosen entanglement, as mentioned in section 6.2.2), since the spin noise along
the anti squeezed direction will also contribute to the criteria or witness.

0 10 20 30 40 50

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 5.9 Time­dependent non­linearity. The simulated time­dependent parameter 𝜒/2𝜋
as a function of the time 𝑡, for traps with (𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋 × (114, 714, 714) Hz (blue) and
(𝜔𝑥, 𝜔𝑦, 𝜔𝑧) = 2𝜋 × (113, 301, 301) Hz (red). The simulation assumes the splitting between trap
minima is 400 nm and an initial state with 500 atoms in each spin state.

Table 5.1 Comparison of the spin squeezing in two traps. Measurement of our spin­squeezed
state in two traps, characterized by the mean atom number ⟨𝑁⟩, the number squeezing along the
squeezed quadrature 𝜃0 (dB) and the anti­squeezing quadrature 𝜃0 + 𝜋/2.

Trap frequency ⟨𝑁⟩ 𝜁2
𝜃0
(dB) 𝜁2

𝜃0+𝜋/2 (dB)

2𝜋 × (114, 714, 714) Hz 870 ± 47 −8.7 ± 0.5 16.4 ± 0.4
2𝜋 × (113, 301, 301) Hz 900 ± 42 −9.1 ± 0.5 14.2 ± 0.4

5.3.3 Spin­Echo technique

During the preparation of spin squeezing, the system suffers from the technical noise
and intrinsic noise, both harm the spin squeezing. To protect the state from the uncon­
trolled shot­to­shot phase fluctuations (for example the fluctuating microwave potential
or fluctuating collisional interactions), Spin­Echo technique can be applied. The sequence
is different from the normal preparation sequence, as visualized in Figure 5.10. A 𝜋 Rabi
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pulse (spin­echo pulse) is applied in the middle of the state­dependent potential. Usually,
we turn on the state­selective potential for two periods of the splitting and recombination
𝑇2nd ≈ 2𝑇1st, and this 𝜋­pulse is applied at the first revival time 𝑇1st so that the sequence
is symmetric. The spin echo pulse effectively swaps the internal states of atoms, and
in the subsequent evolution, the phase shift caused by the collisional clock shift will be
partly compensated for. Moreover, the offset of 𝑛rel caused by asymmetric losses of the
two states is also compensated, resulting in a state closer to the equator, compared to a
state that is evolved without the spin echo pulse. With this protocol, we observe a spin­
squeezed state similar to the typical state prepared without the echo pulse, but less noisy
along the anti­squeezed direction by around 1 dB, which confirms that with the spin­echo
pulse the state preparation is less sensitive to phase fluctuations.

Figure 5.10 Sequence to prepare a spin­squeezed state with spin echo technique. The figure
shows Rabi pulses (red) and on­chip microwave pulses (blue). The duration of the Rabi pulses are
exaggerated for visualization, in fact it is on the order of a few hundreds of microseconds, much
shorter than 𝑇𝑠.

5.3.4 Atom number stability

There are several other improvements that contribute to the better spin squeezing. The
most important one is that we have improved the stability of the atom number, by updating
the optics system of the set up and implementing the stabilization of laser intensity of
the cooling light. This way we achieved an atom number more stable than before with
Δ𝑁 = 40. The shot­to­shot noise due to the atom number dependent phase fluctuation is
thus largely reduced.

Experimentally, improvement are also made by implementing a longer imaging pulse
of 150 μs, three times longer than before. The detection noise, contributed mainly by the
photon shot noise, is then reduced from 5 × 10−3 to 3 × 10−3.

5.3.5 Summary

To compare the improved spin­squeezing with the previous experiments, we summa­
rize the characterization of spin­squeezed states taken on different days in Table 5.2 before
and after changes were implemented to the experiment. Each measurement is taken with
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more than 100 shots per measurement, which provides enough statistics to determine the
variance for a distribution. We summarize the mean atom number ⟨𝑁⟩, the contrast 𝐶 ,
and the squeezing parameters 𝜁2 and 𝜉2. Due to the different chosen parameters, the op­
timal angle 𝜃0 are different and determined independently. Listed uncertainties are the fit
uncertainty for 𝐶 , statistical uncertainty for 𝜁2 and 𝜉2.

