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Abstract

According to quantum mechanics, the results of measurements performed on different
systems can show correlations that are stronger than what is classically possible. Three
important types of nonclassical correlations that have been identified are entanglement
(nonseparability), Einstein-Podolsky-Rosen correlations (steering) and Bell correlations
(nonlocality). Apart from shedding light on the foundations of quantum theory and on
how nature behaves, they represent different resources for applications that are inacces-
sible by classical means. While such correlations have been extensively investigated
in systems composed of a few particles, their role in many-body systems is much less
explored.

In this thesis I present both experimental and theoretical results on quantum corre-
lations in many-body systems. Specifically, I report experiments where we prepare a
Bose-Einstein condensate of approximately 600 Rubidium-87 atoms on an atom chip
in a spin squeezed state, and analyze the correlations between the constituent atoms.
First, I show state-of-the-art detection of entanglement, and of its depth, using collective
measurements. For a state with a Wineland spin squeezing parameter of �6.8 dB we
conclude an entanglement depth of ⇡ 56 particles. Then, I describe the first detection of
Bell correlations in a many-body system. This result was enabled by deriving a witness
for Bell correlations which involves only collective measurements on the atomic ensem-
ble. Moreover, we present a sufficient criterion to close the statistics loop-hole, derive
additional multi-partite inequalities and witnesses detecting Bell correlations in a larger
class of states, and report ways to quantify their depth. Applying these to our experimen-
tal data, we conclude the presence of at least 6-partite Bell correlations. As a new tool,
we provide a method to detect Bell correlations in experimental data by running a com-
puter algorithm consisting in a hierarchy of semi-definite programs bounding the set of
classical correlations. Finally, I present the first observation of Einstein-Podolsky-Rosen
steering between spatially separated regions in an ensemble of massive particles. This
result was obtained by high resolution imaging of an expanded spin-squeezed Bose-
Einstein condensate in order to measure spin correlations between spatially separated
parts.

Our experimental and theoretical studies of quantum correlations in many-body sys-
tems are an important step towards exploring the predictions of quantum mechanics in
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macroscopic systems, and could enable a variety of quantum information tasks. Our ex-
periments show that Bose-Einstein condensates on atom chips are an ideal platform for
the implementation and investigation of such many-body quantum correlations.
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1
Introduction

Nonclassical correlations between the constituent particles of a many-body system are
particularly interesting for both fundamental research and practical applications. On the
one hand they allow to investigate the validity range of quantum mechanics, by testing its
predictions in ever larger systems, while, on the other hand, they are a resource allowing
a system to perform better than with classical correlations in certain tasks.

Different classes of nonclassical correlations have been identified [1], namely en-
tanglement (or non-separability) [2, 3], Einstein-Podolsky-Rosen (EPR) correlations (or
steering) [4], and Bell (or nonlocal) correlations [5]. Each of these is a resource for
specific tasks such as parameter estimation [6], quantum teleportation [7], secure com-
munication [8], and certified randomness generation [9]. Moreover, their detection put
strong constraints on the possible physical models describing nature.

For systems composed of a few (usually two) parties, nonclassical correlations have
been extensively investigated [2, 4, 5]. In particular, in the case of individually address-
able massive particles, EPR correlations were observed between two atoms [10], and
Bell correlations in up to fourteen ions [11]. However, preparing and observing such
correlations in many-body systems is challenging. Some of the difficulties lie in the
fragility of such correlations to uncontrolled noise, in the complexity of manipulating
many-body quantum systems, and in the need of addressing and detecting their con-
stituent particles individually.

In experiments with cold and ultracold atomic ensembles, a variety of spin-squeezed
and other nonclassical states are routinely prepared using different schemes. For a com-
prehensive list of such states and techniques we refer the reader to the recent review
Ref. [12]. The main techniques adopted in the field rely on collisional interactions in
Bose-Einstein condensates (BECs), on the backaction of quantum non-demolition mea-
surements (either in free space or in a cavity), or on the interaction between atoms me-
diated by a cavity mode. These allow the preparation of spin squeezed/over-squeezed
states, Dicke states and small Schrödinger cat states.

Nonclassical states of atomic ensembles find applications in e.g. quantum metrology
[6,13], where they allow for interferometry with a precision beyond classical limits [14–
17]. Besides their usefulness for applications, it is of fundamental interest to characterize
the correlations between the constituent atoms.
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1. Introduction

The usual strategies to study correlations in few-body systems require to control and
perform measurements on the individual particles. In many-body systems, such as en-
sembles with hundreds of atoms, this is impossible to be achieved in practice. Moreover,
in the special case of Bose-Einstein condensates (BECs) this is even impossible in prin-
ciple: the atoms in a BEC are identical particles that occupy the same spatial mode. The
limited access to the particles of a many-body system can be circumvented by investigat-
ing collective observables, shifting the difficulty from a technical level to a conceptual
one: it requires to connect global properties of a system to the underlying properties of
its constituents [2, 3, 18].

An extensive theoretical research resulted in a number of practical witnesses to re-
veal the presence of nonclassical correlations with collective measurements on the entire
ensemble [2, 3]. Following this approach, experimental studies confirmed the presence
of entanglement [14, 19] and of EPR correlations [20] in BECs. However, collective
witnesses suited to detect quantum correlations stronger than these, namely Bell correla-
tions, were lacking. Only recently [21], further theoretical investigations provided such
tools, which we developed further and tested experimentally in our BECs. In this thesis,
we will show experimentally that also Bell correlations can be prepared in a many-body
system and witnessed with collective observables.

On the one hand, observing correlations with collective measurements has shown to
be extremely practical for large systems, but, on the other hand, it can pose additional
conceptual challenges. In fact, already the idea of correlation implicitly assumes that
there are distinct components that are individually resolved. Because of this, the concept
of entanglement in ensembles of indistinguishable particles has been discussed contro-
versially, and its usefulness for quantum technologies other than metrology has been
questioned (for a brief review of the debate, see [22]). In this thesis, we will show ex-
perimentally how correlations in a system of indistinguishable particles can be extracted
into spatially separated regions and used to demonstrate EPR steering.
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This thesis

In this thesis I present the experimental investigation of quantum correlations in a many-
body system. Specifically, we use Bose-Einstein condensates (BECs) of approximately
600 Rubidium-87 atoms, prepared and manipulated on an atom chip [23]. We use mi-
crowave near-field gradients, generated with an on-chip coplanar waveguide, to control
the collisions between the atoms [19,24]. This nonlinear interaction allows us to prepare
spin-squeezed states [25], where particles share correlations which we want to charac-
terize. By taking high-resolution images of the atomic density distribution, we are able
to access collective or local observables, whose measurement results show nonclassical
statistics. In this way, we present the first observation of Bell correlations and of EPR-
steering in a many-body system. These results have been published in references [26,27].

Moreover, in this thesis I also present further theoretical developments in the study
of Bell correlations in many-body systems. In particular, we derived a new method,
based on a hierarchy of semi-definite programs, to prove that the observed measurement
statistics arise from Bell-correlated particles and to derive new multi-partite Bell inequal-
ities. Then, we investigate the statistics loop-hole, originating from the necessarily finite
number of experimental measurments, which might lead to an artificial violation of some
inequality. Finally, to provide a characterization for the observed Bell correlations, we
developed a strategy to quantify their depth by using collective measurements. These
results have been published in references [28–30].

Outline

Chapter 2 gives a general introduction to BECs, and it presents the theoretical models
used for their description. Chapter 3 discusses the experimental setup we use to prepare
BECs. Chapter 4 gives a theoretical description of entanglement, EPR-steering and Bell
correlations, introducing the criteria suited to their detection. These are then used in
the experiments presented in chapter 5, where we investigate the correlations among the
atoms of spin-squeezed BECs. Finally, chapter 6 summarizes the conclusions of this
thesis, and it gives an outlook on future ideas and research directions.
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1. Introduction
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2
Bose-Einstein condensates: Theory

In this chapter we briefly introduce the concept of Bose-Einstein condensates and give
an overview of theoretical models describing their dynamics. Moreover, we explain
how particle losses and decoherence limit the practical applications of such systems.
Furthermore, we present the derivation of theoretical models describing the excitation
spectrum of BECs at both zero and finite temperatures. For further theoretical details
excellent references are [31, 32], while an experimental perspective of the field is given
in [33].

2.1 Bose-Einstein condensation

In 1924-25 Bose and Einstein [34, 35] realized that, when cooled to very low temper-
atures, an ideal gas of non-interacting bosons can undergo a peculiar phase transition,
later called Bose-Einstein condensation. The resulting state of matter is characterized by
a macroscopic population of the lowest energy state of the system, and it is a genuinely
quantum phenomenon arising due to the indistinguishability of the bosonic particles.

For decades Bose-Einstein condensates (BECs) were just a curious theoretical re-
sult, without any experimental evidence. Moreover, as the original idea involved non-
interacting bosons, it was never really clear what role could have played interactions
between the particles, almost always present in nature. For example, intuition would tell
us that at low temperatures atoms just form a solid.

After many years of attempts, involving different systems and techniques, the first
experimental realizations of BECs in diluite gases were observed in 1995 [36–38]. Since
then, a vast number of further theoretical and experimental investigations appeared, con-
stituting an entirely new field of physics.

In our experiments we use BECs as a tool. Important features making such many-
body quantum systems especially suited for our investigations are the exceptional coher-
ence properties, and the practical state manipulation. Moreover, the fact that all atoms
in a BEC occupy the same spatial quantum state results in a magnification of quantum
phenomena to the macroscopic scale, making them easier to observe. Also for these
reasons, BECs found numerous applications in the fields of e.g. quantum metrology and
quantum information.
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2. Bose-Einstein condensates: Theory

2.1.1 Elementary concepts

A first, intuitive, understanding of Bose-Einstein condensation can be obtained from the
following simple argument [33]. According to quantum mechanics, particles can be
described by wavepackets, which have a spatial extent on the order of the thermal de
Broglie wavelength �dB = (2⇡~2/mk

B

T )1/2, where T is the temperature and m the
mass of the particle. This wavelength can be seen as a position uncertainty, and its de-
pendence on temperature is related to the uncertainty relation. At low temperatures the
momentum uncertainty decreases, which requires �dB to increase, while at high temper-
atures the converse applies.

Whether particles are indistinguishable or not is irrelevant at high temperatures, be-
cause their small spatial extent allows to distinguish them according to their position.
On the contrary, if temperature is low enough �dB becomes comparable to the separation
among the particles, and the individual wavepackets start to overlap. Particle indistin-
guishability plays now an important role. In the case of indistinguishable bosons a phase
transition occurs, called Bose-Einstein condensation, characterized by a significant frac-
tion of the particles occupying the same spatial quantum state. Decreasing the temper-
ature even further increases this fraction, in the ideal case until all particles occupy the
same state.

Even if this explanation is rather qualitative, it gives an intuitive understanding of
Bose-Einstein condensation. A more refined description can be formulated from simple
combinatorial arguments, which highlight the crucial role of bosonic statistics [32].

Consider a quantum system characterized by p energy levels, among which N parti-
cles are distributed. In the special case where there are N = p distinguishable particles,
there are N ! configurations with one particle per state, but only N configurations with
all the particles in the same state. Therefore, even for small N , it is extremely unlikely
to find a large population of any state. However, if particles are indistinguishable, there
is only 1 configuration with one particle per state, but still N configurations where all
particles are in the same state. This shows how for indistinguishable particles (that are
all allowed to occupy the same state, such as bosons in quantum mechanics), there is a
much higher probability of finding a large population of one of the states.

In practical situations, observing a large population in a single state is hindered by
the fact that the number of accessible states is typically p � N . Intuitively, we can
understand that the probability for such configurations to occur is negligible compared
to the one where there is one particle per state, independently of whether the particles
are indistinguishable or not. To enter in a regime where p . N , one needs to limit
the number of states accessible by the particles, which is achieved experimentally by
lowering the temperature T of the system.

It is important to emphasize that Bose-Einstein condensation is due to quantum
statistics, and not to the interaction between the particles as for other phase transitions.
In fact, condensation can occur for non-interacting particles, and interactions with finite
strength result only in a shift of the BEC transition temperature.
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2.1 Bose-Einstein condensation

2.1.2 Critical temperature for condensation

To be observed, Bose-Einstein condensation requires to cool the particles below the
critical temperature T

c

associated to the system. Whether or not T
c

> 0 depends entirely
on the density of states, and on how they are distributed in energy. These properties are
directly related to the dimensionality of the system, to the interactions present among the
particles, and on the geometry of the confining potential. In the particular cases where
T
c

= 0 condensation will never occur in practice, as experiments are always performed
at finite temperature. For example, in a uniform gas of massive non-interacting bosons
condensation occurs at finite temperature only in more than two dimensions.

For our experiments we use atoms of Rubidium-87, which can be described as mas-
sive bosons with (weak) s-wave repulsive interactions, confined in a three-dimensional
harmonic potential V = m(!2

x

x2 + !2
y

y2 + !2
z

z2)/2. Under the approximation of large
N and no interactions, the transition temperature is

T 0
c

=

✓

N

⇣(3)

◆1/3 ~!
g

k
B

, (2.1)

where !
g

= (!
x

!
y

!
z

)1/3 is the geometric mean of the trapping frequencies. Finite
number of atoms, and interactions, result in a shift of this temperature. A more accurate
transition temperature for our experimental situation is given by introducing correction
terms taking into account these effects, which results in the expression [39]

T
c

'
✓

1 � 0.73
!
a

!
g

N�1/3 � 1.33
a
s

aHO
N1/6

◆

T 0
c

, (2.2)

where !
a

= (!
x

+!
y

+!
z

)/3 is the arithmetic mean of the trapping frequencies, a
s

the
scattering length characterizing the s-wave interaction strength, and aHO = (~/m!

g

)1/2

is the harmonic oscillator length scale. In Eq. (2.2) the term proportional to N�1/3

corrects for finite number of atoms, while the term proportional to N1/6 takes into ac-
count the effect of interactions. As an example for our typical experimental parame-
ters, N = 500 atoms in a trap of frequencies (110, 730, 730) Hz, we find for Eq. (2.2)
T
c

' (1 � 0.124 � 0.036) 139.166 nK ⇡ 117 nK. From this we note that the finite-
size correction is approximately three times larger than the interaction corrections, and
together they result in a reduction of the transition temperature by ⇡ 16%.

When T < T
c

, the ratio between the number of particles in the condensate and the
total number of particles is given by

N0

N
= 1 �

✓

T

T
c

◆3

. (2.3)

This expression shows that the condensed fraction increases rapidly for T < T
c

, e.g. it
is already ⇡ 85% for T = T

c

/2.
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2. Bose-Einstein condensates: Theory

2.1.3 BEC on atom chips

Among the several experimental setups conceived to achieve Bose-Einstein condensa-
tions, atom chips [23] constitute a compact platform to prepare, confine and manipulate
ultracold atomic ensembles. Such chips, placed inside ultra-high vacuum chambers, are
devices with micro-fabricated wire structures, that allow to magnetically confine neutral
atoms. In addition, the versatility in the design and in the fabrication techniques permit
to embed additional components, to couple atoms with magnetic, radio-frequency (RF),
microwave, or optical fields.

As for the case of optical traps, on-chip magnetic traps are loaded from atomic en-
sembles previously laser cooled with standard techniques. Then, Bose-Einstein conden-
sations is reached by further evaporative cooling stages [40]. By controlling the currents
flowing through the chip’s wires a variety of magnetic trapping potentials can be tai-
lored, and precise control and coherent manipulation of the atomic motional state has
been demonstrated [24,41]. Sending RF or microwave currents creates additional strong
near-field gradients at the atoms’ position, which can couple on- or off-resonantly to
the atomic transitions, and be used for internal-state manipulations or to produce state-
selective potentials [24].

Apart from the flexibility in their design, atom chips have the advantage of relying
on DC, RF and microwave currents for trapping and manipulating the atomic ensemble.
The electronics required to generate such currents with high stability is well developed,
and result in good reproducibility of the experimental sequence. This is in contrast to
setups relying on optical traps, since intensities of the laser lights are more difficult to
stabilize. Furthermore, atom chips allow for relatively small experimental setups. This
enables to find a number of practical applications for BECs, from portable atomic clocks
to sensors for metrology, which rely on compact devices [42, 43].

2.2 Zero-temperature BEC

Throughout this work, by “zero temperature” we actually refer to the regime where the
number of non-condensed particles is much smaller that the number of condensed parti-
cles, so that they can be neglected. This requires the temperature to be low enough with
respect to the critical temperature, to avoid thermal depletion, but also the interaction
strength must be sufficiently small. In fact, even at T = 0, collision between condensed
particles can scatter them outside the condensate (quantum depletion). For our typical
experimental parameters the fraction of non-condensed atoms due to quantum depletion
can be roughly estimated to be N�N0

N

⇡
p

a3
s

n ⇠ 10�3 [44], where n is the density,
indicating that it can be neglected.

2.2.1 The Gross-Pitaevskii equation

An accurate description for the quantum state of a BEC is given by the many-body
ground-state wavefunction �0(x1, . . . , xN

, t) solving the Scrödinger equation of the
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2.2 Zero-temperature BEC

system. However, finding such solution is in general extremely complicated, because
of interactions. To circumvent this problem, one can derive an approximate descrip-
tion for the state of the BEC, with the assumptions that (1) the many-body wavefunc-
tion �(x1, . . . , xN

, t) =
Q

N

i=1 �(x
i

, t) is the product of identical single-particle wave-
functions �(x

i

, t), and that (2) particles interact pairwise through the contact potential
g�(x � x

0) characterized by the interaction strength g. These two assumptions are re-
markably good for dilute gases of weakly interacting particles, as in our case.

Time-independent description

In the stationary case the quantum state of a BEC is associated to a time-independent
single-particle wavefunction �(x

i

). The latter is defined as the solution to the Gross-
Pitaevskii equation (GPE)

h

h(x) + g(N � 1)|�(x)|2
i

�(x) = µ�(x) , (2.4)

where µ is the chemical potential, g(N � 1)|�(x)|2 is an effective interaction potential,
and h(x) is the Hamiltonian for a single particle in the confining potential V (x)

h(x) = � ~2
2m

r2
x

+ V (x) . (2.5)

Eq. (2.4) is derived from the time-independent Scrödinger equation of the system, as it
is shown in Appendix A.1.

For dilute gases where s-wave scattering gives a good approximation of the interac-
tion process among atoms, the strength of the contact potential can be expressed in terms
of the scattering length a

s

by

g =
4⇡~2a

s

m
. (2.6)

The chemical potential µ appearing in Eq. (2.4) can be thought of as “the energy
needed to add one particle to the system”, and importantly it is not the mean energy per
particle. For a detailed discussion of these concepts, see Appendix A.1.

Apart from the stationary many-body wavefunction �(x1, . . . , xN

) =
Q

N

i=1 �(x
i

),
it is common to define the condensate order parameter as  (x) =

p
N�(x). A rigorous

(and physical) understanding of this quantity needs a treatment of the problem in the
second quantization formalism, where its connection with the bosonic field operator  ̂
becomes evident.

Time-dependent description

To describe dynamical problems we consider the wavefunction �(x1, . . . , xN

, t) =
Q

N

i=1 �(x
i

, t), where the time-dependent single-particle wavefunction �(x
i

, t) is de-
fined as the solution to the time-dependent GPE (TDGPE)

i~ @
@t
�(x, t) =

h

h(x) + g(N � 1)|�(x, t)|2
i

�(x, t) . (2.7)
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2. Bose-Einstein condensates: Theory

Similarly to the time-independent GPE, Eq. (2.7) may be derived from the time-dependent
Schrödinger equation describing the many-body system.

From the fact that the time evolution of the stationary wavefunction is �(x, t) =
�(x)ei✓(t), inserting this expression into Eq. (2.7), and making use of Eq. (2.4), we
obtain

d✓(t)
dt

= �µ

~ . (2.8)

Therefore, under stationary conditions the BEC wavefunction evolves in time as

�(x, t) = �(x)e�iµt/~ . (2.9)

It is interesting to note that the phase evolution is given by the chemical potential µ,
and not by the single particle energy. This reflects the fact that interactions, which are
included in µ by the GPE mean-field description, influence the time evolution of the
phase.

While Eq. (2.7) conserves the total number of particles, N(t) = N , we will see
that in practical situations atoms are lost from the BEC. To describe the dynamics
for long times, where losses cannot be neglected, it is possible to introduce complex
terms on the right hand side of Eq. (2.7), effectively resulting in a decay of N(t). As
an example, a term �i~2�1�(x, t) mimics (1-body) losses at a rate �1, while a term
�i~2�2|�(x, t)|2�(x, t) mimics (2-body) density-dependent losses at a rate �2|�(x, t)|2.

2.2.2 Stationary solutions to the GPE

The GPE is a nonlinear differential equation, which in general has no analytic solution.
However, for particular cases analytic solution are known. These cases are e.g. for no
interactions, g = 0 (harmonic oscillator limit), and for strong interactions, where the ki-
netic energy is negligible in comparison to the interaction energy (Thomas-Fermi limit).

To have an indication of the regime of the system, it is convenient to consider the
ratio between interaction and kinetic energy. The parameter

⌘ =
N |a

s

|
aHO

(2.10)

expresses the importance of particle interactions compared to their kinetic energy. For
⌘ < 1, the system is described with reasonable accuracy by the harmonic oscillator
approximation, while for ⌘ � 1 by the Thomas-Fermi approximation.

Harmonic oscillator limit, ⌘ = 0

If the particles are not interacting, i.e. g = 0, or if the interaction energy is negligible
compared to the kinetic energy, then the non-linear (interaction) term in the GPE can be
neglected, leaving a linear Schrödinger equation.
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2.2 Zero-temperature BEC

In the case of a 3D harmonic trapping potential, V (x) = 1
2m

�

!2
x

x2 + !2
y

y2 + !2
z

z2
�

,
the ground state single-particle wavefunction is

�(x) =

✓

m!
g

⇡~

◆3/4

exp
⇣

� m

2~(!
x

x2 + !
y

y2 + !
z

z2)
⌘

, (2.11)

and the chemical potential becomes simply the ground state energy

µ =
~(!

x

+ !
y

+ !
z

)

2
. (2.12)

The spatial extension of the ground state �(x) is given by hx2i = a2HO/2, with
similar expressions for hy2i and hz2i, independent of N .

Perturbation theory, ⌘ ⇡ 0

If the interaction energy is small compared to the kinetic energy, but not negligible, it is
possible to use perturbation theory to obtain corrections beyond the harmonic oscillator
limit.

For example, to first order in perturbation theory the ground state of the system is
still the one of the harmonic oscillator limit, but the chemical potential becomes

µ =
~(!

x

+ !
y

+ !
z

)

2
+ (N � 1)g

Z

dx|�(x)|4

=
~(!

x

+ !
y

+ !
z

)

2
+ (N � 1)g

✓

m!
g

2⇡~

◆3/2

. (2.13)

To second and higher order also the wavefunction is modified, and the expressions be-
come more complicated.

Thomas-Fermi limit, ⌘ � 1

If the interaction energy is very large compared to the kinetic energy, the latter can be
neglected. In this regime the GPE equation can be approximated by the expression
(which is not a differential equation)

h

V (x) + g(N � 1)|�(x)|2
i

�(x) = µ�(x) . (2.14)

Multiplying both sides by �(x)⇤, and integrating over space, gives the atomic density
distribution |�(x)|2 = (µ � V (x)) /g(N � 1), where µ is such that

R

dx|�(x)|2 = 1.
The wavefunction for the ground state of the system can therefore be expressed as the
real function

�(x) =

8

>

<

>

:

s

µ � V (x)

g(N � 1)
V (x) < µ

0 V (x) � µ

(2.15)
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2. Bose-Einstein condensates: Theory

In the case of a harmonic trapping potential the BEC has a parabolic density profile
(see Fig. 2.1)

|�(x)|2 =
15

8⇡
N

✓

m!
g

2µ

◆3/2

max

"

1 �
 

x2

R2
TF,x

+
y2

R2
TF,y

+
z2

R2
TF,z

!

, 0

#

, (2.16)

with RTF,i the Thomas-Fermi radius along i 2 {x, y, z}, where the condensate density
goes to zero. These are defined as

RTF,x =

s

2µ

m!2
x

=

✓

15~2a
s

!
y

!
z

m2!4
x

◆1/5

(N � 1)2/5 , (2.17)

where we used g = 4⇡~2a
S

m

. Similar expressions are found for RTF,y and RTF,z .

The chemical potential is found by integrating the density over the ellipsoid
✓

x

R

2
TF,x

◆

+
✓

y

R

2
TF,y

◆

+

✓

z

R

2
TF,z

◆

 1, and requiring normalization. This gives

µ =
~!

g

2

✓

15
(N � 1)a

s

aHO

◆2/5

. (2.18)

The total energy of the system is ETF = 5
7µ, and hx2i = 1

7R
2
TF,x, with similar expres-

sions for hy2i and hz2i.

Intermediate regimes, ⌘

For the typical parameters of our experiments, N = 500 atoms in a trap of frequencies
(110, 730, 730) Hz, we find ⌘ ⇡ 5. This means that we are neither in the harmonic oscil-
lator limit not in the Thomas-Fermi limit. In these intermediate regimes there are known
analytical expressions for �(x) interpolating between the two extreme cases, which can
be found in [45, 46]. However, for practical purposes, it is often more convenient to
solve numerically the GPE, see Fig. 2.1. As an example, for the experimental parameters
quoted before we find numerically a chemical potential of µGPE/h = 1373 Hz, while
the approximations µHO/h = 785 Hz (Eq. (2.12)) , µPT/h = 2289.7 Hz (Eq. (2.13))
and µTF/h = 1079.5 Hz (Eq. (2.18)) would give significantly different estimates.

2.2.3 Multi-component BEC

Until now, we considered the case where the condensed bosons do not have any internal
degree of freedom. If this additional property exists, particles in different internal states
can be distinguished, and for this reason they can be described as distinct condensates
constituting together a multi-component BEC [32]. In this situation, Eq. (2.4) can be
generalized to a system of coupled GPEs

h

h
i

(x) + g
ii

(N
i

� 1)|�
i

(x)|2 +
X

j 6=i

g
ij

N
j

|�
j

(x)|2
i

�
i

(x) = µ
i

�
i

(x) , (2.19)
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Figure 2.1: BEC wavefunction for different regimes. Simulation for N = 500 particles
in the harmonic oscillator regime (blue line), Thomas-Fermi regime (orange line), and for our
experimental situation (green line). The trap has frequencies 2⇡ (110, 730, 730) Hz. a) Axial (x-
direction) density profiles. b) Radial (z-direction) density profiles. Note that for our experimental
parameters the BEC wavefunction is not reproduced correctly by the two limiting cases.

where the indexes i and j label the different components, g
ii

and g
ij

are the strength
of interactions between particles with respectively equal and different internal states,
and h

i

(x) is the single-particle Hamiltonian. For the time-dependent case, a similar
generalization holds for Eq. (2.7).

In the case of s-wave scattering, the interaction strengths in Eq. (2.19) can be written
as g

ij

=
4⇡~2a

ij

m

, where the scattering length a
ij

in general depends on the internal states
i and j of the interacting particles. For the hyperfine states |1i = |F = 1, m

F

= �1i
and |2i = |F = 2, m

F

= 1i of the 87Rb electronic ground state, the scattering lengths
are [47]

a11 = 100.40 a0

a12 = 98.01 a0

a22 = 95.44 a0

where a0 is the Bohr radius. Even if their difference is only ⇡ 5%, the effect of this
asymmetry is reflected on the shape of the different components. For equal superposition
of the two states, the component |2i tends to form a core surrounded by a condensate
of atoms in state |1i of lower density, Fig. 2.2. In the case of large BEC atom numbers
(N � 1000) one can even observe a complete separation of the two components [48].

Eq. (2.19) describes a stationary situation with constant populations in the wave-
functions �

i

(x) of the different components, N
i

. In the presence of e.g. spin-exchanging
collisions or external fields coupling the different components, these populations might
vary in time. To describe these scenarios, additional terms needs to be added to the
multi-component time-dependent GPE.

For the two-component situation we are interested in, we can consider the system of
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2. Bose-Einstein condensates: Theory
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Figure 2.2: Two-component BEC wavefunctions. Simulation for N = 500 particles
equally distributed among the two internal components assuming the system to be prepared
by a ⇡/2 Rabi pulse (red line), or in the ground state (green lines). The trap has frequencies
2⇡ (110, 730, 730) Hz. a) Axial (x-direction) density profiles. b) Radial (z-direction) density
profiles. Note that in the ground state (green lines) the wavefunctions of the two components
have slightly different shapes due to the different scattering cross sections. On the contrary, if the
system is initially prepared with all the particles in state |1i, and then a ⇡/2 Rabi pulse is sent to
transfer half of its population in state |2i, immediately afterwards the wavefunctions are identical
for the two components (assuming an instantaneous transfer, red lines). This result in a situation
different from the ground state, and therefore of non-equilibrium, where the wavefunctions will
change in time.

two coupled GPEs

i~ @
@t
�1 =

⇥

h1 + g11(N1 � 1)|�1|2 + g12N2|�2|2
⇤

�1 +
~⌦

R

2
e�i�t�2 � i

~
2
�1�1

i~ @
@t
�2 =

⇥

h2 + g22(N2 � 1)|�2|2 + g12N1|�1|2
⇤

�2 +
~⌦

R

2
ei�t�1 � i

~
2
�2�2

where ⌦
R

is the Rabi frequency, � is the detuning of the Rabi pulse with respect to the
|1i to |2i transition and �

i

is the 1-body loss rate for state i. Higher order loss process
can be introduced by adding further imaginary terms, e.g. a term �i~2�11|�1|

2�1 would
mimic (2-body) density-dependent losses in state |1i, at a rate �11|�1|2.

2.2.4 Collective spin Hamiltonian

The multi-component GPE provides a mean-field description of the spatial mode func-
tions into which the atoms are condensed. To focus on the description of the BEC inter-
nal state, it is convenient to express the Hamiltonian of the system in terms of a collective
spin [12]. The idea relies on the fact that a boson with internal states can be equivalently
described as an effective spin, and therefore that the entire system can be seen as the
(usually symmetric) composition of all such spins. Interestingly, this same description
is used also for the internal state of thermal atoms that couple identically to the same
light field and are thus indistinguishable with respect to this interaction [12], highlight-
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2.2 Zero-temperature BEC

ing the fact that a collective spin can be defined independently on whether particles are
indistinguishable or occupying the same spatial mode.

To derive the collective spin description of a two-component BEC, we follow the
approach of Ref. [49]. First, we consider the Hamiltonian of the system in the second
quantization formalism,

Ĥ =

Z

dx

X

i=1,2



 ̂†
i

(x)h
i

 ̂
i

(x) +
1

2
g
ii

 ̂†
i

(x) ̂†
i

(x) ̂
i

(x) ̂
i

(x)

�

+

+ g12 ̂
†
1(x) ̂†

2(x) ̂2(x) ̂1(x) , (2.22)

where  ̂
i

is the bosonic field operator associated to the i-th component. Then, we define
the operator

â
i

=

Z

dx �
⇤
i

(x) ̂
i

(x) (2.23)

where �
i

is the stationary wavefunction for the i-th component, found as a solution
to the coupled GPEs Eq. (2.19) with N

i

= hN̂
i

i particles. This so-called two-mode
approximation assumes that the field operator can be decomposed as  ̂

i

(x) = â
i

�
i

,
where the spin and the spatial degrees of freedom factorize. In other words, this means
that there are only two spatial modes, �1 and �2, that can be occupied by the atoms (note
that in our case, since g11 ⇡ g22, we have �1 ⇡ �2).

From Eq. (2.23) we define the components of the collective spin operator

Ŝ
x

=
1

2

⇣

â†1â2 + â†2â1
⌘

(2.24a)

Ŝ
y

=
1

2i

⇣

â†1â2 � â†2â1
⌘

(2.24b)

Ŝ
z

=
1

2

⇣

â†1â1 � â†2â2
⌘

(2.24c)

together with the atom number operators N̂
i

= â†
i

â
i

and N̂ = N̂1+N̂2. From Eqs. (2.24)
we see that Ŝ

z

is equal to half the atom number difference between the two components,
while Ŝ

x

= Re
h

â†1â2
i

and Ŝ
y

= Im
h

â†1â2
i

are related to their relative phase.

At this point, we expand the Hamiltonian Ĥ of the system around the mean number
of atoms in the two components, N

i

. To second order this gives

Ĥ ' E(N1, N2) +
X

j

(µ
j

)
N1,N2

(N̂
j

� N
j

) +
1

2

X

j

✓

@µ
j

@N
j

◆

N1,N2

(N̂
j

� N
j

)2+

+
1

2

✓

@µ1

@N2
+
@µ2

@N1

◆

N1,N2

(N̂1 � N1)(N̂2 � N2) , (2.25)

where E(N1, N2) is the mean energy, and the chemical potentials (for (N
i

� 1) ⇡ N
i

)
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are defined as

µ
j

=
@H

@N
j

=

Z

dx �⇤
i

h
i

�
i

+
X

j=1,2

g
ij

N
j

Z

dx |�
i

|2|�
j

|2 . (2.26)

The Hamiltonian for the collective spin operator is now formulated by rewriting Eq. (2.25)
in the form

Ĥ =
⇣

(µ1 � µ2) � 2~�hŜ
z

i + ~�̃(N̂ � N)
⌘

Ŝ
z

+ ~�Ŝ2
z

, (2.27)

where we omitted the irrelevant constant term proportional to the total number of parti-
cles N̂ , and we introduced the coefficients

�̃ =
1

2~

✓

@µ1

@N1
� @µ2

@N2

◆

N1,N2

, (2.28a)

� =
1

2~

✓

@µ1

@N1
+
@µ2

@N2
� @µ1

@N2
� @µ2

@N1

◆

N1,N2

. (2.28b)

In Eq. (2.27), the term proportional to Ŝ
z

gives a rotation around z which depends on
hŜ

z

i and on N̂ , while the term proportional to Ŝ2
z

gives rise to a nonlinear evolution, and
it can be identified with the one-axis twisting Hamiltonian of Ref. [25].

In practice, Eqs. (2.28) can be evaluated by discretizing the derivatives as e.g. @µ1/@N1 =
[µ1(N1 + ✏/2, N2) � µ1(N1 � ✏/2, N2)] /✏, and then computing numerically each chem-
ical potential from a system of coupled GPEs. This approach implicitly assumes the
system to be prepared in its stationary ground state, which is close to but not precisely
the situation occurring experimentally where the population in the two components is
set by a Rabi pulse: this changes the internal state of the atoms without adapting their
state-dependent spatial wavefunction, see Fig. 2.2. For typical parameters used in our
experiments we find the values of � and �̃ reported in Tab. 2.1.

In Fig. 2.3 we show the dependence of � and �̃ on experimentally controllable pa-
rameters such as the variation in the relative longitudinal trapping frequency (Fig. 2.3a)
and in the spatial separation between the two trap centers (Fig. 2.3b). The former pa-
rameter changes both � and �̃, because all terms @µ

i

/@N
j

are affected. On the contrary,
changing the spatial separation between the trap centers affects the density overlap be-
tween the two components, effectively changing only @µ

i

/@N
j 6=i

and therefore � but
not �̃. This approach is used in our experiment, where we make use of state-dependent
potentials to tune the strength of � by several orders of magnitude [19].

If the mode functions in Eq. (2.26) are independent on N
i

, i.e. in the harmonic oscil-
lator limit, then the derivatives in Eqs. (2.28) take the simple expressions

�̃ =
1

2~

✓

g11

Z

dx |�1|4 � g22

Z

dx |�2|4
◆

(2.29a)

� =
1

2~

✓

g11

Z

dx |�1|4 + g22

Z

dx |�2|4 � 2 g12

Z

dx |�1|2|�2|2
◆

. (2.29b)
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N (f
x

, f
y

, f
z

) �̃/h �/h

500 (27, 130, 130) Hz 1.8 ⇥ 10�3 Hz �1.5 ⇥ 10�4 Hz

1000 (27, 130, 130) Hz 1.2 ⇥ 10�3 Hz �0.8 ⇥ 10�4 Hz

500 (110, 540, 540) Hz 10.2 ⇥ 10�3 Hz �6.7 ⇥ 10�4 Hz

1000 (110, 540, 540) Hz 6.8 ⇥ 10�3 Hz �3.9 ⇥ 10�4 Hz

500 (110, 730, 730) Hz 13.0 ⇥ 10�3 Hz �7.5 ⇥ 10�4 Hz

1000 (110, 730, 730) Hz 8.8 ⇥ 10�3 Hz �6.7 ⇥ 10�4 Hz

Table 2.1: Values of �̃ and � for some typical experimental parameters. The number of
atoms in the two components is N1 = N2 = N/2. The calculation is based on discretizing the
derivatives appearing in Eqs. (2.28), and then computing numerically each chemical potential
from a system of coupled GPEs.
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Figure 2.3: Dependence of � and �̃ on experimentally controllable parameters. Sim-
ulation for N = 500 particles equally distributed among the two internal components, and
assumes the system to be in the ground state. The trap for state |1i has always frequencies
2⇡ (110, 730, 730) Hz. a) Dependence of � and �̃ on the longitudinal trapping frequency for
state |2i, i.e. for 2⇡ (f

x

, 730, 730) Hz. Spatially, the traps are considered to be concentric. b)
Dependence of � and �̃ on the longitudinal separation between the traps, both with frequencies
2⇡ (110, 730, 730) Hz.

The latter expression makes evident how � depends both on the scattering lengths g
ij

,
and on the density overlaps

R

dx |�
i

|2|�
j

|2. Therefore, this parameter can be con-
trolled experimentally by modifying the scattering lengths, for example via Feshbach
resonances, or by varying the density overlap between the two components, as we do in
our experiments. For the internal states we use, the interaction strengths differ by at most
5%. Because of this, � is small for overlapping atomic densities, but it can be increased
by three orders of magnitude by separating completely the two components [19].

Relevant collective spin states

Some collective spin states are of particular importance because of their properties. In
this section we define Dicke states, coherent spin states, squeezed states and Schrödinger
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2. Bose-Einstein condensates: Theory

cat states, which are the ones that will be encountered again in the following chapters.
The simultaneous eigenstates of the Ŝ

z

and Ŝ

2 = Ŝ2
x

+ Ŝ2
y

+ Ŝ2
z

operators are called
Dicke states, and they are characterized by a specific relative atom number between
the two components, and a completely undetermined relative phase. They are denoted
with the symbol |S, mi, where S(S + 1) = hŜ2i and m = hŜ

z

i, and they form a
complete basis. Fully symmetric states have S = N/2 and m = �N/2, �N/2 +
1, ..., N/2. Dicke states with |m| < N/2 are entangled, and they are not trivial to
be created experimentally. For example, they could be prepared by performing a non-
destructive measurement of Ŝ

z

(to project the system in a state with definite m), or by
controlling particular dynamics of the system. For example, with Rubidium-87 the spin-
exchanging collisions |F = 1, m

F

= 0i + |F = 1, m
F

= 0i ! |F = 1, m
F

=
�1i + |F = 1, m

F

= +1i can be used to prepare an identical atom number in the
two m

F

= ±1 Zeeman levels, corresponding to the Dicke state |N/2, 0i (now for the
two-level system formed by states |F = 1, m

F

= �1i, |F = 1, m
F

= +1i) also called
“twin-Fock state” [50].

