Lecturer | Prof. Dr. Philipp Treutlein |
Assistants | Dr. Baptiste Allard, Dr. Lucas Beguin |
Time and place | Lecture: Mondays 10:15–12:00, Klingelbergstr. 82, Alter Hörsaal 2, 1.22 Tutorial: Mondays 14:00–15:30, Klingelbergstr. 82, Seminarzimmer 4.1 |
Start Date | 16 February, 2015 |
Final Lecture | 18 May 2015 |
Language | English or German |
The invention of atomic trapping, laser cooling and evaporative cooling made it possible to cool atomic gases to nanokelvin temperatures. At such low temperatures, the atoms form Bose-Einstein condensates or degenerate Fermi gases that allow studies of quantum phenomena in very clean and controllable systems. For example, ultracold atoms in optical lattices can be used as quantum simulators for condensed matter Hamiltonians. Chip-based microtraps can be used to generate atom-atom entanglement for quantum metrology. Ultracold atoms find applications in atomic clocks and atom interferometers for precision measurement.
This lecture gives an introduction to the field of ultracold atoms. We will discuss the basic phenomena and develop the necessary theoretical tools, as well as discuss key experiments in the field. The goal is to provide a solid background for research in ultracold atoms and related fields.
Problem sets and handouts can be downloaded from here.
Basic knowledge of quantum mechanics and atomic physics.
Solving and presentation of problem sets and short talk in the journal club.
Master of Physics, Master of Nanoscience, advanced Bachelor students.