With the new microwave parameters and other improvements mentioned above, we
have achieved a best spin squeezed state measured with 𝜉2 = −9.8(5) dB and reproducibly
measure spin squeezing at about −8 dB. The significantly improved and more reliable
spin squeezing in the system finally allow us to perform a Ramsey interferometer beyond
SQL, as discussed in next section, and also lead us to further experiments measuring the
entanglement between two spatially separated BECs, as mentioned in the outlook part,
section 6.2.2.

Table 5.2 Comparison of the spin­squeezed state on different times. Measurement of our
spin­squeezed state on different days, characterized by the mean atom number ⟨𝑁⟩, the contrast
𝐶 and the squeezing factor 𝜉2. The settings listed are the microwave current 𝐼mw, detuning Δ0,
and if spin echo technique is applied. The dataset with mark was performed previously by my
colleagues.

Dataset ⟨𝑁⟩ 𝐶 (%) 𝜁2 (dB) 𝜉2 (dB) (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)/2𝜋 setting

16­12­2011* 1429 98.4(6) −4.8(5) −4.3(4) (114, 714, 714) 15 mA, 12 MHz, no spin echo

02­10­2015* 580 97.1(8) −7.0(4) −6.8(3) (114, 714, 714) 21 mA, 12 MHz, no spin echo

01­01­2019 940 95.9(8) −8.3(4) −7.5(3) (114, 714, 714) 24.4 mA, 12 MHz, no spin echo

03­01­2019 920 97.8(6) −8.8(4) −7.9(4) (114, 714, 714) 30 mA, 12 MHz, no spin echo

04­03­2020 840 97.1(3) −10.4(5) −9.8(5) (113, 301, 301) 30 mA, 12 MHz, with spin echo

18­03­2020 920 96.1(3) −9.0(5) −8.2(5) (113, 301, 301) 30 mA, 10 MHz, no spin echo

12­11­2020 900 96.5(3) −9.1(5) −8.4(5) (113, 301, 301) 30 mA, 10 MHz, with spin echo

5.4 Non­classical interferometer with a spin­sqeezed state

With the improved spin squeezing, we are able to implement the non­classical inter­
ferometer with a phase precision beyond SQL. The experimental sequence contain several
stages: first we prepare the spin­squeezed state as previously described; after the prepa­
ration of spin­squeezed state, it will be rotated by an angle around its center, to align the
squeezed quadrature perpendicular with the equator, so that the state is most insensitive
to the phase noises; then we wait for an interrogation time 𝑇𝑅 before the final 𝜋/2 Rabi
pulse is applied to read out the accumulated phase. In order to investigate the temporal
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behavior of the precision, we perform such sequence with varying 𝑇𝑅 and record the phase
sensitivity. Figure. 5.11 shows the result of such a non­classical interferometer and the
result of a classical interferometer performed with a coherent spin state as a comparison.

● Coherent spin state

● Spin squeezed state

1μs 10μs 100μs 1ms 10ms 100ms 1s
0.1

0.5

1

5

10

Ramsey Time TR

ξ2

standard quantum limit

-7dB below the SQL

Figure 5.11 Phase uncertainty of non­classical and classical interferometer. The measured
phase uncertainty (Wineland spin squeezing parameter) as a function of the interrogation time
𝑇𝑅, for interferometers with a spin­squeezed state (green data points) and coherent spin state (red
data points) as input. The trapping frequency is 2𝜋 × (114, 714, 714) Hz, atom number are all
1000 ± 100. Data taken on 21.01.2019.

At a short time, the advantage of the non­classical state is evident, as one can see from
theWineland squeezing parameter, showing an interferometric sensitivity 7dB beyond the
SQL. Compared with previous experiment performed in this set up in which a sensitivity
of 4.0 dB beyond SQL [19] , it is significantly improved. The Wineland squeezing param­
eter of the classical interferometer is at 1, as one would expect. When the interrogation
time gets longer, the effect of decoherence emerges, and the phase sensitivity gradually
gets worse. The coherence time of a spin­squeezed state is at the same magnitude with
the coherent spin state, at several tens of milliseconds. This result again confirms that
the previously discussed fundamental limit of the phase coherence poses a limit of phase
sensitivity on both of the classical and non­classical state interferometers.
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CHAPTER 6 CONCLUSIONS AND OUTLOOKS

6.1 Conclusions

In this thesis, we have investigated the internal state interferometer based on ultracold
87Rb atoms from two aspects: the phase coherence property and the spin­squeezing in the
system.