Of simple experimental preparation are coherent spin states, which are the tensor
product of N identical and independent spin-1/2 states. In some sense, these can be
thought of as the “most classical” pure quantum states, as all spins point on average along
a specific direction (✓,�), so that the collective spin resembles a classical spin. Still,
contrary to a classical spin, a coherent state has an uncertainty in the pointing direction
due to quantum fluctuations (projection noise). Along any quadrature perpendicular to
the mean spin direction the noise is always Var

⇥

Ŝ?
⇤

= S/2, while along the z-axis
it is Var

⇥

Ŝ
z

⇤

= S sin2(✓)/2. A coherent spin state can be expressed as the binomial
distribution of Dicke states

|CSS:✓,�i =

S

X

m=�S

✓

N

x

◆

px(1 � p)N�x

�

1
2

e�im�|S, mi, (2.30)

with N = 2S, x = S + m and p = cos2 ✓

2 . From Eq. (2.30) we notice that the stretched
spin states (or extremal Dicke states) |S, ±Si are coherent spin states, i.e. |CSS:0,�i =
|S, Si and |CSS:⇡,�i = |S, �Si, which are independent of �. Experimentally, any
coherent spin state |CSS:✓,�i can be prepared from a stretched state by a single Rabi
pulse. For example,

|CSS:✓,�i = e
�i✓Ŝ(�+⇡

2 ) |S, Si (2.31)

= e
�i(⇡�✓)Ŝ(��⇡

2 ) |S, �Si.

Interesting states for metrology are spin squeezed states. Such states are polarized

states (i.e. they have a mean spin length
q

hŜ
x

i2 + hŜ
y

i2 + hŜ
z

i2 ⇡ N/2) character-
ized by a spin projection noise lower than than the one of a coherent state along a certain
axis (squeezed direction). This noise reduction is compensated by a higher noise along
the perpendicular axis (anti-squeezed direction), in order to keep the uncertainty relation
satisfied. The metrological advantage is evident for the squeezed direction, along which
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2.2 Zero-temperature BEC

perturbations to the state can be resolved with a precision beyond the classical limit,
which is the one given by a coherent state. Moreover, the robustness of squeezed states
against particle losses makes them especially suited for practical applications. Experi-
mentally, such states can be prepared by evolving a coherent spin state on the equator,
|CSS:⇡/2,�i, with the one-axis twisting Hamiltonian �Ŝ2

z

for a time t . N�2/3/� [25].
Because of their central role in our experiments, they will be discussed in detail later.

Finally, relevant highly entangled states are Schrödinger cat states, which are the co-
herent superposition of two (or more) coherent states. They highlight a counterintuitive
feature of quantum mechanics which is the possibility of a superposition of macroscop-
ically distinct states as, for example, in the cat state 1p

2
(|S, �Si + |S, +Si) all spins

are pointing simultaneously both up and down. Furthermore, in interferometric schemes
such states allow to reach the Heisenberg limit for phase estimation, i.e. �2� = 1/N2

which is the best allowed by quantum mechanics. Unfortunately, cat states are extremely
fragile against noise and particle losses: loosing even a single particle would completely
destroy the state. Experimentally, such states can be prepared by evolving a coherent
spin state on the equator, |CSS:⇡/2,�i, with the one-axis twisting Hamiltonian �Ŝ2

z

for
a time t = ⇡/(2�). Also these states will be discussed later in more detail.

Collective spin representations

The state of a two-level system can be equivalently interpreted as the state of a spin-1/2
particle, as their associated Hilbert spaces are identical. Pure states, c1|1i + c2|2i, are
characterized by complex amplitudes c

i

satisfying the normalization condition |c1|2 +
|c2|2 = 1, where |c1|2 is the population of the ith level. Note that of the four real
parameters defining c1 and c2, one is constrained by normalization and another by the
fact that global phases are irrelevant in the state description, so that only two indepen-
dent parameters are left. This is made explicit with the parametrization c1 = cos

�

✓

2

�

,
c2 = sin

�

✓

2

�

ei�, where 0  ✓  ⇡ determines the relative population between the two
levels and 0  �  2⇡ the relative phase. In this way, the state of the system can be rep-
resented graphically as the point with polar coordinates (✓,�) on the surface of a sphere
called Bloch sphere. It is advantageous to set the radius of this sphere to 1/2, such that
the Cartesian coordinates of the point, (12 cos(�) sin(✓), 1

2 sin(�) sin(✓), 1
2 cos(✓)), co-

incides with the spin expectation values (ŝ
x

, ŝ
y

, ŝ
z

) = �̂

2 , where �̂ is the vector of the
Pauli matrices.

In the same spirit, the state of the collective spin introduced in Eqs. (2.24) has a con-
venient graphical representation as a point on the surface of a Bloch sphere with radius
N/2, as the two accessible modes are now populated by N particles. The components
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of the collective spin operator have expectation values

hŜ
x

i =

⌧

1

2

⇣

â†1â2 + â†2â1
⌘

�

=
N

2
cos(�) sin(✓) (2.32a)

hŜ
y

i =

⌧

1

2i

⇣

â†1â2 � â†2â1
⌘

�

=
N

2
sin(�) sin(✓) (2.32b)

hŜ
z

i =

⌧

1

2

⇣

â†1â1 � â†2â2
⌘

�

=
N

2
cos(✓) . (2.32c)

Experimentally, the inevitable presence of noise prevents the preparation of pure
states. For this reason the state of a physical system is better described by a statistical
mixture of pure states, called mixed state. The most general expression for the state of a
system is thus given by the density matrix

⇢̂ =
X

i

p
i

| 
i

ih 
i

| , (2.33)

where 0  p
i

 1 is the statistical weight of the ith pure state | 
i

i, and
P

i

p
i

= 1.
For N spins the density matrix has dimension 2N ⇥ 2N . If we restrict to states that
are symmetric under permutation of the parties the dimension is significantly reduced to
(N + 1) ⇥ (N + 1).

Even if ⇢̂ gives a complete description of the state of the system, a graphical repre-
sentation of its matrix elements does not give an intuitive understanding of such state. A
more convenient (and still complete) description is given by the Wigner function, whose
spherical version is defined as [51, 52]

W (✓,�) =

2S
X

k=0

k

X

q=�k

⇢
kq

Y
kq

(✓,�) , (2.34)

where Y
kq

are the spherical harmonics and

⇢
kq

=
S

X

m=�S

S

X

m

0=�S

tSmm

0
kq

hS, m|⇢̂|S, m0i . (2.35)

In the expression above we introduced the transformation coefficients

tSmm

0
kq

= (�1)S�m

p
2k + 1

✓

S k S
�m q m0

◆

(2.36)

where the last term in parentheses is the Wigner 3j symbol.
The function W (✓,�) is a quasi-probability distribution which can be conveniently

plotted on a generalized Bloch sphere of radius N/2, Fig. 2.4. The “center of mass”
of W corresponds to the expectation value of Ŝ. Even if the marginals of W do not
directly represent the probability distribution of an observable, the projection of W along
a general spin direction Ŝ

~n

can be related to the probability distribution of measuring Ŝ
~n

.
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-2.3

2.3

W

a) b) c)

Figure 2.4: One-axis twisting dynamics. Simulation of the Hamiltonian �Ŝ2
z

for N = 20
particles. States are illustrated as spherical Wigner functions on Bloch spheres. a) Coherent spin
state at time t = 0. b) Spin squeezed state obtained after a time t = 0.13/�. c) Schrödinger cat
state obtained after a time t = ⇡/(2�). Figure adapted from Ref. [53].

Collective spin dynamics

Now that we have a graphical representation for the state of the collective spin describing
the two-component BEC, we can easily illustrate the dynamics generated by the Hamil-
tonian Eq. (2.27). The typical initial condition to observe a non-trivial dynamics is a
coherent state on the equator, Fig. 2.4a. As in the ideal case this state has hŜ

z

i = 0 and a
fixed number of atoms N , the only relevant term in the Hamiltonian Eq. (2.27) is ~�Ŝ2

z

.
After a time t . N�2/3/�, the coherent state has evolved into a spin-squeezed state,
Fig. 2.4b. Waiting for longer time results in a state which is wrapped around the sphere,
up to the point when, at t = ⇡/(2�), a Schrödinger cat state is obtained, Fig. 2.4c. For
even longer evolution times the dynamics appears reversed as at t = ⇡/(2�) a coherent
spin state is obtained again, and from this time on the evolution repeats periodically in
the same way.

In real experiments the total number of atoms fluctuates from shot to shot, and atoms
are lost during the evolution. Both these effects result in a dynamics which deviates from
the ideal case described by the one-axis twisting Hamiltonian, giving origin to noise in
the final state. Total atom number fluctuations produce additional rotations around the
z-axis, also called collisional clock shift, as described by the term ~�̃(N̂ � N)Ŝ

z

in
Eq. (2.27). Therefore, at time t > 0 one observes an incoherent superposition (statistical
mixture) of states with different orientations. Note that this effect is deterministic, and
in could be exactly corrected if the measured atom number at the end of the sequence
corresponds to the initial atom number, meaning the absence of losses. Atom losses
during the evolution change hŜ

z

i, and for this reason the state acquires an additional
rotation around the z-axis, as described by the term 2~�hŜ

z

iŜ
z

in Eq. (2.27). Again,
after a time t > 0 this result in an incoherent superposition of states with different
orientations. Note here that, as losses occur randomly in time, this noise cannot be
canceled. These two effects will be discussed in more detail at the end of this chapter.
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2.2.5 BEC lifetime

In any practical situation, potentials used to confine atomic ensembles have always a fi-
nite depth. For this reason particles can escape from the trap, thus limiting the lifetime of
the atomic system. The main mechanism leading to losses consists in collisions whose
final states are not trapped anymore. These scattering processes occur either among par-
ticles of the ensemble, or between particles of the background gas and of the ensemble.
While the former process depends on the specific choice of internal states and trapping
parameters, the background gas pressure is always finite, and therefore constitutes an
unavoidable loss channel. The finite lifetime of trapped atomic systems imposes limita-
tions on the possible duration of an experimental run and, for this reason, also on their
practical applications. Apart from causing a depletion of the system over time, losses
are also responsible for additional noise, which is discussed in more detail in the next
section.

For a single ensemble composed by particles all in the same internal state, the mean
atom number evolves according to the rate equation

dN

dt
= �

X

m=1

k
m

Nm . (2.37)

Here, k
m

= 
m

R

dx |�(x, t)|2m is the m-body loss rate, which depends on the time-
dependent density profile and on the loss constants 

m

. When the time dependence of the
density can be neglected, k

m

is a constant and Eq. (2.37) can be solved analytically [53].
If the ensemble is composed of particles in more than one internal state they can

collide among each other, constituting additional loss channels. The number of particles
in each state is described by a system of coupled differential equations, whose solution
can be found by numerical integration. For our experiments, involving 87Rb atoms in
the two states |1i ⌘ |F = 1, m

F

= �1i and |2i ⌘ |F = 2, m
F

= �1i, we consider the
two coupled rate equations

dN1

dt
= �k1N1 � k2,1N

2
1 � k2,iN1N2 � k3,1N

3
1 (2.38a)

dN2

dt
= �k1N2 � k2,2N

2
2 � k2,iN1N2 � k3,2N

3
2 (2.38b)

where we kept terms only up to the relevant three-body loss processes.
One-body losses result from collisions between the atoms of the ensemble and the

molecules of the residual gas in the vacuum chamber. Since these molecules are at room
temperature, they can kick atoms out of the trap. This process is proportional to the
pressure of the background gas, but it is independent on the density of the ensemble,
therefore leading to an exponential decay of its atom number over time, at a rate k1.

Two-body losses result from inelastic collisions between two particles of the en-
semble. For 87Rb atoms in state |F = 2, m

F

= 1i, the spin-exchanging process
|2, 1i + |2, 1i ! |2, 0i + |2, 2i, which conserves m

F

, leads to final states that es-
cape from the trapping potential, resulting in particle losses at a rate k2,2. For state
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2.2 Zero-temperature BEC

|F = 1, m
F

= �1i spin-exchanging collisions are forbidden by angular momentum
and energy conservation. Other inelastic two-body processes (spin-dipole mechanism)
are extremely weak also compared to one-body losses, and therefore they can be ne-
glected, giving k2,1 = 0. In multi-component ensembles collisions can occur also be-
tween atoms in different internal states, therefore leading to additional loss channels.
For 87Rb atoms, the process |1, �1i + |2, 1i ! |1, 0i + |2, 0i is possible, resulting in
particle losses at a rate k2,i.

Three-body losses result from inelastic collisions between three particles of the en-
semble. While energy-momentum conservation prevents the formation of molecules in
two-body inelastic collisions, the presence of a third particle allows this process. The
energy released when two particle form a bound state is converted into kinetic energy of
both the molecule and the third particle, which escape from the trapping potential. For
87Rb atoms this process occurs in both state F = 1 and F = 2, resulting in particle
losses at the rates k3,1 and k3,2, respectively.

The loss constants 
m

appearing in k
m

depend on the atomic species and on the
internal state. The one of our interest have been measured for 87Rb BECs in several
experiments

One-body losses: 1 ⇡ 0.13 s�1

Two-body losses, F = 1: 2,1 = 0 [47]

Two-body losses, F = 2: 2,2 = 8.1(3) ⇥ 10�20 m3/s [47]

Two-body losses, interstate: 2,i = 1.5(2) ⇥ 10�20 m3/s [47]

Three-body losses, F = 1: 3,1 = 5.8 ⇥ 10�42 m6/s [54]

Three-body losses1, F = 2: 3,2 = 18(5) ⇥ 10�42m6/s [55]

Contrary to the other rates, the one-body loss rate is not a fundamental constant,
as it depends on the specific background pressure inside the vacuum chamber used for
the experiments. The value we quote is chosen to match the atom number decay of our
experimental data [53].

Note that in the case of a thermal ensemble, the loss coefficients reported above are
modified due to particle distinguishability. Two-body loss rates are increased by a factor
2!, while three-body loss rates by a factor 3!.

To simplify Eqs. (2.38) it is often possible to consider the constant loss rate approx-
imation

dN1

dt
= ��1N1 (2.39a)

dN2

dt
= ��2N2 (2.39b)

1The value used for 3,2 was measured for the |F = 2,m
F

= 2i state. An accurate value for |F =
2,m

F

= 1i is not available, since the two-body loss dominates at typical experimental densities, including
in the present experiment.
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where �
i

is an effective loss rate for the i-th component, including contributions from
one- two- and three-body loss processes. In practice, these constants are extracted by
fitting the experimentally observed atom number decay with the exponential function
N

i

(t) = N
i

(t = 0)e��

i

t. The constant loss rate approximation assumes e.g. that the
atomic density does not change significantly during the losses, and it is therefore valid
especially for short times where the fraction of lost atoms is small.

2.2.6 BEC coherence time

According to the time-dependent Gross-Pitaevskii equation Eq. (2.7), the global phase of
a stationary BEC evolves deterministically as ✓(t) = �µt/~, as expressed by Eq. (2.8).
The generalization of this result holds for multi-component BECs as well, where the rel-
ative phase between different components become easily observable from interference
measurements. In practical situations BECs are never closed systems, and for this rea-
son phase evolution is affected by stochastic processes (e.g. losses, collisions) causing
decoherence. Phase coherence is of primary importance to perform experiments in the
quantum regime, and its finite duration poses also stringent limitations on the possible
practical applications for such systems. For these reasons, investigating the fundamental
limits of this property is of crucial interest.

The typical experimental procedure used to characterize decoherence is the follow-
ing Ramsey sequence. First, one prepares a BEC in a single internal state. Then, a
Rabi pulse is sent to transfer part of the population to a second internal state, thus set-
ting a well-defined relative phase between the two BEC’s components (i.e. preparing a
coherent spin state). Finally, after a time T

R

during which the condensate evolves in
the trapping potential, a second Rabi pulse is sent, which allows to measure the relative
phase between the components from their relative atom number. By repeating this ex-
perimental sequence a number of times, one has access to the distribution of the relative
phase after an evolution time T

R

, so that phase coherence as function of time can be
investigated. More precisely, by varying the phase of the second Rabi pulse an interfer-
ence fringe in the relative atom number is recorded, which carries information about the
spreading of the relative phase distribution. The interference contrast is in fact [56]

C(t) ' e�
1
2 Var[�✓(t)] , (2.40)

where �✓(t) is the relative phase under investigation and Var [�✓(t)] is its variance. This
variance results from the sum of different contributions (e.g. atom number fluctuations,
losses, finite temperature, technical noise), some of which are discussed here in detail.
In practice, each contribution can be estimated by studying the dependence of C(t) on
experimental parameters and on time. For small noise (e.g. at small times T

R

) where
C(t) ⇡ 1 it is better to measure Var [�✓(t)] directly on the slope of a Ramsey fringe.

In the following, we will denote with N the atom number in a single shot of the
experiment, N its mean value, and �N its standard deviation, typically assumed to be
�N ⌧ N .
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2.2 Zero-temperature BEC

Phase diffusion

Already at zero-temperature, i.e. when the non-condensed fraction can be neglected, and
without losses, a decaying interference contrast can be observed due to a phenomenon
called phase diffusion. This arises from the fact that the relative number of atoms and the
relative phase between the different components of a BEC are conjugate non-commuting
variables. Therefore, the typical state preparation consisting in setting a well-defined
relative phase results in an uncertainty in the relative atom number. Because interaction
energy depends on the populations of the components, uncertainty in the relative atom
number directly translates into an uncertainty in the phase evolution, which causes a
decay of C(t). For two-component condensates at zero-temperature this phase noise is
generated by the evolution of a coherent spin state with the term �Ŝ

z

2
in Eq. (2.27). In

other words, it corresponds to the anti-squeezing resulting from the one-axis twisting
dynamics. For a coherent spin state with equal superposition, where Var

h

Ŝ
z

i

= N/4,
the phase noise after a time t is [57]

Var [�✓(t)] = N�2t2 , (2.41)

where � is given in Eq. (2.28b). The resulting characteristic time (i.e. the time such that
C(t) is reduced by e�1/2) for phase diffusion is

tPD =
1

�
p

N
. (2.42)

For an estimate, consider the parameters of our experiments with N = 400 atoms in a
trap of frequencies (110, 730, 730) Hz. If the two components are spatially overlapping,
g11 ⇡ g22 ⇡ g12, which gives � = 2⇡ (�8.7 ⇥ 10�4 Hz). This would imply tPD ⇡ 9 s,
which is of the same order of magnitude as the BEC lifetime (⇠ 10 s) and two orders of
magnitude larger than the duration of a typical BEC experimental sequence (⇠ 100 ms).

Fluctuations in total N

Repeated preparations of BECs are characterized by fluctuations of the total number of
atoms, which constitutes an additional source of phase noise because interaction energy
depends on particle number, reducing C(t). In principle this shift could be completely
canceled in the data analysis, as it depends deterministically on the initial number of
atoms. However, in practice this is only partially possible because what is measured
is the atom number at the end of the experimental sequence, which is affected by ran-
dom losses during the evolution and finite detection resolution. For two-component
condensates at zero-temperature this phase noise is described by the term �̃(N̂ � N)
in Eq. (2.27) and, considering shot-to-shot fluctuations on the total number of particles
with standard deviation�N ⌧ N , it gives [57]

Var [�✓(t)] = (�N)2�̃2t2 , (2.43)
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where �̃ is given in Eq. (2.28a). The resulting characteristic time for the decay of the
contrast is

tPS =
1

�̃�N
. (2.44)

For an estimate, consider again the parameters of our experiments with �N = 10
e.g. set by post-selection. If the two components are spatially overlapping we find
�̃ = 2⇡ (14.7 ⇥ 10�3 Hz). This would imply tPS ⇡ 1 s, which is only one order of
magnitude larger than the duration of a typical BEC experimental sequence (⇠ 100 ms).

As mentioned before, if fluctuations in the BEC atom number were the only uncon-
trolled parameter, the resulting dephasing could be completely canceled. To understand
this, notice the following. In an experimental shot with N different from N , the term
�̃(N � N̂)Ŝ

z

in Eq. (2.27) gives an additional deterministic rotation around the z-azis
by an angle �̃(N � N)t. From its definition, Eq. (2.28a), �̃ is a constant when the fluc-
tuations in N are small enough. In this regime, measurements of any spin quadrature
will show a linear dependence on N because of the N -dependent rotation (only for mea-
surements of Ŝ

z

the slope of this linear dependence is zero, i.e. there is no dependence).
For this reason, by knowing N we can extract the slope of this linear dependence by
fitting the data as a function of N , and subtract it from the measurements. In this way,
post-processing of the data would allow to completely cancel phase shifts due to fluctu-
ations in the atom number. This is similar to the clock-shift correction adopted in atomic
clocks [42]. Clearly, in practical situations the initial atom number N is unknown, be-
cause what is measured is the atom number at the end of an evolution with losses, and
because of the noise on the atom counting. This results in a cancellation of the men-
tioned phase shift which is only partial. A practical example of this correction is given
in the next chapter.

Particle losses

When losses are also considered the phase evolution complicates significantly. Remov-
ing one particle from the condensate results in a change of the interaction energy, which
is translated into a jump of the phase evolution. As losses are stochastic, these phase
jumps occur randomly over time, giving origin to phase noise. This problem has been
considered in [49], where expressions for the interference contrast in several scenarios
are given. In the case of two-component BECs at zero-temperature, with Poissonian
fluctuations in the total number of particles and losses described (in the constant loss
rate approximation, see Eqs. (2.39)) by the effective one-body loss rates �1 and �2, we
find (see Appendix B for the derivation)

Var [�✓(t)] ' 2Re
⇥

N
�

1 � e�i�̃tL
�⇤

, (2.45)

36



2.2 Zero-temperature BEC

where we defined the function

L =
1/2

�1 + i(�+ �̃)

h

�1e
i�̃t + i(�+ �̃)e�(�1+i�)t

i

+

+
1/2

�2 � i(�� �̃)

h

�2e
i�̃t � i(�� �̃)e�(�2�i�)t

i

. (2.46)

It is important to remark that Eq. (2.45) is valid under the assumption that � and �̃ do
not vary significantly during the evolution, meaning that the lost fraction has to be small.
Including two- and three-body losses results in much more complicated expressions,
which are related to the results presented in Appendix F of Ref. [49].

It is worth mentioning that an equivalent description of the phenomenon can be re-
produced in a classical Monte-Carlo simulation. First, the total number of atoms N is
draw from a Poissonian distribution, which is then partitioned into the two components
according to a Binomial distribution. Then, the relative phase of the system evolves ac-
cording to the Hamiltonian Eq. (2.27) until a random time ⌧1, when the first particle is
lost. From this time on, the evolution occurs in a system with N � 1 particles until time
⌧2, when a second particle is lost. This process continues until the chosen total evolu-
tion time T

R

. By averaging over many simulated trajectories of the phase evolution, we
obtain an estimation for the phase noise at time T

R

.

Finite temperature

As experimental realizations of BECs are inevitably at finite temperature, a fraction of
non-condensed particles is always present. This thermal component interacts with the
condensate, and for this reason it is also expected to influence its coherence properties.
Theoretical studies, which consider for simplicity a uniform single-component conden-
sate, make different predictions for the phase spreading over time, depending on how
the system is initially prepared [56, 58]. In the presence of shot-to-shot fluctuations of
either total particle number or total energy, the phase spreading is ballistic (i.e. ⇠ t2).
Conversely, when both particle number and energy are fixed, the phase spreading is dif-
fusive (i.e. ⇠ t). For other statistical ensembles, e.g. fixed particle number and general
energy fluctuations, contributions from both ballistic and diffusive terms are expected.
Experimentally, these different statistical ensembles could be accessed by different state
preparations or different post-selections of the measurements.

To summarize, in the absence of other dephasing mechanisms, the following predic-
tions have been derived [56].

• If the initial state is characterized by fluctuations only in the total atom number,
then the phase spreads ballistically as

Var [�✓(t)] '
✓

t

~

◆2✓dµ(N)

dN

◆2

Var [N ] . (2.47)

Correspondingly, the temporal coherence function decays as a Gaussian over time.
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2. Bose-Einstein condensates: Theory

• If the initial state is characterized by fluctuations only in energy, for example be-
cause it is prepared with fixed N and in equilibrium at temperature T , then at long
times the phase spreads ballistically as

Var [�✓(t)] '
✓

t

~

◆2✓dµmc(E)

dE

◆2

E=E

Var [H] . (2.48)

Here, µmc(E) is the chemical potential of the microcanonical ensemble of energy
E, and it is linearized around E. For the case of harmonic trapping potentials, the
ballistic coefficient of condensate phase spreading at finite temperature has also
been evaluated [59]. For long times and k

B

T � µ this is

Var [�✓(t)] '
✓

k
B

T

~!

◆3

�2t2 , (2.49)

Correspondingly, also in this case the temporal coherence function decays as a
Gaussian over time.

• If the initial state is prepared with fixed total atom number and energy, then the
phase-change spreads diffusively as

Var [�✓(t)] ' 2Dt . (2.50)

At low temperatures, and for k
B

T/ng ! 0, the diffusion coefficient takes the
form

D ⇡ 0.3036g

~V

✓

k
B

T

ng

◆4

, (2.51)

where V is the volume of the system and n the condensate density. Correspond-
ingly the temporal coherence function decays as an exponential over time.

Interestingly, the effect of phase spreading due to finite temperature has never been mea-
sured in three-dimensional BECs. The investigation of such effects would however be
of primary importance to understand the fundamental limits on the coherence of these
systems.

Technical noise

In experiments, it is important to keep in mind that technical noise also contributes to
decoherence and is often dominant. This originates mainly from the unavoidable shot-
to-shot fluctuations in the trapping potential and in the control fields, and from the phase
noise already present in the local oscillator. All these effects directly result in additional
phase noise for the BEC, typically characterized by a ballistic spreading because the
relevant technical noise processes are slow.

38



3
Bose-Einstein condensates: Experiments

In this chapter we give an overview of our experimental setup, with a special emphasis on
the imaging system, which will play an important role in the main experiments presented
in this thesis. Moreover, we summarize the procedures adopted for the preparation and
characterization of BECs, presenting the tools for the manipulation of their internal and
external degrees of freedom, together with measurements of their phase coherence.

3.1 Experimental apparatus

The experiments described in this thesis have been performed with the apparatus built
in the group of Prof. Philipp Treutlein at the University of Basel. This setup has been
developed during more than ten years, and all its components have been described in
the publications and thesis written during this time [53, 60–62]. In particular, no major
changes have been brought to the experimental setup with respect to what is already
described in the theses by Caspar Ockeloen [53]. For this reason, we are not going to
present here the details of the apparatus, but we will just give an overview, sometimes
emphasizing the small improvements recently made, or planned for the future.

3.1.1 Overview of the setup

The core of the experiment is a glass cell, constituting the science chamber, whose top
wall is formed by our atom chip, see Fig. 3.1b. This cell is connected via a six-way
stainless-steel cross to: (1) the ion pump maintaining the ultra-hight vacuum of approxi-
mately 10�10 mbar, (2) the Titanium-sublimation pump, (3) the ion pressure gauge and
(4) the electrical feed-throughs for the Rubidium dispensers.

Around the glass cell there is a water-cooled coil cage which provides the approx-
imately homogeneous static magnetic fields needed in the experiments, Fig. 3.1a. To
the back of the atom chip a water-cooled copper block is attached, which contains a
U-shaped wire used to create the large-volume quadrupolar magnetic field needed in
the magneto-optical trapping (MOT) stage of the experimental sequence, Fig. 3.1a. All
these water-cooled elements are connected in series to a chiller stabilizing the water
temperature to 19� C.
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Figure 3.1: Central elements of the experimental setup. a) Schematic view of the vacuum
system, imaging cameras and inside of the µ-metal shield showing the arrangement of the coil
cage and of the fiber output couplers. The microwave horn is not shown. b) Detailed view of
the science chamber showing the atom chip with copper cooling block and U -wire used for the
magneto-optical trap. Figure taken from Ref. [53].

Outside the glass cell there are also a microwave horn and an RF antenna (for the
manipulation of the internal state of the atoms), the fiber output couplers (for illuminat-
ing the atoms with all required laser beams), and the imaging optics (for imaging the
atoms along two orthogonal directions). All these elements are enclosed in a µ-metal
shield, to isolate the atoms from the surrounding fluctuations of the magnetic field, see
Fig. 3.1a.

On, and around, the optical table hosting the vacuum chamber are situated: the laser
system producing the required light, the current sources, the microwave and RF elec-
tronics, the imaging cameras, and some other components, see Fig. 3.2. These will be
individually discussed in the next paragraphs.

Atom chip

The atom chip used in our experiments is the one described and fabricated in Ref. [60].
It is a multilayer chip, consisting of a base chip on top of which the science chip is
glued and wire bonded, see Fig. 3.3a. The base chip is a 0.8 mm thick AlN ceramic
substrate, constituting the top wall of the glass cell. It provides mechanical support
for large DC wires and for the science chip, and serves as vacuum feed-through for all
electric (DC, MW) connections. The science chip consists of gold wires arranged in a
two-layer structure, designed to carry DC and MW currents needed to realize static and
state-dependent (dressed-state) magnetic trapping potentials.

The outermost layer of the science chip (facing downward inside the glass cell) hosts
two sets of wire structures, with five and six wires respectively, see Fig. 3.3b. In the five-
wire structure, the three central wires constitutes a MW coplanar waveguide, while the
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Figure 3.2: Photograph of the optical table with the surrounding devices. Relevant devices
composing our experimental apparatus and discussed in the main text are labeled. Some of them
are on the back side and therefore they are not visible here.
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Figure 3.3: Photograph of the atom chip assembly and drawing of the wire structures. a)
Photograph of the chip with outer dimensions 38 ⇥ 50 mm. The gray dashed line indicates
the approximate position where the glass cell is glued. b) Drawing of the six- and five-wire
structures, left and right respectively, at the chip center. A detailed illustration of the five-wire
structure is given in Fig. 3.6. Figures adapted from Ref. [53].

41



3. Bose-Einstein condensates: Experiments

Master Slave Repump

AO
M

AO
M

AO
M

AOM
AOM

AOM

spectroscopy spect.

slave inject

cavity

offset lock

imaging

NPBS NPBS

Beam splitter

Mirror
Isolator
Shutter

vertical
MOT

horizontal
MOT

fiber

fiber 11.7

74.6

113

97

16
18.3

21.4
2.719

2.2

1.3

1.4

optical
pumping

0.07

2.8
0.002

0.15

Figure 3.4: Simplified schematic of the laser system, excluding wave plates and several other
components. The master laser frequency is locked via saturation spectroscopy. The slave laser
is injection-locked to the frequency-shifted output from the master laser. The repump laser fre-
quency is locked to the output from the master via an offset-lock scheme, where the beating
signal between the two lasers is kept constant. A confocal cavity and a spectroscopy setup are
used to diagnose the injection locking. All output beams are coupled to polarization maintaining
single-mode optical fibers. NPBS = non-polarizing beam splitter. Numbers are the laser powers
in milliWatt as measured at relevant points on 20 Aug 2018. Figure adapted from Ref. [53].

two surrounding wires are wires for DC currents. In the six-wire structure there are two
MW waveguides, each ending with a short between the signal and the ground. A crucial
feature is that DC currents are also supplied to the MW wires, by using on-chip and
external bias tees. For the experiments presented here, only the three central wires of the
five-wire structure are used.

A numerical model of the wire patterns allows us to simulate accurately the static
and state-dependent magnetic potentials resulting from the DC and MW currents. This
code was originally developed in [60], ad it is an indispensable tool to tailor the trapping
potentials experienced by the atoms. We use it to estimate parameters of fundamental
importance such as the position of the trap, its curvature, and its depth.

On the outermost surface of the science chip, the space surrounding the wire struc-
tures is covered by a gold layer which serves as a mirror for the magneto-optical trapping
stage of the experiment.

Laser system

The laser light required in our experiments for cooling, optical pumping and imaging
of the atoms (see Fig. 3.5a) is prepared on an optical table with three home built lasers
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and commercial free-space optical elements, Fig. 3.2. The details of this laser system
are presented extensively in [53, 60, 62], while an up to date schematic is illustrated in
Fig. 3.4. We give here a general overview, mentioning the small changes on the locking
scheme with respect to the previous presentations.

All the light is generated by three laser diodes, operating at a wavelength of ⇡
780 nm, close to resonance with the Rubidium-87 D2 line, see Fig. 3.5a. The first
(interference-filter stabilized) laser serves as a master, and it is locked via saturated
absorption spectroscopy to the cross-over peak between the F = 2 ! F 0 = (2, 3)
transition. The frequency of the output light is adjusted by an acousto-optic modulator
(AOM) in double-pass configuration, and injected into the slave laser diode which acts
as an amplifier. Apart from controlling the frequency of the AOM driving RF, we also
control its power, to ensure that the intensity of the injected light stays constant. This
is important when doing large frequency jumps, as we noticed that the locking of the
slave is sensitive to this parameter. The light coming from the slave laser is mostly used
as cooling light during the MOT stage, and in a small part for absorption imaging and
optical pumping.

The third (interference-filter stabilized) laser is locked to the master via an offset-
lock scheme, in which the beating signal between the two lights is used to keep their
frequency difference fixed. The details of this locking scheme are presented in [63].
The light coming from this laser is used as repump light during the MOT stage, and as
pumping light.

The different laser beams, after passing through AOMs, beam shaping optics, wave
plates, mechanical shutters, and other elements, are coupled to single-mode polarization-
maintaining fibers, which bring them inside the µ-metal shield to the vacuum chamber.
For typical powers of the individual laser beams see Fig. 3.4.

One disadvantage of free-space optics is the sensitivity to mechanical disturbances.
Vibrations or temperature fluctuations may cause misalignments of the optical elements,
resulting in fluctuations of the light intensity at the fiber outputs, and therefore to unsta-
ble BEC preparation. Also for this reason, together with Menlo Systems we developed a
new Rubidium-Cooling-Laser (RUCOLA) system, based on fiber lasers and optics. This
device is composed of three compact rack modules, containing all the optics and the elec-
tronics needed to generate the required lights. A key difference is that the laser units,
and their frequency stabilization and control, operates at the convenient telecom wave-
length of 1560 nm. Only before the outputs the light is frequency-doubled to 780 nm,
with a nonlinear crystal for second harmonic generation. An additional module contains
electro-mechanical and optical switches used to turn on and off the lights. These RU-
COLA modules are currently under test, and they have not been used for the experiments
presented here.

Microwave and Radio-Frequency sources

In our experiments we make use of microwave (MW) and radio frequency (RF) currents
to create state-dependent potentials and to manipulate the internal states of the atoms.

43



3. Bose-Einstein condensates: Experiments

5 2P3/2

5 2S1/2
6835 MHz

72 MHz
157 MHz

267 MHz
78

0.
2 

nm

M
O

T 
co

ol
in

g

M
O

T 
re

pu
m

p

Pu
m

p 
2-

2

Pu
m

p 
1-

1

Im
ag

in
g

a) b)
D

2 
lin

e

1

F = 2

0
1
2

F’ = 3

F = 2

F = 1

68
35

 M
H

z

|1i

|2i
�

�
⌦RF

⌦MW

m  =F -2 -1 0 21

Figure 3.5: Schematics of the Rubidium-87 level structure we address. a) Level scheme
of the D2 line and laser frequencies used in our experiment. b) Hyperfine level structure of the
ground state and two-photon transition. The figure shows the MW and RF couplings with Rabi
frequencies ⌦MW and ⌦RF, respectively, and the definitions of the intermediate-state detuning �
and the two-photon detuning �.

For the state-dependent potentials we send a MW current of frequency ⇡ 6.8 GHz
through the on-chip coplanar waveguide. This is provided by a signal generator, and
power stabilized by a home-built feedback circuit [53].

To manipulate the internal state of the atoms we use two-photon Rabi pulses, com-
posed of a MW and a RF tone, see Fig. 3.5b. The MW tone of ⇡ 6.8 GHz is provided
by a second MW signal generator, and it is power stabilized before going to the an-
tenna (horn) pointing towards the atoms. The RF tone of ⇡ 1.7 MHz is provided by a
programmable signal generator, and it is power amplified before going to the antenna
(square coil) pointing towards the atoms. Even if these two fields are emitted far away
(⇡ 5 cm) from the atoms to minimize the spatial inhomogeneity of their field strength,
we experience gradients that are likely caused by a coupling to the chip wire structures.
Gradients in the Rabi fields are unwanted as they result in a coupling between internal
state (spin) and position, which directly translates to a decrease in the fidelity of the Rabi
rotations. To overcome this problem we tweak the position of the MW horn until ⇡ 10
Rabi oscillations can be seen with a contrast of at least 98%, indicating that the atoms
are situated in a region where fields are nearly uniform.

Good phase coherence is also crucial in these MW and RF fields, in order to coher-
ently manipulate the atoms. For this reason, we use as a phase reference (local oscillator)
for all our signal generators a high-quality GPS-disciplined quartz clock.

Current sources

Electric currents are another crucial ingredient for our experiments. During the MOT-
stage there is the need for large currents, of up to ⇡ 50 A, to create a large-volume
quadrupole field. During the experimental sequence there is the need for currents of few
Amperes, to supply the coils generating the bias fields, and of small currents of few mil-
liamperes, to supply the chip wires generating the static trapping potentials. These cur-
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rents are required to have an extremely low noise level (relative stability of ⇡ 1⇥10�5),
since they are being used for the experimental trap where uncontrolled fluctuations af-
fects the coherence properties of the atomic ensemble. We use both commercial and
home-built sources, depending on the requirements. For a detailed description of these
devices see [53, 61, 62].

Imaging optics

At the end of each run of our experiment the number of atoms is counted via absorption
imaging. The basic idea is that laser light resonant to a cycling transition passes through
the atomic cloud, casting a shadow which is recorded by a camera.

The probe light coming from a dedicated optical fiber is collimated by a two-lens
telescope, which, at the same time, images an aperture onto the position of the atoms.
This aperture ensures that the light does not reach the chip surface, reducing diffrac-
tion and therefore inhomogeneities in the illumination. The imaging objective is a 4f -
telescope with 10⇥ magnification. The images of the atomic density distribution are
captured by a CCD camera (Andor Ikon-M) with a 1024 ⇥ 1024 pixels area. Further de-
tails of the imaging optics are given in Ref. [53], while its characterization is presented
later in this Chapter.

Experiment control

The entire experiment is controlled by a computer equipped with I/O cards, providing
digital and analog outputs. The analog outputs modulate the DC and MW currents, as
well as the light powers (by controlling the power of the RF signal driving the AOMs),
while the digital outputs are used for different switching and triggering.

The experimental sequence is written using the customized editor called goodTime
[61]. It interprets a simple programming language, and compiles it into a table of times
and voltages which is sent to the I/O cards. Moreover, at the beginning of each sequence
it communicates with other devices (e.g. MW and RF generators, data acquisition com-
puter), connected via GPIB, USB or Ethernet, to initialize their operation.

The data acquisition is handled by a second computer to which the camera is con-
nected. The initialization, control and readout of the camera, and the processing of the
images, is done by the customized MatCam program [53] that is triggered from the ex-
periment control computer. Even if MatCam allows to extract the atomic densities from
the images, for the definitive data analysis we use a more accurate program implement-
ing a fringe-removal algorithm [53].