In the first series of experiments, we measure precisely the growth of the phase noise
in a trapped two­component BEC and identify the main decoherence sources. We demon­
strate that the coherence is limited by random collisional phase shifts due to the stochastic
nature of atom loss. A theoretical model is built to describe this decoherence mechanism
and numerical simulation is performed based on a Monte­Carlo wave function method.
The simulated result shows a good agreement with the experiment. This is the first ex­
perimental observation of decoherence caused by homogeneous effects arising within the
many­body system itself. Moreover, it poses a fundamental limit since all neutral atomic
gases have particle losses in common (in particular, three­body collisions are unavoid­
able due to the chemical metastability of BECs). In addition, the good agreement be­
tween experimental data and the 2CGPE simulation also allows us to extract the two­body
loss constants. Our findings are relevant for experiments on many­particle entanglement
and quantum metrology [7] as well as trapped­atom clocks and interferometers where the
atomic interactions play important roles [26] .

In the second series of experiments, we explore and improve the spin squeezing in our
system. Several strategies, including optimizing the configurations of microwave state­
dependent potential, relaxing the static trapping potential and implementing the spin echo
pulse, allow us to achieve a spin­squeezed state with Wineland spin­squeezing parameter
𝜉2 = −9.8(5) dB, significantly improved compared to previous results in our experiment.
The improvement of the spin squeezing finally allows us to demonstrate an entanglement­
enhanced atom interferometry beyond the SQL by 7 dB. And we show that the fundamen­
tal limit of the phase coherence also exits for the non­classical interferometer. The im­
provement of spin squeezing is not only important for improving measurement precision
of internal interferometry, but also provide the potential of exploring many­body entan­
glements such as the Einstein­Podolsky­Rosen (EPR) entanglement in ultracold atomic
ensembles.
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6.2 Outlook

In this section, we discuss further experiments that could be performed with our ex­
perimental setup in the near future. We also briefly present a few initial results of current
experimental progress, which is carried out by our team at the time of this writing, but not
completed or published yet.

6.2.1 Control of the phase coherence with state­dependent potential

Following the study of the phase coherence in the two­component BEC in chapter 4,
naturally one will think about eliminating the decoherence caused by the atom number
dependent rotation term ̃𝜒𝑁̂ ̂𝑆𝑧 in the Hamiltonian Eq. (2.27). One possible way to realize
this is to minimize the parameter ̃𝜒 by engineering the intra­species atomic interactions
with state­dependent traps. It is worth mentioning that, the state­dependent trap used
in this scenario is slightly different form the one we use to engineer 𝜒 , as discussed in
section 5.1.1, where the trapping potentials for two states are split in order to increase
𝜒 . Here, in order to minimize ̃𝜒 , one need to relax the trapping potential for state |1⟩
while keeping the trap frequency for |2⟩ fixed, thus to modulate the atomic density in
only one internal states. In this way, the intra­species collision energy in state |1⟩ can be
artificially tuned to compensate that of state |2⟩, so that ̃𝜒 is cancelled. A schematic of
the state­dependent trap in this scenario is shown in Figure 6.1.

One problem we meet is that, the one­axis twisting term will also be amplified since
the wave function overlap between two internal states is reduced, although not as dramat­
ically as in chapter 5. In fact, in a test experiment, we have observed an increased phase
noise due to the phase diffusion along the anti­squeezed quadrature, with a quantified
spin squeezing with 𝜁2 ≈ 3 dB. Therefore further investigations are needed before the
realization of this proposal.

The ability to tune the interaction energies will allow us to minimize ̃𝜒 so that the
quantum state is protected from the decoherence induced by two­body losses, as proposed
in [131] . In this way, we can further mitigate the dominant term of the phase noise and
hopefully can reach the fundamental bound of precision limit in quantum metrology as
theoretically described in [129­130] .

Interestingly, this technique can also be helpful to create highly entangled states be­
yond spin squeezed states, or even towards Schrödinger cat states, which are never ob­
served in our experiment before. The highly entangled states are fragile against the atom
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x

V|2〉V|1〉

Ψ2(r)

Ψ1(r)

Figure 6.1 State­dependent trap to tune ̃𝜒 . We implement the near­field microwave gradient
so that the trap frequency of state |2⟩ is fixed while trap for state |1⟩ is relaxed. This way the self
interactions of the two states can be artificially tuned and balanced.

losses due to the phase dependence of atom number, and will benefit from minimizing the
density­dependent term ̃𝜒 ̂𝑆𝑧 in the full Hamiltonian Eq. (2.27). Therefore the ability to
tune the parameter ̃𝜒 is probably a critical step towards Schrödinger cat states.