3.1.2 Typical experimental sequence

The detailed steps we follow in the typical experimental sequences are presented in
[53,62]. We start loading the main MOT for approximately ten seconds, after which the
atoms are transferred to a compressed MOT. The latter is closer to the chip surface, as
its quadrupolar field is generated by one of the base chip wires. Subsequently, magnetic
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field gradients are switched off, and the cooling lasers are detuned further for the opti-
cal molasses stage. At this point in the sequence we observe ⇡ 1.0 ⇥ 106 atoms at a
temperature of ⇡ 10 µK.

The next step consist in transferring the atoms to the first magnetic trap. To this end,
we optically pump them in the magnetic trappable state |F = 1, m

F

= �1i, and then
ramp up the currents needed to generate the (Ioffe) trap. What follows is a transfer of the
atoms through a series of other Ioffe traps, where each next trap is further compressed
and closer to the chip surface. The compression raises the temperature, but this heating is
partially compensated by self-evaporative cooling, where atoms that are too hot escape
from the trap. To further decrease the temperature, we perform two RF evaporative
cooling ramps. The second ramp occurs in a dimple trap, which uses the same set of
wires as the experiment trap, and allows to achieve Bose-Einstein condensation of ⇡
2000 atoms. Details of these traps are given in Ref. [53].

Finally, we vary the currents in the wires to transfer the BEC to the trap used in
the experiment, of frequencies f

x

= 110 Hz and f
y

= f
z

= 729 Hz, and apply a RF
evaporation pulse to set precisely the final atom number. What follows is the main part
of the sequence, usually consisting entirely in RF and MW pulses, which is programmed
to prepare and measure the state of the BEC according to the specific experiment to be
performed (see chapter 5).

At the end of this manipulation of the BEC, we ramp down the trapping field in such
a way that the atoms are accelerated away from the chip, in the downward direction. This
allows the atomic cloud to expand, without colliding with the chip surface. After a time-
of-flight of few milliseconds, the absorption images of the atomic density distributions
are taken (see Fig. 5.9c), concluding the run. Further details for specific experimental
sequences are given in chapter 5.

During imaging the atoms scatter photons, which destroys the BEC. For this reason,
the whole experimental sequence is repeated many times, until enough data have been
accumulated. To investigate the dynamics of an observable, stroboscopic measurements
are taken, while to access variances statistics is collected.

3.1.3 Details of the experiment traps

The main trap used for the experiments presented here is a static dimple trap [60]. The
transverse confinement comes from a wire in the lower gold layer carrying I

L

= 180 mA
in the x-direction plus a static field of B

y

= 7.2 G in the y-direction. For the longitudinal
confinement, we use the three central wires of the five-wire structure, carrying I

D

=
2 mA each. In two of the wires the current flows in the �y-direction, while in the third
in the +y-direction, as shown in Fig.3.6A. The asymmetry in the currents is chosen to
position the trap on one side of the coplanar waveguide, in this way the atoms experience
a gradient when MW are sent through the central wire. The static field in the x-direction
is fine tuned to ensures that the trap bottom is near the “magic” field of 3.23 G. To this
aim we perform one-photon spectroscopy of the |1, �1i $ |2, 0i transition by fixing
the MW frequency to the theoretical value expected from the level splitting at the magic
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field and counting the atom number N1 while scanning B
x

. On resonance we observe a
drop in N1 from which we conclude B

x

= 3.36 G, where the offset comes mostly from
the fact that the magnetic field produced by the wires has to be compensated.

The simulated trapping frequencies are (f
x

, f
y

, f
z

) = (112, 728, 729) Hz, and the
trap minimum is located at (x0, y0, z0) = (�13.0, �1.7, 41.2) µm with respect to the
origin chosen to be at the central wire crossing and on the chip surface.

Apart from this static state-independent trap, our experiments make use of a state-
dependent trapping potential. This originates from sending a MW current of Imw =
21 mA amplitude through the coplanar waveguide. The frequency of this current is blue-
detuned by � = 2⇡ 12 MHz with respect to the |1, 0i $ |2, 0i transition. The atoms
are situated in the near-field of the waveguide, and therefore they experience a MW field
gradient, Fig.3.6B. For this reason, the differential level shift occurring between state
|1i and |2i is spatially dependent, giving rise to a state-dependent potential. For our
parameters, the combination of the static fields with the MW field result in a separation
of the trap minima for the two states of ⇡ 150 nm, which is used to prepare a spin
squeezed state (see sections 5.1.1 and 5.1.2).
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Figure 3.6: Schematics of the chip wires around the trap position. The illustrations are a
magnification of the right region in Fig. 3.3b. (A) Top view of the central region of the five-wire
structure. The arrows indicate the flows of the DC and MW currents used to create the static and
state-dependent trapping potentials. (B) Angled view of the chip region shown in panel A. The
microwave near-field potential Vmw for Imw ⇡ 5 mA and �mw = 2⇡ 12 MHz (blue detuning) is
drawn for illustration. In both panels the position and shape (Thomas-Fermi radii) of the BEC
is shown to scale in blue. The displacement in the trap bottom for the two internal states is too
small to be visible at this scale. Figures adapted from Ref. [53].

3.1.4 Characterization of the imaging system

The idea behind absorption imaging is that the atomic density distribution can be recon-
structed by observing the attenuation of a light beam passing through it. For a cloud of
two-level atoms, the two-dimensional distribution n2D is reconstructed from the beam
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intensities before and after the atoms, I
i

and I
f

, from the Beer-Lambert law [64]

n2D = � 1

�0

✓

ln
✓

I
f

I
i

◆

� I
i

Isat

✓

1 �
I
f

I
i

◆◆

. (3.1)

In this expression, �0 = 3�2/2⇡ is the resonant absorption cross section of the imag-
ing transition with wavelength � = 2⇡c/!0, and Isat = ~�!3

0/12⇡c2 is the saturation
intensity of the transition.

In practice, the light beam is imaged with a camera, and its intensity needs to be
derived from the electrons counted on the CCD pixels. A direct conversion is difficult,
as it requires to know the quantum efficiency of the imaging system. For this reason, we
replace Isat by an effective saturation intensity I 0sat, which we calibrate experimentally.
We scan I

i

and set I 0sat such that the total atom number is independent of the imaging
probe intensity [64].

Similarly, the absorption cross-section needs to be corrected to take into account the
presence of additional energy levels, their residual populations originating from imper-
fect optical pumping, and errors in the probe polarization or frequency. For this reason,
we replace �0 by an effective saturation intensity �00, which we also calibrate experimen-
tally as explained later.

Image acquisition

At the end of each experimental sequence, we take absorption images of the BEC. Since
we want to reconstruct the atomic density distributions for both state |F = 1, m

F

=
�1i = |1i and |F = 2, m

F

= 1i = |2i, we adopt the following strategy. First, we image
the atoms in state |2i by illuminating them with a probe laser resonant to the F = 2 to
F 0 = 3 transition. During this process, they are blown away due to photon recoil, leaving
in the field of view only atoms in state |1i. The latter are optically pumped from F = 1
to F = 2, and then imaged in the same way as before. Each of these two images give
information about the light intensity after the atoms, I

f

, entering in Eq. (3.1). However,
to evaluate n2D it is necessary to know the light intensity before the atoms, I

i

. For this
reason, immediately after the first two absorption images, a third image with no atoms is
recorded, called reference image. Because photon shot noise results in different images
for the same probe light intensity, which in real situations even fluctuates over time due
to technical noise, care must be taken to infer I

i

from the reference image. For this
reason we developed an algorithm to construct an optimal reference image from linear
combinations of reference images, which is described in the next paragraph.

Due to the finite speed of the camera, the two absorption images are taken with a
delay of 1.33 ms. This means that the cloud of atoms in state |1i expands and falls
longer than the cloud of atoms in state |2i, leading to an increased rms size of ⇠ 2%
(0.06 pixel) horizontally and ⇠ 25% (0.8 pixel) vertically (see Fig. 5.9c), and to a center
position which is ⇠ 150 µm lower. As a consequence of its larger size, the image of the
atoms in state |1i is typically associated with a larger noise with respect to the one for
state |2i (see the following paragraph).
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Note that already after the first image the spin state of the atoms is projected. How-
ever, after the first image only atoms in |2i are spatially localized, while atoms in |1i are
still completely delocalized until the second image is taken.

Post-processing of the images

Imperfections in the optical elements, and their finite sizes, inevitably cause intensity
fringes in the light field shined onto the atoms. Crucially, the reference image taken
immediately after the image of the atomic distribution is used to account for this effect.
However, mechanical vibrations result in fringe patterns that vary in time, complicating
their subtraction. Moreover, the reference image is affected by photon shot noise, which
is the primary source of imaging noise in our setup.

To reduce photon shot noise, we apply the fringe removal algorithm presented in
[65]. The idea consists in subdividing the absorption and reference images in blocks of
imax = 100 consecutive shots, and then to construct for each absorption image an optimal
reference image Ropt as a linear combination of the reference images R

i

available in the
block, namely

Ropt =

imax
X

i=1

c
i

R
i

. (3.2)

The coefficients c
i

2 R of the linear combination are optimized to minimize the mean
squared residuals between the absorption and the optimal reference image, in a region
where no atoms are present. Moreover, the linear combination of reference images also
suppresses the photon shot noise of the optimal reference image, as the uncorrelated
fluctuations add in quadrature as

�Ropt =

v

u

u

t

imax
X

i=1

c2
i

(�R
i

)2 . (3.3)

The algorithm corrects also for intensity fluctuations between the absorption image and
the reference image, which would cause systematic offsets in the atom number.

Atom number counting and imaging noise

From the fringe removal algorithm, we obtain a reconstruction of the two-dimensional
density distributions of atoms in state |1i and |2i. The integration of these densities
gives the total atom number in each state, N1 and N2. Alternatively, we can integrate the
densities only over parts of space, resulting in a measurement of the number of atoms
contained in specific regions.

To estimate the error on the atom numbers determined in this way, we make again
use of the absorption images. From the imaging light intensity we extrapolate per each
pixel the expected photon shot noise, which we convert into fluctuations of the number
of atoms. In the experiments presented here, we observe atom number noise levels of
�
N2,det . �

N1,det ⇡ 3 � 5 atoms for rectangular regions of interest containing the entire
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cloud (see chapter 5). The noise on the atom number we derive with this method assumes
pure photon shot noise. For this reason, this noise is always less than the one extracted
by counting atom number fluctuations in images with no atoms, as the latter includes
technical noise.

Calibration of the imaging system

The imaging system needs to be calibrated in order to extract the correct atom number.
As we are imaging atoms in two different internal states, i = 1, 2, the corresponding
density distributions are calculated from Eq. (3.1) with the experimentally determined
parameters �00,i and I 0sat,i. First, each I 0sat,i is fixed by ensuring that the detected total
atom number in state i is independent on the probe light intensity [64]. We find I 0sat,1 =
Isat/0.63 and I 0sat,2 = Isat/0.59. Then, to calibrate the absolute atom number we take
two set of measurements determining �00,i. One consists in characterizing the differential
detectivity of the two states, for which we perform Rabi oscillations with high contrast
and ensure that the detected total atom number is independent of the relative population
between the two states. This fixes the ratio �00,2/�00,1 = 1.11, which deviates from unity
mostly because of the different densities of the two components. The other consists in
measuring the scaling of the projection noise with the total atom number (usually for
BECs with N between 200 and 1400). For a coherent state with equal population in |1i
and |2i, we calculate the variance of the relative atom number. We find that the projection
noise dominates our measurements, as the scaling is purely linear. The deviation from
unity of the fitted slope is then corrected for in our analysis by fixing �00,1 accordingly.

Optical resolution of the imaging system

For the experiments we are going to perform, high spatial resolution images of the atomic
density distributions are required. To obtain an upper bound for the optical resolution
of our imaging system, we image a small atomic cloud. To this end, we prepare atoms
in a trap which is approximately 300 µm below the chip surface, such that the atoms
are trapped at a position close to where the falling atomic cloud is in the actual ex-
periments. We image the atomic cloud 10 µs after switching off this trap, meaning
that the atom density corresponds to a good approximation to the in-situ density. Note
that even if the magnetic fields do not vanish immediately, their effect leads to an off-
resonant image which does not affect the resolution. By using short laser pulses of
10 µs for imaging (such that blurring is negligible, see next paragraph), and averaging
several absorption images of this small cloud, we obtain an upper estimate of the size
of the point spread function of our optical system. From the averaged absorption im-
ages, Fig. 3.7, a Gaussian fit gives an upper bound of the size of the optical point spread
function of our imaging system. We find rms sizes of �hor = 1.1 pixel = 1.43 µm and
�vert = 1.2 pixel = 1.56 µm.
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Figure 3.7: Imaging of small BECs. The left panel shows an averaged absorption image of a
small atomic cloud, taken a very short time after release from the trap. The gaussian fit (center
panel) gives an upper bound of the size of the optical point spread function of our imaging
system. In the right panel the fit residuals are shown. The colorbar applies to all three panels.
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Figure 3.8: Blurring due to photon scattering. The blue line shows the blurring expected
from Eq. (3.4) with s = 1. The orange line includes the horizontal resolution of our imaging
system, �hor = 1.43 µm.
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Image blurring due to random photon scattering during absorption imaging

During the resonant imaging pulse the atoms scatter photons, which leads to a random
velocity and position during the pulse. This blurring leads to a reduction of the effec-
tive optical resolution. In our experiment the pulse is very well described by a pulse of
duration �tpulse with constant intensity. We derive here a conservative estimate of the
blurring. Since the atoms are mostly scattering photons on a cycling transition, we as-
sume here a two-level model for the atomic transition. We further assume that the light
is resonant during the whole imaging pulse. These assumptions overestimate the actual
spread in position, since the real scattering cross section is smaller and the scattering
rate is also reduced due to the longitudinal acceleration Doppler-shifting the atoms out
of resonance during the pulse. These two effects are relatively small for our parame-
ters (�tpulse < 100 µs), such that our estimate, although conservative, should still give
reasonably good agreement with the experiment.

We are interested in the transverse spread of position due to the random scattering.
As derived by Joffe et al. [66], the mean squared transverse position at time t is given by

x2
rms(t) =

1

9
N

p

(t)v2rect
2 =

�

18

s

1 + s
v2rect

3 ,

where N
p

(t) is the number of photons scattered between time 0 and t, vrec = 5.8845 mm/s
is the recoil velocity, and � = 2⇡ 6.065 MHz and s = I

Isat
are the decay rate and sat-

uration parameter of the transition, respectively. This size is however only giving the
rms transverse size of the atomic cloud at a given time. To estimate the rms size as
observed on the image, we have to time-average the spatial distribution over the pulse
length. To estimate this quantity, we consider a large number M of atomic trajectories
x
j

(t), j = 1...M . Then, the time averaged mean squared transverse position is
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In the last expression we can exchange the order of integral and sum and use the rms
transverse size at time t to estimate the expectation value of the set of trajectories. In
this way we obtain
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. (3.4)

If we take the estimate of the size obtained from in-situ absorption images (see above)
into account and the blurring due to resonant absorption during a 50 µs long imaging
pulses (as for the EPR experiment presented in chapter 5), we obtain a total rms size of
the blurred cloud on the camera of �blur = 1.4 pixel = 1.8 µm, see Fig. 3.8. We want
to emphasize here that our estimation is conservative in the sense that it gives an upper
bound for the blurring, overestimating the actual effect.
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Resolution asymmetry due to atomic motion during probe pulse

As the absorption images are taken during time of flight, the previously described imag-
ing resolution and blurring, which describes the effective resolution in case of station-
ary atoms, needs to be averaged over the mean atomic trajectory during the imaging
pulse. We do not detect any motion in the horizontal direction but observe that atoms
fall with a velocity in the vertical direction of 0.114(1) µm/µs for the F = 2 state
and 0.129(1) µm/µs for the F = 1 state, the difference being compatible with grav-
itational acceleration between the two images. Integrated over the atom’s trajectory
during the imaging pulse, the total effective resolution keeps its Gaussian shape in the
horizontal direction with a rms size of �hor = 1.4 pixel = 1.8 µm. In the vertical di-
rection, it can still be well approximated by a Gaussian function as long as the falling
distance during the imaging pulse is less than the full width at half maximum of the static
blurred image. This results in state dependent effective rms sizes of the imaged cloud of
�vert,F=2 = 2.0 pixel = 2.5 µm and �vert,F=1 = 2.1 pixel = 2.7 µm along the vertical
direction.

3.2 BEC manipulation

Necessary for our experiments is the ability to manipulate the BEC internal (spin) an
external (motional) degrees of freedom. As explained in the previous section, these are
controlled by two-photon Rabi fields and by microwave-dressed potentials, respectively.
In this section we report experimental results illustrating the coherent manipulation of
different degrees of freedom of the BEC.

3.2.1 Spin state manipulation

To manipulate the internal state of the atoms we apply a two-photon drive [radio-frequency
(RF) and microwave (MW)] to induce resonant Rabi rotations, with a two-photon Rabi
frequency of ⇡ 400 Hz. The mw field is blue-detuned by ⇡ 500 kHz from the inter-
mediate state |F = 2, m

F

= 0i, see Fig. 3.5. Such Rabi pulses drive the transition
from state |1i to |2i, achieving coherent population transfers with very high fidelities
(>99%). In particular, we are not able to detect any atoms transferred to other states
of the ground-state manifold. This allows us to focus entirely on the effective two-level
system of states |1i and |2i, described by a pseudo-spin 1/2 for each atom. For the entire
BEC, this allows a description of the internal state in terms of a collective spin ~̂S, as
defined in Eqs. (2.24).

Rabi oscillations

To calibrate the frequency of the Rabi field, we start with all atoms in state |1i and then
record Rabi oscillations for different detunings �RF,i of the RF field with respect to
its current uncalibrated frequency. Note that the time dependence of Nrel follows the
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Rabi hyperbola Rabi oscillations

a) b)

Figure 3.9: Rabi hyperbola and Rabi oscillations. a: Rabi frequency as a function of the RF
detuning. Fitting the experimentally measured Rabi frequencies (black dots) with an hyperbola
(red line) gives the frequency to drive resonant Rabi rotations. b: To measure accurately the reso-
nant Rabi frequency we drive Rabi oscillations. Fitting the experimentally measured oscillations
(black dots) with a sine (red line) gives the resonant Rabi frequency.
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where ⌦
R

is the resonat Rabi frequency, and � the (two-photon) detuning between the
two-level transition and the driving Rabi fields. The latter being related to the RF detun-
ing by an unknown constant offset �0 as �

i

= �RF,i + �0.

Fitting the observed detuned Rabi oscillations gives the frequencies⌦
i

=
q
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+ �2
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+ (�RF,i + �0)2. Therefore, by further fitting the dependence of ⌦
i

as a function
of �RF,i we are able to extract the unknowns ⌦

R

and �0, see Fig. 3.9a. Note that the
same idea can be applied to the dependence of the detuned Rabi oscillations amplitude,

⌦2
R

⌦2
R

+�

2 , as a function of �RF,i. The obtained �0 is used to calibrate the frequency of the
Rabi field, such that it is on resonance with the two-level transition.

To measure accurately the Rabi frequency, and to ensure that resonant oscillations
have a high contrast, we record several fringes, Fig. 3.9b. From a sinusoidal fit we
directly obtain ⌦

R

, which is then needed to set the areas of the Rabi pulses used in the
experiment.

3.3 Ramsey interferometry

To study the coherence properties of our BECs, we perform Ramsey sequences in the
phase domain, for different interrogation times. Fist, a ⇡/2 Rabi pulse prepares the BEC
in an equal superposition of |1i and |2i. Then, after a Ramsey interrogation time T

R

, a
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Figure 3.10: BEC coherence measurement. Ramsey measurement in the phase domain for four
different Ramsey interrogation times T

R

. Shown are experimental data (blue) and sinusoidal fit
(red). The fit results in the contrasts (0.962, 0.789, 0.600, 0.266), respectively.

second ⇡/2 Rabi pulse with phase �
R

is sent and the atom number populations are read
out. For a fixed T

R

we accumulate a number of shots for different Ramsey phases �
R

,
to record interference fringes.

Figure 3.10 shows Ramsey phase measurements for increasing interrogation times.
Note that the shot-to-shot visibility of the fringes stays always relatively high (� 89%),
while the fitted contrast gets significantly reduced down to even 27%, because of phase
noise (see Eq. (2.40)). By fitting with the function e�(�t)2 the contrast as a function of
T
R

we find � = 1.9 s�1. This implies a e�1/2 reduction in the contrast in ⇡ 372 ms,
significantly longer than the typical sequences used for the experiments presented here
lasting ⇡ 60 ms. A detailed study of the limitation posed by this noise is currently
ongoing, and the results will be presented in a future work.
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3.3.1 Motional state manipulation

To manipulate the motional state of the atoms we control the trapping potential. Of par-
ticular interest is the case where the motional state of each BEC component is indepen-
dently manipulated, which in our experiment is achieved by state-dependent microwave-
dresses potentials.

Because of mean-field interactions, the BEC motional state dynamics is non-trivial.
As an example, even a separation between the two trapping potentials much smaller
than the extent of the BEC can results in an almost complete separation of the BEC
wavefunctions. This “dynamic” splitting and recombination technique is used in our
experiments to induce a demixing-remixing of the two components. We split the two
potential minima by �x0 ⇡ 150 nm (much less than the extension of the BEC size of
RTF,x ⇡ 4 µm), and observe a modulation in the overlap between the two components
[19]. Note that the resulting oscillation frequency is slower than the trap frequency
because of interactions.

To show that the demixing-remixing dynamics is coherent, we perform the follow-
ing Ramsey sequence in the time domain. Fist, a ⇡/2 Rabi pulse prepares the BEC
in an equal superposition of |1i and |2i. Then, we turn on the coplanar MW with a
smooth ramp taking 350 µs (slow enough to allow for adiabatic microwave dressing of
the potential, but much faster than the motional dynamics of the atoms). This creates a
state-dependent MW potential which is left on for the entire Ramsey interrogation time
T
R

, before a turn-off ramp of 350 µs. Finally, a second ⇡/2 Rabi pulse is sent and the
atom number populations are read out.

The result of this measurement sequence, as a function of T
R

is shown in Figure 3.11.
We observe fast oscillations, which are the typical interference fringes of a Ramsey se-
quence, but modulated in amplitude by ⇡ 60%. This contrast scales with the wave func-
tion overlap, and its periodic collapse and revival indicates that the demixing-remixing
dynamics of the two components is coherent. For longer times, atom losses during this
process results in a reduction of the mean-field interactions, which make this dynamic
faster.

To estimate the optimal times T
R

where the contrast has a revival, we fit the exper-
imental data with a modulated oscillation, see Fig. 3.11. At these revival times we can
obtain a better estimate of the contrast by performing a Ramsey sequence in the phase
domain. This consists in fixing T

R

to one of the revival times, and then scan the phase
of the second ⇡/2 Rabi pulse. The results of this type of measurement at the three re-
vivals visible in Fig. 3.11 are given in Fig. 3.12. The fact that the contrast gets reduced
from one revival to the next is also associated to phase spreading (squeezing) of the con-
densate, as it is also visible from the increasing noise on the fringes. For the first three
revivals we typically find a contrast in the range of 95% � 99%.

The ability to spatially separate the two BEC components allows us to control the
collisional interactions between them, effectively controlling the coefficient � of the
nonlinear dynamics described by the Hamiltonian Eq. (2.27). In fact, as it can be most
easily seen from the approximated Eq. (2.29), the parameter � depends on the wave-
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Figure 3.11: Demixing-remixing dynamics. Black dots are measurements of the Ramsey
fringes in the time domain as a function of the interrogation time T

R

, for a BEC with N ⇡ 850
atoms. During during T

R

the microwave near-field is applied, which causes the two components
to oscillate in their traps, as it can be seen from a modulation in the contrast. The fit with
O+(A (1 + B (cos(!fastTR

+ �0)))) cos(!slowT
R

+�1) (red line) gives for the first three revivals
the times T1st = 28.2 ms, T2nd = 54.8 ms and T3rd = 81.4 ms, respectively.

1st Revival 2nd Revival 3rd Revival

Figure 3.12: Ramsey phase measurements at the recombination times. Ramsey phase mea-
surements at the first three revivals expected from the measurement in Fig. 3.11. The experi-
mental points (black dots) are fitted with the model C sin(� � �0), from which we extracted
the Ramsey interference contrast C. Observe the typical decay of this quantity due to imperfect
re-overlap between the two wavefunctions.

function overlap of the two states. It is nearly zero for identical and overlapping compo-
nents, while it increases by several orders of magnitude for completely separated com-
ponents [19]. For this reason, we use this demixing-remixing dynamics to prepare BECs
in spin squeezed states, as we will explain in section 5.1.1.
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4
Quantum correlations: Theory

In this chapter we introduce three main types of correlations arising from quantum me-
chanics: entanglement [2], Einstein-Podolsky-Rosen correlations [4] and Bell correla-
tions [5]. Starting from an historical overview of their development, we briefly discuss
the revolutionary aspects as well as the philosophical implications of these concepts. We
then continue with the formulation of rigorous mathematical definitions for these three
types of correlations, which allow us to derive practical criteria to reveal them experi-
mentally. Moreover, we introduce approaches to characterize multipartite states based
on the properties of the correlations among the constituent parties.

4.1 History and philosophy

During the formulation of quantum mechanics, it was soon realized that a characteris-
tic trait are its probabilistic predictions of measurement results. From this observation,
it might look as if it was an incomplete description of the physical world, which can-
not give deterministic predictions because it does not consider all existing degrees of
freedom. A classical analogy could be the case of thermodynamics, where macroscopic
properties (such as temperature, pressure, ...) arise from more fundamental microscopic
quantities not included in the theory (such as the speed of each particle in the system).
Therefore, as an example, knowing the temperature of a gas gives us information only
about the probability of one of its molecule to have a certain speed. Is this also the
case for quantum theory, where knowing the wavefunction gives us only probabilistic
predictions?

Einstein, Podolsky and Rosen (EPR) addressed this question and, by conceiving a
hypothetical experiment, they apparently managed to answer it. In their 1935 paper “Can
quantum-mechanical description of physical reality be considered complete?” [67] they
proved the incompleteness of quantum mechanics, under the assumption that physical
properties exist (are real) independent of their observation. This work raised a lot of
discussions and further analyses, in particular by Bohr [68] and Schrödinger [69, 70],
but, more crucially, it led to the realization that quantum mechanics predicts correlations
among physical systems that are in conflict with the classical world.
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The question of whether the quantum mechanical description of the world could
be “completed” by introducing new variables into the theory, therefore finding an even
more fundamental theory, culminated in 1964 with the work of Bell [71]. Remarkably,
he proposed an experiment able to rule out such a possibility, which has since already
been performed in several forms [5, 72–77], leading to the conclusion that a local realist
description of the world is impossible.

4.1.1 Elements of reality and the completeness of physical theories

Following our everyday experience, we are brought up to believe that the universe is
an ensemble of objects with associated properties. These properties are called by EPR
the “elements of physical reality” and, importantly, they are empiric features, in the
sense that they are defined upon what can be predicted by a model and measured by
experiments. In general, EPR say that, “If, without in any way disturbing a system, we
can predict with certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding to this physical
quantity” [67].

According to their definition, elements of reality are objective, i.e. independent from
who observes them, and their reality is rooted in the idea that they exist independently of
whether someone observes them or not. The collection of all such elements constitutes
an objective reality, which is how we perceive the world in our everyday lives.

Ideally, a scientific theory aims to give an accurate description of (at least a portion
of) the world, allowing us to predict with certainty the result of the measurements of its
elements of reality. According to EPR, a physical theory can be called “complete” if
every element of the physical reality has a counterpart in the physical theory. It was the
case of quantum mechanics, where measurement results are intrinsically random, that
lead EPR to ask whether such a theoretical description of the world is complete. As we
will see, this thought developed up to the point of questioning the validity of assigning
elements of reality to the observable properties of the quantum realm, like the direction
of a spin. Is the result of an experiment revealing a property embedded in the system
under study, or is this property made real at the time of observation?

4.1.2 Heisenberg uncertainty principle

A surprising result of quantum mechanics is that it predicts a limit on the precision with
which certain physical quantities can be known. This is counterintuitive because, in the
classical world, we expect to be able to measure different elements of reality to arbi-
trarily small precision, bounded only by our experimental apparatus 1. It is important to
underline that the limit imposed by quantum mechanics is a fundamental one, indepen-
dent of our ability to perform the measurements, but which in principle could arise from
an incompleteness of the theory in describing the actual world.

1Actually, as the resources (energy, time, space, ...) available in our Universe are believed to be finite, a
measurement with arbitrarily small precision is never possible.
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In a practical situation, an observer has to estimate the value of some physical prop-
erties, say A and B, and for this he performs repeated measurements. Each time he pre-
pares the system (and the experimental apparatus) in the same initial state, he chooses
whether to look either at property A or B, and finally he performs the measurement.
The uncertainty relation states that (a rigorous definition is given below), if A and B are
some “special pair of properties”, e.g. A = position B = velocity, then the errors of
their estimated values can not simultaneously be arbitrarily small, no matter how precise
the experimental apparatus or the state preparation are.

At this point, we might ask the question: why during the experiment the observer
has to decide whether to look at either A or B, can’t he look at both? The fact is that,
in quantum mechanics, the act of measuring alters the state of the system. Therefore,
after the first measurement is performed, any subsequent measurement will be on a state
different than the original one, possibly giving a different result. In other words, this
means that measuring B after A might be different from measuring A after B. In this
case, A and B are called incompatible observables, because they cannot be determined
at the same time.

To give a rigorous definition, in quantum mechanics the physical observables A and
B are associated to operators, Â and B̂, and they are incompatible if ÂB̂ 6= B̂Â. The
uncertainty relations tells that, for any pair of observables

Var[Â]Var[B̂] � 1

4
|h[Â, B̂]i|2 , (4.1)

where Var[X̂] = hX̂2i�hX̂i2 is the variance of the operator X̂ , and [Â, B̂] = ÂB̂�B̂Â
is the commutator. If [Â, B̂] 6= 0 then the observables are incompatible (they do not
commute), and Eq. (4.1) shows that they cannot be measured and known with arbitrary
precision simultaneously. If we know property A precisely, Var[Â] ⇡ 0, then we are un-
certain about the value of property B, Var[B̂] � 1 (in some units), and vice versa. Only
in the case [Â, B̂] = 0 can both observables be measured and known simultaneously
with arbitrary precision.

EPR made a crucial observation, expressing a conceptual, instead of practical, impli-
cation of the uncertainty principle. They write, “[...] it is shown in quantum mechanics
that, if the operators corresponding to two physical quantities, say A and B, do not com-
mute, that is, if ÂB̂ 6= B̂Â, then the precise knowledge of one of them precludes such a
knowledge of the other. Furthermore, any attempt to determine the latter experimentally
will alter the state of the system in such a way as to destroy the knowledge of the first.
From this follows that either (1) the quantum-mechanical description of reality given by
the wave function is not complete or (2) when the operators corresponding to two physi-
cal quantities do not commute the two quantities cannot have simultaneous reality.” [67].
These alternatives arise from the consideration that, if (1 = not 1) quantum mechanics is
a complete theory and (2 = not 2) both quantities have simultaneous reality, then these
quantities should enter into the theory which would allow predicting their value with
certainty. Since in quantum mechanics this is forbidden by the uncertainty principle, we
have to conclude that either (1) or (2) (or both) are wrong assumptions.
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According to the postulates of quantum mechanics, the wavefunction contains the
complete description of the state of a system. In this framework, we are therefore only
left with the option that the statement (2) above is wrong (or equivalently that (2) is
true), meaning that pairs of observables might not have simultaneous reality, and that
Nature has an intrinsic fundamental unpredictability. Einstein could not accept this pos-
sibility [78]. Like many others he believed in an objective reality which can be described
deterministically in a mathematical language, and for this reason he tried to prove instead
that quantum mechanics is incomplete. In their work, EPR analyzed a thought experi-
ment allowing to predict the values of pairs of incompatible observables with certainty,
apparently violating the uncertainty principle.

4.1.3 Einstein-Podolsky-Rosen paradox

The thought experiment devised by EPR is the following. Consider two particles, labeled
A and B, produced at x = 0 by a physical process such that their momenta (velocities)
are always the same, pA = pB , and their positions are opposite with respect to the
origin, xA = �xB . Particle A is sent to observer “Alice”, and B to “Bob”, who perform
experiments on them.

When Alice measures the position of particle A, she will obtain the result x
A

, which
is a random number she cannot predict. However, independently of the specific result,
after her measurement she will always be able to predict with certainty the position of
particle B that Bob will measure: it must be xB = �xA. Similarly, if Alice were
measuring the momentum of particle A, she would have obtained the (random) result
p
A

, and she could have predicted with certainty the momentum of particle B that Bob
would have measured: pB = pA. To summarize, regardless of which property Alice
decides to measure, her (random) result allows her to predict with certainty Bob’s result
for the same property. Measurement outcomes are perfectly (anti-)correlated.

At this point, the difference from a classical scenario might not be apparent. Suppose
we pick two coins of identical shape and material, and we give one of them to Alice and
the other of Bob. Independently of whether Alice decides to look at the shape or at
the material, and independently of her result, she will always be able to predict with
certainty the result of Bob’s observation of the same property: he will see the same.
Also in this case, there is perfect correlation between the measurement results. Even
more, Alice could actually observe simultaneously shape and material of the coin, since
these properties are both elements of reality. So, where is the complication arising from?

Contrary to the classical example of the coin, quantum measurements of position and
momentum do not commute, and therefore the uncertainty principle applies and they can
not be observed simultaneously with arbitrary precision. According to Eq. (4.1), we must
have

Var
⇥

xB

⇤

Var
⇥

pB
⇤

� 1

4

�

�h
⇥

xB, pB
⇤

i
�

�

2
=

~2
4

> 0 , (4.2)

where ~ is the reduced Planck constant. This relation implies that measurement uncer-
tainties for position and momentum cannot be both zero: their product is bounded to
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a non-zero constant and therefore position and momentum cannot be both determined
with certainty. As pointed out by EPR, under the assumption that quantum mechanics
is a complete theory, the fact that

⇥

xB, pB
⇤

6= 0 implies that position and momentum
are not (simultaneous) elements of reality. Nevertheless, we have seen that there are
situations in which a measurement on A allows to predict with certainty the result of a
measurement in B, without interacting with it. Unless the act of measuring one parti-
cle instantaneously affects the other, which would involve information being transmitted
faster than light (“spooky action at a distance”), as forbidden by the theory of relativ-
ity, this result forces us to conclude that both position and momentum are elements of
reality! We reached opposite conclusions, clearly raising a paradox. The only possible
solution seems to be that our assumption of the completeness of quantum mechanics is
wrong.

To summarize, using EPR’s words, “Previously we proved that either (1) the quantum-
mechanical description of reality given by the wave function is not complete or (2) when
the operators corresponding to two physical quantities do not commute the two quantities
cannot have simultaneous reality. Starting then with the assumption that the wave func-
tion does give a complete description of the physical reality, we arrived at the conclusion
that two physical quantities, with non-commuting operators, can have simultaneous re-
ality. Thus the negation of (1) leads to the negation of the other other alternative (2). We
are thus forced to conclude that the quantum-mechanical description of physical reality
given by wave functions is not complete.” [67].

In more generality, the EPR paradox appears whenever the inconsistency between
the completeness of quantum mechanics and local realism is observed. According to
the postulate of the collapse of the wavefunction, after the first measurement has been
performed, the system will be left in the eigenstate of the observable associated to the
observed eigenvalue. In other words, depending on what measurement Alice decides to
perform, collapse in a different basis (e.g. x or p) occurs, and therefore particle B could
be left in states with different eigenfunctions. If the two particles cannot interact with
each other (e.g. because they are far away) we must conclude that no real changes can
happen to B after Alice’s measurement choice, and therefore that the different states
in which B could be left are just a different description of the same reality (if any).
The difficulty arises when these different states are eigenstates of operators that do not
commute, as we have just seen. Apart from the conclusion on the completeness of
quantum mechanics, one could also raise the observations that the uncertainty relation
is not a fundamental principle but just a consequence of this incompleteness, and that
the description of physical reality given by quantum mechanics is redundant, since the
different quantum states in which a system can collapses upon the measurement on an
other distant system, must describe the same physical state.

As we can deduce from the claim, “While we have thus shown that the wave function
does not provide a complete description of the physical reality, we left open the question
of whether or not such a description exists. We believe, however, that such a theory is
possible.” [67], EPR believed they managed to demonstrate that the wavefunction does
not provide a complete description of physical reality, and hence that the Copenhagen
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interpretation of quantum mechanics is unsatisfactory. We will see later how the work
of Bell proved this conclusion to be incorrect, and that quantum theory cannot be “com-
pleted”. Therefore, which idea or concept upon which the EPR argument is based do we
have to reject?

4.1.4 Schrödinger’s entanglement and nonseparability

Using the words of Schrödinger [69, 70], the work by EPR brought the attention to the
“very disconcerting fact” that ”the current interpretation of quantum mechanics obliges
us to admit not only that by suitable measurements, taken on one of the two parts only,
the state of the other part can be determined without interfering with it, but also that,
in spite of this non-interference, the state arrived at depends quite decidedly on what
measurements one chooses to take - not only on the results they yield.” This feature is in
drastic conflict with our intuition, “It is rather discomforting that the theory should allow
a system to be steered or piloted into one or the other type of state at the experimenter’s
mercy in spite of his having no access to it.” The term “steering” introduced in this
sentence has then been used to describe the EPR paradox.

A number of further investigation were driven by the EPR paper, especially among
the founders of quantum mechanics like Bohr [68] and Schrödinger [69, 70]. The latter
even generalized the original EPR idea, uncovering a peculiar feature of the theory of
quantum mechanics. He realized that “the best possible knowledge of a whole does not
necessarily include the best possible knowledge of all its parts, even though they may
be entirely separated and therefore virtually capable of being ‘best possibly known’, i.e.
of possessing, each of them, a representative of its own.” [69]. Schrödinger named this
feature “entanglement” of the wavefunctions, to reflect the non-separability of certain
composite quantum systems where constituents cannot be fully described without con-
sidering the others. This holistic feature is a completely new concept that he claimed
to be “[not] one but rather the characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought.” [69].

Invoking quantum nonseparability is somehow inconsistent with EPR’s definition of
elements of reality, which are a local concept, and it could therefore offer a possible solu-
tion for the paradox. The necessity of considering the system as a whole directly implies
that a measurement performed on one of its particles will affect all its other particles,
no matter how far apart they are. This point of view indicates that EPR’s analysis of
their hypothetical experiment has a flaw exactly in the assumption that particle B is not
affected by the measurement operation performed in A, a possibility which, for spatially
separated parties, seems in clear conflict with causality. For many physicists like Ein-
stein and Schrödinger, entanglement was a concept leading to conclusions so disturbing
and counterintuitive that they could not believe it occurs in reality. Some unknown prin-
ciple should have prevented such entanglement (with its consequent “spooky action at a
distance”) predicted by quantum theory, and violating a local realist view of causality.
The possibility of an incomplete description of the physical world was still open.