6.2.2 EPR entanglement between two spatially seperated BECs

An ongoing work of our experiment is to demonstrate entanglement between two spa­
tially separated BECs. In our group, results obtained so far include spin­squeezing and
many­particle entanglement [29] , the observation of Bell correlations in a BEC [109] , and
entanglement between different spatial regions of the same cloud [104] . However, these
entanglement measurements only concerned atoms in a single cloud, while entanglement
between two spatially separated BECs that are individually addressable has not yet been
observed. Such a system offers the possibility to perform local manipulations and mea­
surements on each BEC and to study the nonlocal quantum correlations between them,
such as the Einstein­Podolsky­Rosen (EPR) steering [27] .

If two spin systems A and B are entangled strongly enough, the measurement out­
come of A can be used to predict the measurement result of a non­commuting observable
in system B. Therefore for system B, an observer predict the outcome of two orthogonal,
non­commuting spin measurements, with a product of the inferred spin variances below
the Heisenberg uncertainty bound. EPR steering requires entanglement, whereas entan­
glement is not sufficient for EPR steering. The EPR steering criterion takes the form [105]

Ε𝐴→𝐵
EPR =

4Var(𝑔𝑧 ̂𝑆𝐴
𝑧 + ̂𝑆𝐵

𝑧 )Var(𝑔𝑦 ̂𝑆𝐴
𝑦 + ̂𝑆𝐵

𝑦 )
|⟨ ̂𝑆𝐵

𝑥 ⟩|2
< 1, (6.1)

Ε𝐵→𝐴
EPR =

4Var(𝑔𝑧 ̂𝑆𝐵
𝑧 + ̂𝑆𝐴

𝑧 )Var(𝑔𝑦 ̂𝑆𝐵
𝑦 + ̂𝑆𝐴

𝑦 )
|⟨ ̂𝑆𝐴

𝑥 ⟩|2
< 1, (6.2)
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where ̂𝑆𝐴
𝑖 (𝑖 = 𝑥, 𝑦, 𝑧) are collective spin operators of system 𝐴, and similar for ̂𝑆𝐵

𝑖 ,
𝑔 is a factor that can be manually chosen and optimized. EPR steering is relevant for
quantummetrology because it allows one to perform collective spinmeasurements for two
orthogonal, non­commuting components with a precision beyond the standard quantum
limit at the same time. It can thus be used to sense small spin rotations with high precision.

EPR entanglement between two BECs can be generated by the sequence described
in the following. We first create strong entanglement between atoms in one BEC, using
the same technique as we have present in this thesis (discussed before in section 5.1.1).
Now that we have improved the spin squeezing to a better level, the creation of strong
entanglement is compatible with experimental capabilities. After the preparation of en­
tanglement, we need to coherently split the BEC into two. One strategy is to drive Rabi
transitions via microwave field so that atoms in state |𝐹 = 1, 𝑚𝐹 = −1⟩ is coupled to
state |𝐹 = 2, 𝑚𝐹 = 0⟩ and atoms in state |𝐹 = 2, 𝑚𝐹 = 1⟩ is coupled to the state
|𝐹 = 1, 𝑚𝐹 = 0⟩. Experimentally, microwave fields at the two needed transition fre­
quencies can be applied at the same time to implement such an out­coupling procedure.
The two new internal states are all magnetic untrappable states, the atoms will start falling
due to the gravity immediately after being out­coupled. We denote the new cloud which
is falling down as system 𝐵, and the states |2, 0⟩ and |1, 0⟩ as the spin component |1⟩𝐵

and |2⟩𝐵 of the new BEC system 𝐵. In this way, two independent BECs 𝐴 and 𝐵 are
created, and both are prepared in an equal superposition of spin up and spin down.