Bohr even had another point of view concerning EPR’s definition of the elements
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of reality. In his famous reply, published few months after the EPR article (and with
the same title), he writes explicitly, “The wording of the above mentioned criterion [the
EPR criterion for elements of reality] ... contains an ambiguity as regards the expression
‘without in any way disturbing a system’.” [68]. In what follows he presents his point of
view according to which physical reality cannot be properly defined without referencing
to a well-defined experiment including both the entire system and all the measurement
apparatuses, “these [experimental] conditions must be considered as an inherent element
of any phenomenon to which the term physical reality can be unambiguously applied”.
As a consequence, the measurement choice and result of one observer change the phys-
ical reality of the whole physical system, which of course includes the other particles.
This leads Bohr to reject the EPR assumption according to which the physical reality
contained locally at Bob’s position is independent of measurements performed by Alice
on an other arbitrarily remote region, and with that the EPR conclusion as well. Bohr
summarized his point of view a decade later by writing, “Recapitulating, the impossi-
bility of subdividing the individual quantum effects and of separating a behavior of the
objects from their interaction with the measuring instrument serving to define the condi-
tions under which the phenomena appear implies an ambiguity in assigning conventional
attributes to atomic objects which calls for a reconsideration of our attitude towards the
problem of physical explanation.” [79].

4.1.5 Bell nonlocality

Bell decided to further investigate the results of EPR with a rigorous mathematical ap-
proach [80]. His idea consists of assuming the existence of hidden variables, to then
formulate a criterion which measurement results must fulfill according to local realism
(LR). More precisely, he was able to derive an experimentally measurable quantity S,
such that

S
LR
 2 , (4.3)

when the measurements are performed on a system which can be described by a local
realist theory. Remarkably, Bell’s inequality Eq. (4.3) comes from a completely general
treatment of the problem, which does not make any assumption on the type of measure-
ments that are performed, nor on the state of the system.

The key result consists in the observation that according to quantum mechanics (QM)

S
QM
 2

p
2 , (4.4)

and therefore that measurements on a quantum system can violate the criterion Eq. (4.3).
This shows that quantum theory cannot be “completed” (made fully deterministic) by
adding local properties (elements of reality, hidden variables) to the individual compo-
nents of the system, as believed by EPR.

We have to keep in mind that, if quantum mechanics cannot be based on a more
fundamental local realist theory, this does not mean that the same must be true for Nature.
There was still the possibility that quantum mechanics was just an inaccurate model for
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the physical reality, and that such possibilities predicted by the theory do not actually
occur. For this reason, experimental tests were needed to reach a conclusive statement.

The availability of a concrete and practical criterion, Eq. (4.3), motivated several
physicists to test it in their laboratories. Nevertheless, a strict test of it was such a chal-
lenging task that it took around fifty years. Starting from the pioneering experiments
by Clauser in 1972 [81] and Aspect in 1982 [82], until the most recent (loophole-free)
experiments by four different groups in 2015-2017 [72–75], considered to be definitive,
the measurement results violated Bell’s inequality, as predicted by quantum mechanics.

The expression Eq. (4.3) (as any other Bell inequality) is based on the assumption
that there exist, independently of whether they are observed or not, a list of properties
for the system (realism), and that measurements performed on one part of the system do
not influence its other parts (locality). Remarkably, the experimental violation of a Bell
inequality demonstrates that Nature cannot be described by any local realist theory. We
have to give up the idea of either reality, or locality, or both.

4.2 Technical definitions of quantum correlations

So far we have seen the historical development of the understanding of quantum corre-
lations. We used terms like entanglement (non-separability), EPR-steering and Bell cor-
relations (nonlocality), without highlighting the conceptual differences between them.
Also to this end, we now give a formal definition of these types of correlations.

4.2.1 Correlations as resources for tasks

It is intuitive that the power of correlations lies in enabling better performance in some
tasks. Imagine, as a trivial example, any team game: players have a higher probability to
win if they agree on a common strategy, rather than if they were playing individually or
by taking random decisions. This illustrates how correlations can be seen as a resource
to perform a certain task. Interestingly, we may also adopt the following inverse logic:
we first define a task (i.e. a “game”), and we claim that a certain type of correlations
exists among the parties involved (i.e. the “players”) if the game is won with certainty.
In this way, by constructing specific tasks, we are able to classify correlations, or even
to quantify their strength.

Note that, from now on, we will use the words entanglement and non-separability in-
terchangeably. Similarly, Bell correlation and nonlocality are used with the same mean-
ing, as well as EPR correlations and steering.

Bell nonlocality

In this scenario, a source prepares a state which is then shared among two observers,
Alice and Bob, Fig. 4.1. These two do not trust that quantum mechanics gives a correct
description of their experiments, and they have to convince themselves that their state
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Figure 4.1: Technical definitions of entanglement, EPR-steering and nonlocality. In each
scenario, a source prepares a state which is then shared among two observers, Alice and Bob.
The state can have some hidden property �. Alice performs measurement x on her share of the
state, and she obtains the result a. Similarly, Bob measures y and he obtains b. After repeating
such measurements on many copies of the state, with different settings for x and y, they estimate
the joint probability P (a, b|x, y) and check whether it can be explained by the models in the
bottom panels. Entanglement is confirmed if P (a, b|x, y) cannot be reproduced by a pair of local-
quantum-states (LQS). On the other extreme, nonlocality is confirmed if P (a, b|x, y) cannot be
reproduced by a pair of local-hidden-variables (LHV). EPR-steering lies in between these two,
and it is confirmed if P (a, b|x, y) cannot be reproduced by a LHV-LQS model. See the text for
further details.

shows correlations that cannot be explained in classical terms. To this end, they take a
measurement each, collect the results, and repeat the procedure a number of times.

Alice and Bob will be convinced if and only if the correlations they observe in the
measurement results cannot be explained by a classical local hidden variable model. In
other words, Alice and Bob will succeed in their task if and only if the state they share
is Bell correlated, i.e. it allows them to violate a Bell inequality [5].

The general reasoning starts from the assumption that a physical system is fully
characterized by a list of properties, called hidden variables, which we denote with �.
These are all the elements of reality that could possibly enter in the description of the
system, even if they are not yet known or measurable, and, in this sense, �would contain
all the information necessary to deterministically predict the result of any measurement
performed on the system.

Suppose Alice performs a measurement labeled x on her share of the state. Ac-
cording to local realism, the probability of obtaining result a depends on both the cho-
sen measurement, x, and on the hidden variable �. In symbols, this is expressed as
P (a|x,�). The same holds for Bob, who performs measurement y on his share of the
state, obtaining outcome b.

For the entire system, we extend this idea by defining the joint probability P (a, b|x, y,�)
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of finding as results a and b when Alice and Bob perform measurements x and y, re-
spectively. Remember here that the hidden variable � contains all possible information
of both particles. Following the idea of Bell, our task is now to find a criterion that joint
probabilities satisfy under the assumption of local realism.

The principle of locality corresponds to the existence of a � such that

P (a, b|x, y,�) = P (a|x,�)P (b|y,�) , (4.5)

meaning that the joint probability can be expressed as the combination of the individ-
ual probabilities for the two systems. This is somehow intuitive, as the idea of locality
tell us that e.g. the probability of a result for Alice, P (a|x,�), does not depend on the
measurement y performed by Bob, or on its result b. In the case of spatially separated
objects, it is clearly expected that the result of an experiment in Basel should be inde-
pendent of the result of an experiment performed simultaneously in e.g. Sydney, as if
this were not the case it would probably be impossible to do any experimental investiga-
tion. Moreover, the theory of relativity predicts that information cannot travel faster than
light; therefore events in one region of space-time cannot influence events in space-like
separated regions. However it is important to remark that, despite its name, the notion
of locality does not necessarily imply that the components of the physical systems are
spatially separated. If the two particles A and B are at the same spatial position, but
they do not “communicate” (interact), there is no way they could possibly know each
others measurement setting and outcome, and we would also expect Eq. (4.5) to hold.
From an experimental perspective, it is difficult to prove that no communication at all is
happening, because there might be unknown channels, and therefore to invoke relativity
by ensuring space-like separation of the particles turns out to be the definitive certificate.

In full generality, the parameter � might change from one run of the experiment
to the other (the fact that it is a hidden variable might imply that it cannot be fully
controlled), therefore the most general expression for the joint probability is an average
over the probability distribution p(�) of the different �’s (such that

R

d�p(�) = 1)

P (a, b|x, y) =

Z

d�p(�)P (a|x,�)P (b|y,�) . (4.6)

This expression gives a precise condition for locality of a physical system. If for some
a, b, x, y Eq. (4.6) is not satisfied, the state shared by the observers is nonlocal.

Nonseparability

In this scenario, a source prepares a state which is then shared among two observers,
Alice and Bob, Fig. 4.1. Now these two trust that quantum mechanics gives a correct
description of their experiments, and they just have to convince themselves that their
state is nonseparable. To this end, they take a measurement each, collect the results, and
repeat the procedure a number of times.

Alice and Bob will be convinced that the state they share is nonseparable if the joint
probability distribution of their measurement results cannot be expressed as a product
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of probability distributions for separate measurements of each party, i.e. it violates a
separability criterion [2].

Assuming that Alice is able to describe her local measurement results with quantum
mechanics means that the probability P (a|x,�) can be expressed as a probability orig-
inating from performing quantum measurements on a quantum state, P

Q

(a|x,�). The
latter is obtained from Born’s rule as

P
Q

(a|x,�) = Tr
⇥

⇧X

a

⇢
A

(�)
⇤

, (4.7)

where ⇧X

a

is the projector (or more generally the POVM) associated with obtaining
result a when measuring x on Alice’s share of the state, ⇢

A

(�). A similar definition
holds for Bob.

In analogy to the definition for locality, the state shared by Alice and Bob is separable
if for any a, b, x, y it holds that

P (a, b|x, y) =

Z

d�p(�)P
Q

(a|x,�)P
Q

(b|y,�) . (4.8)

If for some a, b, x, y Eq. (4.8) is not satisfied, the state shared by the observers is entan-
gled (nonseparable).

At this point it is important to note that, while the probabilities appearing in Eq. (4.6)
are not restricted to some physical model, as they must only be proper mathemati-
cal probabilities (i.e. satisfying the Kolmogorov axioms), the probabilities appearing
in Eq. (4.8) are less general, as they must come from a quantum description. For this
reason, a violation of Eq. (4.6) is more difficult to observe than a violation of Eq. (4.8),
reflecting the fact that demonstrating nonlocality is a stronger claim than nonseparability,
or, in other words, that nonlocality is a more powerful correlation than entanglement.

EPR-steering

In this scenario, a source prepares a state which is then shared among two observers,
Alice and Bob, Fig. 4.1. Alice has to convince Bob that she is able to predict his mea-
surement results with certainty, in contrast to what he would expect if his experiment
was locally compatible with quantum mechanics. Bob, who does not trust Alice, de-
cides the measurement he wants to perform and challenges her to make a prediction for
the outcome. He collects the results, and asks to repeat the procedure a number of times.

Alice will manage to convince Bob of her claim if and only if he sees that she can
predict measurement results of non-commuting operators, apparently violating the un-
certainty principle for system B. In other words, Alice will succeed in her task if and
only if the state they share allows EPR steering, i.e. it shows an EPR paradox [4].

A mathematical definition of this concept was first formulated by Wiseman et al. in
Refs. [1, 83], in a form similar to Eq. (4.9) and Eq. (4.8). They state that Alice can steer
Bob if for some a, b, x, y there is a violation of

P (a, b|x, y) =

Z

d�p(�)P (a|x,�)P
Q

(b|y,�) , (4.9)
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where P (a|x,�) is any valid probability and P
Q

(b|y,�) is a quantum probability.
Intuitively, Eq. (4.9) is motivated by the fact that, if Bob believes that quantum me-

chanics gives a correct description of his system, then his measurement results must
come from some P

Q

(b|y,�). Moreover, as he does not trust Alice, he believes her pre-
dictions for his outcomes to be just “random” numbers originating form some P (a|x,�).
Observing steering necessarily falsifies this model.

As we can see, the relation Eq. (4.9) is an intermediate case between Eq. (4.8) and
Eq. (4.6), reflecting the fact that concluding steering is a stronger claim than just entan-
glement, but weaker than nonlocality.

We note here that Eq. (4.9), as well as the above description of this task, makes
evident that a crucial aspect of EPR steering is its asymmetry between the roles of the
two parties (steering vs. steered). The fact that Alice can steer Bob’s state does not
necessarily imply that the converse is also possible, i.e. there is a directionality in the
correlations [84, 85]. If only one of the two parties can steer the other then we speak
of one-way steering, otherwise of two-way steering. Importantly, two-way steering in
necessary but not sufficient for violating a Bell inequality.

4.2.2 Inequivalence of entanglement, steering and nonlocality

Now that we have a rigorous definition of entanglement, steering and nonlocality, we can
better appreciate their differences. From a first look, it already appears that nonlocality
is a stronger claim than entanglement, and that EPR steering requires entanglement. The
hierarchy of these correlations has been studied in detail in a number of works, and we
summarize the results here.

For bipartite pure states the scenario is relatively trivial. Given the fact that all pure
bipartite entangled states can violate a Bell inequality [86], we immediately see that
such states are correlated in the strongest way allowed by quantum mechanics. There-
fore, they also allow for two-way steering. Unfortunately, experiments always deal with
mixed states and, therefore, this simple theoretical result cannot be applied to practical
situations.

In the case of bipartite mixed states a less trivial scenario appears. Consider for
example the Werner state

⇢
W

(p) = p| �ih �| + (1 � p)
I
4

, (4.10)

where | �i = (| #"i � | "#i) /
p

2 is the singlet state, 0  p  1, and I is the four-by-
four identity matrix representing an uncorrelated state. The variable p parametrizes the
purity of the state, for p = 0 we have the completely mixed state, while for p = 1 we
have the pure state | �i which is maximally entangled. By asking for which ranges of p
we may violate a Bell inequality [87], perform steering [1], or see nonseparability [88],
we end up with different ranges, as shown in Fig. 4.2. Note that while the thresholds for
separability and steering are known numbers, the range of p for which a local model for
projective measurements exists is related to the Grothendieck constant of order three,

70



4.2 Technical definitions of quantum correlations

1/K
G

(3)

entanglement

nonlocality

EPR-steering

p?

separable entangled

non-steerable EPR-steerable

locally causal model exists nonlocal

0 1/21/3 1

⇢̂
W

(p) = p | � ih �| + (1 � p)I/4

Figure 4.2: Inequivalence of entanglement, EPR-steering and nonlocality. The correlations
among the two spins of the Werner state ⇢̂

W

(p) shows different resources depending on the purity
p of the state. Entanglement exists for p > 1/3, while EPR-steering for p > 1/2. Nonlocality
has the strongest requirement, and it exists for p > 1/K

G

(3), where K
G

(3) is the Grothendieck
constant of order three whose exact value is still unknown (see the main text for the known
bounds). See text for more details.

K
G

(3), whose exact value is remarkably still unknown [87, 89]. Known bounds are
1.5163 � K

G

(3)  1.4644, as proven in Ref. [90] and [91] respectively. Figure 4.2
gives a first clear indication of the fact that the three correlations we are considering
have different properties, and a specific hierarchy.

The inequivalence of entanglement, steering and nonlocality has been studied in
detail also in the field of quantum information. It has been shown that each type of cor-
relation constitutes a different resource for quantum information tasks, therefore find-
ing different practical applications. As an example, entanglement is useful in quantum
metrology for parameter estimation beyond the standard quantum limit, steering allows
for quantum teleportation and for other one-sided device-independent tasks, while non-
locality is necessary for provably secure quantum key distribution, certified randomness
generation and two-sided device-independent tasks.

4.2.3 Constraints on physical models

It is important to mention that an experimental observation of the correlations just pre-
sented gives stringent constraints on the structure of any physical theory attempting to
describe Nature.

In the specific, observing entanglement corresponds to a violation of a separability
criterion (derived from e.g. Eq. (4.8)), which rules out the possibility that Alice and Bob
could describe their systems by two independent local quantum states (LQSs). Still,
the possibility remains that Alice could describe her system by a local hidden variable
(LHV) state, while Bob by a LQS, as represented by Eq. (4.9). This option is ruled out
if Alice is able to steer Bob’s state. Similar conclusions hold with the roles of Alice
and Bob inverted. Therefore, observing EPR steering rules out local hidden state (LHS)
models. A possibility that remains open is the one in which Alice and Bob are able to
describe their systems by each considering a LHV model, as in Eq. (4.6). However, this
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option is also ruled out if Bell correlations are observed.

For these reasons, the observation of a specific type of quantum correlations results
in nontrivial limitations on the possible descriptions of a system, Fig. 4.1. In particular,
the importance behind the experimental violation of a Bell inequality consists in the fact
that it poses a constraint on any physical theory, which is stronger than the one concluded
from observing (just) entanglement or steering.

It is worth emphasizing that ruling out LHV models does not mean that quantum
mechanics is the ultimate and “best possible” theory to model the microscopic world.
The possibility of a more fundamental theory, e.g. involving nonlocal hidden variables,
is still left open.

4.2.4 Multi-partite scenarios

So far, we considered for simplicity a bipartite system, which is the minimal scenario
showing the correlations we presented. However, the generalization of the concepts of
entanglement, steering and nonlocality for multipartite systems is of clear interest. On
the one hand this throws light on the behavior of quantum systems of large sizes, for ex-
ample investigating why quantum effects are not commonly observed in the macroscopic
world we perceive. On the other hand, for the practical application of these correlations,
increasing the number of available particles can increase the usefulness of a state.

Unfortunately, the complexity of detecting quantum correlations in multipartite sce-
narios increases significantly (often exponentially) with the number of particles. To be
more precise, while the generalization of the definitions Eqs. (4.6,4.8,4.9) is straight-
forward, the derivation of practical criteria to detect the corresponding correlations has
a complexity which scales with the system’s size [92–94]. Moreover, from the exper-
imental point of view, it is also more challenging to create and control large quantum
systems.

Apart from the generalization of Eqs. (4.6,4.8,4.9), the multipartite case also natu-
rally presents different forms of entanglement, steering and nonlocality. We will discuss
these later in more detail, but just to mention an example, consider what could occur
already in a tripartite case. Party A can be entangled with B, but together they can be
separable from C, while a stronger form of correlation occurs if all three particles are in
an entangled state. To distinguish between these two situations, one can associate them
with a parameter corresponding to the size of the largest non-separable cluster, called
entanglement depth. A similar reasoning applies to steering and nonlocality.

In this thesis we report experimental investigations of such multipartite quantum
correlations. Throughout the rest of this chapter we present the criteria that allow us to
detect entanglement, steering and nonlocality in an ensemble of N spin-1/2 systems.
Moreover, we also show how to characterize multipartite entangled and nonlocal states
in terms of their depth.
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Scenarios with fluctuating number of parties

Measurements on atomic ensembles are performed either on independently prepared
ensembles (e.g. for destructive measurements) or on the same ensemble at different times
(e.g. for weak or non-demolition measurements). In both these situations, subsequent
measurements are typically performed on systems with different number of particles,
for example because they cannot be set deterministically or because they are lost from
the trapping potential. Therefore, one might debate the validity of testing criteria derived
to detect correlations in a scenario with definite number of particles N .

For well isolated ensembles of massive particles, the possibility of having a sys-
tem in a coherent superposition of different number of particles is excluded by ultrafast
decoherence processes which give rise to a superselection rule for the total number of
particles (see e.g. Section III.D.1 of Ref. [32] for BECs). Therefore, we understand that
the observed shot-to-shot fluctuations in the total atom number are of statistical, and not
quantum, nature.

The set of measurements performed on systems with different particle numbers can
be thought of as being performed on a system whose state is a statistical mixture (in-
coherent superposition) of states each with a definite particle number N (note that,
in any case, measurement operators commute with N̂ , making the following block-
diagonalisation always possible). Using the language of density matrices, this statistical
mixture can be written as

⇢̂ =
M

N�1

p
N

⇢̂(N) , (4.11)

where p
N

is the probability of having N particles and ⇢̂(N) the density matrix represent-
ing the state of a system with N particles.

To analyze the correlations between N particles in a state ⇢̂(N), we typically con-
struct a witness operator K̂(N), such that hK̂(N)i = Tr

⇥

K̂(N)⇢̂(N)
⇤

� 0 for all states
that are not of interest, such that observing hK̂(N)i < 0 reveals the correlations under
investigation.

Starting from this, the basic idea to detect correlations in a system with fluctuating
number of particles consists in constructing a witness operator K̂ such that

hK̂i = Tr
⇥

K̂⇢̂
⇤

�
X

N�1

p
N

Tr
h

K̂(N)⇢̂(N)
i

=
X

N�1

p
N

hK̂(N)i . (4.12)

In this way, if no component ⇢̂(N) has the correlations under investigation, then hK̂(N)i �
0 for all N , and consequently also hK̂i � 0. Conversely, observing hK̂i < 0 proves that
at least one component ⇢̂(N) of the system’s state has the correlations under investigation.

Interestingly, if the witness K̂(N) is based only on operators that are block-diagonal
in the N -basis (i.e. that commute with N̂ , as in the case of collective spins and their
moments) then even if there is coherence between different ⇢̂(N) this would play no role
as it is not detected [132].
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We discuss more rigorously these ideas in Appendix E, where we also present spe-
cific examples for criteria detecting entanglement and Bell correlations in many-body
systems with fluctuating particle number.
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4.3 Entanglement detection and characterization

We want to provide experimentally testable criteria allowing to prove the nonseparabil-
ity of a physical system. Detecting entanglement among two parties can already be a
complicated task. In the most general case, where the number of degrees of freedom
per party is arbitrary, a (practical) necessary and sufficient condition confirming non-
separability is not known. For specific cases, many relevant and experimentally practical
criteria have been proposed, for both discrete and continuous variables. These allowed
to experimentally detect entanglement of light and massive particles [2, 12].

In the multipartite scenario the complexity increases significantly. Already from
the practical point of view, we understand that individual measurements on the parties
become technically challenging or even unfeasible for macroscopic systems. Because
of this, criteria witnessing the presence of entanglement that are based on collective
observables have been proposed. These allowed to conclude entanglement even between
millions of atoms [12, 95, 96].

The multipartite scenario presents naturally also a rich variety of entangled states.
As an example, already in the tripartite scenario one can distinguish the case in which
the entire system is nonseparable, from the case in which only two of the parties are in
a nonseparable state. This raises the question of how to characterize different entangled
states, which has been addressed in several ways, see e.g. Ref. [2].

In this section we present experimentally practical criteria allowing to conclude en-
tanglement in a bipartite and in a multipartite system, that are known from the literature.
Moreover, we present a commonly adopted method to characterize multipartite entan-
gled states in terms of their “depth”, i.e. according to the maximum number of parties
that are described by a nonseparable state.

4.3.1 Entanglement criteria

Bipartite scenario

The pioneering experiment by Julsgaard et al. [95], where two room-temperature macro-
scopic atomic ensembles showed entanglement, motivated the search for new criteria
allowing to investigate other physical systems, states and measurements. In what fol-
lows we present a general sufficient criterion which allows to conclude entanglement of
arbitrary bipartite systems, originally proven by Giovannetti et al. in Ref. [97].

For a bipartite scenario, the two systems A and B are said to be separable if their
joint density operator ⇢ can be expressed as a convex sum of density operators for the
two systems

⇢ =
X

k

p
k

⇢A
k

⌦ ⇢B
k

, (4.13)

where the coefficients p
k

satisfy 0  p
k

 1 and
P

k

p
k

= 1, and where ⇢↵
k

is a density
matrix for the ↵ 2 {A, B} particle. Entanglement is demonstrated if the separability
condition Eq. (4.13) is violated, which is however an experimentally unpractical criterion
as it requires the knowledge of the density matrix of the system.
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4. Quantum correlations: Theory

To derive a criterion requiring a small number of measurements, we look for a suf-
ficient condition for non-separability when only two measurements are performed per
party. On party A either A1 or A2 is measured, while on B either B1 or B2 is mea-
sured. These observables can be of any algebra (e.g. spins, continuous variables), and
they satisfy the commutation relations

[A
i

, B
j

] = 0 . (4.14)

We then define the new observables O1 and O2 to be the linear combinations

O1 = a1A1 + b1B1 (4.15a)
O2 = a2A2 + b2B2 (4.15b)

and look for a criterion that is satisfied for the measurement of these observables on
separable states.

The uncertainty relation Eq. (4.1) applied to Eqs. (4.15a) tells us that

Var(O1) Var(O2) � 1

4
|h[O1, O2]i|2 =

1

4
|a1a2h[A1, A2] + b1b2h[B1, B2]i|2 . (4.16)

This criterion is completely general, and it cannot be violated in the framework of quan-
tum mechanics. Nevertheless, Giovannetti et. al. showed in Ref. [97] that for any
separable state a stronger bound exists, namely

Var(O1) Var(O2) � 1

4
(|a1a2||h[A1, A2]i| + |b1b2||h[B1, B2]i|)2 . (4.17)

If this inequality is violated for some state and measurements, then we must conclude
that the physical system under investigation is non-separable. It is important to men-
tion that Eq. (4.17) is a necessary condition for separability or, in other words, that its
violation is just a sufficient condition to conclude entanglement. This means that there
are entangled states that do not violate Eq. (4.17), and for these other criteria need to be
found.

In the experiment we are going to present in chapter 5, the variables of interest are
the collective spin operators of two atomic ensembles, SA and SB , satisfying the usual
spin commutation relations, e.g.

⇥

SA

z

, SA

y

⇤

= �iSA

x

. (4.18)

We then consider O1 = g
z

SA

z

+ SB

z

and O2 = g
y

SA

y

+ SB

y

, which are inserted into
Eq. (4.17) together with Eq. (4.18). We obtain the separability criterion for two spins

EEnt =
4 Var(g

z

SA

z

+ SB

z

) Var(g
y

SA

y

+ SB

y

)

(|g
z

g
y

||hSA

x

i| + |hSB

x

i|)2
� 1 . (4.19)

Observing EEnt < 1 is a sufficient condition to certify entanglement (non-separability)
between the parties A and B. Note that criterion Eq. (4.19) is valid on separable states
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for arbitrary values of the real parameters g
z

and g
y

, therefore, we chose them so that
EEnt is minimized.

The criterion Eq. (4.19) deals directly with spin operators and is valid for any spin
lengths and states, in contrast to other inequalities relying on the Holstein-Primakoff
approximation. Moreover, it is experimentally accessible and well suited to study corre-
lations among two atomic ensembles, as we will show in the next chapter.

Multipartite scenario

Beyond the bipartite scenario, it is of clear interest to detect entanglement among many
parties, which requires a generalization of the approach just considered in the previous
paragraph. The main complication arises from the fact that the number of measurements
required scales with the number of parties, becoming soon unrealistic for many-body
systems. Moreover, it is in general the case that when the number of particles involved is
N & 100, individual control and measurement becomes experimentally very challeng-
ing, and a complete characterization of the state of the system is impossible. For these
reasons, significant efforts have been made to characterize physical systems in terms
of their collective properties. In particular, the work by Sørensen et al. [98] indicated
that entanglement can be detected in a many-body system just by measuring collective
observables, as we are going to show.

We are interested in the case where each party is a spin 1/2, associated to the operator
s

(i) = �

(i)/2, with �

(i) the vector of Pauli matrices acting on the ith spin. The possible
measurements are restricted to projections of the collective spin operator

S =
N

X

i=1

s

(i) . (4.20)

The variance of one spin component is bound by the uncertainty relation to be e.g.

Var [S
z

] � 1

4

|hS
x

i|2

Var [S
y

]
. (4.21)

As we did in the previous paragraph, we note that a tighter bound exist for Eq. (4.21) in
the case of separable states. To see this, remember that, for a multipartite scenario, the
N -body density matrix ⇢ is separable if it can be expressed in the form

⇢ =
X

k

p
k

⇢(1)
k

⌦ ⇢(2)
k

⌦ · · · ⌦ ⇢(N)
k

, (4.22)

where the coefficients p
k

satisfy 0  p
k

 1 and
P

k

p
k

= 1, and where ⇢(i)
k

is a density
matrix for the ith particle. Thus, for a separable state (see Appendix D for the derivation)

Var [S
z

] � hS
x

i2

N
. (4.23)

Interestingly, the separability condition Eq. (4.23) is related to a known parameter
relevant in the field of quantum metrology. It is known that multi-partite systems can
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be prepared in states that allow to perform interferometric sequences with a sensitivity
beyond the limit set by uncorrelated parties [12]. From this observation, Wineland et
al. introduced in Ref. [99] a parameter which quantifies the interferometric usefulness
of a quantum state, called metrological spin-squeezing parameter

⇠2 =
NVar [S

a

]

hS
x

i2 , (4.24)

where a is the direction perpendicular to x minimizing the spin variance Var [S
a

]. If
we observe ⇠2 = 1 than the state under consideration is, for interferometric purposes,
equivalent to an ensemble of uncorrelated particles, i.e. it allows to reach the standard
quantum limit. On the contrary, if ⇠2 < 1 then the interferometric sensitivity is im-
proved by a factor ⇠2 in variance with respect to an ensemble of uncorrelated particles.
Intuitively, it can be understood that to observe ⇠2 < 1 the particles must be correlated,
and therefore that ⇠2 could be used as an indicator for non-separability. This idea was
formalized by Sørensen et al. in Ref. [98], who proved that observing ⇠2 < 1 implies
that the particles are entangled. The argument they consider is the following.

From Eq. (4.23) we immediately see that for any separable state the Wineland pa-
rameter is ⇠2 � 1, and hence that any state with ⇠2 < 1 is entangled (non-separable). As
in the bipartite case, the violation of Eq. (4.23) is only a sufficient condition, and there
are entangled states for which ⇠2 � 1. An obvious example are entangled states with
zero mean spin length, for which ⇠2 diverges, which require other criteria.

Apart for the experimental implications, it is conceptually interesting that entangle-
ment in a many-body system can be revealed by measuring collective observables. This
opens a number of questions, as whether the same approach can give a characterization
of the observed entanglement or whether it allows to detect even stronger correlations
(e.g. Bell correlations). A positive answer to these question is given in the next para-
graphs.

4.3.2 Entanglement depth

Especially in multi-partite systems, entanglement can be of different forms. The interest
for classifying these forms led to a number of criteria such as entanglement strength
(not discussed in this work) and entanglement depth. We focus here on the latter, which
consists in determining the separability of the state with respect to partitions. This depth
corresponds to the smallest number of atoms that can be proven to be entangled with one
another, but makes no statement about the strength of this entanglement.

Sørensen and Mølmer developed in Ref. [100] a strategy to quantify the depth of
entanglement in a many-body system, based on the Wineland parameter Eq. (4.24), and
therefore involving collective measurements only. The idea is based on the observation
that for a fixed number of spins k, there is a minimum value of ⇠2 that can be achieved.
Therefore, reversing this argument, the observation of a ⇠2 below this minimum value
implies that there is at least a number k of spins that are entangled. A more formal
interpretations of this entanglement depth is given in terms of k-producibility of the
state, as given in Ref. [132].
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To convince ourselves that the entanglement criterion Eq. (4.24) has a minimum, it is
enough to see the following. For decreasing Var [S

a

], also ⇠2 decreases at first. However,
because of the uncertainty principle, hS

x

i must decrease with Var [S
a

] as well, which
increases ⇠2. The minimum of ⇠2 occurs from a balance between the numerator and the
denominator of Eq. (4.24).

In a practical situation, one measures experimentally Var [S
a

] and hS
x

i, and would
like to know the entanglement depth k of the state. This k corresponds to the minimum
number of particles compatible with the observed measurement results, and indicates
that there are at least k entangled particles. We emphasize again that this approach does
not make any statement about the strength of the correlations among the parties.

The common strategy to find the entanglement depth k is the following, where we
assume that the state is oriented such that min

a?x

= Var [S
z

]. First, it was noted [100]
that for integer spins S = k/2 (with even k), the state minimizing Var [S

z

] for a given
hS

x

i has vanishing hS
y

i and hS
z

i, and therefore is also minimizing the second moment
hS2

z

i. For this reason, this state can be found by minimizing

µhS
x

i + hS2
z

i , (4.25)

where µ is the Lagrange multiplier constraining the value of hS
x

i. Numerically the ap-
proach consists in diagonalizing the operator µS

x

+ S2
z

for different µ’s. The resulting
eigenvector associated to the smallest eigenvalue is the state of interest, which is used
to evaluate the mean spin length hS

x

i and the corresponding bound on the second mo-
ment hS2

z

i. If the experimentally determined spin variance is smaller than this bound,
then there are more than k entangled particles in the system, and the procedure can be
iterated with the next integer spins until the measured variance is above the bound. The
case of half-integer spins (odd k) is more subtle, since the state minimizing hS2

z

i is not
minimizing Var [S

z

], and we will not discuss it here.
In Figure 4.3 we plot the minimum variance Var [S

z

] attainable for different k and
hS

x

i, resulting in convex lines. Note that for a given point in the plot there is a min-
imum S = k/2 for which it is allowed. This provides a graphical method to find the
entanglement depth of a many-body system, from given experimental data.

For a large spin N � 1 it is possible to derive [100] an analytical lower bound on
Var [S

z

] as a function of hS
x

i, which reads (note there is a typo in Eq. (3) of [100])

Var [S
x

] � 1

2

h

S(S + 1) � hS
z

i2 �
p

(S2 � hS
z

i2) ((S + 1) � hS
z

i2)
i

. (4.26)

These lines are also plotted in Fig. 4.3 for comparison with the exact, numerical, bounds.
A discrepancy is visible for small values of k.
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Figure 4.3: Entanglement depth. Exact (red, from Eq. 4.25 as explained in the text) and
approximated (dashed blue, Eq. 4.26) k-producibility curves for k = 2, 22, ..., 28. At least k +1-
partite entanglement is confirmed by observing experimental data below a k-producibility curve.

4.4 EPR steering

As we did for entanglement, we want to provide experimentally testable criteria allowing
to prove the steerability of a physical system. Note that in the work by EPR the degrees
of freedom under investigation are perfectly (anti)correlated, allowing to predict with
certainty the measurement result on one party, based on the result of the other party. In
practical situations, observables might not be maximally correlated, resulting in an error
on the predicted (inferred) quantity. Nevertheless, steering might still be possible if this
error (quantified by the inferred variance) is small enough.

For the bipartite case a number of EPR criteria have been proposed, for both contin-
uous and discrete variable cases [4]. These allowed to observe steering of light quadra-
tures but found (almost) no application in massive particle systems. The multipartite
case has also been investigated, but it will not be discussed here.

In this section we present an experimentally practical criterion allowing to conclude
EPR stering in a bipartite system, that is known from the literature [4]. We focus on the
discrete variable case where steering appears for the components of two macroscopic
spins.

4.4.1 EPR steering criteria

The hypothetical experiment proposed by EPR involves the measurements of position
and momentum on a pair of particles. Further theoretical investigations devised other
possible experiments involving pairs of non-commuting observables, and therefore show-
ing a paradoxical situation equivalent to one obtained by EPR. As an example, Bohm
presented a discrete version of the paradox where a pair of spin-1/2 particles is in a state
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4.4 EPR steering

correlated strongly enough to observe steering [101]. In our case, we are interested in
the generalization of this scenario with two macroscopic spins, as discussed in Ref. [4].

We consider measurements of the (collective) spin operators ŜA and ŜB , associated
to the parties A and B respectively. The underlying algebra imposes a non-trivial com-
mutation relation for the spin components, e.g.

⇥

SB

z

, SB

y

⇤

= �iSB

x

, and therefore the
uncertainty relation

Var
⇥

SB

z

⇤

Var
⇥

SB

y

⇤

� 1

4
|hSB

x

i|2 . (4.27)

According to the EPR reasoning, if |hSB

x

i| 6= 0 then SB

z

and SB

y

cannot be both asso-
ciated to elements of reality, because they are non-commuting operators. However, we
are going to show that their values could be predicted from a measurement on A, with
an uncertainty product lower than the bound given by Eq. 4.27, raising a paradox.

When A and B are correlated, a measurement performed on A could be used to
predict the result of a measurement on B. To first order, we may infer the value of (say)
SB

z

from SA

z

using the best linear estimator

SB,inf
z

= q
z

� g
z

SA

z

, (4.28)

where q
z

and g
z

are real coefficients. The inferred value deviates from the actual mea-
surement result on B, by a typical error that is estimated with the inferred variance
(which is independent of q

z

)

Varinf
⇥

SB

z

⇤

= Var
⇥

SB,inf
z

� SB

z

⇤

= Var
⇥

g
z

SA

z

+ SB

z

⇤

. (4.29)

The key idea behind an EPR criterion is that, if we believe that a measurement on B
does not depend on a measurement on A, then the uncertainty principle constraints also
the product of the inferred variances

Varinf
⇥

SB

z

⇤

Varinf
⇥

SB

y

⇤

� 1

4
|hSB

x

i|2 . (4.30)

If this inequality is violated, i.e. if A can predict the measurement results for B better
than what would be allowed by Eq. (4.30), then an EPR paradox is observed.

For later convenience, we express Eq. (4.30) as the relation [4, 102]

EA!B

EPR =
4 Var(g

z

ŜA

z

+ ŜB

z

) Var(g
y

ŜA

y

+ ŜB

y

)

|hŜB

x

i|2
� 1 . (4.31)

Comparing this EPR criterion Eq. (4.31) with the entanglement criterion Eq. (4.19)
shows that both depend on the same product of inferred variances. The difference lies
in the bound to which such product is compared. The fact that, for |hŜA

x

i| > 0, the

entanglement bound is always bigger than the EPR bound,
⇣

|g
z

g
y

||hŜA

x

i| + |hŜB

x

i|
⌘2

>

|hŜB

x

i|2, shows that detecting entanglement is less demanding than EPR steering. In
fact, as was mentioned before, these two types of correlations are inequivalent, and en-
tanglement is necessary but not sufficient for steering.
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From Eq. (4.31) it is also evident that EPR steering is an asymmetric concept: if
A can steer B, then not necessarily B can steer A. This shows a rather conterintuitive
property of quantum correlations, acoording which their strength can be asymmetric.
This interesting property has been investigated both theoretically [84, 85, 103] and ex-
perimentally [104, 105] in optics.

The criterion Eq. (4.31) can be evaluated experimentally by measuring the collec-
tive spins of two distinguishable parties, like two spatially separated atomic ensembles.
In the next chapter we will see that local spin measurements on an expanded BEC can
violate this criterion (and therefore also the weaker entanglement criterion Eq. (4.31)),
demonstrating for the first time EPR steering between two ensembles of massive parti-
cles.
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4.5 Detection of Bell correlations

We want to provide experimentally testable criteria allowing to prove the nonlocality of a
physical system. This task has been investigated in detail for the case of two qubits, and
for few other simple systems [5], but it is in general very complicated. The complexity
resides mostly in the exponential growth of the problem size as the number of degrees
of freedom increases, and becomes soon prohibitive.

For the multipartite scenario we are interested in, the required description of the
space of correlations cannot be complete. However, it has been shown that a limited
amount of information can be sufficient to conclude the nonclassicality of the observed
statistics of measurement outcomes [21]. This is a particularly interesting result because
it shows the feasibility of detecting Bell correlations in experiments involving many-
body systems.

Similarly to the case of entanglement, the multipartite scenario presents naturally
also a rich variety of Bell correlated states. As an example, already in the tripartite
scenario one can distinguish the case in which the entire system shares nonlocal correla-
tions, from the case in which only two of the parties are in a nonlocal state. This raises
the question of how to characterize different Bell correlated states.

In this section we present experimentally practical criteria allowing to conclude Bell
correlations in multipartite systems [26,28,29], that have been developed as a part of this
thesis based on the ideas of Ref. [21]. Moreover, we present a method to characterize
multipartite nonlocal states in terms of their “depth”, i.e. according to the maximum
number of parties that are described by a nonseparable state. This method was developed
in collaboration with the groups of A. Acı́n and M. Lewenstein at ICFO [30].

4.5.1 Multipartite permutationally-invariant Bell inequalities

Local measurements on different quantum systems can display correlations that cannot
be explained by any local hidden variable model (LHVM) [71] or, in other words, that
cannot be reproduced by local deterministic strategies (LDS), even if assisted by shared
randomness [106]. Bell inequalities bound the space of LHVM or “classical” correla-
tions, and correlations that violate a Bell inequality are termed nonlocal. Beside their
fundamental interest, nonlocal correlations are a resource that enables novel quantum
information processing tasks [5].

From a geometrical point of view, LHVM correlations form a polytope in the space
of correlations (or probabilities), i.e. a bounded convex set that can be described as the
convex hull of a finite number of vertices, or equivalently as the intersection of a finite
number of half-spaces. The vertices of the LHVM polytope correspond to LDS, while
the half-spaces in which it is contained are defined by Bell inequalities. For this reason,
finding all Bell inequalities gives a necessary and sufficient condition for deciding mem-
bership in the LHVM set. However, results in computer science indicate that this search
is an extremely demanding problem [107], which is NP-complete even in the bipartite
case [108]. Therefore, a complete list of Bell inequalities exists only for the simplest
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scenarios; e.g. only up to 3 parties [109–113].
To characterize correlations in scenarios with a large number of parties, one neces-

sarily has to relax the condition of membership in the LHVM set. This can be done by
projecting the LHVM polytope onto the space of observables of a particular form, e.g.
permutationally invariant (PI) [114], with low-order correlators [21,115], or translation-
ally invariant [116, 117].

We give here an overview of the approach followed by Tura et al. in Refs. [21,115],
to derive multi-partite Bell inequalities involving low-order, permutationally invariant,
correlators. Restricting to such observables is particularly interesting for experiments
on many-body systems, as they involve a resonable amount of measurements of collec-
tive properties. Their results, based on two measurement per parties, have then been
generalized to an arbitrary number of measurements in Ref. [29].

We consider a Bell scenario in which each of N observers (indexed by i = 1 . . . N )
performs on their share of the system one out of d possible local measurements M(i)

x

i

,
labeled by x

i

= 0 . . . d � 1. For simplicity, we assume that every measurement is
dichotomic, giving as outcome a

i

either +1 or �1, keeping the generalization to an arbi-
trary number of outcomes for later. The correlations that can be observed are represented
by the k-body correlators hM(i1)

x

i1
...M(i

k

)
x

i

k

i, with k = 1, ..., N and 1  i1 < ... < i
k


N . In the spirit of Refs. [21,114,115], we focus on permutationally invariant (PI) k-body
correlators, defined as

S
x1...x

k

=

N

X

i1,...,i
k

=1
all i’s different

hM(i1)
x

i1
...M(i

k

)
x

i

k

i . (4.32)

If the statistics observed through Eq. (4.32) satisfy a LHVM, it belongs to the so-called
(symmetrized) LHVM polytope [114], denoted PS. Its vertices correspond to LDS, sat-
isfying

hM(i1)
x

i1
...M(i

k

)
x

i

k

i = hM(i1)
x

i1
i · · · hM(i

k

)
x

i

k

i (local) , (4.33)

hM(i)
x

i

i = ±1 8 i, j (deterministic) . (4.34)

As there are m = 2d possible LDS per party, Eq. (4.34) gives rise to an expo-
nential number of vertices, 2dN . However, the PI condition reduces them to at most
�

N+m�1
m�1

�

, a polynomial number in N , because only the amount of parties following the
same LDS is relevant [21, 115]. For this reason, it is natural to introduce m variables
~� = (�1, . . . , �m), where �

i

counts how many parties follow the i-th LDS. Note that the
�
i

satisfy
m

X

i=1

�
i

= N, �
i

2 Z�0. (4.35)

Using this parameterization, Eq. (4.32) can be written as a polynomial of degree k in m
variables with real coefficients, i.e. S

x1...x
k

2 R[~�]
k

[21]. Denoting with ~S the vector
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of all such correlations, we express PS as the convex hull (CH) of ~S evaluated on the
parameter region defined by Eq. (4.35):

PS = CH

(

~S(~�) s.t.
X

i

�
i

= N, �
i

2 Z�0

)

. (4.36)

Dedicated algorithms [118, 119] exist to compute the dual description of PS, thus
obtaining a minimal set of PI Bell inequalities. These inequalities are of the form

X

k

X

x1...x

k

↵
x1...x

k

S
x1...x

k

+ �
C

� 0, (4.37)

where ↵
x1...x

k

2 R, and �
C

2 R is the so-called classical bound. If an experiment
violates inequality Eq. (4.37), the observed correlations cannot be reproduced by any
LHVM. In this case, we say that the system is Bell-correlated.

Unfortunately, since the dimension of PS scales as
�

d+N

d

�

�1, one in practice cannot
obtain a full set of Bell inequalities for N > 5 [114]. However, as it was shown in [21,
115], a small subset of the correlators in ~S (namely, one- and two-body PI correlators)
suffices to detect Bell correlations for arbitrarily large N . Therefore, we limit the number
of components of ~S to contain only up to K-body correlators, effectively projecting PS

to a polytope PS
K

living in a subspace of dimension
�

d+K

d

�

�1, independent of N , whose
vector of coordinates we denote ~S

K

. Still, for small values of K (e.g. 2, 3, ...) finding
all PI Bell inequalities only works for few tens of particles in less than a month runtime.
Hence, to study the large N regime one has to (i) infer classes of Bell inequalities and
generalize them to arbitrary N and (ii) derive a proof of their �

C

for each class. This is
the approach that has been used in [21, 29], to derive the following inequalities.

In the case K = 2 and d = 2, a relevant Bell inequality is

2S0 +
1

2
S00 + S01 +

1

2
S11 + 2N � 0. (4.38)

This expression shows a quantum violation that increases asymptotically with N , relative
to the classical bound.

The inequality Eq. (4.38) has also been generalized to the case where each party can
perform m different measurements, resulting in the expressions

m�1
X

x1=0

(m � 2x1 � 1)S
x1 +

1

2

X

x1,x2

S
x1x2 +

�

m2N

2

⌫

� 0 , (4.39)

where bxc is the the largest integer smaller or equal to x. Note that when m = 2,
inequality Eq. (4.39) does not reduce to Eq. (4.38).

4.5.2 Bounding the set of classical correlations

As mentioned before, the study of correlations in many-body scenarios requires to re-
lax the membership condition in the LHVM set, which can be done by projecting the
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LHVM polytope onto a particular space of observables. However, even in these low
dimensional spaces, the complexity of the commonly adopted method (going from the
vertices description of the polytope, to the dual half-spaces description) [120] still pro-
hibits one to obtain all Bell inequalities for many-body scenarios. Therefore, for large
N one has to infer and prove classes of Bell inequalities. This approach was succesfully
adopted in Refs. [21, 29], allowing to derive Eq. (4.38) and Eq. (4.39). Nevertheless,
as more inequalities appear as N increases, this procedure may leave potentially more
useful classes unnoticed if they do not show up for sufficiently small N .

In this section, we present a technique to approximate the set of symmetric LHVM
correlations, PS

K

, from the outside, overcoming the above limitations. This technique
is based on a hierarchy of semidefinite programs (SdP’s), aproximating convex hulls of
semialgebraic sets [121–124], and it can be seen as checking all Bell inequalities of a
specific form with a single test. Contrary to other existing SdP’s hierarchies [125, 126],
the size of our SdP’s are independent of the number of parties, and the hierarchy shows
convergence already after few levels. This work, which was carried out as part of this
thesis in collaboration with J. Tura, is published in [28].

Our method constitutes an efficient sufficient condition for a set of correlations to be
nonlocal, and it naturally provides a Bell inequality that they violate. It is based on two
mild relaxations described in the following, yielding a hierarchy of conditions satisfied
by all LHVM correlations.

First relaxation

According to Eq. (4.36), PS is defined as the convex hull of a finite set of points, therefore
not exploiting the inherent algebraic structure present in the polynomials ~S(~�). Simi-
larly, the same observation holds for PS

K

, the projection of PS into the space of at most
K-body correlators defined by the coordinates ~S

K

. The first relaxation we introduce
consists in dropping the condition �

i

2 Z�0, and consider instead �
i

2 R�0, which
gives rise to the set

fPS
K

= CH

(

~S
K

(~�) s.t.
X

i

�
i

= N, �
i

2 R�0

)

. (4.40)

Note that ~S
K

(~�) with ~� 2 Rm interpolates the vertices of PS
K

, implying PS
K

✓ fPS
K

.
As a consequence, if a set of correlations lies outside fPS

K

, it also lies outside PS
K

, and
therefore it is nonlocal.

Since ~� has m � 1 free parameters, and ~S
K

has
�

d+K

d

�

� 1 components, ~S
K

(~�)

can be expressed as a set of equations f
i

(~S
K

) = 0, where 1  i 
�

d+K

d

�

� m.
The non-negativity constraints �

j

� 0 can also be expressed as a set of m constraints
in ~S

K

, by a set of inequalities g
j

( ~S
K

) � 0 (see the example). In what follows, we
refer to the set of solutions of a system of polynomial equations f

i

( ~S
K

) = 0 as an
algebraic set. Moreover, if an algebraic set is further restricted by polynomial non-
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negativity constraints g
j

( ~S
K

) � 0, as it is the case for fPS
K

in Eq. (4.40), we shall call
such a set semialgebraic.

Second relaxation

Deciding membership in the CH of a (semi)algebraic set V is NP-hard [123]. However,
there exist efficient approximations for CH(V) from the outside [121–124]. The idea
behind these methods is to reduce the membership problem in CH(V) to that of a mul-
tivariate polynomial being non-negative, which can be relaxed to determining whether
such polynomial can be expressed as a sum of squares (s.o.s.) 2. While the first condition
is NP-hard, the second can be efficiently checked using a SdP, as we are going to show.

Following this approach, the main idea behind our method is to construct linear
polynomials l( ~S

K

) 2 R[ ~S
K

]1 satisfying l( ~S
K

) � 0 for all ~S
K

2 V , i.e. valid Bell
inequalities defining half-spaces containing CH(V).

Starting from the observation that every polynomial of the form p +
P

i

f
i

p
i

, with
p, p

i

2 R[ ~S
K

], takes the same values when evaluated in V (because f
i

( ~S
K

) = 0 for all
~S
K

2 V), we define the ideal I generated by f
i

as the set

I =

(

X

i

f
i

p
i

s.t. p
i

2 R[ ~S
K

]

)

✓ R[ ~S
K

] , (4.41)

such that every polynomial in p + I = {p + q, q 2 I} is equivalent when evaluated in
V . Moreover, the ideal I defines the set of equivalence classes R[ ~S

K

]/I , where p, q 2
R[ ~S

K

] are in the same class if they are equivalent modulo I , i.e. p ⌘ q mod I , meaning
that p � q 2 I .

To express l( ~S
K

) we consider the following ansatz:

l( ~S
K

) =

m

X

i=0

g
i

( ~S
K

)�
i

( ~S
K

) mod I , (4.42)

where g0( ~SK

) = 1, and �
i

( ~S
K

) are s.o.s. polynomials modulo I (i.e. there exists a s.o.s.
polynomial in �

i

( ~S
K

) + I). For compactness, let us use the shorthand notation g
i

and
�
i

. Note that since all g
i

� 0 in V by definition, and s.o.s. are non-negative, the form of
Eq. (4.42) ensures the non-negativity of l( ~S

K

) in V , 3.
Now, given a point ~S⇤

K

, our goal is to prove that l( ~S⇤
K

) < 0 for some �
i

. If we
succeed in this proof, then we have to conclude that ~S⇤

K

/2 CH(V) ◆ PS
K

, i.e. that the
statistics in ~S⇤

K

come from nonlocal correlations.
For computational reasons, we need to bound the maximum degree of the s.o.s. de-

composition allowed in �
i

+I . The higher the degree, the larger the family of l( ~S
K

) that
2Obviously, every s.o.s. polynomial is non-negative, but the converse is false in general. The textbook

counter-example is the Motzkin polynomial, x4
y

2 + x

2
y

4 � 3x2
y

2 + 1, which is non-negative on R2 but
it is not a s.o.s. of elements of R[x, y].

3The modulo I in Eq. (4.42) allows to reduce the degree of l( ~S
K

), potentially arriving to a linear
polynomial.

87



4. Quantum correlations: Theory

can be accessed through Eq. (4.42), but the more computationally expensive to produce
such s.o.s. representation will be. This naturally yields a hierarchy of outer approxima-
tions to CH(V) by increasing the degree of the s.o.s. decomposition of �

i

. To simplify
our exposition, we consider here the special case where all �

i

= �.
To express all � that are s.o.s. of degree 2µ, modulo I , we adopt the following

procedure. First, we select (via a Gröbner basis [127]) a linearly independent set of
representatives of R[ ~S

K

]/I , and we order them in the vector ~b = (1, S0, S1, . . . )T .
Denoting by ~b

µ

the vector of elements of ~b of degree at most µ, we write � =
P

j

s2
j

mod I , where s
j

are linear combinations of the elements of ~b
µ

; i.e. s
j

= ~bT
µ

~a
j

, with
~a
j

real vectors. At this point, by defining the matrix G =
P

j

~a
j

~aT
j

, which is positive
semi-definite by construction (G ⌫ 0), and the moment matrix �

i

= g
i

~b
µ

~bT
µ

mod I ,
we write

g
i

� = �
i

· G mod I , G ⌫ 0 . (4.43)

Here X · Y =
P

ab

X
ab

Y
ab

.
When the elements of �

i

corresponding to ~S
K

are replaced by ~S⇤
K

, only some of its
entries are constrained. If the remaining free parameters can be tuned to make �

i

⌫ 0,
Eq. (4.43) ensures that g

i

� � 0 in ~S⇤
K

for all � (that are s.o.s. of degree 2µ, modulo I).
On the other hand, when �

i

✏ 0 for any choice of the free parameters, there exists at
least one � such that g

i

� < 0 in ~S⇤
K

4.
Recall here that our final goal is to prove that there exist a � such that Eq. (4.42)

gives l( ~S⇤
K

) < 0. To this end, we write Eq. (4.42) as l( ~S
K

) = �̃ · G̃ mod I , where
�̃ =

L

m

i=0 �i, and similarly for G̃. As for Eq. (4.43), we ask whether �̃ can be made
positive semi-definite at the point ~S⇤

K

. To perform this check with a SdP, we first reduce
�̃ modulo I , and then linearize it as

�̃ =
X

j

y
j

�̃
j

, (4.44)

where y
j

indexes the j-th element of~b, and �̃
j

are constant real matrices embodying the
constraints among the entries of �̃. Now, for the point ~S⇤

K

, we write the SdP

max
y

j

2R
1

s.t. �̃ ⌫ 0
y0 = 1

y
j

= ( ~S⇤
K

)
j

(4.45)

where y0 and the y
j

corresponding to ~S⇤
K

are fixed, while the other y
j

are free real
parameters that can be varied until the condition �̃ ⌫ 0 is fulfilled.

If SdP (4.45) is infeasible, �̃ ✏ 0 independently on the free y
j

, which proves that
there exist a � such that l( ~S⇤

K

) < 0. Therefore, infeasiblity of (4.45) certifies that
~S⇤
K

/2 CH(V) ◆ PS
K

, i.e. its nonlocal nature (see the example and Fig. 4.5).
4For a detailed proof, see the proof of Theorem 5.1 in [124]
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Figure 4.4: For N = 10 and K = 2, the plane of the symmetric correlations of the form
↵~S(1)

2 + � ~S(2)
2 , with ~S(1)

2 = (1, �1, 0, �1, 1)T /
p

4 and ~S(2)
2 = (0, �1, �1, 1, 0)T /

p
3. In blue,

the intersection of PS
2 with the plane, computed with a linear program. In red, the boundary of

the feasible set of SdP (4.45) for µ = 1. The gap between the two objects is imputable mainly to
the first relaxation, and the small N was chosen also to appreciate its size, which remains of the
same order while PS

2 increases with N (see also Fig. 4.5)

While the output of SdP (4.45) is the answer feasible/infeasible, we can also write
a SdP to maximize � subject to y0 = 1 and y

j

= �( ~S⇤
K

)
j

. The dual formulation
of this modified SdP results in the dual variables ↵

j1...j
k

associated to y1 . . . y
i

, and
�
C

associated to y0, defining a Bell inequality (4.37) that can be used to certify the
nonlocality of ~S⇤

K

5 (see the example and Fig. 4.5). In addition, maximizing � along
different directions ~S⇤

K

results in the points �max ~S⇤
K

that can be used to approximate the
boundary of PS

K

, (see Fig. 4.4).
On the other hand, if SdP (4.45) is feasible it means that it does not exist a � that

is s.o.s. of degree 2µ, modulo I , such that l( ~S⇤
K

) < 0. In this case, we could access a
higher level of our hierarchy by increasing µ, which enlarges the class of l( ~S

K

) to be
tested 6.

An additional result in [121,122] ensures that, since the variety V we want to approx-
imate is compact, our hierarchy converges at least asymptotically to CH(V). Actually,
in all examples we studied, we observed numerically that convergence at µ = 1 was
already present.

Example. – In the spirit of [21, 26], we consider d = K = 2, giving rise to the set
of correlators ~S2 = (S0, S1, S00, S01, S11) 2 R5, and N parties. In this scenario, there
are four LDS parameterized by x

i

� 0 and satisfying
P4

i=1 �i = N . By expressing the

5See Section 3.1 of [126] and, for a detailed derivation, Section 4.2 of [123]
6Note that the matrix �̃ for the level µ, is a minor of the matrix �̃0 for the level µ0

> µ. Therefore, if
�̃0 ⌫ 0 then necessarily �̃ ⌫ 0, while the converse is not always true.

89



4. Quantum correlations: Theory

Figure 4.5: Plane generated by {S0, (S00 + 2 S01 + S11)}. Black circled dot, point
(367.6, �525.4) measured experimentally in [26] for N = 476. Blue points, projected vertices
of PS

2. Blue line, bound given by the Bell inequality �2S0 + (S00 + 2S01 + S11) /2 + 2N � 0,
from [21, 26]. This inequality is tight, meaning that it is also a facet of the projected polytope.
Pink region, points where SdP (4.48) gives � � 1. Orange dashed line, Bell inequality obtained
numerically by solving the dual of SdP (4.48). The distance between the blue and the orange
lines is 1.000002, meaning that the error of our method compared to the tight classical bound
scales as 1/N , and it is imputable mainly to the first relaxation.

correlators ~S2 evaluated on a LDS in terms of ~�, we obtain [21]
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S2
0 � N

S0S1 � Z
S2
1 � N

1

A . (4.47)

When N is fixed Eqs. (4.46) are three free parameters, while Eqs. (4.47) define the ideal
I , whose

�

d+K

d

�

�m = 2 generators {f1( ~S2), f2( ~S2)} = {S00�S2
0 +N, S11�S2

1 +N}
form also a Gröbner basis for I . Inverting Eq. (4.46) we obtain four polynomials in ~S2

that allow to express the constraints �
i

= g
i

( ~S2) � 0; e.g.

g1( ~S2) = (S0 + S1 + (S0S1 � S01) + (S2
0 � S00))/4 � 0 .

At the first level of our hierarchy, µ = 1, the vector~bT1 = (1, S0, . . . , S11) generates the
five 6⇥6 moment matrices �

i

. Combined together, the �
i

give a 30⇥30 block-diagonal
moment matrix �̃, in which N appears as a parameter, and thus not affecting its size.

Considering our experimental data presented in Ref. [26] (see also chapter 5), we
can conclude that the measured statistics (S⇤

0 , S⇤
00 + 2S⇤

01 + S⇤
11) = (367.6, �525.4)
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contain Bell correlations because the following SdP gives � < 1:

max
y

j

2R
�

s.t. �̃ ⌫ 0
y0 = 1

(y1, y3 + 2y4 + y5) = �(S⇤
0 , S⇤

00 + 2S⇤
01 + S⇤

11)

(4.48)

The dual of SdP (4.48) gives as result the dual variables associated to y0, y1 and
y3 + 2y4 + y5, which correspond respectively to the coefficients of the Bell inequality
�
C

+ ↵1S0 + ↵2 (S00 + 2S01 + S11) � 0, (see Fig. 4.5).
As a generalization of this method, it is possible to consider the case where mea-

surements have more outcomes by defining the expectation values as e.g. hM(i)
x

i

i(a) =
2P

i

(a|x) � 1, where P
i

(a|x) is the probability that measurement x on party i gives as
outcome a, and the symmetrized correlators as e.g. S(a)

x

=
P

N

i=1hM
(i)
x

i

i(a).
To summarize, we presented a method to bound the set of LHVM correlations from

the outside. Its main advantage, with respect to other techniques, is that there is no scal-
ing with the number of parties, making it particularly suited for the study of Bell corre-
lations in many–body systems. Our approach has several applications, some of which
were presented here, such as the characterization of experimentally observed correla-
tions or the derivation of new Bell inequalities. Furthermore, it can be easily generalized
to scenarios with more measurements settings and outcomes, potentially enlarging the
class of systems and states where Bell correlations could be experimentally detected.

4.5.3 Bell correlations depth

In collaboration with several researcher at ICFO we developed a method to quantify the
depth of Bell correlations in a many-body system. In this section we present a summary
of what can be found in Ref. [30].

The violation of a Bell inequality signals the presence of Bell correlations. However,
as it is the case for entanglement, in multi-partite scenarios the question arise of how
different Bell correlated states are classified. To give a partial answer to this question,
we propose a method to quantify the depth of nonlocality, i.e. the number of particles
sharing genuinely nonlocal correlations. This is a challenging task, as known inequalities
for genuine nonlocality are based on N -order correlators, they require an individual
addressing of parties, and a number of measurement settings scaling exponentially with
the number of parties. For this reason, we follow the approach of the previous paragraph,
and focus on inequalities with up to two-body permutationally invariant correlators.

To begin with an example, in a system with three particles the nonlocality condition
P (a, b|x, y) 6=

R

d�p(�)P (a|x,�)P (b|y,�) formulated by Bell is generalized as

P (a, b, c|x, y, z) 6=
Z

d�p(�)P (a|x,�)P (b|y,�)P (c|z,�) . (4.49)

However, as Svetlichny pointed out [128], observing a joint probability P (a, b, c|x, y, z)
irreducible in the form of Eq. (4.49) still leaves open the possibility of a decomposition
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in the form of e.g.

P (a, b, c|x, y, z) =

Z

d�p(�)P (a, b|x, y�)P (c|z,�) , (4.50)

(or with any other cyclic permutation of a, b, c, x, y, z). This expression represents the
situation where only two out of the three parties in the system share nonlocal correla-
tions. As a concrete example, the state (1/

p
2)(|00i + |11i) ⌦ |0i, that is the product

of the maximally entangled state of two qubits with some additional state, and the GHZ
state (1/

p
2)(|000i+ |111i) are both nonlocal, however, while the former has only two-

body nonlocality, the latter shows nonlocality among all parties. Observing a negation
of all possible decompositions of the form Eq. (4.50) is more demanding than Eq. (4.49),
establishing a hierarchy that could serve to characterize nonlocality in a three-body sys-
tem. Proving that nonlocal correlations exist among all particles in the system is called
genuine multipartite nonlocality, and it is the strongest known form of correlation.

This idea has been generalized to multi-partite scenarios, and a number of approaches
to classify different types of nonlocality have been proposed [129, 130]. Following the
approach of [130], we choose here the notion of nonlocality depth (or k-producibility of
nonlocality), which is similar to the approach adopted to quantify mutipartite entangle-
ment (see Refs. [131]). In few words, we are looking for inequalities whose violation
certify that the observed statistics cannot be explained by groups of k particles sharing
some specific resources.

To find inequalities allowing to quantify the depth of nonlocality, we proceed in the
following way. We partition the set of parties I = {1, . . . , N} into L pairwise-disjoint
non-empty subsets A

i

, each containing at most k parties, and call it L
k

-partition of I .
We call the correlations {P (a|x)} k-producible with respect to the given L

k

-partition if
they admit the following decomposition

P (a|x) =

Z

d�p(�)P1(aA1 |xA1 ,�) . . . P
L

(aA
L

|xA
L

,�) (4.51)

where aA
i

and xA
i

are the respectively the outcomes and the measurements choices
corresponding to the parties belonging to A

i

.
The probability distributions P

i

(aA
i

|xA
i

,�) appearing in Eq. (4.51) must be con-
strained to the specific resources available to the partitions. In our case, we choose these
probabilities to satisfy the no-signaling condition (4.52). No-signaling expresses the
notion that faster-than-light communication between different parties is not possible, i.e.
X

a

i

P (a1, . . . , ai, . . . |x1, . . . , xi

, . . .) =
X

a

i

P (a1, . . . , ai, . . . |x1, . . . , x
0
i

, . . .) (4.52)

for all a’s, x’s, x0
i

. Concretely, Eq. (4.52) tells that the marginal probability for a set of
particles not including the i-th, P (a1, . . . , ai�1, ai+1, , . . . |x1, . . . , xi�1, xi+1, . . .), does
not depend on the measurement setting x

i

for particle i, which has to be expected if the
latter is space-like separated from the others. Another more restrictive choice would be
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to assume that each partition shares quantum correlations, which will be explored in a
future work.

The decomposition Eq. (4.51) assumes a specific L
k

-partition of the system. How-
ever, we would like to know whether the observed probabilities could be explained by
any possible L

k

-partition with a fixed k. For this reason, we define the probabilities
{P (a|x)} to be k-producible if they can be written as a convex combination of correla-
tions that are k-producible with respect to different L

k

-partitions, i.e.

P (a|x) =
X

l2L
k

q
l

P
l

(a|x) (4.53)

where L
k

is the set of all L
k

-partitions and P
l

(a|x) are correlations that admit the de-
composition (4.51) with respect to the k-partition l. The minimal k for which the cor-
relations {P (a|x)} are of the form (4.53) is called nonlocality depth (with respect to
nonsignaling resources). Correlations whose nonlocality depth is k are (genuinely) k-
partite nonlocal, as there must exist a subset of k parties which share nonsignaling cor-
relations that are genuinely nonlocal [128].

Let us notice that in the particular case of k = 1 there is only one, up to permutations,
L1-partition: each party forms a singleton A

i

= {A
i

} (i = 1, . . . , N), and the definition
of fully local correlations is recovered. Then, on the other extreme of k = N , we
have correlations in which all parties share nonlocality and are thus called genuinely
multiparty nonlocal (GMNL).

Geometrically, as in the case of LHVM, the sets of k-producible correlations form
polytopes which we denote P

N,k

. Thanks to this fact, in order to detect the nonlocality
depth of given correlations one can follow the standard procedure used to reveal nonlo-
cality: construct Bell-like inequalities that constrain P

N,k

. The violation of one of these
implies that {P (a|x)} is at least genuinely k + 1-nonlocal, or, in other words, that these
correlations have nonlocality depth of at least k + 1. The vertices of P

N,k

are product
probability distributions of the form

P (a|x) = P1(aA1 |xA1) · . . . · P
L

(aA
L

|xA
L

) (4.54)

with each P
i

(aA
i

|xA
i

) being a vertex of the corresponding |A
i

|-partite nonsignaling
polytope, with |A

i

|  k for all i. If for some i, |A
i

| = 1, then P
i

(aA
i

|xA
i

) ⌘ P
i

(a
i

|x
i

)
is simply a deterministic probability distribution, i.e., P

i

(a
i

|x
i

) 2 {0, 1} for all values
of x

i

. In order to construct all vertices of P
N,k

one needs to consider all L
k

-partitions in
Eq. (4.54). It thus follows that one needs to know the vertices of the p-partite nonsignal-
ing polytopes NS

p

for all p  k.
At this point, following the idea behind Eq. (4.38), we are interested in understanding

whether one- and two-body PI correlators, S
x1 and S

x1x2 , are sufficient to measure the
depth of nonlocality in a many-body system. Therefore, we project the polytope P

N,k

onto the space of such correlators, and obtain the two-body symmetric polytope of k-
producible correlations P2,S

N,k

. In the scenario with two measurement settings per party,
this polytope is constrained by inequalities of the form

I ⌘ ↵S0 + �S1 +
�

2
S00 + �S01 +

"

2
S11 � ��k

C

. (4.55)
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The constant �k
C

is the maximal value of I over all correlations belonging to P2,S
N,k

. In
practice, as the latter is a polytope, it is enough to find the minimal value of I over all
its vertices in order to determine �k

C

.

For k = 1, Eq. (4.55) reproduces the two-body symmetric Bell inequalities intro-
duced in [21], e.g. Eq. (4.38). Our aim here is to go beyond this case, and find inequali-
ties valid for k > 1 and any N . Unfortunately, despite the fact that for any k and N the
polytope P2,S

N,k

lives in a five-dimensional real space, its vertices and facets are unknown.

In Ref. [30] we address this problem, and we introduced a general description of
all the vertices of the projected k-nonlocal polytope in the two-body symmetric space,
which is in principle valid for any value of N and k  N . However, this description
requires the knowledge of (i) all the vertices of the symmetrized local polytope for p
parties, with p = 1, . . . , k, and (ii) all the nonlocal vertices of the projections of p-partite
nonsignaling polytopes NS

p

onto the two-body symmetric space, for p = 1, . . . , k,
which we denote NS2,S

p

. This is overall a very complicated task, especially for the
complexity of computing the vertices of NS2,S

p

, and, for this reason, we were not able
to go beyond k = 6.

With the lists of vertices of P2,S
N,k

available, we derived the corresponding complete
set of inequalities defining its facets [30]. This can be done by solving the convex hull
problem, which is implemented in softwares such as CDD [119]. Thanks to the low
dimension of the space, we were able to solve this problem for scenarios involving up to
N = 12 parties.

In particular, since our inequalities can test against k-producibility with k  6, we
can identify all the symmetric two-body inequalities that detect genuine multipartite
nonlocality (GMNL) for systems of N  7 particles (see Ref. [30] for the complete
lists). Interestingly, we find that no inequality of such kind can be violated by quantum
mechanics in the tripartite case. That is, symmetric two-body correlations provide not
enough information to detect GMNL in three-partite quantum states. This is no longer
the case with four parties, for which we find an inequality which is violated by quantum
mechanics, therefore allowing to detect GMNL.

Of particular interest is the observation that our lists of inequalities sometimes con-
tain also expressions in the form of Eq. (4.38), but with a classical bound that depends
on degree of nonlocality depth that one is interested to detect. This implies that nonlo-
cality depth can be inferred from the amount of quantum violation observed in a single
inequality, which is appealing for experimental investigations. For this reason, we focus
on the expression

2S0 +
1

2
S00 + S01 +

1

2
S11 + �k

C

� 0 , (4.56)

and determine �k
C

for different k and any number of parties, such that the inequality is
satisfied for all correlations belonging to P2,S

N,k

. The bounds we find are
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k �k
C

1 2N

2 2N

3 2N

4
�

2 + 2
49

�

N + 1
2

5
�

2 + 8
121

�

N + 1
2

6
�

2 + 1
12

�

N + 1
2

(4.57)

By performing a numerical check, it is easy to show that these inequalities can be
violated by quantum mechanics. The strategy consists in computing the minimal eigen-
value of the Bell operator associated to Eq. (4.56), which can be constructed following
the procedure presented in [115].

To summarize, the expression Eq. (4.56), with the bounds given in the table, consists
in a set of Bell inequalities allowing to detect k-partite nonlocality. This shows that two-
body symmetric correlations are enough to distinguish the depth of Bell correlations for
any number of parties.

As a future direction to investigate, it would be interesting to derive inequalities that
test for Bell correlation depth higher than 6, as it is already possible for entanglement.
In particular, it would be interesting to find inequalities confirming genuine Bell corre-
lations in many-body systems, without relying on parity measurements.

Another possible research direction would be to consider inequalities involving more
than two settings per party. The resulting witness could still only involve two measure-
ment directions and provide improved bounds. In particular, it would be interesting to
find the k-nonlocality bounds for the family of inequalities in Ref. [29] admitting an
arbitrary number of settings.

4.5.4 Witnessing Bell correlations and their depth

To experimentally test the multipartite Bell inequalities we presented one needs to mea-
sure terms like hM(i)

0 M(j)
1 i entering into e.g. S01. In practice, this means that individual

addressing of the particles is needed, which is an experimentally challenging task that
seems unfeasible for most systems if the number of parties is already above few tens.
In fact, in many-body systems it is usually more practical to measure collective observ-
ables, like magnetization, and their fluctuations. For this reason, we propose to replace
the Bell inequalities, which do not rely on assumptions neither on the state nor on the
measurements, by Bell correlation witnesses assuming that the measurements performed
in the experiment are (quantum) measurement of the spin projection along some chosen
direction. This allows us to formulate criteria involving only measurements of the col-
lective spin, whose violation witnesses the presence of Bell correlations in the system.
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This approach was developed and published in Ref. [26], where we also report a corre-
sponding experiment (see chapter 5).

The additional assumption of a correct quantum-mechanical description of the mea-
surements may be motivated by the fact that the experimental apparatus is “properly”
built and calibrated by the experimenters, and that independent characterizations of it
show agreement with the theory, leading us to believe that we understand its operation.
We emphasize that no assumption is made on the state of the system we are investigat-
ing. Thanks to this, even if the violation of a Bell witness cannot conclusively prove
statements like the incompatibility of nature with local realism, its violation still allows
us to characterize the state of the system without prior knowledge of this state. Namely,
we can conclude that, under the mentioned assumption on the measurements, the state
has the resources to violate a Bell inequality.

From Bell inequalities to Bell correlation witnesses

As a first example, we show how to derive a Bell correlation witness from the Bell in-
equality (4.38). First, we associate each party i with a spin 1/2, on which we assume
that the measurement M(i)

d

= 2ŝ

(i) · d of the spin projection along an axis d is per-
formed, where 2ŝ

(i) = {�̂(i)
x

, �̂(i)
y

, �̂(i)
z

} is the Pauli vector. Then, we define the total
spin observable Ŝ

d

= d ·
P

N

i=1 ŝ

(i) in the direction d, which can be probed by collec-
tive measurements on the entire system.

Setting M(i)
0 = M(i)

n

and M(i)
1 = M(i)

m

, with m = 2(a · n)a � n and kak =
kmk = knk = 1, allows us to express the one- and two-body correlators as

S0 = 2
D

Ŝ
n

E

S00 + 2S01 + S11 = 16(a · n)2
D

Ŝ2
a

E

� 4N(a · n)2 . (4.58)

With these relations, and the fact that Ŝ�n

= �Ŝ
n

, we transform the Bell inequal-
ity (4.38) into the witness observable

Ŵ = �

�

�

�

�

�

Ŝ
n

N/2

�

�

�

�

�

+ (a · n)2
Ŝ2
a

N/4
+
�
C

2N
� (a · n)2 . (4.59)

The Bell inequality Eq. (4.38) guarantees that
D

Ŵ
E

� 0 whenever the state of the sys-
tem is not Bell-correlated. By construction, the Bell correlation witness Eq. (4.59) only
involves first and second moments of collective spin measurements along two directions
a and n, making it well suited for experiments on many-body systems. Although this
witness was derived with assumptions about the measurements, it does not make any
assumptions about the measured state. In particular, we do not assume that the state is
symmetric under particle exchange. Moreover, this witness applies whether the particles
are spatially separated or not, similar to entanglement witnesses [132], under the com-
mon assumption that particles do not communicate (interact) through unknown channels.
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Although such an assumption would be questioned in a Bell test aimed at disproving the
locally realist nature of the world, it is a well-satisfied and common assumption in the
context of many-body systems, where the goal is to characterize correlations, assuming
quantum mechanics to be valid.

The number of particles N , entering in Eq. (4.59), may fluctuate slightly from one
experimental run to the next. To take this into account, we replace N in Eq. 4.59 by the
observable N̂ , and introduce the scaled collective spin C

n

=
D

2Ŝ
n

/N̂
E

and the scaled

second moment ⇣2
a

=
D

4Ŝ2
a

/N̂
E

. The witness inequality then becomes

W = �|C
n

| + (a · n)2⇣2
a

+
�
C

2N
� (a · n)2 � 0, (4.60)

which holds for any two axes a and n, and for all non-Bell-correlated states.
The expression Eq. (4.60) depends on the angle # between a and n, and therefore

its experimental violation relies on the accurate calibration of the measurement direc-
tions. To improve the robustness against uncertainties in this angle, we derive a more
practical witness through the following consideration. We express n = a cos(✓) +
b sin(✓) cos(�) + c sin(✓) sin(�), with the ortho-normal vectors a, b and c = a ⇥ b,
where ⇥ denotes the vector product. With these definitions, we write Ineq. (4.60) as

⇣2
a

� Ca cos(✓) + Cb sin(✓) cos(�) + Cc sin(✓) sin(�) � �
C

/(2N) + cos2(✓)

cos2(✓)
,

(4.61)
which is satisfied by all non-Bell-correlated states, for all (✓,�). For this reason, such
states satisfy also

⇣2
a

� Z(Cbc, Ca) ⌘ max
✓2[0,⇡]



Cbc sin(✓) � Ca cos(✓) � �
C

/(2N) + cos2(✓)

cos2(✓)

�

� Z(Cb, 0) =
2 � �

C

/(2N) �
q

[�
C

/(2N)]2 � C2
b

2
, (4.62)

where Cbc =
q

C2
b + C2

c and where we used the monotonicity of the function Z(Cbc, Ca),
which is discussed in more detail in Ref. [26]. Inserting into Eq. (4.62) the classical
bound of inequality Eq. (4.38), �

C

= 2N , we obtain the witness inequality

⇣2
a

� 1

2

✓

1 �
q

1 � C2
b

◆

, (4.63)

which involves the measurements of ⇣
a

and Cb, for the two orthogonal directions a

and b, and is satisfied by all non-Bell-correlated states. In other words, a violation of
InEq. (4.63) witnesses that the state is Bell correlated.

In the following chapter we present an experiment showing the violation of inequal-
ities Eq. (4.60) and Eq. (4.63) for a many-body system, which allows us to conclude the
presence of Bell correlations among the constituent parties.
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An interesting observation is that the witness Eq. (4.63) resembles to some extent
the criterion to detect entanglement with the Wineland squeezing parameter Eq. (4.24).
We will discuss this connection more in detail in the following chapter.