Apart from pursuing the out­coupling in the experiment, a few additional ingredients
are needed to measure entanglement between two BECs. One challenge is to individu­
ally address the two BECs with microwave and radio­frequency fields in order to perform
high­fidelity coherent rotations of collective spin in one system without perturbing the
other system, which is critical for performing measurements of different combinations of
spin quadratures. In order to find ΕEPR < 1, the orientation of the spin quadratures needs
to be carefully calibrated, with the required angular resolution of spin rotations on the
two BECs on the order of a few degrees. Besides, the atoms start dropping immediately
after they are out coupled to the system B, which means the individual rotations of B can
only be performed during the TOF. The spatial inhomogeneity of the microwave­field will
therefore cause a spatial gradient in Rabi transition frequency, and makes the individual
rotation of system 𝐵 less efficient. This effect can be minimized by applying large mi­
crowave power to gain a quicker Rabi frequency. For the readout, state­selective imaging
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of both states independently is straightforward to implement. A potential problem is that,
in order to measure the EPR criteria for a large enough splitting, the duration of time­flight
should be long enough, which in turn requires a large view range of the detection CCD.
This problem can be tackled by installing a camera with a smaller magnification.

Our current work in this direction indicates that we can indeed realize entanglement
and the stronger EPR steering between the two Bose­Einstein condensates. This real­
izes the famous gedanken experiment in a massive many body system. This work is still
ongoing at the time of this writing and will be published in the near future elsewhere.
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APPENDIX A TYPICAL TRAPS ON ATOM CHIP

Depending on the current configurations we can generate different types of magnetic
traps based on the atom chip [3] . Here we discuss typical magnetic trapping potentials that
are used in our experiment.

A simplest wire trap can be created by combining an on­chipwire structure that carries
DC current and a homogeneous bias field perpendicular to the wire. For example, a wire
along 𝑥­direction carrying current 𝐼𝑥 creates amagnetic field with concentric circular field
lines whose centres lie on the wire. If an bias field 𝐵𝑦 is applied along 𝑦­direction, fields
will cancel at a distance from the wire,

𝑧0 = 𝜇0𝐼
2𝜋𝐵𝑦

,

therefore form a two­dimensional quadrupole confinement in the 𝑦𝑧 plane. Note that in
such a quadrupole trap atoms will suffer from the Majorana spin flips since the magnetic
field at trap center 𝐵0 = 0. The problem of the Majorana spin flips can be solved by
removing the zero field at trap center with an additional homogeneous bias field 𝐵𝑥 along
𝑥­direction. The resulted trap is called an Ioffe­Pritchard trap, providing two­dimensional
quadratic confinement in the 𝑦𝑧­plane, with 𝐵0 ≠ 0 at trap center.

To aim for a three­dimensional harmonic trap, we add another current along 𝑦 di­
rection, crossing the existing straight wire perpendicularly. The generated magnetic field
will modulate the field on axis 𝑧 = 𝑧0 and provide an axial confinement along 𝑥­direction.
Now we have a three­dimensional trap, which is generally calledDimple trap. Such Dim­
ple traps can be describe as a harmonic potential

𝑉 = 𝑚(𝜔2
𝑥𝑥2 + 𝜔2

𝑦𝑦2 + 𝜔2
𝑧𝑧2)/2.

The new current along 𝑦­axis can be easily obtained by either bending the wire ends or
adding additional crossing wires. In our experiment, the Dimple trap is formed by three
central wires of the five­wire structure on the science chip and a crossing wire (named
‘Long­Ioffe’) in the lower gold layer. What is special about the three central wires is
that, besides the static field, they constitutes a microwave co­planar wave guide with mi­
crowave connectors soldered onto the base chip (as shown in Figure 3.2). By using a bias
tee to apply DC currents as well as the microwave current to these three wires, this par­
ticular tool provides the capability to create state­dependent potential (see in section 3.3).
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Three­dimensional traps can also be created with “Z”­shape structures on chip. In this
case the transverse confinement is provided by the central part of the “Z” wire in com­
bination with the bias field, while the axial confinement comes from the bent wire parts.
There are two Z­shape wire used in the experiment, which we refer to as a “IoffeZ” and
“LongIoffe­Z” depending on the length for distinguishment.

let us now discuss the specific magnetic traps used over the experimental sequence.
Their name and parameters are summarized in Table A.1, including the position of the
trap minimum, the trap frequency, the magnetic field 𝐵0 at trap center, the geometrically
mean of the trap frequency ℏ𝜔ho, the critical temperature in the trap 𝑘𝐵𝑇 0

𝑐 , the chemical
potential 𝜇𝑐 , and the trap depth, in order to give an intuitive picture of how the atoms are
transferred step by step during the sequence. Note that the trap minimum is with respect
to the origin of coordinate system. These parameters are all from simulation rather than
the experiment. The simulation is based on an atom chip simulation kit developed with
MATLAB, see in reference [3] , and can be used to simulate all the chip­related traps.