As a second example, we show how to derive a Bell correlation witness from the Bell
inequality (4.39). The approach is similar to the one just described, and it is presented in
detail in Ref. [29]. We consider m measurement directions d

k

= a cos(#
k

)+b sin(#
k

),
lying in a plane spanned by two orthonormal vectors a and b, with the antisymmetric
angle distribution #

m�k�1 = �#
k

. From Eq. (4.39) with even m, we arrive at the family
of witnesses

W
m

= C
b

m

2 �1
X

k=0

↵
k

sin(#
k

) �
�

1 � ⇣2
a

�

2

4

m

2 �1
X

k=0

cos(#
k

)

3

5

2

+
m2

4
� 0 , (4.64)

which are satisfied by all states that are not Bell correlated. These Bell correlation wit-
nesses depend on the m/2 angles #

k

(that we emphasize are just free variables to be op-
timized), but they involve just two quantities to be measured experimentally: the scaled
collective spin C

b

and the scaled second moment ⇣2
a

, as it is the case for Eq. (4.60).
The tightest constraints on C

b

and ⇣2
a

that allow for a violation of Eq. (4.64) are
obtained by minimizing W

m

over the angles #
k

. Solving @W
m

@#

k

= 0 yields the optimal
angles [29]

#
k

= � arctan[�
m

(m � 2k � 1)] , (4.65)

C
b

2�
m

(1 � ⇣2
a

)
=

m

2 �1
X

k=0

cos(#
k

) . (4.66)

Equation (4.66) is a self-consistency equation for �
m

that has to be satisfied in order to
minimize W

m

.
Inserting these optimal angles, we rewrite Eq. (4.64) as a witness involving the phys-

ical parameters C
b

and ⇣2
a

only. Interestingly, for two measurement directions (m = 2)
we obtain again Eq. (4.63), which was previously derived from the different inequality
Eq. (4.38). Increasing the number of measurement directions allows for the detection of
Bell correlations in additional states. In the limit m ! 1, we find [29]

⇣2
a

� Z1(C
b

) = 1 � C
b

arctanh (C
b

)
. (4.67)

Figure 4.6 shows the bounds given by the two witnesses (4.63) and (4.67), together
with the one obtained similarly for m = 4 settings, in the C

b

-⇣2
a

plane. Points below
the curve Z

m

in Fig. 4.6 indicate a violation of the witness Eq. (4.64) obtained from
the corresponding m-settings Bell inequality Eq. (4.39). Violation of any such bound
reveals the presence of a Bell correlations in the system under investigation.

Note that the curve Z1 reaches the point C
b

= ⇣2
a

= 1, therefore allowing in prin-
ciple for the detection of Bell correlations in presence of arbitrarily low squeezing. It is
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Figure 4.6: Plots of the critical lines Z2(Cb

) = Z(C
b

, 0) [Eq. (4.62)], Z4(Cb

) and Z1(Cb)

[Eq. (4.67)]. The witness obtained from the Bell inequality with m = 4 settings already pro-
vides a significant improvement over the case of m = 2 settings, by allowing to detect Bell
correlations in a larger class of states. Figure adapted from [29].

known, however, that some values of C
b

and ⇣2
a

can only be reached in the limit of a large
number of spins [100]. For any fixed N , a finite amount of squeezing is thus necessary
in order to allow for the violation the witness Eq. (4.64), [29].

Witnessing Bell correlation depth

Inequalities allowing to quantify the depth of Bell correlations can also be transformed
into witnesses. In the case of Eq. (4.56), we note that the inequality is of the same
form as Eq. (4.38), except for the classical bound �

C

that is replaced by �k
C

. For this
reason, following the calculation used to derive Eq. (4.62), it is straightforward to derive
a witness for Bell correlations of depth k. The result is of the same form as Eq. (4.62),
but with �

C

replaced by �k
C

, namely

⇣2
a

�
2 � �k

C

/(2N) �
q

[�k
C

/(2N)]2 � C2
b

2
. (4.68)

The violation of Ineq. (4.68), for the �k
C

given in Tab. (4.57), witnesses that the state
contains Bell correlations with a depth of (at least) k particles.

Remarkably, the fact that Ineq. (4.68) involves only ⇣
a

and Cb (for the two orthogo-
nal directions a and b) implies that also the depth of Bell correlations can be witnessed
in many-body systems with collective measurements, as we will show for the experi-
ment presented in the following chapter. This resembles again the case of entanglement,
for which the Wineland criterion as extended by Sørensen and Mølmer in Ref. [100]
provides a quantification of its depth. Unfortunately, while for entanglement there is a
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method to witness any depth k, for Bell correlations we have only the few bounds re-
ported in Tab. (4.57). This is due to the complexity behind the approach we used, which
relies on the characterization of non-signaling polytopes, and it might be overcome by
approaching the problem with different ideas.

4.5.5 Finite statistics loophole

Observing experimentally the violation of a Bell correlation witness indicates that the
system under investigation is Bell-correlated. However, since experiments are always
collecting a finite number of measurement results, such conclusion require a detailed
statistical investigation. There is in fact the possibility that a finite number of measure-
ments on states that are not Bell-correlated could be responsible for the violation of a
witness, which is the so called statistics loophole [133, 134].

To give a concrete example, consider a Bell witness whose quantum violation is
bounded from below by h'|Ŵ |'i = Wmin < 0, for an optimal state |'i, while its
largest possible value Wmax > 0 is achievable by a product state | "i⌦N . If a small
number of measurements is performed on a system in the state

⇢̂(q) = (1 � q)|'ih'| + q(|"ih"|)⌦N , (4.69)

where q is small, then it is likely to obtain a negative estimate for hWi, even though
hWi � 0 in the limit of infinitely many measurement rounds [26, 29]. For this reason,
the state in Eq. (4.69) imposes a lower bound on the number of measurements required
to exclude, through the considered witness, all non-Bell-correlated states with high con-
fidence. This is only a lower bound because, in general, one can think of states that are
more pathological than Eq. (4.69) and, therefore, that requires more measurements. For
this reason, it is of interest to find instead an upper bound, whose derivation needs a
more careful statistical analysis.

In the work presented in Ref. [29] we performed this analysis and provide a num-
ber of measurements M sufficient to exclude, with a probability larger than 1 � " and
without additional assumptions (e.g. that the statistics is Gaussian), that a local states is
responsible of the observed witness violation. This corresponds to a p-value lower than a
given threshold for the null hypothesis ‘The measured state is not Bell-correlated’. Our
results are summarized in Figure 4.7, where the required number of experimental runs
per spin are plotted as a function of the scaled collective spin C

b

(horizontal axis) and of
the scaled second moment ⇣2

a

(curve color). For a confidence level of 1 � ✏ = 99% in
the considered parameter region, the required number of measurement runs per spin is
in the range of ⇡ 20 ÷ 500.

As illustrated in Figure 4.8, we observe that the ratio M/N tends to a constant for
large N [29]. This implies that a number of measurements growing linearly with the
system size is both necessary and sufficient to detect Bell correlations without the sta-
tistical loophole, which is a reasonable scaling when considering systems with a large
number of particles. It is important to note that such conclusion cannot follow only by
observing a violation of the witness by a fixed number of standard deviations. Indeed,
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Figure 4.7: Number of experimental runs per spin required to rule out non-Bell-correlated states
with a confidence of 1 � " as a function of C

b

(horizontal axis) and ⇣
a

(curve color). For C
b

=
0.98 and ⇣2

a

= 0.272 (as reported in [26]), approximately 17 · ln(100) ' 80 runs per spin are
sufficient to reach a confidence level of 99%. Figure taken from [29]

Figure 4.8: Number of experimental runs per spin required to rule out non-Bell-correlated states
with a confidence of 1 � " as a function of the number of spins N . The plots are for the witness
Eq. (4.64) with m = 2, 4, 1 measurement settings, and for ⇣2

a

= 0.272 and C
b

= 0.98 (as
reported in [26]). The ratio M/N tends to a constants for larger systems. Figure taken from [29].

standard deviations inform on the precision of a violation, but fail at excluding arbitrary
local models [134], including e.g. models which may showing non-gaussian statistics
with rare events.
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5
Quantum correlations: Experiments

In this Chapter we present the experimental preparation and detection of nonclassical
correlations in many-body systems. First, we describe the sequence to prepare BECs in
spin-squeezed states, and we recall their connection to entanglement. Then, we demon-
strate that collective measurements allow to witness the strongest form of correlations
known, namely Bell correlations. To conclude, we show an approach to extract correla-
tions from indistinguishable particles into distinguishable subsystems, which enabled us
to observe entanglement strong enough for EPR-steering. These results were published
in Refs. [26, 27].

5.1 Spin-squeezing and entanglement in Bose-Einstein con-
densates

In this section we present our experimental sequence to prepare BECs in a specific fam-
ily of entangled states, called spin-squeezed states [25]. Such states are particularly
relevant in quantum metrology, where quantum correlations are a resource to enhance in-
terferometric sensitivity beyond classical limits [12]. Moreover, their relative robustness
against particle losses, when compared with other entangled states such as cat states, is a
crucial feature in practical applications. The non-linear dynamics that is required to build
up the correlations originates from the collisional interactions among the constituent
atoms, which is controllable in our experiments. Moreover, we present the common
tools to characterize such spin squeezed states, in terms of their metrological usefulness
and depth of entanglement.

Our group originally demonstrated spin squeezing in Ref. [19], the techniques for
tomographic state reconstruction in Ref. [52] and the implementation of an atom inter-
ferometer with sensitivity beyond the standard quantum limit in Ref. [17]. We present
state of the art results of state preparation and characterization, and the review of these
tools will motivate the next experiments we are going to present in this chapter.
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5. Quantum correlations: Experiments

5.1.1 Experimental preparation of spin-squeezed states

We perform experiments with Bose-Einstein condensates of Rubidium-87 atoms, mag-
netically trapped on an atom chip [17, 19, 24, 26]. As internal degrees of freedom, we
use the two hyperfine states |F = 1, m

F

= �1i ⌘ |1i and |F = 2, m
F

= 1i ⌘ |2i.
One of the advantages is that at the “magic” magnetic field of 3.23 G they have an en-
ergy difference to first order insensitive to magnetic field fluctuations, resulting in very
good coherence properties [135]. Moreover, because of the nearly identical magnetic
moments, state |1i and |2i experience almost the same magnetic (harmonic) confining
potential of trap frequencies f

x

= 110 Hz and f
y

= f
z

= 729 Hz.
To prepare a spin-squeezed state, we start with a BEC of N ⇡ 600 atoms in state |1i.

Then, we use a Rabi pulse to prepare the system in the coherent spin state
⇥

(|1i + |2i)/
p

2
⇤⌦N ,

in which the atomic spins are uncorrelated, Fig. 5.1A. At this point, we initiate the
squeezing dynamics by controlling the collisional interactions between the two states
through a state-dependent microwave near-field potential [24]. A state-selective splitting
of the two potential minima by 150 nm induces coherent demixing-remixing dynamics,
as described in Refs. [17, 19]. During this process, the coherent spin state evolves in
time according to the one-axis twisting [25] Hamiltonian Ĥ = �Ŝ2

z

, resulting in a spin-
squeezed state with reduced quantum noise in a certain spin component, Fig. 5.1B. The
preparation needs two complete demixing-remixing oscillations (⇡55 ms in total) to gen-
erate ⇡ �6 dB of spin squeezing according to the Wineland criterion [99]. Note that,
in reality, our squeezed states are (i) not exactly on the equator of the Bloch sphere, due
to different particle loss rates in the two states during the preparation, and (ii) tilted by
⇡10� against the horizontal due to the one-axis twisting dynamics, Fig. 5.1B.

After the state preparation, our experiments require the measurement of the collec-
tive spin along certain directions. However, because spin projection measurements by
absorption imaging are always taken along the +z spin axis, we perform Rabi rotations
of the state before the measurement, Fig. 5.1C. In this way, the passive rotations of the
spin operators ~S (i.e. measurements along different axes for a fixed state) are experimen-
tally replaced by active rotations (i.e. measurements along a fixed axis for differently
rotated states).

The actual measurement sequence starts by releasing the atoms from the trapping
potential by ramping down the magnetic bias field. During their free fall, atoms acceler-
ate away from the chip surface, in the vertical downward direction. After a time-of-flight
of a few milliseconds a resonant absorption image of each state is taken. This pair of
pictures (together with a reference picture) allow us to count the number of atoms in the
two hyperfine states, N1 and N2, as described in chapter 3.

5.1.2 Squeezing sequence with spin echo

In the most recent experiments we introduced a small variation on the sequence just
presented in the previous paragraph. To decrease the impact of technical noise and
particle losses in the squeezed state preparation, we perform a spin-echo protocol during
the squeezing dynamics. Concretely, after the ⇡/2 Rabi rotation which prepares the BEC
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5.1 Spin-squeezing and entanglement in Bose-Einstein condensates
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Figure 5.1: Sequence to prepare and characterize a spin-squeezed state. The figure shows
Rabi pulses (red) and on-chip microwave pulses (blue). The spheres show the Wigner function
of the collective spin state at various stages of the experiment, simulated for N = 200 atoms.
(A) Initial coherent state on the equator, along the +x spin direction. (B) Spin squeezed-state
resulting from the one-axis twisting Hamiltonian. (C) State after the counter-clockwise rotation
by an angle ✓ around its center. Figure adapted from [53]

in a coherent spin state, we turn on the state-selective potential only until the first revival
of the demixing-remixing dynamics (⇡ 28 ms). Then, we apply a Rabi ⇡-pulse (echo
pulse) before a second state-selective potential period, of the same duration as the first,
starts.

The addition of a spin echo pulse makes the experimental sequence less sensitive
to uncontrolled shot-to-shot fluctuations of the detuning between the atomic transition
and the two-photon drive, e.g. due a fluctuating microwave potential or fluctuating col-
lisional interactions. Additionally, since the echo effectively inverts the population of
|1i and |2i, the effect of asymmetric losses from the two states is partially compensated.
This results in a state closer to the equatorial plane, and to the fact that clock-shifts are
compensated without the need to post-process the data. The latter implies also that the
state preparation is less sensitive to drifts in the total atom number. In order to prevent
uncontrolled offsets due to fluctuations of the Rabi rotation angle, the spin-echo pulse
phase is chosen such that the state is rotated by ⇡ around its mean spin value.

With the echo protocol, we observe a spin squeezed state with typically �3.8(2) dB
of spin squeezing according to the Wineland criterion. On the one hand, the states pre-
pared in this way are 1 � 2 dB less squeezed than the typical ones we observe without
the echo pulse. The additional noise along the squeezing direction might originate from
imperfections in the additional echo pulse, from turning off and on the MW potential
in the middle of the sequence, or from other unknown sources. This question will be
addressed in detail by future investigations. On the other hand, the antisqueezed quadra-
ture we measure on squeezed states prepared with the echo pulse are typically 10(1) dB
anti-squeezed, which is ⇡ 3 dB less compared to the one in squeezed states prepared
without the echo pulse.
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5. Quantum correlations: Experiments

5.1.3 Experimental characterization of spin-squeezed states

To characterize the prepared spin squeezed states, we start by measuring the spin vari-
ance Var [S

d

] for different directions of the vector d = (0, cos(✓), sin(✓)) in the yz-
plane. This is accomplished with the sequence illustrated in Fig. 5.1: after the spin-
squeezed state is prepared with the protocol previously described (Fig. 5.1B), a Rabi
pulse which rotates the state by an angle ✓ around its center is applied (Fig. 5.1C). To
get a good estimation of the variance, we take typically ⇡ 100 measurements of the spin
projection before changing the angle ✓. Ideally, if the state is on the equator and the ro-
tation axis is properly calibrated, the mean hS

d

i ⇡ 0, while the variance Var [S
d

] varies
with ✓, reflecting the squeezed and anti-squeezed quadratures [19].

To make an insightful comparison, the measured variance is usually normalized by
the variance of an ideal coherent state with the same number of particles, which is N/4
independent of ✓. This suggests to define the number squeezing parameter

⇠2
n

=
4

N
Var [S

d

] = N Var [Nrel] , (5.1)

where Nrel = (N1 � N2)/N , to compare the observed spin noise to a binomial distribu-
tion [25].

Since displacements of a spin-squeezed state along certain directions can be de-
tected with a better sensitivity than for a coherent state, such states allow to perform
quantum-enhanced metrology. To quantify the metrological usefulness of a quantum
state, Wineland et al. introduced in Ref. [99] the squeezing parameter

⇠2 =
N Var [S

d

⇤ ]

hS
x

i2 , (5.2)

where x is the direction of the mean spin, d⇤ is the direction perpendicular to x minimiz-
ing the spin variance Var [S

d

]. A state with ⇠2 < 1 allows to improve the interferometric
sensitivity by a factor ⇠2 in variance with respect to an ideal coherent state of the same
particle number, i.e. with respect to the standard quantum limit. It is interesting to note
that, contrary to the number squeezing, ⇠2 depends on the spin length hS

x

i, reflecting
the fact that a high interferometric contrast, as well as a reduced variance, is required to
achieve better sensitivity. We measure hS

x

i in an independent experiment, by perform-
ing Rabi rotations of the state around the y-axis.

In Figure 5.2 we show an example of such state characterization for spin-squeezed
BECs with N = 580 ± 40 atoms, prepared as described in paragraph 5.1.1 [dataset
151002#1]. For different directions in the yz-plane, parametrized by the angle ✓, Fig-
ure 5.2a shows the individual spin projection measurements in terms of Nrel. For each
angle, the variance of the data distribution gives the number squeezing reported in Fig-
ure 5.2b. The effect of detection noise is subtracted from each data point [53], and it
corresponds to ⇠2det = �0.55 dB at the optimal squeezing angle. The observation that
for a turning angle of ✓ = 0 the measured variance is consistent with that of an ideal
coherent state confirming that our imaging system is properly calibrated, and that imag-
ing noise is correctly subtracted. For small negative ✓, noise lower than the one of a
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5.1 Spin-squeezing and entanglement in Bose-Einstein condensates

coherent state is observed. Its minimum is reached for the optimal turning angle of
✓⇤ = �11.4�, when the squeezed direction is aligned with the z-axis. In spin-squeezed
states the variance of one spin quadrature is reduced at the expenses of increasing the
variance of the orthogonal one, as required by the uncertainty principle. This is shown
by the fact that, turning the state 90� from the optimal point aligns the anti-squeezed
direction with the z-axis, and the measured noise is far above that of a coherent state. In
theory, the amount of noise reduction in the squeezed direction should exactely compen-
sate the noise increase in the anti-squeezed direction. The observation of an imbalance,
as in our measurements, indicates the presence of additional noise sources. The inter-
ferometric (Rabi) contrast of hS

x

i/(N/2) = 0.971(8) is obtained from an independent
measurement, where the state is rotated around the y axis, Figure 5.2c. In this dataset,
we see at the optimal turning angle a number squeezing of �7.1(4) dB and a Wineland
squeezing parameter of ⇠2 = 0.209 = �6.8 dB.

a)

b)

c)

Figure 5.2: Experimental characterization of a spin-squeezed BEC. Measurements taken
from BECs with N = 580 ± 40 atoms, prepared in a spin-squeezed state as described in Para-
graph 5.1.1. a): Individual spin projection measurements for different directions (see Fig. 5.1), in
terms of relative atom number. b): Number squeezing as a function of the turning angle ✓. Error
bars indicate statistical uncertainty based on the number of shots used in each data point. The
independently measured contribution from imaging noise has been subtracted. At the optimal
turning angle of ✓⇤ = �11.4�, we observe �7.1(4) dB of number squeezing. c): Measurement
of the Rabi contrast. The sinusoidal fit (red curve) gives 0.971(8). The Wineland spin-squeezing
parameter for this dataset is of ⇠2 = 0.209 = �6.8 dB. [dataset 151002#1]

5.1.4 Entanglement in spin-squeezed states

The Wineland squeezing parameter Eq. (5.2), apart from quantifying the metrological
usefulness of a state, can be also used to witness entanglement, and its depth (see Para-
graph 4.3.2). This result makes a connection between spin-squeezing and entanglement,
and it allows to conclude the presence of such correlations in many-body systems with
collective measurements. In particular, observing a Wineland parameter ⇠2 < 1 implies

107



5. Quantum correlations: Experiments

that the particles are entangled. Moreover, following the approach presented in Para-
graph 4.3.2 we are able to derive a lower bound on the depth of entanglement required
to observe the given values of spin contrast and variance [100].

Figure 5.3 shows the measured depth of entanglement for the data presented in the
previous paragraph, Fig. 5.2. The red lines illustrate the smallest variance attainable
in a k-partite entangled state for a given Rabi contrast, and they have been generated
numerically. For large k, an analytic approximation to these curves exists, and it is
given in Eq. (4.26). The squeezed states we observed fall on the curve for ⇡ 56-partite
entanglement.

It should be noted that in a pure BEC particles are indistinguishable, and therefore
that the spin state is restricted to the symmetric subspace. For this reason one expects in
an ideal system maximal entanglement depth of N particles for all levels of squeezing.
The meaning of entanglement depth in such a system is discussed in Ref. [132], where
they say that observing k < N is likely due either to noise or to the fact that the entangled
state is only partially useful for parameter estimation.
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Figure 5.3: Depth of entanglement in a spin-squeezed BEC. Depth of entanglement cal-
culated according to reference [100]. Lines correspond to k-particle entanglement for k =
2, 4, 8, ..., 256. The black data point corresponds to the squeezed states with N = 580 ± 40
atoms of Fig. 5.2, and it falls on the line for k ⇡ 56 [dataset 151002#1]

5.1.5 Conclusions and outlook

In this section we presented our experimental sequence to prepare and characterize BECs
in spin-squeezed states. We reviewed known results connecting squeezing with entan-
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5.1 Spin-squeezing and entanglement in Bose-Einstein condensates

glement, which show how such correlations, and their depth, can be witnessed in a many-
body system by collective measurements. As an example, we applied such tools to our
best experimental dataset.

Apart from finding practical applications in quantum metrology, spin-squeezed states
are also interesting for fundamental studies. Preparing entangled states of large numbers
of particles pushes the quantum world towards macroscopic scales, which is useful to
test the validity range of the theory of quantum mechanics.

At this point, interesting questions that might arise are: 1) is it possible to detect in
such systems correlations even stronger than entanglement? 2) is it possible to go beyond
collective measurements, and observe directly the correlations among the constituent
particles? Their answers are found in the next two sections, and constitute the major
results of this thesis.
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5. Quantum correlations: Experiments

5.2 Bell correlations in a BEC

Measurements performed on the parts of a composite system can show correlations that
cannot be explained by any classical theory [5]. These so-called Bell correlations can be
confirmed by violating a Bell inequality, and represent the most profound departure of
quantum from classical physics.

Bell correlations have been detected between up to fourteen ions [11], four photons
[136,137], two neutral atoms [138], two solid-state spin qubits [139], and two Josephson
phase qubits [140]. Even though multi-partite Bell inequalities are known [5, 128, 141,
142], their violation in larger systems has remained elusive, due to the lack of suitable
measurement schemes that can be implemented with limited detection resolution and
acquisition time.

Recently proposed multipartite Bell inequalities [21, 29], which involve only one-
and two-body correlators, significantly reduce these difficulties. The reason being that
such low-order correlators are relatively easy to be measured experimentally, therefore
opening the possibility of detecting Bell correlations in large systems. Importantly, these
inequalities can be rewritten in the form of quantum mechanical witnesses, which allows
us to detect Bell correlations with collective measurements only. Further theoretical
investigations even extended this approach to quantify the depth of such correlations, in
analogy to what is done for entanglement [30].

In this section we report experiments violating Bell witness inequalities, therefore
detecting Bell correlations between the spins of about 480 atoms in spin-squeezed Bose-
Einstein condensates. Moreover, we discuss the statistical significance of the observed
violation and quantify the correlation’s depth. The experimental results have been pub-
lished in Ref. [26], and our several further theoretical developments on the subject ap-
peared in Refs. [28–30].

5.2.1 Violation of a Bell correlation witness

In section 4.5.1 we presented the multi-partite Bell inequality found in Ref. [21], involv-
ing only one- and two-body correlators. As it was mentioned, this inequality still requires
the experimentally challenging task of addressing the parties individually, which seems
difficult if the number of parties is already above hundred. For this reason, we discussed
the advantages of considering global observables, and in section 4.5.4 we derived from
the Bell inequality Eq. (4.38) the Bell correlation witness Eq. (4.59),

W = �|C
n

| + (a · n)2⇣2
a

+ 1 � (a · n)2 � 0 , (5.3)

where C
n

=
D

2Ŝ
n

/N̂
E

is the scaled collective spin and ⇣2
a

=
D

4Ŝ2
a

/N̂
E

is the scaled
second moment, thus involving only collective measurements. The violation of this cri-
terion allows us to conclude, under the additional assumption of properly characterized
measurements, that the state we are probing has the resources to violate the original Bell
inequality Eq. (4.38).
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With the following experiment we show that the spin-squeezed state of a BEC with
N ⇡ 500 atoms, prepared as explained in paragraph 5.1.1, violates witness Eq. (5.3).
This observation allows us to conclude the presence of Bell correlations in a many-body
system.

The witness W requires collective spin measurements along directions a and n. As
mentioned before, our spin-squeezed states are not exactly on the equator, and they are
tilted by ⇡11� against the horizontal direction. Because inequalities (5.3) and (5.4) are
most easily violated when a is the axis that minimizes ⇣2

a

, this means that in our case
a should be taken to be the squeezing direction, Fig. 5.4B, and that the state should be
placed on the equator of the sphere, where C

a

= 0. In a first set of measurements, we
thus rotate the squeezed state so that C

a

is as close as possible to zero and ⇣2
a

is minimal.
In practice, we scan the phase of the Rabi pulse, keeping its area fixed to 11.0�, and pick
the value of the phase that minimizes |C

a

|.

In a second experimental run, we measure C
n(⌧) for many different axes n(⌧) in the

plane defined by the center of the state b and the vector a (Fig. 5.4A). For this, after
having put the state on the equator with a first Rabi rotation, we apply a second rotation
by an angle #(⌧), where ⌧ is the Rabi pulse duration, with a phase adjusted such that the
contrast is maximized. This sequence ensures that the rotation is around an axis perpen-
dicular to the position of the state on the equator. Since in this second run the state has
slightly shifted in phase due to experimental drifts, the first rotation does not bring the
state exactly onto the equator and we end up with a slightly different C

n(⌧=0) 6= C
a

even
for ⌧ = 0. We simultaneously account for this shift and calibrate the Rabi frequency
and its nonlinearity by fitting C

n(⌧) = C
b

sin(⌧0 + �⌧ + �⌧2) with {C
b

, ⌧0, �, �} =
{0.980(2), �0.030(9), 2.464(15) ms�1, �1.6(5) ⇥ 10�2 ms�2}, from which we com-
pute #(⌧) = ⌧0 + �⌧ + �⌧2 � arcsin(C

a

/C
b

) such that a · n(⌧) = cos[#(⌧)]. The mea-
surement of C

n(⌧) as a function of ⌧ is shown in Fig. 5.4C. Using the above values of ⇣2
a

,
C
n(⌧), and a · n(⌧), we plot the expectation value W as a function of ⌧ (see Fig. 5.4E).

A sign of a properly calibrated angle #(⌧) is seen in the four-fold symmetry of Fig. 5.4E.
Raw data are corrected for detection noise [53] (�

N1,det = 4.5 and �
N2,det = 3.9), from

imaging non-linearitities [26,53], and for added noise due to collisional clock-shift [53],
which is correlated with the total atom number N (� = �6.8(12) ⇥ 10�4 per atom).

To finally evaluate the Bell correlation witness W we post-select the data from BECs
with a total atom number of N = 476 ± 21, for which we observe �5.5(6) dB of
spin squeezing according to the Wineland criterion Eq. (5.2). We find ⇣2

a

= 0.272(37)
and C

b

= 0.980(2), where the quoted uncertainties are statistical standard deviations.
From the resulting measurement of W(⌧) (Fig. 5.4E), we observe a violation of in-
equality (5.3) over a large range of angles. For # = 128� we see the strongest violation,
confirming the presence of Bell correlations with a statistical significance of 3.8 standard
deviations (red square in Fig. 5.4E).
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Figure 5.4: Observation of Bell correlations in a BEC with inequality (5.3). a, illustration of
the spin-squeezed state (Wigner function on the Bloch sphere) and the axes used in the measure-
ment of the Bell correlation witness W . The vector n lies in the plane spanned by the squeezing
axis a and the center of the state b. The squeezing and anti-squeezing planes are indicated with
thin black lines. b, histogram of measurements of 2Sa/N from which we determine ⇣2a. c,
individual measurements of 2Sn(⌧)/N as a function of Rabi pulse length ⌧ . The red line is a si-
nusoidal fit from which we determine the Rabi contrast and a · n(⌧) = cos[#(⌧)]. d, residuals of
the fit of c. e, measurement of W(⌧) as a function of #(⌧). The red continuous line is the value
of W(⌧) computed from the measurement of ⇣2a and the fitted Rabi oscillation (red line in c).
The blue shaded region indicates Bell correlations. Note that the observed four-fold symmetry of
W(⌧) indicates that a · n(⌧) is well calibrated. The red square data point at # = 128� violates
inequality (5.3) by 3.8 standard deviations. Figure taken from Ref. [26].

5.2.2 Connection with entanglement

From the Bell correlation witness Eq. (5.3), we derived in section 4.5.4 a criterion
(Eq. (4.63)) that is more robust to uncertainties in the angle # between a and n: for
any two axes a and b perpendicular to each other,

⇣2
a

� 1

2

✓

1 �
q

1 � C2
b

◆

(5.4)

holds for all non-Bell-correlated states. This expression depends on the scaled collective
spin C

n

and on the scaled second moment ⇣2
a

, resembling the Wineland squeezing pa-
rameter [99], Eq. (5.2), which is a common measure of entanglement. A difference we
note is that in the numerator of Eq. (5.2) the squeezed variance Var [S

a

] = hS2
a

i�hS
a

i2
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contains the additional term hS
a

i2. As an upper bound, and also because our state is
oriented to have hS

a

i ⇡ 0, we can neglect this term and replace the variance by the
squeezed second moment hS2

a

i. These substitutions allow us to write the Wineland spin-
squeezing parameter as

⇠2  ⇣2
a

C2
b

, (5.5)

which witnesses entanglement if ⇠2 < 1 [98].
As both entanglement and Bell correlations can be witnessed by looking at the pa-

rameters C
n

and ⇣2
a

, we provide a graphical illustration for the relationship between the
two criteria with Fig. 5.5. The red shaded region corresponds to ⇠2 < 1, while the blue
shaded region to the points also violating Eq. (5.4). For any experimentally measured
Rabi contrast and second moment, Fig. 5.5 gives an immediate characterization of the
correlations present in the system under study.

In section 4.3.2 we have seen how the parameter ⇠2 allows also for a characterization
of the entanglement depth. In particular, (k+1)-particle entanglement is witnessed by
measuring squeezed variances (and hence ⇣2

a

) below the red k-producibility curves in
Fig. 5.5, [100].

Natural questions arising are whether Bell correlations could be concluded from
points above the blue curve in Fig. 5.5 by better witnesses, whether the observed viola-
tion can by a statistical artifact, or whether the depth of Bell correlations could also be
quantified in a similar way as entanglement. In the next paragraphs we are going to give
(sometimes partial) answers to these questions.

5.2.3 Many settings witnesses

By looking at Fig. 5.5, we can see that there are entangled states which are not Bell cor-
related according to the criterion Eq. (5.4). We may therefore ask whether this is the case
because such states do not allow for the violation of any Bell inequality, or because our
witness is not sensitive enough. The latter possibility motivated us to search for better
inequalities, for example by including higher order correlators or, as presented in section
4.5.1, by increasing the number of measurement settings per party m. Remarkably, even
considering m > 2, under the assumption that these measurements are spin projection
measurements we were able to derive Bell witnesses still involving only the two ex-
perimentally measured quantities ⇣2

a

and C
b

, Eq. 4.64. The sensitivity of such witnesses
increases with m (even if such a parameter is a theoretical quantity, since experimentally
one takes measurements only along direction a or b), in the sense that for a larger m less
squeezing is needed to detect Bell correlations for a given contrast C

b

. In other words, as
m increases more Bell correlated states can be detected experimentally. A considerable
improvement is obtained by taking the limit m ! 1, which gives us the criterion

⇣2
a

� 1 � C
b

arctanh [C
b

]
(5.6)
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Figure 5.5: Observation of Bell correlations in a BEC with inequality (5.4) and connection
to entanglement. Black: the data set of figure 5.4 expressed in terms of the Rabi contrast Cb

and the squeezed second moment ⇣2a, with 1� error bars. Blue shaded region: Bell correlations
detected by violation of inequality (5.4). Red shaded region: entanglement witnessed by the
squeezing parameter (5.5). Red lines: limits on ⇣2a below which there is at least (k + 1)-particle
entanglement [100], increasing in powers of two up to k = 256. According to Gaussian statistics,
our data set has a 99% overlap with the area below the limit for k = 24-partite entanglement,
and 99.9% overlap with the blue area associated with the presence of Bell correlations. Figure
taken from Ref. [26].

satisfied by all non Bell correlated states. In Fig. 5.6 we plot the different bounds corre-
sponding to the witnesses for m = 2, 4, 6 and 1, to show that they allow for detecting
Bell correlations in larger sets of states.

5.2.4 Statistical analysis

The witnesses we presented allow us to conclude the presence of Bell correlation in a
quantum state if the measured ⇣2

a

and C
b

violate an inequality. However, we have to keep
in mind that experimental measurements of the spin moments gives us only an estimation
of ⇣2

a

and C
b

, which might differ from their true value. Of crucial interest is the case of
a finite number of measurement, which always occurs in practice, because it imposes a
bound on the confidence of our conclusions. This “statistics loophole” makes it difficult
to rule out, without further assumptions, that the violation of a witness originates from
an insufficient number of measurements on non-Bell-correlated states, and it can be
particularly severe in the case of experiments involving many-body systems.

A first possibility to estimate the likelihood that the measured state is Bell correlated,
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Figure 5.6: Observation of Bell correlations in a BEC with m-setting witnesses. Black:
the data set of figure 5.4 expressed in terms of the Rabi contrast Cb and the squeezed second
moment ⇣2a, with 1� error bars. Blue shaded region: Bell correlations detected by violation
of inequality (5.6). Blue lines: bounds corresponding to the witnesses for m = 2, 4, 6 and 1
settings. Red shaded region: entanglement witnessed by spin squeezing [98, 99]. According to
Gaussian statistics, our data set has a 1 � 1.1 ⇥ 10�3 (m = 2), 1 � 1.6 ⇥ 10�7 (m = 4),
1 � 7 ⇥ 10�9 (m = 6), 1 � 2 ⇥ 10�10 (m = 1) overlap with the blue area below the respective
bounds.

from the violation of a witness, consists in assuming Gaussian statistics. Specifically,
we assume that C

b

is a random variable following a beta distribution on the interval
[�1, 1] and ⇣2

a

is an independent random variable following a gamma distribution on
[0, 1), with both mean values and both variances as determined experimentally. This
allows us to estimate the likelihood of our conclusion as the overlap of the estimated
probability distribution associated to our data set, Fig. 5.7, with the region for which
Bell correlations are detected by the witness of interest (blue regions in the Figures). As
an example, according to Eq. (5.4) our data set has likelihood of 99.9% of being Bell
correlated, Fig. 5.7, while according to the improved witness Eq. (5.6) this is 1 � 2 ⇥
10�10. This likelihood can be interpreded as a P value of 10�3, respectively 2 ⇥ 10�10,
for rejecting the null hypothesis: “Our data were generated by a state that has no Bell
correlations, in the presence of Gaussian noise”.

Using the same approach we can estimate the overlap of our data set with the various
k-producibility entanglement areas of Fig. 5.5. We find overlaps of 0.010 for k = 24
and 0.046 for k = 29, which allow us to rule out 24-producibility at the 1% level and
29-producibility at the 5%-level.

If we do not want to make the additional assumption of Gaussian statistics, the exper-
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Figure 5.7: Probability distribution compatible with our experimental data set. The green
contours contain 90% (innermost), 99%, . . . , 99.9999% (outermost) of the joint probability den-
sity for two random variables Cb and ⇣2a as described in the text.

imental results may come from any probability distribution compatible with the measure-
ment results. Therefore, the task of estimating the likelihood that a non-Bell-correlated
state is responsible for the violation of a witness becomes more difficult, and a limited
number of measurements might give no conclusion. In section 4.5.5 we discussed this
statistics loophole, and presented a bound on the number of measurement rounds suf-
ficient to exclude with a given confidence non-Bell-correlated states from an observed
witness violation. In order to minimize the amount of measurements required to reach
our conclusion, we consider the optimal witness among the ones we know, which origi-
nates from the inequality Eq. (4.39) with m ! 1. The statistical analysis we presented
show that, for many-body systems (N � 1), the upper bound on the number of runs M
is linear in the number of particles, hence making it reasonable to detect Bell correla-
tions free of the statistical loophole also in systems with a large number of particles. For
our experimental parameters, C

b

= 0.98 and ⇣2
a

= 0.272, a number of measurements per
spin of M/N ⇡ 80 is sufficient to reach a confidence level of 99%.

We note once again that the standard deviations of one- and two-body correlation
functions decrease instead as the number of particles increases. Therefore, our con-
clusion does not follow from observing the violation of a witness by a fixed number
of standard deviations, as it results from assuming Gaussian statistics. As a concrete
example, the experimental point shown in Fig. 5.6 clearly violates the witnesses for
m = 2, 4, ..., 1 by several standard deviations, resulting in an extremely high likelihood
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(1 � 2 ⇥ 10�10) of having detected Bell correlations under the assumption of Gaussian
statistics. However, without this further assumption, the limited number of measurement
rounds do not allow us to rule out the possibility that our state is not Bell-correlated with
a confidence larger than 14%.

5.2.5 Nonlocality depth

Entangled states can be characterized in terms of their entanglement depth, as presented
in section 4.3.2 and shown by the red curves in Fig. 5.5. We may ask whether Bell corre-
lations could be characterized in a similar way, by witnessing their depth. We answered
this question in section 4.5.3, where we introduced Bell inequalities for k-partite Bell
correlations, and derived from them experimentally accessible witnesses which consist
in the inequalities (Eq. (4.56))

⇣2
a

�
2 � �k

C

/(2N) �
q

(�k
C

/(2N))2 � C2
b

2
, (5.7)

with �k
C

a constant depending on k, whose violation witnesses that the state contains
Bell correlations with a depth of (at least) k+1. Note that, once more, Eq. (5.7) involves
only the measurements of the two quantities ⇣2

a

and C
b

.
We plot in Fig. 5.8 the bounds given by Eq. (5.7), for k = 1, ..., 6, together with

the entanglement depth bounds, and the experimentally measured point. A statisti-
cal analysis on the (Gaussian) probability distribution estimated experimentally gives
a likelihood of 99.9%, 97.5%, 90.3%, 80.8% for 1/2/3-, 4-, 5-, 6-partite Bell correla-
tions, respectively. These likelihoods can be interpreted as, for example, a P value of
1 � 80.8% = 19.2% for rejecting the null hypothesis: “The experimental data were
generated by a state that has no 6-partite Bell correlations, in the presence of Gaussian
noise”.

It is clearly of interest to find bounds for higher k’s but, as mentioned in section 4.5.3,
the approach we used is likely bound to fail for k > 6. The reason is the computational
complexity of the task, which might be overcome by taking other routes. Of particular
interest is also the question of whether one- and two-body correlators allow for detecting
genuine multipartite nonlocality, which we leave as an open problem.

Moreover, it would be interesting to investigate whether better bounds could be ob-
tained by increasing the number of measurement settings per party, in the spirit of what
we observe in Fig. 5.6.