Table A.1 Parameters of the traps

trap name (𝑥, 𝑦, 𝑧)(μ𝑚) (𝑓𝑥, 𝑓𝑦, 𝑓𝑧)(kHz) |𝐵0|(G) 𝜔ho(Hz) 𝑘B𝑇 0
c (kHz) 𝜇𝑐(kHz) depth(MHz)

Ioffe­1 [−1125, 0, 454] [0.02, 0.06, 0.08] 9.6 42.3 2.66 1.12 134

Ioffe­2 [−1125, 0, 59] [0.013, 4.4, 4.45] 2.3 633.8 27.6 16 30

Ioffe­3 [−1125, 0, 48] [0.006, 1.8, 1.8] 2.1 271.6 11.8 5.87 9.5

LongIoffe­4 [−775, 0.5, 46] [0.002, 1.87, 1.87] 2.03 191.2 8.3 3.67 6.4

Dimple­5 [−43, −4, 51] [0.49, 2.26, 2.35] 2.26 1365.7 22 12.3 6.2

Dimple­6 [−5, −2, 45] [0.2, 1.75, 1.78] 2.59 849 10.1 4.8 0.6

Dimple­7 [12, −1.8, 41] [0.11, 0.71, 0.71] 3.229 387.3 3.63 1.42 0.1

Dimple­8 [12, −1.8, 41] [0.11, 0.30, 0.30] 3.229 217.1 2.1 0.73

“Ioffe” traps build a bridge between the very dilute optical molasses and the dense
cloud in later tight magnetic traps. “Ioffe” traps are generated by a current on a Z­shaped
wire (named Ioffe­Z) which lies on the lower layer of the science chip. The quadratic
confinement in transverse direction comes from the combination of the central part of the
wire, carrying 𝐼Ioffe­Z and a static field 𝐵𝑦. Axial confinement is provided by the bent
parts of Ioffe­Z wire. Similar to Ioffe traps, the “LongIoffe” trap is generated by another
longer Z­shaped wire (Long Ioffe­Z wire).

“Dimple” traps are the most important traps in our experiment, since they are where
the evaporative cooling and main experiments takes place. Dimple­5 is where the first
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RF ramp takes place, with a trap depth of Hz and an exponential RF ramp from 14 →
2.2 MHz during 2 s. We then transfer atoms to the ‘Dimple­6’ to perform the second RF
ramp from 2.2 → 1.84 MHz during 1 s. Here we already have a BEC but not at cold as
desired. To further cool down the atoms, we transfer the BEC to ‘Dimple­7’ and apply a
RF pulse with a frequency at approximately 2.27 MHz, which can be tuned to determine
the temperature and atom number in the final BEC. It is particularly interesting to compare
the scales of energy in the Dimple traps where the evaporative cooling takes place. In
Table A.2 we compare the following parameters in the unit of frequency: the starting
frequency and stop frequency of the RF ramp, the trap frequency, the geometrically mean
of the trap frequency ℏ𝜔ho, the critical temperature in unit of 𝑘𝐻𝑧 and nanoKelvin, and
the trap depth.

Table A.2 RF ramps and parameters of relevant traps during the evaporative cooling

RF Ramp happen in trap 𝜔ho (Hz) 𝑘𝐵𝑇 0
𝑐 (kHz) 𝑇 0

𝑐 (nK) trap depth (MHz)

RF­1: 14 MHz → 2.2 MHz Dimple­5 1365.7 22 1050 6.2

RF­2: 2.2 MHz → 1.84 MHz Dimple­6 849 10.1 500 0.63

RF­3: 2.27 MHz Dimple­7 387.3 3.63 174 0.1

Dimple­7 is also the final trap where the main science sequence takes place. Trans­
verse confinement comes from “Long­Ioffe” carrying 𝐼𝐿 = 180 mA in x­direction plus
a static field 𝐵𝑦 = 7.2 G. Longitudinal confinement is provided by the “Dimple” wires
carrying 𝐼D,left = 2 mA, 𝐼D,signal = 2 mA, 𝐼D,right = −2 mA each. The sign represent the
direction of the current and a minus sign means the current is sent along −𝑦direction. An
additional bias field 𝐵𝑥 = 3.2 Galong X direction is added to remove the zero field at trap
center. Under these parameters, the final trap is an elongated cigar­shaped trap with trap
frequencies 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (114, 714, 714) Hz. It gives us the convenience to treat the
condensate as a three­dimensional BEC in a cylindrical coordinates, as done in our GPE
simulations. The purpose of asymmetry in the 𝐼D currents is to locate the trap on one side
of the co­planar wave guide, in this way the atoms experience a gradient when microwave
currents are sent through the central wire.

In our experiments, it is interesting to relax the final trap to the achieve weaker in­
teractions. Therefore we have another experiment trap Dimple­8, created by the same
structures with 𝐼𝐿 = 80 mA, 𝐵𝑦 = 3.2 G and 𝐼D,left = 2 mA, 𝐼D,signal = 2 mA,
𝐼D,right = −2 mA. The trap frequency is 𝜔(𝑥,𝑦,𝑧) = 2𝜋 × (113, 301, 301) Hz. Note that,
the Long­Ioffe current 𝐼𝐿 and the bias field 𝐵𝑦 are decreased simultaneously, in order to
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keep the ratio of the two fixed (𝐵𝑦/𝐼𝐿 = 40 G/A, same as that in Dimple­7), so that the
distance between the trap center and the chip does not change.
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In many­body systems, entanglement can reflected by criteria such as entanglement
depth. Entanglement depth describes the smallest number of particles in a partition of
the system, in which each atom can be proven to be entangled with one another. It indi­
cates the separability of the state with respect to partitions, although it’s still controversial
whether it makes statement about the strength of entanglement. In our experiment, the
spin squeezing indicates the presence of entanglement between atoms. Usually we quan­
tify the depth of entanglement based on the Wineland squeezing parameter 𝜉2, following
the strategy Sørensen and Mølmer developed in Ref. [137].

We assume that in the system there exits a partition containing 𝑘 entangled spins.
Sørensen and Mølmer found that there is a minimum value that 𝜉2 that can be achieved,
and therefore, the observation of a 𝜉2 below this minimum value indicates that there must
be another partition in the system that containing more than 𝑘 spins that are entangled.
For convenience we define the frame such that the state is oriented with the optimized
squeezed angle is along 𝑧 direction. The problem is to derive the entanglement depth 𝑘
of the state, knowing experimentally Var [ ̂𝑆𝑧] and ⟨ ̂𝑆𝑥⟩, both experimentally measured
quantities.

The strategy, following that paper, is the following. For integer spins 𝑆 = 𝑘/2 (with
even 𝑘), the state minimizing Var [𝑆𝑧] for a given ⟨𝑆𝑥⟩ has vanishing ⟨𝑆𝑦⟩ and ⟨𝑆𝑧⟩, and
therefore is also minimizing the second moment ⟨𝑆2

𝑧 ⟩. For this reason, this state can be
found by minimizing

𝜇⟨𝑆𝑥⟩ + ⟨𝑆2
𝑧 ⟩ , (B.1)

where 𝜇 is the Lagrange multiplier constraining the value of ⟨𝑆𝑥⟩. Numerically the ap­
proach consists in diagonalizing the operator 𝜇𝑆𝑥 + 𝑆2

𝑧 for different 𝜇’s. The resulting
eigenvector associated to the smallest eigenvalue is the state of interest, which is used to
evaluate the mean spin length ⟨𝑆𝑥⟩ and the corresponding bound on the second moment
⟨𝑆2

𝑧 ⟩. If the experimentally determined spin variance is smaller than this bound, then there
are more than 𝑘 entangled particles in the system, and the procedure can be iterated with
the next integer spins until the measured variance is above the bound. The case of half­
integer spins (odd 𝑘) is more subtle, since the state minimizing ⟨𝑆2

𝑧 ⟩ is not minimizing
Var [𝑆𝑧], and we will not discuss it here.
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In Figure 5.5, the conves lines are obtained as described , by plotting the minimum
variance Var [𝑆𝑧] attainable for different 𝑘 and ⟨𝑆𝑥⟩. Note that for a given point in the plot
there is a minimum 𝑆 = 𝑘/2 for which it is allowed. This provides a graphical method to
find the entanglement depth of a many­body system, from given experimental measured
𝜉2.
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