5.2.6 Towards a Bell test with a many-body system

We emphasize again that, unlike a Bell inequality, a Bell witness relies on (assuming) the
knowledge of the measurements that are performed. Still, if this knowledge is accurate, a
violation of the witness certifies that the correlations in the measured state could violate
a Bell inequality. For a direct test of the Bell inequalities we discussed, one must be able
to address several parties individually. Even if in principle we might want to separate
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Figure 5.8: Quantification of Bell correlation depth in a spin-squeezed BEC. Black: the data
set of figure 5.4 expressed in terms of the Rabi contrast Cb and the squeezed second moment ⇣2a,
with 1� error bars. The number of particles is N = 480. Blue shaded region: Bell correlations
detected by violation of inequality (5.7) for k = 1. Red shaded region: entanglement witnessed
by spin squeezing [98, 99]. Red lines: limits on ⇣2a below which there is at least (k + 1)-particle
entanglement [100], increasing in powers of two up to k = 256. Blue lines: limits on ⇣2a below
which there is at least (k + 1)-particle nonlocality, for k = 1, ..., 6.

all spins from each other, already separating the particles into just two well-identifiable
groups could in principle already be sufficient to test a bipartite Bell inequality.

In a BEC, for instance, the atoms could be partitioned into two different spatial lo-
cations by means of a state-independent potential. An adequate bipartite Bell inequality
could then be tested by performing local measurements on these two groups of atoms. If
a violation is observed, it would be device-independent, and it would certify that proper
measurements have been performed and that the outcome statistics observed could not
be described in terms of pre-established agreements (local-hidden-variable model).

Note that for continuous variables (CVs) it was shown that Gaussian measurements
on non-Gaussian entangled states allow to violate a Bell inequality [143–145]. Alterna-
tively, a non-deterministic violation of a Bell inequality is allowed by performing non-
Gaussian measurements (such as conditioned Gaussian measurements) on Gaussian CV
states [145, 146]. However, Bell himself argued that no violation of a Bell inequality
can appear by performing Gaussian measurements on Gaussian states [147] (pp. 37 and
198). However, it was shown both theoretically [148] and experimentally [149] that this
“no-go” theorem can be circumvented provided one trusts the measurement system, as
we have been doing with our Bell correlation witness.
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5.2 Bell correlations in a BEC

For our current experimental apparatus, the fact that our detection system cannot re-
solve single atoms implies that we are restricted to Gaussian measurements. Since the
typical spin-squeezed states we prepare are close to CV Gaussian states, as the curva-
ture of the Bloch sphere can be neglected for mild squeezing, we conclude that only the
violation of a bipartite witness for Bell correlations is possible. This witness would be
derived form a Bell inequality, with further assumptions on the measurements. Alterna-
tively, the one-axis twisting Hamiltonian allows to prepare states beyond Gaussian states
(e.g. over-squeezed states that wrap aroud the Boch sphere), if the evolution time is long
enough. In this situation we might be in the condition to violate a Bell inequality.

In the situation of a strict Bell test one might be interested in closing the detection
loophole, and therefore post-selection of the data would not be allowed. Furthermore,
one might still need to rely on the assumption that atoms belonging to different parties do
not communicate. This is similar to the assumption that the spins do not communicate
while testing a witness. This assumption could be relaxed by separating the parties
sufficiently to allow for measurements to be performed at space-like separations.

5.2.7 Conclusions and outlook

With the experiment presented in this section, we have shown the possibility of preparing
BECs in spin-squeezed states, where the correlations among the atoms are strong enough
to violate a Bell inequality. This conclusion, unprecedented for more than a few particles,
has been reached with the help of a Bell correlation witness that requires collective
measurement only, which can be applied to other many-body systems as well.

We performed a statistical analysis of the experimental data, and discussed how a fi-
nite number of measurements could prevent us from drawing any conclusions about the
observed results. To circumvent this statistics loophole, we propose to either introduce
the hypothesis that measurements come from a Gaussian distribution, or to perform a
much larger number of measurements proportional to the number of parties in the sys-
tem.

Similarly to entanglement, which can be quantified in terms of k-producibility, our
study raises the question of how our witness can be extended to quantify the degree of
nonlocality or to detect genuine multipartite nonlocality. We give a partial answer to this
question by introducing witnesses able to rule out up to 6-partite nonlocality.

The possibility of applying our method to other physical systems motivates the
search for new multipartite Bell inequalities and witnesses, which might be violated
by states with a lower amount of squeezing or by completely different states. In this
direction, we derived Bell inequalities involving an arbitrary number of measurements
per party, and the associated witnesses, to finally show that they outperform previously
known inequalities.

In future experiments, we see the possibility of violating a Bell inequality with a
many body system. This could be realized, for example, by separating the particles into
spatially distinct regions, and then performing local measurements. Cold atoms in opti-
cal lattices, or ion crystals [150], might be well-suited systems for such investigations.
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Finally, we mention that Bell correlations in many-body systems, apart from being of
fundamental interest, might find useful practical applications. In fact, since Bell corre-
lations are a resource more powerfull than entanglement, they could allow for quantum
information tasks beyond quantum metrology, e.g. for certifiable randomness genera-
tion. Although Bell-correlation-based randomness has been extracted from two-qubit
systems [9], an implementation in a many-body system would considerably increase the
amount of randomness per experimental run.

Recently, the Kasevich group reported a violation of our witness inequality Eq. (5.3)
with approximately half a million particles [151]. Their experiment was performed on
a thermal ensemble of 87Rb atoms at 25 µK, also prepared in a spin-squeezed state.
Contrary to our case, their atoms are optically trapped inside a cavity, which is used to
perform quantum non-demolition measurements of the spin components and the state
preparation. This allows them to generate states with around �15 dB of noise suppres-
sion with respect to a coherent spin state, resulting in a violation of the witness by 124
standard deviations. Remember however that, according to our investigation, to close
the statistics loophole the number of measurements required grows linearly with N . In
this sense, our experiment, even if dealing with lower squeezing, is (maybe counterintu-
itively) closer to a violation of the witness without statistic loophole.
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5.3 Spatial entanglement patterns and Einstein-Podolsky-Rosen
steering in a Bose-Einstein condensate

It is interesting to note that, in the variety of entangled states that are routinely prepared
in ultracold atomic systems [12], correlations between particles have almast always been
inferred from collective measurements on the entire system [2, 3]. In the case of BECs
it is impossible even in principle to address the atoms individually: they are identical
particles that occupy the same spatial mode. For this reason, several authors have ques-
tioned whether the concept of entanglement in systems of indistinguishable particles is
fully legitimate and useful for quantum information tasks beyond metrology (For a brief
review of the debate, see Ref. [22]).

A significant result in this context would be to directly detect the correlations present
in the system, which would require to spatially separate the atoms, and to perform local
measurements on them. To make a step in this direction, we employ an experimental
procedure consisting of taking high-resolution images of the atomic density distribution.
On these images we can define local spin observables and measure the correlations be-
tween them. This allows us to reveal the underlying correlations among the parties of
our many-body system. For simplicity, we consider a bipartite scenario and, due to tech-
nical limitations, we are restricted to taking the same measurements on the two parties.
This scenario is well suited to reveal entanglement and EPR correlations between the
two partitions of our many-body system using the criteria presented in section 4.3.1 and
4.4.1

Previously, entanglement (nonseparability) was observed between spatially sepa-
rated atomic ensembles [95, 152–154] and between individually addressable atoms in
optical lattices [155, 156]. On the other hand, EPR steering has been extensively ex-
plored with optical systems [4]. With massive particles it has been observed between
spin modes without spatial separation [20] and between two individual atoms [10].
Demonstrating the EPR paradox with ensembles of massive particles is interesting as
it puts quantum physics to a stringent test in a new regime of increasingly macroscopic
systems [4]. Moreover, it opens up new perspectives for applications of such systems
in quantum metrology and one-sided device-independent quantum information tasks,
which exploit EPR steering as a resource [157].

In this section we report the violation of an entanglement criterion, and of a criterion
for EPR steering, by detecting correlations between spatially separated bipartitions of the
spins of about 600 atoms in a spin-squeezed Bose-Einstein condensate. This shows also
how entanglement of indistinguishable particles can be extracted into distinguishable
spatial modes, and used for quantum information tasks beyond metrology. These results
have been published in Ref. [27]. Similar experiments were performed by the Oberthaler
and Klempt groups and published back-to-back with our work [158, 159].
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5.3.1 From indistinguishable particles to distinguishable modes

In this study we want to investigate the correlations among the indistinguishable atoms
of a BEC in a spin-squeezed state. As pointed out in the theoretical work of Killoran et
al. [22], the presence of entanglement in an ensemble of indistinguishable particles can
be unambiguously confirmed by extracting it into spatially separated modes.

In order to access spatially separated modes in the BEC, we use the sequence illus-
trated in Fig. 5.9a. Initially, Fig. 5.9a1, a BEC with N ⇡ 600 atoms is prepared in a
spin-squeezed state as explained in paragraph 5.1.2. We obtain typically �3.8(2) dB
of spin squeezing according to the Wineland criterion Eq. (5.2) (alternatively, we can
prepare the BEC in a coherent spin state, where the atomic internal states are uncorre-
lated). As mentioned before, the one-axis twisting dynamics result in a spin-squeezed
state tilted against the horizontal direction. In order to reduce the sensitivity of the spin-
squeezed state to magnetic field fluctuations happening during its expansion, the state
is rotated around its center by 13� to align it with the equator (see Fig. 5.9b). After-
wards, the currents for the magnetic trap are ramped down in 0.4 ms, and the cloud is
let expanding during its free-fall for 2.2 ms, Fig. 5.9a2. This expansion is nearly spin-
independent since collisional interactions are very similar for |1i and |2i and leads to a
magnification of the atomic cloud. During time-of-flight, the magnetic field is kept at
⇡ 3.23 G to reduce differential phase noise. Next, we set the axis ~n of the spin com-
ponents to be measured by applying a Rabi rotation pulse to the entire atomic cloud,
Fig. 5.9a3. For the ±Ŝ

x

measurements, the state is rotated by ±⇡/2 around the direction
on the equator orthogonal to the mean spin direction (i.e. around the y-axis). For the Ŝ

z

measurement, no rotation is applied, and for the Ŝ
y

measurement, a ⇡/2 rotation around
the mean spin direction is applied (i.e. around the x-axis). Then, the magnetic field is
rotated in 0.2 ms to point along the imaging beam and reduced to ⇠ 1 G. Immediately
thereafter, we record two high-resolution absorption images of the atomic density dis-
tributions in states |2i and |1i by illuminating the atomic cloud twice with a resonant
laser beam. The imaging pulses project the spin state and simultaneously localize the
atoms in well-defined positions. Fig. 5.9c shows typical absorption images taken in this
way (the atom number noise levels are �

N1,det = 3.5 atoms and �
N2,det = 3.3 atoms

per whole picture). This experimental sequence is repeated ⇠ 2500 times, alternating
the measurement direction ~n along either x, y or z. To reduce the effect of possible
technical long-term drifts the data acquisition is divided into small subsets. In each sub-
set, 4 measurements along +x and 4 measurements along �x give |hŜ

x

i|, followed by
70 measurements along y and 60 measurements along z, which are used to compute
variances.

Instead of considering a global collective spin for the entire BEC, as was done in
the previous experiments, we aim to construct local observables. We define two regions
A and B to be analyzed on all pairs of absorption images, Fig. 5.9c, and we define for
each a local collective spin, ŜA

~n

and ŜB

~n

respectively. The two regions are defined by two
binary masks, one for state |1i and the other for state |2i. These are positioned according
to the ensemble average (i.e. average over all images) of the two atomic densities, and
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then applied to all individual pictures. The counted atom numbers NA

1 and NA

2 in region
A constitute a single-shot projective measurement of ŜA

~n

. Similarly, the counted atom
numbers in region B yield a measurement of ŜB

~n

.
Our finite optical resolution and the motion of atoms during the imaging pulses lead

to an uncertainty in the atomic position, as discussed in chapter 3. For this reason, spins
near the boundary have only partial overlap with the region A or B, which needs to be
taken into account [160]. Furthermore, spins overlapping with both A and B lead to
detection crosstalk, which we reduce by leaving a gap of typically 1 pixel between the
two regions. All these effects complicate the definition of a local collective spin, as we
will show in the next paragraph.

b) c)
1.

2.

3.

a)
squeezing

time-of-flight
expansion

Rabi pulse
and

spatially
resolved

detection

z

y

x
atom chip

camera

microwave

gravity

trap

Figure 5.9: Extracting entanglement from spatially separated regions of a BEC. a: Experi-
mental sequence. Step 1 consists in the preparation of a BEC in a spin squeezed state on an atom
chip. In step 2 the trapping potential is switched off and the BEC expands. In step 3, a Rabi
rotation pulse is applied to select the spin quadrature Ŝ

~n

to be measured, followed by recording
two high-resolution absorption images of the atomic density distributions in states |1i and |2i.
b: Illustration of the spin-squeezed state on a sphere (Wigner function, representing the quantum
fluctuations of the spin) and definition of the axes ~n 2 {x, y, z} used in the measurement of the
entanglement and EPR steering criteria. c: Single-shot absorption images of the atomic densities
in |2i and |1i, showing example regions A and B used to define the collective spins ŜA and ŜB

entering in the entanglement and EPR steering criteria.

5.3.2 Local collective spins

In considering a region A on the absorption images, we would be tempted to define the
local collective spin as

P

i2A ~s
A

i

, where the index i runs over all spins contained in A.
However, in the case where the detected spin signal has some spatial extent, for example
because of the point-spread function of the imaging system, the above definition of local
collective spin needs to be corrected because the spin noise gets reduced and the usual
spin commutation relations are not satisfied.

This problem has already been observed in experiments relying on atom-light inter-
actions to detect and manipulate collective spin systems [160, 161]. In particular, it has
been studied that atoms inside a cavity can couple with different interaction strengths to
the optical mode, depending on their position. In this nonuniform scenario, the proper
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definition of the collective spin is given by ~S = ⌘�1
eff

P

i

⌘
i

~s
i

, where ~s
i

is the spin of
the i�th particle, ⌘

i

its coupling strength and ⌘eff =
P

i

⌘2
i

/
P

i

⌘
i

. Following the same
argument, we define our local spin as

~SA =
1

⌘Aeff

X

i

⌘A
i

~s
i

, (5.8)

where ⌘Aeff and ⌘A
i

depend on the density distribution g(~x, ~x
i

) of the i-th atom, and on
the probability density function ⇢(~x

i

) for its position ~x
i

. As the atoms in a BEC occupy
the same spatial mode, we take ⇢(~x

i

) to be independent on i. In appendix C we show
that

⌘A
i

=

Z

A

g(~x, ~x
i

)dx ⌘ fA(~x
i

)

R +1
�1 ⇢(~x1)

�

fA(~x1)
�2 d~x1

R +1
�1 ⇢(~x1)fA(~x1)d~x1

= ⌘Aeff , (5.9)

Following these definitions, a spin projection measurement is given by

SA

~↵

=
1

⌘Aeff

✓

NA

1 � NA

2

2

◆

, (5.10)

where ~↵ is the measurement axis along which the spin is projected and NA

1,2 are the
number of atoms counted in region A. As we prove in appendix C, for a coherent spin
state we obtain the expected result

4Var
�

SA

z

�

N
= 1 , (5.11)

independently of the choice of the region A, showing that the definition Eq. (5.8) allows
us to associate local spins to very small regions, in principle even of a single pixel size.
This is confirmed by looking at the experimental data in Fig. 5.10.

We evaluate Eq. (5.9) for our experimental situation taking ⇢ to be the normalized
(
R

⇢(~x)d~x = 1) BEC density for one of the states and g(~x, ~x
i

) the Gaussian point spread
function of our imaging system. The analytical result is shown in Fig. 5.10, together with
experimental data (see also Ref. [158]). Since the mean densities of the two spin states
are slightly different, in the analysis we use the one which gives the smallest ⌘Aeff as a
conservative value. The same approach is followed to compute ⌘Beff.

5.3.3 Spatial entanglement patterns

In our experiment, we want to study the correlations between the two collective spins
~̂SA and ~̂SB , that describe the internal state of atoms in regions A and B, respectively.
To detect entanglement we use the criterion of Giovannetti et al. [97], who have shown
that for all separable states (see also section 4.3.1)

EEnt =
4 Var(g

z

ŜA

z

+ ŜB

z

) Var(g
y

ŜA

y

+ ŜB

y

)
⇣

|g
z

g
y

||hŜA

x

i| + |hŜB

x

i|
⌘2 � 1 , (5.12)
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Figure 5.10: Local spin fluctuations for a coherent spin state. Normalized fluctuations of the
local spin in region A for different horizontal positions of the gap (see Fig. 5.9c), corresponding
to different splitting ratios NA/(NA + NB), where NA = NA

1 + NA

2 and similarly for NB .
Orange dots: fluctuations evaluated using the measured atom number (raw data). For regions
A smaller than the entire cloud (splitting ratios < 1) the fluctuations are suppressed by a factor
⌘A

eff (orange line), as expected from Eq. (5.9). Green dots: the correct definition of the local
spin Eq. (5.10) gives the expected fluctuations due to projection noise of uncorrelated atoms,
Eq. (5.11). For region B the behavior is similar. For very small regions (splitting ratios < 0.3)
technical noise increases the fluctuations above the coherent spin state projection noise.

where Var( · ) denotes the variance and g
z

, g
y

, are real parameters that can be optimized
to minimize EEnt. Therefore, EEnt < 1 is a sufficient condition to certify entanglement
(nonseparability) between A and B.

The variances in Eq. (5.12) quantify the uncertainty with which an observer in A can
predict (infer) the outcome of a spin measurement in B, based on a corresponding mea-
surement on her own system, and are therefore called inferred variances. Since Ŝ

z

and
Ŝ
y

do not commute, measuring both inferred variances requires repeated experiments on
identically prepared systems.

As described in the previous paragraph, the component ŜA

z

= 1
⌘

A

eff

(N̂A

1 �N̂

A

2 )
2 is eval-

uated from the atom numbers counted in region A, and a similar approach holds for ŜB

z

.
Any other spin component is measured by applying appropriate spin rotations before
detection. Raw data are not corrected from imaging non-linearities or from clock-shifts
(which are compensated by the echo pulse), but only from detection noise as explained
in appendix C.4.

To detect entanglement between regions A and B we evaluate Eq. (5.12) for different
horizontal positions of the gap (see Fig. 5.9c), corresponding to different splitting ratios
NA/(NA + NB), where NA = NA

1 + NA

2 and similar for NB (Fig. 5.11a, green dots).
For a wide range of splitting ratios we observe a violation of the inequality in Eq. (5.12),
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Figure 5.11: Spatial entanglement patterns in the atomic cloud. a: Entanglement criterion
Eq. (5.12) evaluated for a spin-squeezed BEC (green points) for different horizontal positions
of the gap between regions A and B (see Fig. 5.9c), corresponding to different splitting ratios
NA/(NA + NB). Lines are a guide to the eye and error bars indicate one standard error of
the mean. The blue points show the maximum violation that could be explained by detection
crosstalk. b: Entanglement between regions of different shapes (A=yellow, B=red) in a spin-
squeezed BEC. The pixel pattern used for the analysis is illustrated above the respective data
points, and the blue segments show the corresponding maximum violation expected by crosstalk.

which goes far below the value that could be explained by detection crosstalk. This
proves that the two local spins ŜA and ŜB are entangled. The extracted entanglement
derives from the quantum correlations among the indistinguishable atoms in the initial
state [22], since the expansion of the cloud, the spin rotation and detection do not create
such correlations, as it is confirmed by performing similar measurements with coherent
spin states (see section 5.3.6).

An intriguing feature of our approach to extract entanglement [22] from a many-
body state is that the subsystems can be defined a posteriori on the images. This is
in contrast to other experiments where the subsystems are defined by the experimental
setup [95, 152–154] or by the source of the state [4, 104]. We exploit this feature to
detect entanglement between regions A and B patterned in a variety of different shapes,
see Fig. 5.11b. The fact that we observe entanglement between all such regions reflects
the symmetry of the underlying many-body quantum state: the quantum state of the
indistinguishable bosons in the condensate has to be totally symmetric under particle
exchange. Consequently, each atom is entangled with all other atoms, and the entangle-
ment extends over the entire atomic cloud. In experiments with atoms in optical lattices,
entanglement between different spatial bipartitions was observed by measuring entan-
glement entropy or concurrence, using systems of up to 10 atoms that were individually
addressed [155,156]. By comparison, our experiment reveals entanglement in ensembles
of hundreds of atoms using inequalities that apply in the continuous variable limit.
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Figure 5.12: Reduction of the normalized inferred variances. a: Normalized variance
2 Var(g

z

ŜA

z

+ ŜB

z

)/|hŜB

x

i|, evaluated by non-inferring (empty circles) or by inferring A !
B (filled circles) in a spin-squeezed BEC, for different horizontal positions of the gap (see
Fig. 5.9c), corresponding to different splitting ratios NA/(NA + NB). Lines are a guide to
the eye and the shaded regions are the reduction of the uncertainty product in replacing the non-
inferred variances with the inferred ones. The vertical blue line is the bound expected for an ideal
coherent state. For this quadrature the minimum appears for zero splitting ratio, as the splitting
process introduces fluctuations reducing squeezing. b: Similar plot as in (a), for the normalized
variance 2 Var(g

y

ŜA

y

+ ŜB

y

)/|hŜB

x

i|. For this quadrature the minimum appears for intermediate
splitting ratios.

5.3.4 Einstein-Podolsky-Rosen steering

If correlations between the parties A and B are strong enough, an observer in A can
predict the result of non-commuting measurements performed by B with a product of
the inferred variances below the Heisenberg uncertainty bound for system B, i.e. there
is a violation of the relation [4] (see also section 4.4.1)

EA!B

EPR =
4 Var(g

z

ŜA

z

+ ŜB

z

) Var(g
y

ŜA

y

+ ŜB

y

)

|hŜB

x

i|2
� 1 . (5.13)

Note that if there are no correlations between A and B, the variances in Eq. (5.13) are
minimized for g

z

= g
y

= 0, for which the spin uncertainty relation for B is recovered.
In the presence of a violation of Eq. (5.13), B must conclude that he is in the paradoxical
situation considered by EPR, where A is able to predict his measurement results without
any interaction.

Note that a violation of Eq. (5.12) does not imply a violation of Eq. (5.13), while the
converse is true. This reflects the fact that entanglement is necessary but not sufficient
for EPR steering, and that they are inequivalent types of correlations [1, 85]. Moreover,
the asymmetry between A and B present in Eq. (5.13) implies that if A can steer B
(denoted A ! B), then not necessarily B can steer A (B ! A), as investigated both
theoretically [84, 85, 103] and experimentally [104, 105] in optics.
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In Figure 5.12 we separately plot the two inferred variances appearing in Eq. (5.13),
normalized by |hŜB

x

i|/2 such that they are unity for a coherent spin state. As it can
be seen from Fig. 5.12b, inferring plays a major role in reducing the noise along the
anti-squeezing direction y. On the contrary, inferring the squeezing direction z has little
effect, Fig. 5.12a.

The correlations in our system are strong enough to demonstrate an EPR paradox:
Fig. 5.13a shows a measurement of the EPR criterion Eq. (5.13) for horizontal splitting
of the cloud and different positions of the gap. We observe EPR steering A ! B
(green data points) for intermediate splitting ratios. For comparison, we evaluate the
spin uncertainty relation 4 Var(ŜB

z

) Var(ŜB

y

)/|hŜB

x

i|2 � 1 for system B, illustrating the
reduction of the uncertainty product when replacing the non-inferred variances with the
inferred ones.

As can be seen in Eq. (5.13), EPR steering is an asymmetric concept. By relabel-
ing region A as B and vice versa, we can invert the roles of the steering and steered
systems. This inverted scenario also shows EPR steering B ! A (red data points in
Fig. 5.13a). The asymmetry between the curves indicates the presence of technical noise
in our system [84,104,162]. For intermediate splitting ratios we observe two-way steer-
ing A $ B, a necessary (but insufficient) prerequisite for observing the even stronger
Bell correlations [85]. We note that we also observe EPR steering if we do not subtract
detection noise from the inferred variances, and also for vertical instead of horizontal
splitting of the cloud.

Finally, we characterize the robustness of the observed EPR steering A ! B to a
variation of the gap size. We fix the central position of the gap such that the splitting ratio
is 0.40 (the ratio maximizing steering A ! B and B ! A in Fig. 5.13a) and change
the gap width symmetrically with respect to this position (Fig. 5.13c). We observe that
EPR steering vanishes for large widths of the gap, where the size of the steered system
is considerably reduced (Fig. 5.13b).

We have also performed measurements similar to Fig. 5.11 and Fig. 5.13 with the
BEC initially prepared in a coherent spin state, showing no statistically significant vio-
lations of Eqs. (5.12) and (5.13) beyond detection crosstalk (see section 5.3.6).

5.3.5 Crosstalk

Limitations in the detection scheme, such as the finite optical resolution or the motion
of atoms during imaging, translate into to an uncertainty in the atomic position. As
a consequence, spins near the boundary between A and B contribute a signal to both
regions. This detection crosstalk leads to classical correlations between the two regions,
which could result in an apparent violation of the entanglement and EPR criteria.

In particular, for the case of a coherent spin state with equal superposition we evalu-
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Figure 5.13: Observation of Einstein-Podolsky-Rosen steering. a: EPR steering criterion
Eq. (5.13), evaluated for steering A ! B (green filled circles) and B ! A (red filled circles) in
a spin-squeezed BEC, for different horizontal positions of the gap (see Fig. 5.9c), corresponding
to different splitting ratios NA/(NA +NB). EPR steering is strongest for intermediate splitting
ratios. Empty circles: spin uncertainty relation involving the product of non-inferred variances
in region B (green) and A (red). Lines are a guide to the eye and the shaded regions are the
reduction of the uncertainty product in replacing the non-inferred variances with the inferred
ones. Blue points: maximum violation that could be explained by detection crosstalk. b: EPR
steering A ! B for different widths of the gap in Fig. 5.9c. The center of the gap is fixed to
the position showing maximum EPR steering in Fig. 5.13a for a width of one pixel. Even for
increased gap size we find a significant violation of the bound, confirming that the correlations
cannot be explained by detection crosstalk between the regions. Lines and shaded regions as in
(a). c: Atom number in regions A and B as a function of the gap size.

ate the EPR criterion for the optimal g’s (see appendix C)
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(5.14)

Note that this quantity is independent of N , and the asymmetry between A and B in the
denominator. It is important to realize that an apparent violation of the EPR criterion can
occur in the presence of crosstalk but also if the fluctuations in the individual regions are
not properly estimated, which is already taken into account by the definition of collec-
tive spin Eq. (5.8). Since Eq. (5.14) includes both effects, to isolate the apparent EPR
violation caused by detection crosstalk, we divide it by

�

⌘Beff
�2. For our experimental pa-

rameters we estimate that for a gap of one pixel, classical correlations originating from
detection crosstalk between the two regions cannot decrease the EPR criterion below
0.94 for the splitting ratios of our interest, see Fig. 5.14. This indicates that this effect is
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Figure 5.14: EPR violation due to detection crosstalk between regions A and B. Crosstalk
for different horizontal positions of the gap (see Fig. 5.9c), corresponding to different splitting
ratios NA/(NA + NB). The blue dots correspond to Eq. (5.14) divided by

�

⌘B

eff
�2.

small compared to the observed EPR steering in Fig. 5.13.

The same idea has been applied to find the apparent violation of the entanglement
criterion due to crosstalk. Since this criterion is much more sensitive to correlations be-
tween regions A and B than the EPR criterion, detection crosstalk gives a larger apparent
violation in this case, see Fig. 5.11. For the measurements performed on a spin-squeezed
state, Fig. 5.11 and Fig. 5.13, the observed violation of the entanglement and EPR crite-
ria cannot be explained by classical crosstalk between the regions.

5.3.6 Coherent state measurements

In addition to the data for a spin squeezed state presented in Fig. 5.11 and Fig. 5.13,
we have performed measurements with a BEC in a coherent spin state (CSS). This state
is prepared by a single ⇡/2-pulse in the trap. In contrast to the spin squeezed state,
the demixing-remixing sequence is omitted and the atoms are directly released from the
trap. The readout of the different spin directions is done in the exact same way as in case
of the spin squeezed state. The measured entanglement and EPR steering parameters we
find for this state are shown in Fig. 5.15

The coherent state shows no EPR steering. It is also compatible with no entan-
glement for all splitting ratios, except one which does not have a very large statistical
significance (1.7 sigma below the bound).
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Figure 5.15: Measurement of entanglement and EPR criteria for a BEC in a CSS. a:
Entanglement criterion Eq. (5.12) evaluated for a CSS and different horizontal positions of
the gap between regions A and B (see Fig. 5.9c), corresponding to different splitting ratios
NA/(NA + NB). b: EPR steering criterion Eq. (5.13), evaluated for steering A ! B
(green filled circles) and B ! A (red filled circles) in a CSS, for different splitting ratios
NA/(NA +NB). Empty circles: spin uncertainty relation involving the product of non-inferred
variances in region B (green) and A (red). Lines are a guide to the eye and the shaded regions are
the reduction of the uncertainty product in replacing the non-inferred variances with the inferred
ones. Note that this reduction is much smaller than in the case of a spin-squeezed state, Fig. 5.13.

5.3.7 Conclusions and outlook

With the experiments presented in this section we have shown how correlations among
indistinguishable particles can be revealed unambiguosly by extracting them into spa-
tially distinct modes. This conclusion has been reached by taking images with high
spatial resolution of an expanded BEC in a spin-squeezed state, on which local observ-
ables can be defined. For pairs of regions, we see that the local collective spins are
entangled strongly enough to observe EPR steering.

From a practical perspective, our method can be used for quantum metrology of
electromagnetic field patterns. Consider an applied field that shifts the spin components
ŜB

y

and ŜB

z

with respect to ŜA

y

and ŜA

z

. The EPR entanglement allows one to detect
this shift in the yz-plane with an uncertainty characterized by the product of the inferred
variances. The EPR parameter EA!B

EPR < 1 quantifies by how much this measurement
improves over the Heisenberg uncertainty bound for ŜB and is thus a direct measure
of the metrological enhancement provided by the EPR entanglement. Since our imag-
ing method allows us to define the regions A and B a posteriori in a variety of shapes
(see Fig. 5.11), a single dataset could be used to analyze dipole, quadrupole and more
complex patterns of the applied field. This is different from other field sensing methods
where the pattern is defined by the state preparation [14, 163].

Beyond metrology, EPR steering is a resource for one-sided device-independent
quantum information tasks [157]. The asymmetry of the steering concept allows tasks
such as quantum teleportation, entanglement swapping, or randomness certification to
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be performed in a situation where one of the involved parties can be trusted but not the
other. An interesting perspective in this context is to distribute the correlations over
macroscopic distances by splitting the atomic cloud with a double- or multi-well poten-
tial, exploiting the full control of BEC wavefunctions provided by the atom chip [24].

Furthermore, our study raises the question of whether Bell correlations could also be
observed between spatially separated regions. While the EPR paradox can be demon-
strated with Gaussian states and measurements and identical measurement settings in A
and B, a violation of a Bell inequality would require non-Gaussian states or measure-
ments as well as the ability to measure different spin components in the two regions
in a single run of the experiment [5]. This could be achieved by rotating the collective
spins ŜA and ŜB independently with on-chip microwave near-fields, followed by atomic
fluorescence detection with single-atom resolution. In summary, our results open up a
variety of new perspectives for quantum science and technology with massive many-
body systems.
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6
Summary and outlook

In this Chapter we summarize the main experimental and theoretical results presented in
this thesis. Finally, we give an outlook on future perspectives and possible interesting
research directions.

6.1 Summary

In this thesis I reported the experimental investigation of nonclassical correlations in
many-body systems. Our studies have been performed on BECs of N ⇡ 600 Rubidium-
87 atoms, trapped on an atom chip. These are prepared in spin-squeezed states showing
an interferometrically useful reduction of projection noise up to ⇠2 ⇡ �7 dB in variance
compared to the SQL (Wineland criterion).

As it is already known, observing ⇠2 < 0 witnesses entanglement among the parti-
cles. Moreover, measurements of the spin contrast and of the squeezed variance allow
to bound the depth of entanglement, i.e. how many particles in the system are genuinely
entangled with each other. Using this technique we infer a depth of entanglement of
⇡ 56 particles from our data.

In a similar spirit, we derived a criterion witnessing Bell correlations involving only
collective measurements of the spin contrast and of the squeezed variance. Observing
W < 0 allows to conclude that the correlations among the particles are strong enough
to violate a multipartite Bell inequality. In addition, we also derived criteria to quantify
the depth k of Bell correlations, and performed a statistical analysis to estimate how
many measurements are needed to rule out the possibility that an insufficient number of
measurements is responsible for observing W < 0. We tested such criteria on BECs
with N = 476 ± 21 atoms prepared in a state with ⇠2 ⇡ �5.5(6) dB of spin squeez-
ing according to the Wineland criterion. Our measurements show the presence of Bell
correlations, under the assumption of Gaussian statistics, with a depth of at least k = 6
particles.

The use of collective observable to investigate correlations offers a great simplifi-
cation for many-body systems. However, it also poses conceptual challenges, as the
subsystems are not individually resolved. For this reason, it was debated whether entan-
glement witnessed by collective spin measurement was a fully legitimate concept and re-
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ally useful for quantum information tasks beyond metrology. To study this problem, we
implemented a protocol to extract the correlations among the indistinguishable atoms of
a BEC into spatially separated, and therefore distinguishable, regions. We let the atomic
cloud expand in time-of-flight, and then take high-resolution absorption images of the
atomic density distribution. Upon imaging, atoms get localized in different spatial loca-
tions, and correlations can be investigated among them. We performed our experiments
on BECs with N = 590 ± 30 atoms prepared in a state with ⇠2 ⇡ �3.8(2) dB of spin
squeezing according to the Wineland criterion. Our measurements show entanglement
between bi-partitions of the atomic density distribution. Moreover, for some bipartitions
we observed entanglement strong enough for two-way EPR-steering.

6.2 Outlook

In this section, I discuss several experiments that could be performed with our apparatus
in the near future. In addition, I also discuss further theoretical investigations that could
be relevant for future experiments.

6.2.1 Nonclassical correlations between two BECs

With our experiments, we have shown that the correlations among the atoms of a BEC in
a spin-squeezed state can be extracted into spatially separated regions. In the specific, we
observed entanglement and EPR steering between different parts of an atomic ensemble.
Of particular interest would be to prepare and detect quantum correlations between two
separate BECs that can be split by a larger distance and individually manipulated.

Entanglement has already been observed between two macroscopic samples of 1012

Cesium atoms at room temperature, separated by few centimeters [95]. However, the
observation of stronger correlations, namely EPR steering and Bell correlations, is still
lacking in such scenarios.

In our experimental apparatus we could develop different strategies to prepare cor-
relations between a pair of BECs. Two possibilities are to begin with two independent
BECs and then to use state-dependent double-well potentials to control the collisional
interactions among them, Fig. 6.1A and B. These sequences have been investigated in
detail in Refs. [164, 165]. Another strategy would be to start with a BEC in a spin
squeezed state, and then split it into two BECs by transforming the harmonic trapping
potential into double well potential, Fig. 6.1C.

Apart from the experimental implementation of a protocol preparing pairs of entan-
gled BECs, appropriate measurements are needed to investigate the correlations among
them. Ideally, independent Rabi rotations for both BECs are desirable in order to mea-
sure different spin components. To this end, magnetic field gradients might be used to
obtain different Rabi frequencies at the two sites, which would allow individual manip-
ulation.

Conveniently, entanglement and EPR steering can be concluded by measuring on
both BECs the same spin quadratures, as we have seen in the previous chapter. For
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Figure 6.1: Strategies to prepare correlations between two BECs. Panel A shows the ap-
proach presented in Ref. [164]. Initially, a coherent spin state is prepared in each well. Then,
the potential for state |2i is shifted spatially such that |2i

a

and |1i
b

overlap. Finally, the traps are
overlapped again at their initial position. Panel B shows the approach presented in Ref. [165].
Initially, a coherent spin state is prepared in each well. Then, the potential for state |1i is turned
into a single harmonic trap such that |1i

a

and |1i
b

overlap dynamically. Finally, the harmonic
trap is turned back into a double well potential. Panel C shows the approach presented in the text.
Initially, a spin squeezed state is prepared in a single well. Then, the potential for both states is
turned into a double well such that the BEC is split into two subsystems.

this reason, collective Rabi rotations might already be a sufficient tool. Note that this is
not straightforward to implement, as the spatial separation between the two BECs might
already result in experiencing position-dependent (near-field) Rabi fields.

To test a Bell inequality, independent measurements are necessary. However, wit-
nesses for Bell correlations might be found, which involve identical measurement set-
tings on both BECs [166].

6.2.2 Schrödinger kitten states

Beyond squeezed states, the one-axis twisting evolution allows to prepare interesting
non-Gaussian states. In particular, a coherent spin state can evolve into a superposition
of two coherent spin states with opposite phases, called Schrödinger cat state [167,168].

On the one hand, cat states are maximally entangled states that are optimal for quan-
tum metrology. The Wigner function of a N -atom cat state present a band of N fringes
of size Var [S

z

] ⇠ 1/N2, which allow the best possible sensitivity for parameter esti-
mation [12]. On the other hand, they are the most fragile states to particle losses: losing
a single particle already collapses the state to a coherent state. Apart from this, their
preparation and detection require exceptional atom number stability and single-atom
resolution.
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Interestingly, there are similar highly entangled states that could be accessible with
less stringent experimental requirements. The so-called Schrödinger kitten state are su-
perpositions of two coherent spin states, separated by an angle smaller than ⇡. Key fea-
tures are their robustness against fluctuations in total N , in the loss of few particles, and
that the larger fringes ( Var [S

z

] > 1/N2) in the Wigner function can be observed with-
out single-atom resolution. We investigated theoretically this possibility in Ref. [168],
and show the feasibility of kitten states with N ⇡ 150 and an angle of ⇡/8 between the
two coherent states, corresponding to ⇡ 6 atoms.

As the preparation of Schrödinger cat and kitten states requires evolution times
longer than the one needed to prepare squeezed states (⇡ 150 ms instead of ⇡ 50 ms),
a better understanding of the BEC phase coherence might be useful. In particular, in
Ref. [168] we have shown that finite temperature effects also play an important role in
the final state fidelity.

6.2.3 More multipartite Bell inequalities

So far, many-body Bell correlations have been detected only in spin-squeezed states [26,
151], for which the witnesses we developed are best suited [169]. However, experiments
with atomic ensembles allow to prepare other nonclassical states [12], where observing
Bell correlations would be of particular interest.

For Dicke states, for example, the known Bell inequality involving only up to two-
body correlators [21] shows a quantum violation decreasing with the number of parties.
This makes challenging, if not unrealistic, to use such a criterion experimentally. Instead,
we observed that introducing fourth-order correlators could suffice to derive robust in-
equalities with a quantum violation increasing with N . These are currently under study,
and will be presented in a future publication.

For spin-1 systems, it is relevant to look for Bell inequalities where parties have three
outcomes, corresponding to the spin projections �1, 0, +1. Due to the complexity of this
scenario, a full characterization of the (2-body, symmetric) local polytope is unfeasible
already for N > 8. For this reason, we are currently investigating this problem with the
SDP hierarchy presented in this thesis [28].
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Appendix A

BEC ground state

A.1 Derivation of the Gross-Pitaevskii equation

We give here a detailed derivation of the time-independent Gross-Pitaevskii equation.
The Hamiltonian operator for a (non-relativistic) quantum particle of mass m in a

potential V (x) is

h(x) = � ~2
2m

r2
x

+ V (x) . (A.1)

This can be diagonalized in the basis of eigenfunctions �
n

(x), associated to the eigen-
values ✏

n

, meaning that

h(x)�
n

(x) = ✏
n

�
n

(x) 8 n 2 N . (A.2)

For a system of N identical non-interacting particles, the total Hamiltonian is the
sum of single-particle Hamiltonians Eq. (A.1), namely

H(x1, ..., xN

) =
N

X

i=1

h(x
i

) , (A.3)

This operator can be diagonalized as

H�
n

= E
n

�
n

8 n 2 NN , (A.4)

where we omitted the x1, ..., xN

dependencies for brevity, and where �
n

are tensor
products of single-particle eigenfunctions and E

n

are sums of single-particle eigenener-
gies.

As an example, the ground state of the system corresponds to the situation where
each particle is in its lowest energy state

�0(x1, ..., xN

) = �0(x1)...�0(xN

) and E0 = N✏0 . (A.5)

Then, the first excited state corresponds to the situation where (N �1) particles are in �0
and one particle is in �1. This state is degenerate since there are N of such combinations
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A. BEC ground state

(depending on which particle is in �1) having all the same energy (N � 1)✏0 + ✏1.
Excited states with higher energy are derived in a similar way, and their degeneracy
usually increases.

In the case where additional constraints are imposed on the total wavefunction of the
system, such as symmetry or anti-symmetry under particle relabeling, the degeneracies
of the excitations can be altered.

If we include now interactions between the particles, the total Hamiltonian takes the
form

H(x1, ..., xN

) =
N

X

i=1

h(x
i

) +
1

2

N

X

i,j=1
i 6=j

U(x
i

, x
j

) , (A.6)

where U(x
i

, x
j

) is the interaction potential between particle i and j. In general, this term
makes the Hamiltonian not separable, meaning that its eigenfunctions will not simply be
products of single-particle eigenfunctions.

Depending on the number of particles N , on the dimensionality of the system (1D,
2D, 3D, ...), on the trapping potential V , and on the type and strength of the interactions
U , many exact and non-exact solutions have been found.

Among the approximations proposed to obtain solutions describing special param-
eter regimes, the one of particular interest for us is the Hartree approximation. This is
well suited to treat weakly interacting bosons, and it consists in assuming that the many-
body wavefunction is a symmetrized product of single-particle wavefunctions (but not
necessarily eigenfunctions). If all particles occupy the same single-particle state, as in
a BEC, the many-body wavefunction in the Hartree approximation corresponds to the
ansatz

�(x1, ..., xN

) = �(x1)...�(x
N

) (A.7)

where the single-particle wavefunction �(x), satisfying the normalization condition
R

dx |�(x)|2 = 1, is unknown and it must be determined in a self-consistent way as we
will show shortly.

We now look for the ground state wavefunction, i.e. the wavefunction which min-
imizes the energy of the system. To this end, we express the expectation value of the
energy, using the Hartree approximation Eq. (A.7), which after a simple calculation
takes the form

h�|H|�i =N

Z

dx�⇤(x)h(x)�(x) +
1

2
N(N � 1)

Z

dxdx

0�⇤(x)�⇤(x0)U(x, x0)�(x)�(x0)

=N

Z

dx�⇤(x)h(x)�(x) +
1

2
N(N � 1)

Z

dxdx

0|�(x)|2U(x, x0)|�(x0)|2

(A.8)

Note that Eq. (A.8) arises from the indistinguishably of the particles (which allows to
relabel the x

i

) and from the Hartree approximation (which allows to collect all the � in
N�). We now treat Eq. (A.8) as an energy functional (a scalar function of a function),
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A.1 Derivation of the Gross-Pitaevskii equation

and minimize it with respect to �, imposing the normalization constraint
R

dx |�(x)|2 =
1 using the method of Lagrange multipliers. This means that we look for a solution of

�

��⇤(x)



h�|H|�i � ✏N

✓

Z

dx |�(x)|2 � 1

◆�

!
=0

�

��(x)⇤



N

Z

dx�⇤(x)h(x)�(x) +
1

2
N(N � 1)

Z

dxdx

0|�(x)|2U(x, x0)|�(x0)|2�

�✏N
✓

Z

dx |�(x)|2 � 1

◆�

!
=0



N

Z

dx

⇣

h(x) + (N � 1)

Z

dx

0U(x, x0)|�(x0)|2 � ✏
⌘

�(x)

�

!
=0

(A.9)

where ✏ is the Lagrange multiplier (which appears multiplied by N for later conve-
nience), a real number that we will relate to a physical quantity. Carrying out the deriva-
tive gives the Hartree equation for bosons

h

h(x) + (N � 1)

Z

dx

0U(x, x0)|�(x0)|2
i

�(x) = ✏�(x) , (A.10)

where (N�1)
R

dx

0U(x, x0)|�(x0)|2 = Umf(x) is a mean-field potential which depends
on �(x). Note here that Eq. (A.10) is a (integro-differential) nonlinear Schrödinger
equation for the single-particle state, where the eigenvalue ✏/N is not the energy per
particle as it is for the usual (linear) Schrödinger equation.

In the case of a contact inter-particle potential, U(x, x0) = g�(x � x

0), the mean-
field potential is

(N�1)

Z

dx

0U(x, x0)|�(x0)|2 = (N�1)

Z

dx

0g�(x�x

0)|�(x0)|2 = (N�1)g|�(x)|2 ,

(A.11)
and the Hartree equation Eq. (A.10) becomes the Gross-Pitaevskii equation (GPE)

h

h(x) + g(N � 1)|�(x)|2
i

�(x) = ✏�(x) . (A.12)

For atoms in dilute gases, where s-wave scattering is a good approximation of the in-
teraction process and the scattering length a

s

is much less than the mean interparticle
spacing, this short-range potential is motivated with

g =
4⇡a

s

~2
m

, (A.13)

where a
s

is the s-wave scattering cross-section. Therefore, Eq. (A.12) accurately de-
scribes the zero-temperature properties of Bose gases.
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A. BEC ground state

A.2 ✏ as the chemical potential

We are interested here in relating the Lagrange multiplier ✏ appearing in the GPE Eq. (A.12)
to a quantity of physical significance. To this end, we start by computing the chemical
potential of the system, which in statistical mechanics is defined as

µ =
@E

@N
. (A.14)

For the case we are considering, N indistinguishable bosons with contact interaction,
the total energy

E = N

Z

dx�⇤(x)h(x)�(x) +
1

2
N(N � 1)g

Z

dx|�(x)|4 (A.15)

can be easily derived with respect to N by noticing that to first order @�(x)/@N = 0.
This gives us

µ =

Z

dx�⇤(x)h(x)�(x) +
1

2
(2N � 1)g

Z

dx|�(x)|4 . (A.16)

To obtain an expression for ✏, we multiply the GPE Eq. (A.12) by �(x)⇤ from the left,
and integrate. This gives

✏ =

Z

dx�⇤(x)h(x)�(x) + (N � 1)g

Z

dx|�(x)|4 . (A.17)

Now, let us take a moment to compare Eqs. (A.15),(A.16) and (A.17). First, it is now
evident that (if g 6= 0)

E

N
6= ✏ , (A.18)

meaning that, in the interacting case, ✏ is not the mean energy per particle. On the other
hand, in the limit N � 1 we can say that

✏ ⇡ µ ⇡
Z

dx�⇤(x)h(x)�(x) + Ng

Z

dx|�(x)|4 , (A.19)

meaning that the Lagrange multiplier appearing in the GPE Eq. (A.12) can be interpreted
as the chemical potential of the system (Koopmans theorem).

Interestingly, if one defines the chemical potential to be the energy difference be-
tween having N and N � 1 particles in the system, i.e.

µ = E
N

� E
N�1 , (A.20)

then one finds for any N

✏ = µ =

Z

dx�⇤(x)h(x)�(x) + (N � 1)g

Z

dx|�(x)|4 . (A.21)

In this sense, the chemical potential can be thought as “the energy needed to add one
particle from the system”.
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Appendix B

Derivation of phase noise due to losses

Here we give a detailed derivation of Eq. (2.45), which describes the contrast decay due
to phase noise originating from particle losses.

As we have seen from Eq. (2.40), the interference contrast is related to the phase
noise as

C(t) ' e�
1
2 Var[�✓(t)] . (B.1)

On the other hand, the contrast can be expressed as

C(t) =
2

N

q

hŜ
x

i2 + hŜ
y

i2 =
2

N
|hâ†2â1i| . (B.2)

In Ref. [49] (see Eq. (125) there) is given the analytical expression for the quantum
average hâ†2â1i in the two-mode approximation with asymmetric one-body losses. For a
coherent spin state with N atoms equally split among the two components this reads

hâ†2â1iN =
N

2
e�2iv(N)te�

1
2 (�1+�2)tLN�1 , (B.3)

where
v(N) =

1

2~
⇥

(µ1 � µ2) � ~�(N1 � N2) + ~�̃(N � N)
⇤

, (B.4)

and

L =
1/2

�1 + i(�+ �̃)

h

�1e
i�̃t + i(�+ �̃)e�(�1+i�)t

i

+

+
1/2

�2 � i(�� �̃)

h

�2e
i�̃t � i(�� �̃)e�(�2�i�)t

i

. (B.5)

If the initial number of atoms N fluctuates according to a Poissonian distribution
with mean value N , the ensemble average is

hâ†2â1iens. =

1
X

N=0

N
N

N !
e�N hâ†2â1iN (B.6)

=
N

2
e�2iv(1)te�

1
2 (�1+�2)te(e

�i�̃t

L�1)N . (B.7)
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B. Derivation of phase noise due to losses

From this expression, and the identity |ea| =
p

ea⇤ea = eRe[a], we write

|hâ†2â1iens.| =
N

2
e�

1
2 (�1+�2)teRe[(e�i�̃t

L�1)N] . (B.8)

Here, the term e�
1
2 (�1+�2)t describes the loss of contrast due to a decrease in the atom

number, which is not related to phase noise. This effect can be compensated by measur-
ing the maximum single-shot contrast at time t, i.e. the visibility V(t) = N

2 e�
1
2 (�1+�2)t,

and then considering C 0(t) = C(t)/V(t). For this reason, in the following we will con-
sider this new contrast C 0(t), which allows us to focus on the phase noise due to particle
losses.

Finally, from Eqs. (B.1,B.2,B.8), we obtain Eq. (2.45) presented in the main text

Var [�✓(t)] ' �2 log



2

N
e

1
2 (�1+�2)t|hâ†2â1iens.|

�

' �2 log
h

eRe[(e�i�̃t

L�1)N]
i

' 2Re
⇥

N
�

1 � e�i�̃tL
�⇤

. (B.9)
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Appendix C

Local collective spins

C.1 Definition of local collective spins

In this section we present the details behind the definition of local collective spins used
in chapter 5, and it is based on Ref. [27].

C.2 Naive definition

In considering a region A on the absorption images, we would be tempted to define the
local collective spin as

P

i2A ~s
A

i

, where the index i runs over all spins contained in A.
However, in the case where the spins have some spatial extent, for example because of
the point-spread function of the imaging system, the above definition of local collective
spin needs to be corrected because the spin noise gets reduced and the usual spin com-
mutation relations are not satisfied. To see this, imagine N atoms where the i�th has a
density distribution g(~x, ~x

i

) centered at ~x
i

. A spin projection measurement corresponds
to counting in a single experimental realization

NA

1 � NA

2

2
=

1

2

Z

A

0

@

N1
X

i=1

g(~x, ~x
i

) �
N

X

i=N1+1

g(~x, ~x
i

)

1

A d~x . (C.1)

Here, and in what follows, we assume for simplicity that the distribution g(~x, ~x
i

), the
region A, and the distribution of the ~x

i

, are independent of the internal state of the atom.
The spin expectation value is the ensemble average of this quantity over all possible
positions x

i

and all possible partitions of N into N1 and N2 = N � N1, denoted h · i
N1 .

If all the ~x
i

come from the same probability density function ⇢ we can write

⌧✓
N

A

1 �N

A

2

2
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Z +1

�1
⇢(~x1)f

A(~x1)d~x1 , (C.2)
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C. Local collective spins

where in going from the first to the second line we exchanged the order of the sum and
the integrals, we used the fact that

R +1
�1 ⇢(~x

i

)d~x
i

= 1, and that atoms can be relabeled.
In the last line we introduced

fA(~x
i

) =

Z

A

g(~x, ~x
i

)d~x (C.3)

representing the “mode overlap” between an atom centered in ~x
i

and the region A. Sim-
ilarly, for the total atom number in region A we have
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=

*

Z +1

�1
⇢(~x1) . . . ⇢(~x

N

)

Z

A

 

N

X

i=1

g(~x, ~x
i

)

!

d~xd~x1 . . . d~x
N

+

N1

= N
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A(~x1)d~x1 , (C.4)

We now go through the same steps for the fluctuations. We consider the regions U, V 2
{A, B} and we calculate

h
✓
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(C.6)

which allows us to evaluate variances and covariances.
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C.3 Proper definition

Example:
In the case of a coherent spin state on the equator

⌦

(N1 � N2)
2
↵

N1
= N (this can be

seen also from the fact that the average hh(N1)iN1 is given by the binomial distribution
P

N

N1=0

�

N

N1

�

pN1(1 � p)N�N1h(N1), with p = 1/2.) This means that, from Eq. (C.4)
and Eq. (C.6), the ratio

Var(NA

1 � NA

2 )

hNA

1 + NA

2 i
=

R +1
�1 ⇢(~x1)

�

fA(~x1)
�2 d~x1

R +1
�1 ⇢(~x1)fA(~x1)d~x1

= ⌘Aeff  1 , (C.7)

where ⌘A = 1 if and only if for all ~x1 where ⇢(~x1) 6= 0, fA(~x1) is either 0 or 1. This
can happen if either A is the entire space, for which fA(~x1) = 1 8 ~x1, or g(~x, ~x1) =
�(~x � ~x1), for which fA(~x1) = 1 8 ~x1 2 A. This means that a collective spins
is properly defined if either we count atoms over all space or if atoms are properly
localized.

We can evaluate Eq. (C.7) for our experimental situation taking ⇢ to be the normal-
ized BEC density for one of the states and g(~x, ~x1) the Gaussian point spread function
of our imaging system. The analytical result is shown in Fig. 5.10 together with experi-
mental data. See also Ref. [158].

C.3 Proper definition

The problem illustrated by Eq. (C.7) has already been observed in experiments relying
on atom-light interactions [160, 161]. In particular, it has been studied that atoms inside
a cavity can couple with different interaction strengths to the optical mode, depending
on their position. In this nonuniform scenario, the proper definition of the collective spin
is given by ~S = ⌘�1

eff
P

i

⌘
i

~s
i

, where ~s
i

is the spin of the i�th particle, ⌘
i

its coupling
strength and ⌘eff =

P

i

⌘2
i

/
P

i

⌘
i

. Following the same argument, we define our local
spin as

~SA =
1

⌘Aeff

X

i

⌘A
i

~s
i

, (C.8)

where ⌘A
i

=
R

A

g(~x, ~x
i

)dx = fA(~x
i

), and ⌘Aeff = h(⌘A)2i/h⌘Ai is given by Eq. (C.7).
This definition allows us to define local spins for very small regions, in principle even of
a single pixel size.

A spin projection measurement is given by

SA

~↵

=
1

⌘Aeff

✓

NA

1 � NA

2

2

◆

, (C.9)

where ~↵ is the measurement axis along which the spin is projected and NA

1,2 are the
number of atoms counted in region A.

Note that with this definition, for a coherent state we have (using Eq. (C.7))

4Var
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N
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Var
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(⌘Aeff)
�1

�

NA
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2

��
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2 i
=
⌘Aeff
⌘Aeff

= 1 , (C.10)
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independently of the definition of the region A. This is confirmed by comparison with
the data in Fig. 5.10. We compute ⌘Aeff from the mean detected atom densities by discrete
numerical integration, according to Eq. (C.7). Since the mean densities of the two spin
states are slightly different, we use the one which gives the smallest ⌘Aeff as a conservative
value. The same approach is followed to compute ⌘Beff.

C.4 Imaging noise subtraction

In the experiment we measure NA

1 + �A1 and NA

2 + �A2 , where �A
i

is due to imaging
noise in region A for state i. Therefore, our measured effective spin is S̃A

↵

= SA

↵

+�A,
where�A = (⌘Aeff)

�1(�A1 ��A2 )/2. The variance entering the entanglement and the EPR
criteria is
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(C.11)

where we assume the covariance to be zero because imaging noise is uncorrelated with
the spin projection. This allows us to subtract imaging noise from the criteria by writing
the numerator as
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(C.12)

Note that the optimal g’s minimizing Eq. (C.12) are

g?
z

= �
Cov

⇣

S̃A

z

, S̃B

z

⌘

Var(S̃A

z

) � Var(�A)
, (C.13)

and similarly for g?
y

.
We estimate the contribution of imaging noise, Var(�A

i

), from the photon shot noise
on the actual absorption image. This estimate is conservative in the sense that additional
noise sources such as dark counts, photon shot noise on the reference images and other
sources of noise are neglected. However, in our case these sources give only a very small
contribution to the noise.

We obtain the conversion factor from the CCD counts to photon number by a cali-
bration routine with flat-field correction. This number allows us to directly estimate the
noise contribution of each pixel by the observed counts assuming Poissonian statistics of
the photon numbers. By using error propagation this noise is converted into an effective
atom number noise on the pixel.

For the subtraction of imaging noise from the observed spin variances we take the
mean of this noise on the respective set of images.
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C.5 Unbiased sample estimate of inferred variances

The unbiased sample estimate of inferred variances is:

Var
⇣

g
z

ŜA

z

+ ŜB

z
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=
1

m � 2

m

X
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h

�
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+ sB
z,j

�

�
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ḡ
z

s̄A
z

+ s̄B
z

⌘i2
(C.14)

where m is the number of measurements, ḡ
z

is the optimal g
z

for the given subset,
sK
z,j

(K = A, B) are individual spin measurement results and s̄K
z

(K = A, B) are the
usual sample means. The normalization factor m � 2 is necessary to take into account
the additional degree of freedom originating from the inferring. This can be seen as the
estimation of the variance of residuals in linear regressions.
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Appendix D

Derivation of the Sørensen entanglement
criterion

We present here the calculation for deriving the entanglement criterion by Sørensen et
al. of Ref. [98], which was introduced in Eq. (4.23).

D.1 Original derivation

For a multipartite scenario, the N -body density matrix ⇢ is separable if it can be ex-
pressed in the form

⇢ =
X

k

p
k

⇢(1)
k

⌦ ⇢(2)
k

⌦ · · · ⌦ ⇢(N)
k

, (D.1)

where the coefficients k satisfy 0  p
k

 1 and
P

k

p
k

= 1, and where ⇢(i)
k

is a density
matrix for the ith particle.

We now derive a number of inequalities, valid for all separable states, that will be
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D. Derivation of the Sørensen entanglement criterion

used to obtain the desired result. First, consider the variance
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This expression can be used to derive the relation
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meaning that
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Then, we note that
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where the inequality sign comes from the use of the Cauchy-Schwarz inequality
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Using the fact that for a single spin-1/2
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Finally, starting form Eq. (D.17) for an arbitrary direction v, we have
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D. Derivation of the Sørensen entanglement criterion

At this point, by making use of the previous results, it is straightforward to see that
for all separable states
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which proves the relation in the main text.
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D.2 Derivation from the spin uncertainty relation

An interesting alternative derivation of Eq. (4.23) starts from the spin uncertainty rela-
tion.

First, as for a single spin-1/2 the variance is constrained to be Var
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Then, for a separable state we have (added terms equal to unity have been highlighted
in blue and lines 5 and 9 derive from the Cauchy-Schwarz inequality)
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which proves again the relation in the main text.
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Appendix E

Correlations in systems with fluctuating
number of particles

We prove here that correlations can also be detected in many-body systems with shot-to-
shot fluctuations in the total number of particles. In particular, we show that the criteria
for entanglement and for Bell correlations we introduced in Eq. (4.23) and Eq. (4.59)
respectively, can be rewritten in a convenient form where the number of particles N is
replaced by the operator N̂ to take into account these fluctuations.

E.1 Theoretical framework

The state of a system with shot-to-shot fluctuations in the number of particles (statistical
mixture) can be described by the block-diagonal density matrix

⇢̂ =
M

N�1

p
N

⇢̂(N) , (E.1)

where p
N

= Tr( (N)⇢̂ (N)) is the probability of having N particles (
P

N

p
N

= 1) and
⇢̂(N) = ( (N)⇢̂ (N))/p

N

is the normalized (Tr(⇢̂(N)) = 1) N -particle component of
the density matrix ⇢̂, with (N) the identity operator on the space with particle number
N .

Now, note that the operator Ŝ
n

is block-diagonal in terms of the particle number, i.e.

Ŝ
n

=
M

N�1

Ŝ(N)
n

(E.2)

where Ŝ(N)
n

denotes the action of the spin operator Ŝ
n

on the subspace with particle
number N . In the same basis, the particle number operator takes the form

N̂ =
M

N�1

N · (N) . (E.3)

155



E. Correlations in systems with fluctuating number of particles

For a general operator Ô we define its N -particle expectation value as

D

Ô
E

N

= Tr(Ô⇢̂(N)) = Tr(Ô(N)⇢̂) . (E.4)

The fact that the collective spin operator is block-diagonal in the atom number basis
implies that its expectation value is independent on whether there is a coherent super-
position of different ⇢̂(N) or not. Therefore, criteria based on measurements of Ŝ

n

and
N̂ are insensitive on whether the system is in a coherent superposition of states with
different particle numbers or in a statistical mixture of these, Eq. (E.1).

Using the above relations we see that for an an arbitrary direction n
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For what follows, consider the relation derived from the Cauchy-Schwarz inequality
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E.1 Theoretical framework

We now use Eqs. (E.5) and (E.6) to show that
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Ŝ
n

N/2

!2+

N

1

A�

0

@

X

N

p
N

 *

Ŝ
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E.2 Entanglement criterion

Using the fact that for all separable states with a fixed number of atoms N it holds
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we have
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Ŝ
x

N/2

+

N

�

�

�

�

�

2
1

A using Eq. (E.8)

�

�

�

�

�

�

X

N

p

p
N

N

r

p
N

1

N

*

Ŝ
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This proves that for all separable states it holds
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If no component ⇢̂(N) is entangled, then Eq. (E.8) is satisfied for all N , and consequently
Eq. (E.10) is satisfied. Conversely, a violation of Eq. E.10 proves that at least one com-
ponent ⇢̂(N) of the system’s state is entangled.

A similar idea was used in Ref. [170]. Moreover, the Sørensen-Mølmer criterion for
k-particle entanglement [100] presented in Section 4.3.2 can also be extended to systems
with a fluctuating number of particles, as it is done in Ref. [132].

E.3 Bell correlation witness

Using the fact that for all non-Bell-correlated states with a fixed number of atoms N it
holds
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we also have
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If no component ⇢̂(N) is Bell-correlated, then every term in this sum is nonnegative
according to Eq. E.11, and consequently Eq. E.12 is satisfied. Conversely, a violation of
Eq. E.12 proves that at least one component ⇢̂(N) of the system’s state is Bell-correlated.
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Appendix F

Spin expectation values

F.1 One-axis twisting

We list here the analytical expression for the first and second moments for the collective
spin of a spin squeezed state of N = 2S particles, prepared by evolving a coherent state
pointing along the x-axis according to the one-axis twisting Hamiltonian �Ŝ2

z

for a time
t = µ/(2�). Considering the vector v = (x, y, z), we have
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These formulae allow to compute every variance or covariance, for example using
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v

Ŝ
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The angle ✓⇤ maximizing the second moment along the direction v = (0, cos ✓, sin ✓) is
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F.2 Squeezing and splitting

We consider here an initial coherent spin state of N = 2S particles, pointing along
the x-axis, that evolved according to the one-axis twisting Hamiltonian �Ŝ2

z

for a time
t = µ/(2�). After the evolution, the resulting state is then split by a two-port beam
splitter with a spin-independent splitting ratio set by ✓BS, see Ref. [171] for details.
Experimentally, this model corresponds to the scenario where the particles in state |1i
and |2i are independently distributed into two modes, A and B, according to a binomial
distribution, i.e. interactions during the splitting process are neglected.

Considering the vector v = (x, y, z), the analytical expression for the first and sec-
ond moments of the two collective spins are
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Appendix G

Convex optimization

A vast number of problems can be formulated as the task of maximizing or minimizing
a function subject to a set of constraints. Convex optimization is the specific situation
where a convex function has to be optimized over a convex set. Two important examples
belonging to this category are linear programs and semidefinite programs, which have
been used in chapter 4. In the following we are going to give an overview of these
problems, for a detailed exposition see for example Ref. [172].

G.1 Linear program

A linear program (LP) is a method to maximize or minimize a linear objective function,
subject to linear equality and linear inequality constraints defining the feasible set which
is a polytope. More precisely, for given A 2 Rn⇥m, b 2 Rm and c 2 Rn, our task is
to find the optimal point x⇤ 2 X = {x 2 Rn | Ax � b and x � 0} which minimizes the
(real) objective function f(x) = cTx (note that the inequalities are taken component-
wise). Here, we immediately see that c defines the objective function, while A and b
define the feasible set X .

In general a LP might be infeasible, if there are inconsistent constraints, or its so-
lution might be unbounded, if the feasible set is also unbounded. If the feasible set is
bounded and if a feasible solution exists, then the optimum value is always attained on
the boundary of the feasible set (and it is a global optimum), as the objective function
is linear. In the case of problems with distinct optimal solutions (e.g. if the objective
function is a constant), then every convex combination of the solutions is also a solution.

The duality principle states that every LP, referred to as a primal problem, is asso-
ciated to a dual LP. In our case, the dual problem consists in finding the optimal point
y⇤ 2 Y =

�

y 2 Rm | ATy  c and y � 0
 

which maximizes the objective function
g(y) = bTy. The dual of a dual LP is the original primal LP.

Crucially, every feasible solution to a LP gives a bound on the solution to its dual.
Let us call the optimal feasible solutions p⇤ = inf

x2X cTx = f(x⇤) for the primal,
and d⇤ = sup

y2Y bTy = g(y⇤) for the dual. The weak duality theorem states that the
optimal feasible solution to the primal (minimization) problem is always larger or equal
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G. Convex optimization

to its dual (maximization) problem, i.e. p⇤ � d⇤. The difference between the solutions
of the primal and the dual problem is called duality gap, and it is necessarily grater
or equal than zero. In case the duality gap is zero, then strong duality is said to hold,
and cTx⇤ = bTy⇤. Moreover, weak duality implies that if the primal LP is unbounded
then its dual is infeasible. Likewise, if the dual is unbounded, then the primal must be
infeasible. However, it is also possible for both the dual and the primal to be infeasible.
In the case of LPs strong duality only fails if both programs are infeasible [172].

To summarize, we define the primal LP and its dual as

Primal program

minimise cTx

subject to Ax � b

x � 0

Dual program

maximise bTy

subject to ATy  c

y � 0

In this thesis, LPs are mainly be used to prove that certain vectors can be written
as convex combination of others. In the context of Bell correlations a LP can be used
to check whether the vector of observed correlations can be written as a convex com-
bination of the vectors of correlations originating from local deterministic strategies.
Geometrically, in the space of correlators, this corresponds to checking if a point is in-
side the local polytope. As the number of vertices of the local polytope grows rapidly
with the system size, using a LP to verify the presence of Bell correlations is typically
impractical in the multipartite scenario.

As a final note, we show a convenient redefinition of the feasibility region. Auxiliary
non-negative variables, called slack variables, can be introduced to write the inequality
constraints Ax � b and ATy  c as equalities. The observation is based on the fact
that, for some linear function h

i

, h
i

(x)  0 if and only if there exists a s
i

� 0 such that
h
i

(x) + s
i

= 0. Because of this we can write

Primal program

minimise cTx

subject to Ax � s = b

x � 0

s � 0

Dual program

maximise bTy

subject to ATy + s = c

y � 0

s � 0

G.2 Integer program

An integer program (IP) is a LP where the unknown variables are required to be integers,
i.e. x 2 Zn and y 2 Zm. While a LP can be solved efficiently in polynomial time, IP are
often NP-hard.
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G.3 Semidefinite program

IP can be useful in finding the classical bound of a multipartite permutationally-
invarian Bell inequality in the following way. First, one expresses the inequality in terms
of auxiliary variables counting how many parties are following each of the local deter-
ministic strategies. Then, for a fixed number of parties N , the IP is used to minimize the
Bell inequality over all possible partitions of the integer N into the auxiliary variables.

G.3 Semidefinite program

A semidefinite program (SDP) is a method to optimize a linear objective function over
the convex cone1 of positive semidefinite2 matrices, subject to linear equality and linear
inequality constraints defining the feasible set which is a spectrahedron. More precisely,
for given A

k

2 Rn⇥n with k = 1, ..., m, b 2 Rm and C 2 Rn⇥n, our task is to find
the optimal point X⇤ 2 X =

n

X 2 Sn | Tr
h

A†
k

X
i

� b
k

8k = 1, ..., m and X ⌫ 0
o

,
where Sn is the space of all n ⇥ n real symmetric matrices and X ⌫ 0 means posi-
tive semidefinite, which minimizes the (real) objective function f(x) = Tr

⇥

C†X
⇤

=
P

i,j

C
ij

X
ij

. Here, we immediately see that C defines the objective function, while A
k

and b define the feasible set X . It is interesting to note that all LPs can be expressed as
SDPs. As for LPs, a general SDP might be infeasible or its solution might be unbounded.

The duality principle also applies to SDPs. In our case, the dual problem consists
in finding the optimal point y⇤ 2 Y = {y 2 Rm |

P

k

A
k

y
k

� C} which maximizes the
objective function g(y) = bTy. The dual of a dual SDP is the original primal SDP.

Let us call the optimal feasible solutions p⇤ = inf
X2X Tr

⇥

C†X
⇤

= f(X⇤) for the
primal, and d⇤ = sup

y2Y bTy = g(y⇤) for the dual. Again, every feasible solution
to a SDP gives a bound on the solution to its dual, i.e. p⇤ � d⇤, as the weak duality
theorem applies. However, contrary to LPs, strong duality does not always hold for
SDPs. Sufficient conditions for having a zero duality gap (i.e. strong duality) are known
as Slater’s conditions. These read

• If p⇤ is finite, X⇤ � 0 and Tr
h

A†
k

X
i

� b
k

8k (i.e. the primal is strictly feasible),

then p⇤ = d⇤ and there exists a y⇤ 2 Y such that d⇤ = sup
y2Y bTy = g(y⇤)

• If d⇤ is finite and
P

k

A
k

y
k

� C (i.e. the dual is strictly feasible), then p⇤ = d⇤

and there exists a X⇤ 2 X such that p⇤ = inf
X2X Tr

⇥

C†X
⇤

= f(X⇤)

To summarize, we define the primal SDP and its dual as

1A convex cone is a subset of a vector space that is closed under linear combinations with positive
coefficients. More rigorously, A subset C of a vector space V is a cone if for each x in C and positive
scalars ↵, the product ↵x is in C. A cone C is a convex cone if ↵x + �y belongs to C, for any positive
scalars ↵, �, and any x, y 2 C. The set of positive semidefinite matrices is a cone.

2A n ⇥ n real symmetric matrix M is said to be positive semidefinite if xT
Mx � 0 for all x 2 Rn.

This implies that all the eigenvalues of M are non-negative. An important equivalent definition is that M
is positive semidefinite if and only if it can be written as a Gram matrix, i.e. as a matrix where the entries
m

ij

= x

i

·x
j

are scalar products of n vectors {x
i

}
i=1,...,n 2 Rn. A similar definition holds for the

complex case.
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Primal program

minimise Tr
h

C†X
i

subject to Tr
h

A†
k

X
i

� b
k

8k

X ⌫ 0

Dual program

maximise bTy

subject to
X

k

A
k

y
k

� C

SDPs find many applications in the field of quantum information theory. As an
example, they have been successfully used to define hyerarchies bounding the set of
quantum correlations from the outside [126], and for entanglement detection [125]. In
this thesis SDPs have been used in chapter 4 to bound the set of classical correlations
projected on the space of symmetrized one- and two-body correlators.
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interferometer surpasses classical precision limit, Nature 464, 1165 (2010).

[15] A. Louchet-Chauvet, J. Appel, J. J. Renema, D. Oblak, N. Kjaergaard, and E. S.
Polzik, Entanglement-assisted atomic clock beyond the projection noise limit,
New Journal of Physics 12, 065032 (2010).

[16] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Orientation-dependent entan-
glement lifetime in a squeezed atomic clock, Phys. Rev. Lett. 104, 250801 (2010).

[17] C. F. Ockeloen, R. Schmied, M. F. Riedel, and P. Treutlein, Quantum metrology
with a scanning probe atom interferometer, Phys. Rev. Lett. 111, 143001 (2013).

[18] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases,
Rev. Mod. Phys. 80, 885 (2008).
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[46] A. Muñoz Mateo and V. Delgado, Extension of the Thomas-Fermi approximation
for trapped Bose-Einstein condensates with an arbitrary number of atoms, Phys.
Rev. A 74, 065602 (2006).

[47] M. Egorov, B. Opanchuk, P. Drummond, B. V. Hall, P. Hannaford, and A. I.
Sidorov, Measurement of s-wave scattering lengths in a two-component Bose-
Einstein condensate, Phys. Rev. A 87, 053614 (2013).

[48] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell,
Dynamics of component separation in a binary mixture of Bose-Einstein conden-
sates, Phys. Rev. Lett. 81, 1539 (1998).

[49] Y. Li, P. Treutlein, J. Reichel, and A. Sinatra, Spin squeezing in a bimodal con-
densate: spatial dynamics and particle losses, European Physical Journal B 68,
365 (2009).

170

http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/PhysRevA.54.R4633
http://dx.doi.org/10.1038/35097032
http://dx.doi.org/10.1038/nphys125
http://dx.doi.org/10.1103/PhysRevA.92.012106
http://dx.doi.org/10.1126/science.1189164
http://dx.doi.org/10.1103/PhysRevA.75.063610
http://dx.doi.org/10.1103/PhysRevA.75.063610
http://dx.doi.org/10.1103/PhysRevA.74.065602
http://dx.doi.org/10.1103/PhysRevA.74.065602
http://dx.doi.org/10.1103/PhysRevA.87.053614
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1140/epjb/e2008-00472-6
http://dx.doi.org/10.1140/epjb/e2008-00472-6


BIBLIOGRAPHY
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[131] O. Gühne, G. Tóth, and H. J. Briegel, Multipartite entanglement in spin chains,
New Journal of Physics 7, 229 (2005).
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[142] M. Żukowski and Č. Brukner, Bell’s theorem for general N-qubit states, Phys.
Rev. Lett. 88, 210401 (2002).

[143] A. Gilchrist, P. Deuar, and M. D. Reid, Contradiction of quantum mechanics with
local hidden variables for quadrature phase amplitude measurements, Phys. Rev.
Lett. 80, 3169 (1998).

[144] W. J. Munro, Optimal states for bell-inequality violations using quadrature-phase
homodyne measurements, Phys. Rev. A 59, 4197 (1999).

[145] R. Garcı́a-Patrón, J. Fiurášek, N. J. Cerf, J. Wenger, R. Tualle-Brouri, and
P. Grangier, Proposal for a loophole-free Bell test using homodyne detection,
Phys. Rev. Lett. 93, 130409 (2004).

[146] H. Nha and H. J. Carmichael, Proposed test of quantum nonlocality for continuous
variables, Phys. Rev. Lett. 93, 020401 (2004).

[147] J. S. Bell and A. Aspect, Speakable and Unspeakable in Quantum Mechanics:
Collected Papers on Quantum Philosophy, (Cambridge University Press), 2nd
edition (2004).

[148] T. C. Ralph, W. J. Munro, and R. E. S. Polkinghorne, Proposal for the measure-
ment of Bell-type correlations from continuous variables, Phys. Rev. Lett. 85,
2035 (2000).

[149] O. Thearle, J. Janousek, S. Armstrong, S. Hosseini, M. Schünemann (Mraz),
S. Assad, T. Symul, M. R. James, E. Huntington, T. C. Ralph, and P. K. Lam,
Violation of Bell’s inequality using continuous variable measurements, Phys. Rev.
Lett. 120, 040406 (2018).

[150] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall, A. M. Rey, M. Foss-Feig,
and J. J. Bollinger, Quantum spin dynamics and entanglement generation with
hundreds of trapped ions, Science 352, 1297 (2016).

[151] N. J. Engelsen, R. Krishnakumar, O. Hosten, and M. A. Kasevich, Bell corre-
lations in spin-squeezed states of 500,000 atoms, Phys. Rev. Lett. 118, 140401
(2017).

[152] C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk, and
H. J. Kimble, Measurement-induced entanglement for excitation stored in remote
atomic ensembles, Nature 438, 828 (2005).

[153] D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S. Y. Lan, T. A. B. Kennedy, and
A. Kuzmich, Entanglement of Remote Atomic Qubits, Physical Review Letters
96, 030405 (2006).

178

http://dx.doi.org/10.1103/PhysRevLett.50.1407
http://dx.doi.org/10.1103/PhysRevLett.50.1407
http://dx.doi.org/10.1103/PhysRevLett.80.3169
http://dx.doi.org/10.1103/PhysRevLett.80.3169
http://dx.doi.org/10.1103/PhysRevA.59.4197
http://dx.doi.org/10.1103/PhysRevLett.93.130409
http://dx.doi.org/10.1103/PhysRevLett.93.020401
http://dx.doi.org/10.1017/CBO9780511815676
http://dx.doi.org/10.1103/PhysRevLett.85.2035
http://dx.doi.org/10.1103/PhysRevLett.85.2035
http://dx.doi.org/10.1103/PhysRevLett.120.040406
http://dx.doi.org/10.1103/PhysRevLett.120.040406
http://dx.doi.org/10.1126/science.aad9958
http://dx.doi.org/10.1103/PhysRevLett.118.140401


BIBLIOGRAPHY

[154] J. Simon, H. Tanji, S. Ghosh, and V. Vuletic, Single-photon bus connecting spin-
wave quantum memories, Nature Physics 3, 765 (2007).

[155] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin, M. Rispoli, and M. Greiner,
Measuring entanglement entropy in a quantum many-body system, Nature 528,
77 (2015).

[156] T. Fukuhara, S. Hild, J. Zeiher, P. Schauß, I. Bloch, M. Endres, and C. Gross,
Spatially Resolved Detection of a Spin-Entanglement Wave in a Bose-Hubbard
Chain, Physical Review Letters 115, 035302 (2015).

[157] D. Cavalcanti and P. Skrzypczyk, Quantum steering: a review with focus on
semidefinite programming, Reports on Progress in Physics 80, 024001 (2017).
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states of atomic ensembles under nonuniform atom-light interaction, Phys. Rev.
A 92, 063816 (2015).
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